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We derive a unified expansion law for our Universe from the first law of thermodynamics on the apparent
horizon, where entropic evolution depicts the emergence of cosmic space. The derivation advances a
general form for degrees of freedom on the surface and bulk, which provides a natural generalization for the
expansion law proposed by Padmanabhan. The general expression for the surface degrees of freedom
differs from the natural expectation, Nsur ¼ 4S in the emergent gravity paradigm for general theories of
gravity. The derivation also provides justification for the selection of Gibbons-Hawking temperature in the
original expansion law and for the use of areal volume in the nonflat Friedmann-Robertson-Walker
universe. Since the unified expansion law exclusively depends on the form of entropy, the method is
applicable to obtain the expansion law in any gravity theory without any additional ad hoc assumptions.
From the general expansion law, we have obtained the expansion law corresponding to different theories of
gravity like (nþ 1) Einstein, Gauss-Bonnet, Lovelock, and Hořava-Lifshitz. We also obtained the
expansion law for nonextensive entropy like Tsallis entropy from the unified expansion law.
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I. INTRODUCTION

The connection between gravity and thermodynamics
first emerged from the studies on black hole physics [1–4].
In 1973, Bekenstein proposed that black holes possess
entropy proportional to their horizon area [1]. Meantime,
Bardeen et al. formulated the laws of black hole dynamics
and have shown that they are analogous to the laws of
thermodynamics of an ordinary macroscopic system [3].
Following these, Hawking has revealed that the black hole
possesses temperature proportional to the surface gravity of
its horizon; hence, it can radiate like any thermal object.
Gibbons and Hawking [5] extended this idea to cosmology
and showed that the horizon of a de Sitter universe, indeed
possesses a temperature and entropy proportional to its
surface gravity and area, respectively. Later on, it was
noticed that the thermodynamic nature is not a peculiar
feature of the black holes or cosmological horizons, but a
general feature of all spacetime horizons [5–7]. For
instance, an accelerating observer in flat spacetime can
experience a horizon and attribute a temperature (called
Unruh temperature) to it, T ¼ a=2π, where a is his
acceleration [8].
In 1995, in an important step, Jacobson [9] showed that

Einstein’s field equations can be derived by projecting the
Clausius relation δQ ¼ TdS to a local Rindler horizon,

where δQ is the energy flux through the horizon, T is the
Unruh temperature [8] seen by the accelerated observer
near the horizon, and S is the Bekenstein entropy [1]. Later,
Padmanabhan had shown that Einstein’s field equation can
be expressed in the form dE ¼ T dS − PdV, near a spheri-
cally symmetric horizon, where E is the energy associated
with the horizon, P is the pressure term due to the
gravitational source (which is different from conventional
pressure), and T is horizon temperature proportional to the
surface gravity [10,11]. The differences between these two
approaches are discussed in Ref. [12].
In cosmology, Cai and Kim [13] derived the Friedmann

equations from the first law of thermodynamics of the form
−dEflux ¼ TdS by applying it to the horizon of an (nþ 1)-
dimensional Friedmann-Robertson-Walker (FRW) universe
in Einstein’s gravity. Here S is the Bekenstein entropy of
the horizon, T ¼ 1=2πrA is the static temperature of the
horizon [14], and dEflux is the energy flux through the
apparent horizon of radius rA. This result has been extended
to Gauss-Bonnet gravity and the more general Lovelock
gravity theory by adopting the corresponding entropy
relations. Meanwhile, Akbar and Cai arrived at the
Friedmann equations from the thermodynamic identity
dE ¼ T dSþWdV [15]. Here dE is the distortion in the
Misner-Sharp energy of the matter inside the apparent
horizon, and temperature is assumed as T ¼ κ=2π, where κ
is the surface gravity of the horizon, andW ¼ ð1=2Þðρ − pÞ
is the work density.
All the results discussed above ratify the intriguing

connection between gravity and thermodynamics.
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This implies that, like thermodynamics, gravity could also
be an emergent phenomenon. In thermodynamics, proper-
ties like temperature, pressure, etc. emerged due to the
assembly of microscopic structures like atoms or mole-
cules. Like this, the macroscopic geometric properties of
spacetime like metric, curvature, etc. also turn out to be
emerging entities. Following this concept, Padmanabhan
[16] derived Newton’s law of gravity by combining the
equipartition law of energy, related to the degrees of
freedom at the horizon, and the thermodynamic relation
S ¼ E=2T , where E is the effective gravitational mass and
T is the horizon temperature. Meanwhile, following string
theory considerations, Verlinde reformulated gravity as an
entropic force arising from the natural tendency of the
material distribution to maximize the entropy [17].
In the emergent gravity approach, spacetime is consid-

ered to be preexisting. In extending this approach to
cosmology, Padmanabhan further stated that the cosmo-
logical space itself could be emergent. He postulated that
the expansion of the Universe (expansion of the Hubble
volume) could be explained as the emergence of cosmic
space with the progress of cosmic time [18]. It is difficult to
assume time as being emerged from some pregeometric
variables. However, the existence of proper time will help
to eliminate this difficulty in cosmology. In cosmology, due
to comoving coordinates, all inertial observers measure the
same time, the proper time. Moreover, for such inertial
observers, the cosmic background radiation appears homo-
geneous and isotropic [18]. Padmanabhan then proposed,
in the context of Einstein’s gravity, that the time evolution
of the Universe can be described using the equation
dV
dt ¼ l2

pðNsur − ϵNbulkÞ, where V is the Hubble volume,
lp is the Planck length, and Nsur and Nbulk are the degrees
of freedom on the horizon and that of the bulk, residing
within the horizon, respectively. The above relation is
known as the holographic equipartition principle and is
also dubbed as the expansion law. According to this law,
the emergence of space happens to equalize the degrees of
freedom on the horizon with that in bulk matter enclosed
by the horizon. To establish this concept, Padmanabhan
derived the Friedmann equation for a flat (3þ 1) FRW
universe from this law of expansion [18]. The expansion
law was then extended to higher-dimensional gravity
theories like (nþ 1)-dimensional Einstein gravity,
Gauss-Bonnet gravity, and more general Lovelock gravity
by appropriately modifying the surface degrees of freedom
[19]. An extension of this procedure to nonflat FRW
universe was done by Sheykhi [20]. The expansion law
had also been extended to different gravity theories in
different ways [19–24]. More investigations on
Padmanabhan’s idea of emergence of space can be found
in Refs. [22,23,25–35]. In recent studies, we have shown
that the expansion law effectively implies the entropy
maximization in Einstein’s gravity [36] and more general
forms of gravity like Gauss-Bonnet and Lovelock gravities

[37]. Consequently, one can interpret the emergence of
space as a tendency to maximize the horizon entropy.
There are different generalizations of Padmanabhan’s

original proposal of the law of emergence in the context of
different gravity theories. In these various generalizations,
the authors have to define an effective area for the apparent
horizon and, thus, a form for the effective degrees of
freedom on the horizon, in conformity with the expression
for the entropy of the horizon. Owing to the different forms
of the horizon entropy in different gravity theories, the
effective surface (or volume) and the surface degrees of
freedom defined by different authors vary from one gravity
theory to another. This ultimately led to the proposal of
different forms of the law of emergence in different gravity
theories. The authors only made an effort to guarantee the
emergence of the correct Friedmann equations, whatever
way the form of the law of emergence varies for different
gravity theories. Hence, the situation called for having a
unified format for the law of emergence, irrespective of the
gravity theory. It is to be noted that the different forms of
the expansion law can be derived from the first law of
thermodynamics, which has the same form in all gravity
theories [24,34]. So we think it is possible to find a unified
general form for the law of emergence that can be
invariantly applicable in all gravity theories, from the
principles of thermodynamics. Motivated by this, we
formulate a more general and unified form for the law
of emergence in terms of entropy, which can be applied to
any gravity theory with its unique entropy relation.
The paper is organized as follows. In Sec. II, we derive the

general expansion law from the unified first law of thermo-
dynamics. Following this, we obtain expansion law in
different theories of gravity from the general expansion
law in Sec. III. The significance of the unified expansion law
is discussed in Sec. IV. Finally, we present our conclusions
in Sec. V.

II. GENERAL EXPANSION LAW FROM UNIFIED
FIRST LAW OF THERMODYNAMICS

According to Padmanabhan, the dynamics of the
Universe can be explained as the emergence of space by
the expansion law [18]. Similarly, the unified first law
relates the variation in Misner-Sharp energy with the heat-
supply term T dS and the work term WdV due to the
variation in the horizon radius. Both relations explain the
same reality of the dynamics of the Universe. Hence there
should exist deeper connections between them. In this
section, we derive expansion law from the unified first law
of thermodynamics. The derivation shows that the entropy
determines the nature of gravity in the resulting expansion
law as in the unified first law. Hence, the derivation gives a
general form of the expansion law that allows us to
transcend the idea of emergence to general gravity theories
like Gauss-Bonnet and Lovelock gravity theories by
choosing respective entropies. The derivation also gives
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insights for defining the surface degrees of freedom in
different gravity theories.
Let us consider an (nþ 1)-dimensional FRW universe

with metric

ds2 ¼ habdxadxb þ aðtÞ2r2dΩ2
n−1; ð1Þ

where hab ¼ diag½−1; aðtÞ2=1 − kr2� is the two-dimen-
sional metric of the t − r surface, aðtÞ is the scale factor
of expansion, r is the comoving radial distance, and dΩn−1
is the metric of (n − 1)-dimensional sphere with unit radius.
The spatial curvature constant has values k ¼ 1, 0, and −1,
corresponding to a closed, flat, and open universe, and aðtÞ
is the scale of expansion. The apparent horizon of the
Universe satisfies the condition, hab∂ar̃∂br̃ ¼ 0 [where
r̃ðtÞ ¼ aðtÞr], which gives the apparent horizon radius as
r̃A ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðk=a2Þ

p
, where H is the Hubble parameter.

From the standard relation for the surface gravity κ, the
horizon temperature has the form [38,39]

T ¼ −κ=2π ¼ 1

2πr̃A
ð1 − ϵTÞ ¼ Tð1 − ϵTÞ; ð2Þ

where ϵT ≡ _̃rA=2Hr̃A, where the overdot represents a
derivative with respect to cosmic time and T ¼ 1=2πr̃A.
In the limit _̃rA=2Hr̃A ≪ 1, the temperature satisfies the
relation T ∼ T [14]. Here the negative sign before κ is
introduced to ensure the non-negativity of the temperature.
In the cosmological context, unlike in the black hole case,
the surface gravity of the horizon κ ≤ 0 for the standard
cosmic components ω ≤ 1=3 [40].
Now, the unified first law can be expressed as

dE ¼ −T dSþWdV; ð3Þ

where the negative sign in TdS cancels out with the
negative sign in the definition of temperature T ¼
−κ=2π; see [10] for more about the sign conventions.
We use the above form of the unified first law in the rest of
this manuscript. In cosmology, there is also another form of
the first law of thermodynamics without the pressure term,
−dEflux ¼ TdS [13]. The unified first law (3) is applied to
the entire volume within the horizon, in which the energy is
the Misner-Sharp energy E ¼ ρV contained within the
horizon of volume V [15]. On the other hand, −dEflux ¼
TdS is used at the horizon, and the energy dEflux is referred
to as the energy flux crossing the apparent horizon in an
infinitesimal interval of time during which the size of the
horizon is assumed to be fixed, and hence the temperature
of the horizon is assumed to be T ¼ 1=2πrA [13].
Let us now formulate the unified first law at the apparent

horizon in the FRW universe (1). The cosmic component is
assumed to be a perfect fluid, such that the time and spacial
components of the energy-momentum tensor are T0

0 ¼
−ρ;Ti

i ¼ p with density ρ and pressure p of the cosmic
components,

Tμν ¼ ðρþ pÞuμuν þ gμνp: ð4Þ

Thus, the energy within the volume V enclosed by the
apparent horizon is E ¼ ρV. Then, the unified first law can
be expressed as [15],

T dS ¼ ðρ − pÞ
2

dV − ðρdV þ VdρÞ: ð5Þ

Using the continuity equation in (nþ 1) the FRWuniverse,
_ρþ nHðρþ pÞ ¼ 0, the above equation becomes

T
dS
dt

¼ nHΩnr̃nAðρþ pÞ: ð6Þ

Here the temperature is T, since the term ð1 − ϵTÞ was
canceled, from both sides. In obtaining the above relation,
we took V ¼ Ωnr̃nA, the volume of (nþ 1) the FRW
universe enclosed by the apparent horizon, where Ωn is
the areal volume of an n-dimensional sphere with unit
radius.
It is important to note that the first law of the form

−dEflux ¼ TdS also reduces Eq. (6). It should be noted that,
unlike in the previous form of the law, the energy dEflux
here is the energy flux across the apparent horizon. The
observer measuring this flux is located on the apparent
horizon, for whom the apparent horizon is virtually sta-
tionary. Relative to this local observer, the temperature of
the apparent horizon becomes T ¼ 1=2πr̃A. Energy flux
through the apparent horizon during a small interval of time
dt is given by [41]

−dEflux ¼ Aðρþ pÞHr̃Adt; ð7Þ

where A ¼ nΩnr̃n−1A is the area of the horizon of an (nþ 1)-
dimensional FRW universe. Then the first law at the
apparent horizon of the FRW universe will take the form

TdS ¼ Aðρþ pÞHr̃Adt: ð8Þ

On substituting the area of the apparent horizon with some
suitable rearrangements, the above equation becomes
exactly similar to Eq. (6), obtained for the unified form
of the law of thermodynamics, so that Eq. (6) represents
both forms of the thermodynamic laws at the horizon.
Let us now consider Eq. (6) and split the term nðρþ pÞ

on the rhs of it into ðn − 2Þρþ npþ 2ρ. Using this, Eq. (6)
can be rewritten as

dS
dt

¼ 1

T
HΩnr̃nA½ðn − 2Þρþ npþ 2ρ�: ð9Þ

Now we take the rate of change of horizon entropy dS=dt,
instead of the rate of change of volume enclosed by the
apparent horizon dV=dt, in the expansion law. This is
useful in generalizing the expansion law to more general
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theories of gravity having different forms of entropy.
Similarly, we use a natural generalization of Komar energy
to define the degrees of freedom in bulk for the (nþ 1)
FRW universe, EKomar ¼ 2½ðn − 2Þρþ np�V=ðn − 1Þ. It
turns out that this relation for Komar energy can be
obtained from its standard relation [27],

EKomar ¼ 2

Z
dV

�
Tμν −

1

ðn − 1Þ T̄gμν
�
uμuν; ð10Þ

where Tμν is the energy-momentum tensor, with trace T̄,
and uμ is the four velocity. For the (nþ 1) FRW universe,
the energy-momentum tensor given in Eq. (4) satisfies the
relations Tμνuμuν ¼ ρ and T̄gμνuμuν ¼ ρþ np. Using
these, it is easy to show that Eq. (10) will reduce to the
Komar energy that we have used to define bulk degrees of
freedom. Taking account of these two assumptions, with
suitable rearrangements in Eq. (9), we get a general
expansion law [42],

4

ðn − 1Þ
dS
dt

¼ HðNsur − ϵNbulkÞ; ð11Þ

where

Nbulk ¼ −ϵ
EKomar

ð1=2ÞT ¼ −ϵ
�
2½ðn − 2Þρþ np�V

ðn − 1Þ
�

1

ð1=2ÞT :

ð12Þ

Here we can identify Nsur as the total surface degrees of
freedom for a general (nþ 1)-dimensional FRW universe,
and it turns out that

Nsur ¼
2

n − 1

2ρV
ð1=2ÞT ; ð13Þ

where n is the spacial dimension of the space. In this
process, we have not used any particular gravity theory;
hence the above results are true irrespective of the gravity
theory. The above relation can be effectively rewritten as
Nsur ¼ Eeq=ðð1=2ÞTÞ, where Eeq ¼ 2

ðn−1Þ 2ρV, which can

be identified as equipartition energy of the horizon of an
(nþ 1)-dimensional universe.
In the context of (3þ 1) Einstein’s gravity, ρV has the

direct thermodynamic interpretation as the total heat con-
tent of the horizon surface, which is in the form TS [16].
Then the present form of Eeq will reduce to Eeq ¼ 2TS,
corresponding to which Nsur ¼ 4S ¼ A

l2p
will be followed

[43,44]. Similarly, the first Friedmann equation in (nþ 1)
Einstein’s gravity has the form TS ¼ 2

ðn−1Þ ρV. Hence, our
form of the equipartition energy in this case also reduces to
Eeq¼ 2

ðn−1Þ2ρV¼2TS, correspondingly, Nsur ¼ 4S ¼ A
ln−1
p
.

However, in general theories of gravity, especially in
Lovelock gravity theory, the entropy is not proportional to the
area of the horizon, which no longer follows such a simple
relation 2

ðn−1Þ ρV ¼ TS [15], and corresponding surface

degrees of freedom will not follow the relation Nsur ¼ 4S.
Here, one can note that the form of equipartition energy on
the horizon determines the degrees of freedomon the surface.
Now we take the general assumption that the equipartition
energy of the surface is 2 times the heat content of the horizon
[45]. Then, 2

n−1 ρV in the above relation should be equivalent
to the total heat content of the horizon (which is not equal to
TS, in general). This can be realized using the Clausius
relation TdS ¼ −dEflux ¼ −Vdρ, which means the change
in the total heat content on the horizon surface is equal to the
total inward matter flux through the horizon for a local
observer [13]. Using the integral form of the Clausius
relation, we get the equipartition energy of horizon as

Eeq ¼
4

n − 1
ρV ¼ −

4

n − 1
V
Z

TdS
V

: ð14Þ

Hence, we identified the equipartition energy in our deriva-
tion in terms of thermodynamic variables. So, we get the
general expression for the surface degrees of freedom as

Nsur ¼
Eeq

ð1=2ÞT ¼ −
4

ðn − 1Þ
V

ð1=2ÞT
Z

TdS
V

: ð15Þ

Now, we want to highlight that Eq. (11) is the general
law of expansion, and Eqs. (15) and (12) are the surface and
bulk degrees of freedoms, respectively. First, we will show
that our generalized expansion law in Eq. (11) will reduce
to the original form of the law of expansion, which was
proposed for the (3þ 1) flat FRWuniverse in the context of
Einstein’s gravity. For this, let us take n ¼ 3 and entropy as
S ¼ A=4l2

p, with A ¼ 4π=H2 for a flat universe. Then the
left hand side of Eq. (11) will reduce to ðH=l2

pÞ dVdt , where
V ¼ 4π=3H3, the volume of the apparent horizon. To find
the surface degrees of freedom, we have to substitute A, V,
and T ¼ H=2π, the temperature for the horizon, in Eq. (15),
which on integration will lead to Nsur ¼ A=l2

p. Similarly,
the bulk degrees of freedom in Eq. (12) will now reduce to
Nbulk ¼ ðρþ 3pÞV=ð1=2ÞT, where ðρþ 3pÞ is the Komar
energy density for a flat (3þ 1) universe. Taking account of
these, the expansion law in (11) will now reduce to the form

dV
dt

¼ l2
pðNsur − ϵNbulkÞ; ð16Þ

which is exactly the original form of the law of expansion
of the flat universe.
The novel fact regarding the general law of expansion is

the symmetry in the definitions of Nsur and Nbulk. In the
original proposal by Padmanabhan, Nsur is defined as the
number of Planck area, which corresponds to a degree of
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freedom on the horizon surface, while Nbulk is defined by
using the equipartition rule, as the ratio of the Komar
energy within the horizon to the energy corresponding to
1 degree of freedom. In the current approach, an alternative
definition for the surface degrees of freedom Nsur similar to
Nbulk can be obtained using the equipartition rule. It turns
out that the expression − 4V

ðn−1Þ
R

TdS
V in Eq. (15) is equivalent

to equipartition energy of the surface Eeq, so that the
surface degrees of freedom can consequently be expressed

as Nsur ¼ Eeq

ð1=2ÞT. This brings symmetry to the definition of

the bulk degrees of freedom, which takes the form
Nbulk ¼ −ϵ EKomar

ð1=2ÞT. However, it is to be noted that the

temperature used to define both degrees of freedom is
the same, T ¼ 1=ð2πr̃AÞ. This implies that the bulk degrees
of freedom that emerged in bulk are in equipartition with
the horizon at temperature T as in the original proposal by
Padmanabhan.
An important point about the expansion law (11) is

regarding the temperature appearing in this equation. To
derive the expansion law from the unified first law, we have
used the temperature T as defined in Eq. (2). This
temperature is a measure of the surface gravity of the
horizon and is a product of two terms, in which the first
term is proportional to 1=r̃A and the other mainly depends
on _̃rA, the time derivative of the horizon radius. It is to be
noted that many have used the horizon temperature with
this time derivative of the radius as the temperature of the
dynamic horizon. This motivates the use of the temperature
T to define the expansion law, especially for obtaining the
degrees of freedom. However, in the original proposal of
the law of emergence by Padmanabhan, the temperature
used is T, which is devoid of the time derivative of the
horizon radius. The justification given for this is threefold:
(1) the temperature T is independent of the gravity theory,
and also, it is a direct translation of the expression of the
temperature of a black hole horizon; (2) since rA is also
varying as the universe expands, it also accounts for the
dynamical evolution of the universe; (3) the expansion law
obtained with the temperature T (T ¼ H=2π for the flat
universe used by Padmanabhan) has a simple form, which
will reduce to the Friedmann equation in the case of a flat
universe. The interesting point in our calculation process is
that, even though we have started with the full temperature
T , the final expression for the expansion law contains only
T, which has arisen so naturally. In a sense, the use of the
temperature T for defining the expansion law has a natural
explanation in our method.

III. EXPANSION LAW IN DIFFERENT THEORIES
OF GRAVITY FROM THE GENERAL LAW OF

EXPANSION

In this section, we will obtain the law of expansion for
different gravity theories from the general law of expansion

presented in the last section. We will then compare these
with the existing generalizations of the law.

A. Expansion law in (n+ 1) Einstein gravity

The entropy of the horizon in (nþ 1)-dimensional
Einstein gravity is S ¼ A=ð4ln−1

p Þ and its time derivative

can be expressed as ðn−1Þ
4ln−1p r̃A

dV
dt . Using this, the general

expansion law (11) will reduce to the form

dV
dt

¼ ln−1
p r̃AHðNsur − ϵNbulkÞ: ð17Þ

This is the law of expansion in (nþ 1)-dimensional
Einstein gravity. For the flat universe with the apparent
horizon radius r̃A ¼ 1=H, the expansion law will reduce to

dV
dt

¼ ln−1
p ðNsur − ϵNbulkÞ: ð18Þ

This equation is of the same form as the original proposal
by Padmanabhan. The degrees of freedom appearing in the
above equation can be obtained from the general expres-
sions in (15) and (12), and now take the form

Nsur ¼ A=ln−1
p and Nbulk ¼ −ϵ

EKomar

ð1=2ÞT : ð19Þ

We will now show that the expansion law (17) will lead
to the corresponding Friedmann equation. Substitute for
V; A; EKomar, and T in the expansion law, Eq. (17) will be
modified as

r̃−2A − _̃rAH−1r̃−3A ¼ 8πln−1
p

nðn − 1Þ ½ðn − 2Þρþ np�: ð20Þ

Integrating the above equation using the continuity equa-
tion _ρþ nHðρþ pÞ ¼ 0, after multiplying both sides by
the factor 2_aa, we get the first Friedmann equation [13],

H2 þ k
a2

¼ 16πln−1
p

nðn − 1Þ ρ: ð21Þ

This shows the consistency of our expansion law in (nþ 1)
Einstein gravity for both a flat and nonflat FRW universe.
Now we will compare the above results with the

previously obtained extensions of the law of expansion
in (nþ 1) dimensions. The original proposal of the law of
expansion for flat (3þ 1) Einstein’s gravity has extended to
(nþ 1) dimensions in the flat FRW universe by Cai [19],
while, Sheykhi extended the law to the nonflat universe
[20]. We will briefly describe Cai’s extension, then high-
light how our general expansion law is more advantageous.
In extending the law of emergence to (nþ 1) Einstein’s

gravity, Cai proposed a modified form for the law as [19]
α dV

dt ¼ ln−1
p ðNsur − NbulkÞ, where α ¼ ðn − 1Þ=2ðn − 2Þ.

UNIFIED FORMALISM FOR THE LAW OF EMERGENCE FROM … PHYS. REV. D 107, 063511 (2023)

063511-5



In this case, the degrees of freedom have been taken to
be Nsur ¼ αA=ln−1

p and Nbulk ¼ EKomar=½ð1=2ÞðH=2πÞ�,
with Komar energy assumed to be EKomar ¼
½ððn − 2Þρþ npÞ=ðn − 2Þ�V, where V is the volume of
the Hubble horizon in (nþ 1) dimensions. In general, Cai’s
extension has the following features, contrary to the
original proposal:
(1) The appearance of α on the left hand side of this

equation makes it different in form compared to the
original proposal.

(2) There contains an additional coefficient α, contrary to
the original proposal, in the definition of the surface
degrees of freedom as Nsur ¼ αA=ln−1

p . Hence, it
deviates from the original rule that Nsur ¼ 4S.

(3) Similarly, the Komar energy ððn − 2Þρþ npÞV=
ðn − 2Þ is not in conformity with the one following
from the standard expression as given in Eq. (10),
there having an additional coefficient α in Cai’s
definition for Komar energy.

Consequently, both the surface and bulk degrees of free-
dom and the lhs of the expansion law in Refs. [19,20] have
an additional coefficient α for n ≥ 4. This implies that
the minimum area in an (nþ 1)-dimensional universe is
assumed as α−1ln−1

p [17,46], while it is mere ln−1
p in our

definition, which is more simple and agrees with the
definition in [27]. So we can say that the law of expansion
for (nþ 1) Einstein’s gravity, which arises from our general
law, is exactly a straightforward extension of the original
proposal.

B. Expansion law in Lovelock and Gauss-Bonnet
theories of gravity

Now we deduce the expansion law for more general
theories of gravity like Gauss-Bonnet and Lovelock gravity
from the general expansion law. In Lovelock gravity, the
entropy has the form [20,47]

S ¼ A
4ln−1

p

Xm
i¼1

iðn − 1Þ
ðn − 2iþ 1Þ ĉir̃

2−2i
A ; ð22Þ

which has an additional correction term in comparison with
that of Einstein’s gravity. Consequently, the time derivative

of the above entropy is ðn−1Þ
4ln−1p r̃A

dV
dt

P
m
i¼1 iĉir̃

2−2i
A . Using this,

the general expansion law in Lovelock gravity can be
written as

dV
dt

¼ ln−1
p r̃AHP

m
i¼1 iĉir̃

2−2i
A

½Nsur − ϵNbulk�: ð23Þ

Further, the surface degrees of freedom can be obtained
from the general expression (15) as

Nsur ¼ −
2

ðn − 1Þ 4r̃
nþ1
A

Z
1

r̃nþ1
A

dS

¼ A
ln−1
p

Xm
i¼1

ĉir̃2−2iA ; ð24Þ

and the bulk degrees of freedom as in Eq. (12).
Now we will show that the expansion law we obtained in

Lovelock gravity will give the corresponding Friedmann
equation. Substitute for V; A; EKomar, and T in the expan-
sion law, we then get Eq. (23) as

Xm
i¼1

ĉir̃−2iA − _̃rAH−1
Xm
i¼1

iĉir̃−2i−1A ¼ 8πln−1
p

nðn−1Þ ½ðn−2Þρþnp�:

ð25Þ

We first multiply both sides of the above equation
with the factor 2a _a and then integrate it using the
continuity equation. This will lead to the modified
Friedmann equation,

Xm
i¼1

ĉi

�
H2 þ k

a2

�
i
¼ 16πln−1

p

nðn − 1Þ ρ: ð26Þ

Gauss-Bonnet gravity is a special case of Lovelock
gravity, where the summation in the Lovelock entropy
(22) takes only the first two terms, m ¼ 2. The entropy in
Gauss-Bonnet gravity has the form [20,48,49]

S ¼ A
4ln−1

p

�
1þ n − 1

n − 3

2α̃

r̃2A

�
; ð27Þ

where α̃ ¼ ðn − 1Þðn − 3Þ=2. Correspondingly the expan-
sion law in Gauss-Bonnet gravity takes the form

dV
dt

¼ ln−1
p r̃AH

½1þ 2α̃r̃−2A � ½Nsur − ϵNbulk�; ð28Þ

where surface degrees of freedom will be

Nsur ¼
A

ln−1
p

½1þ α̃r̃−2A �: ð29Þ

The expansion law in Gauss-Bonnet gravity (28) will lead
to the modified Friedmann equation as a special case of the
Friedmann equation in Lovelock gravity (26) as

H2 þ k
a2

þ α̃

�
H2 þ k

a2

�
2

¼ 16πln−1
p

nðn − 1Þ ρ: ð30Þ

Hence, the general expansion law can be easily reduced to
more general gravity theories like Gauss-Bonnet and
Lovelock gravity, and we have shown that the general
expansion law can reproduce the modified Friedmann
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equations in the respective theories of gravity, which shows
the consistency and the general nature of the expansion law
we have derived.
In literature, Cai also extended the expansion law to

Gauss-Bonnet and Lovelock gravity in the flat FRW
universe [19] and it is further extended to a nonflat
FRW universe by Sheykhi [20], where they introduced
the effective area Aeff ¼ 4ln−1

p S for defining the emergence
of space dVeff

dt ¼ r̃A
n−1

dAeff
dt . In contrast to this, in using the

general law of expansion, one needs to take any such
arbitrary definitions either for area or rate of change of
volume. Moreover, the degrees of freedom both on surface
and bulk still contain the extra coefficient α for n ≥ 4 as in
the earlier extensions. By taking account of the arbitrariness
in the definition of area in the work of Cai and Sheykhi, an
alternative extension is tried in [23], but it shows incon-
sistency with the Friedmann equations in Gauss-Bonnet
gravity, which leads to more complications.

C. Expansion law in Hořava-Lifshitz gravity

In the case of Hořava-Lifshitz gravity [50–52], the
entropy is in the form [53]

S ¼ A
4ln−1

p
þ π

ω
ln

�
A

4lðn−1Þ
p

�
; ð31Þ

having an additional logarithmic correction term, which
vanishes for ω → ∞, and the entropy reduces to that in
Einstein gravity. The time derivative of the above entropy is
ðn−1Þ
4

½ 1
ln−1p r̃A

þ 4π
nωV� dVdt . Then, following the general expan-

sion law in Eq. (11), the expansion law in Hořava-Lifshitz
gravity can be obtained as

dV
dt

¼ nln−1
p r̃AHVω

½nωV þ 4πln−1
p r̃A�

½Nsur − ϵNbulk�: ð32Þ

Here, the surface degrees of freedom Nsur can be obtained
using Eq. (15) as

Nsur ¼
A

ln−1
p

þ 8π

ðnþ 1Þω ; ð33Þ

and the bulk degrees of freedom Nbulk is as given in
Eq. (12). Next, we derive the modified Friedmann equation
in Hořava-Lifshitz gravity from the expansion law.
Substituting for V; A; EKomar, and T in the expansion law
(32), multiplying both sides by 2a _a, along with little
manipulations and with the use of the continuity equation,
the above expansion law can be expressed as

d
dt

ða2r̃−2A Þ þ 8πln−1
p

nðnþ 1ÞωΩn

d
dt

ða2r̃−ðnþ1Þ
A Þ

¼ 16πln−1
p

nðn − 1Þ
d
dt

ðρa2Þ:

ð34Þ
Integrating the above equation, we get

r̃−2A þ 8πln−1
p

nðnþ 1ÞωΩn
r̃−ðnþ1Þ
A ¼ 16πln−1

p

nðn − 1Þ ρ ð35Þ

or

H2 þ k
a2

þ 8πln−1
p

nðnþ 1ÞωΩn

�
H2 þ k

a2

�ðnþ1Þ
2 ¼ 16πln−1

p

nðn − 1Þ ρ:

ð36Þ

In general, Eq. (36), which is obtained from our expansion
law, is the modified Friedmann equation in the Hořava-
Lifshitz gravity. For the (3þ 1) FRW universe, this will
reduce to

H2 þ k
a2

þ 1

2ω

�
H2 þ k

a2

�
2

¼ 8πl2
p

3
ρ: ð37Þ

For ω → ∞, the modified Friedmann equation will reduce
to the standard Friedmann equation in Einstein gravity.

D. Expansion law for nonextensive entropy

The general expansion law exclusively depends on the
form of entropy, which is different in different gravity
theories. The general expansion law can thus be used to
formulate the expansion law for any modified entropy. For
illustration, we formulate the expansion law for Tsallis
entropy [54], given as

S ¼ A0

4ln−1
p

�
A
A0

�
δ

; ð38Þ

where A0 is a constant with the dimension of the area, and δ
is a dimensionless constant. The time derivative of the

above entropy is ðn−1ÞδAδ−1

4ln−1p r̃AAδ−1
0

dV
dt . The corresponding surface

degrees of freedom can then be obtained using Eq. (15) as

Nsur ¼ −
2

ðn − 1Þ 4r̃
nþ1
A

Z
1

r̃nþ1
A

dS

¼ 2δ

ððnþ 1Þ − δðn − 1ÞÞ
Aδ

ln−1
p Aδ−1

0

; ð39Þ

andNbulk can be taken as given in Eq. (12). The generalized
expansion law with Tsallis entropy can be obtained as

dV
dt

¼ Aδ−1
0

δAδ−1 l
n−1
p r̃AH½Nsur − ϵNbulk�: ð40Þ

Substituting for V; A; EKomar, and T in the expansion law
(40), multiplying both sides by 2a _a, and by using the
continuity equation, one gets

d
dt

ða2r̃ðn−1Þδ−ðnþ1Þ
A Þ ¼ ð41Þ
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½ðnþ 1Þ − ðn − 1Þδ�Aδ−1
0

δðnΩnÞδ−1
8πln−1

p

nðn − 1Þ
d
dt

ðρa2Þ: ð42Þ

The integral of the above equation is

�
H2þ k

a2

�ðnþ1Þ−ðn−1Þδ
2 ¼ ½ðnþ1Þ− ðn−1Þδ�Aδ−1

0

δðnΩnÞδ−1
8πln−1

p

nðn−1Þρ:

ð43Þ

This is the modified Friedmann equation that emerged from
the general expansion law corresponding to a Tsallis
entropic modified gravity. This reduces to the standard
Friedmann equation in Einstein gravity when both δ and A0

are equal to 1. For n ¼ 3, the law of emergence in Eq. (41)
and the corresponding Friedmann equation in (43) will
reduce to that obtained by Sheykhi [28] for Tsallis entropy
in (3þ 1) dimensions. It is possible to extend this pro-
cedure to other general entropies like Barrow entropy,
Rényi entropy, etc.

IV. SIGNIFICANCE OF THE UNIFIED
EXPANSION LAW

In the present paper, we realize a unified expansion law,
Eq. (11), from the first law of thermodynamics. In
Ref. [35], we establish the connection of the law of
emergence (and its prior generalizations) with other
well-established results in thermodynamics. It was shown
that the expansion law in Refs. [19–21] could be derived
from the unified first law of thermodynamics using
modified Friedmann equations in each gravity theory. It
was also shown that the expansion law predicts the
evolution of the Universe toward a state of maximum
horizon entropy. Further, it was concluded that the first law
of thermodynamics, along with the additional constraints
imposed by the maximization of the horizon entropy, can
together lead to the law of emergence. In the present
manuscript, motivated by these results, we realize a unified
expansion law entirely in terms of thermodynamic varia-
bles, which can be used in general gravity theories. The aim
of the present paper is different from the results in [35]. The
present one suggests a form invariant unified expansion law
for a general set of gravity theories, whereas the last one
studies the connection between thermodynamic principles
and the expansion law.
In Ref. [34], the authors derived the various forms of the

already proposed expansion law from the first law of
thermodynamics using Friedmann equations in the respec-
tive gravity theories. In the present paper, we derive a
general expansion law from the first law of thermodynam-
ics in a more general approach, and we never used the
Friedmann equations in between steps. Hence, the present
derivation gives a more general form for the expansion law
in terms of entropy instead of effective area/volume, which
can be used to obtain the expansion law for any modified

gravity theory. The derivation also provides an alternative
definition for surface degrees of freedom that can be used in
a general set of gravity theories.
The surface degrees of freedom in the emergent gravity

paradigm is generally assumed as Nsur ¼ 4S [43,55,56].
However, one can note that Nsur used in the previous
generalizations of the expansion law are not equal to 4S for
more general theories like Gauss-Bonnet and Lovelock
gravity [19,20]. In our present paper, we showed that the
surface degrees of freedom in general gravity theories is not
equal to 4S. This happens naturally when we derive the
expansion law from the first law of thermodynamics. In
Einstein’s gravity, the equipartition energy reduces to 2TS,
and the surface degrees of freedom will take the form
Nsur ¼ 4S.
One can ask whether the unified formalism for the law of

expansion, which we have formulated for general gravity
theories, could be applied to cosmological models like the
standard Λ cold dark matter (ΛCDM) model and the
dynamical dark energy models. It has to be noted that
our unified law of expansion will reduce to the law of
expansion proposed by Padmanabhan in (3þ 1) Einstein
gravity. In one of our earlier works, we have explicitly
proved the consistency of the standard ΛCDM model with
the law of expansion [36]. In a subsequent work [57], we
have applied Padmanabhan’s law of emergence to the
dynamical dark energy models by suitably defining the
degrees of freedom on the surface and in bulk and have
shown that the dynamical dark energy models, which evolve
to a final de Sitter phase, are consistent with the law of
expansion. Since the running vacuum models [58–63],
which can be considered as the potential candidates to cure
the current tensions in the ΛCDM [64], are dynamical dark
energy models with a final de Sitter epoch, it is evident that
they will be consistent with the law of expansion. Thus, it is
important to note that our unified law of expansion is
consistent with the prominent models of cosmology, like
standard ΛCDM and the running vacuum models.

V. DISCUSSIONS

The law of expansion, which describes the Universe’s
evolution as the emergence of space, was proposed by
Padmanabhan for a flat universe in the context of Einstein’s
gravity. Many have extended this to higher-dimensional
gravity theories in different ways, both for the flat and
nonflat universe. In this manuscript, we have derived a
general unified law of expansion using the first law of
thermodynamics. The advantage of the unified law (11) is
that both the emergence of space, that is, the time evolution
of the horizon volume, and the degrees of freedom on the
horizon surface are being expressed in terms of the entropy.
Since entropy is unique to each gravity theory, one can
easily get the law of expansion in a given gravity theory by
substituting the corresponding form of entropy. Hence, one
need not have to define any effective volume or modified
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surface degrees of freedom, as employed in many previous
attempts to define the law of emergence. Instead, here we
naturally get the law of expansion by using the entropy
corresponding to the gravity theory. This general nature of
the unified law of expansion comes from the first law of
thermodynamics.
In general, we have derived the unified expansion law for

a general (nþ 1)-dimensional FRW universe. For a flat
(3þ 1)-dimensional FRW universe, the unified expansion
law in Einstein’s gravity and corresponding degrees of
freedom Nsur and Nbulk precisely gives the expansion law
proposed by Padmanabhan and the respective degrees of
freedom [18]. This shows the consistency of our unified
expansion law with the original proposal.
In the original proposal, Padmanabhan considered the

temperature of the horizon as T ¼ H=2π, the Gibbons-
Hawking temperature, to obtain the bulk degrees of free-
dom Nbulk, instead of taking T ¼ κ=2π (2). It is to be noted
that, for the de Sitter horizon, T becomes equal to T. To
derive the law of expansion, we have started with the
unified first law of thermodynamics with temperature T . In
this method, we have to extract the bulk degrees of freedom
by retaining temperature as T . While doing so, we found
that the bulk degrees of freedom arose as Nbulk ¼
EKomarð1 − ϵTÞ=ðð1=2ÞT Þ, which seems to deviate from
the standard form of the equipartition rule by a factor
ð1 − ϵTÞ. However, it turns out that T =ð1 − ϵTÞ is exactly
equivalent to T, the Gibbons-Hawking temperature. Hence,
the temperature T has been naturally selected here for
defining the bulk degrees of freedom. In Ref. [40], the
confusion regarding the choice of apparent horizon temper-
ature is studied; they also favor the temperature T ¼
1=2πr̃A, rather than T ¼ κ=2π.
Further, the emergence of the spacial volume in the

unified expansion law is written in terms of dS
dt , rather than

dV
dt . Hence, it naturally selects what is known as areal
volume instead of proper invariant volume, eliminating the
discrepancy in the use of proper invariant volume. There is
confusion in choosing the volume of the horizon while
formulating the expansion law. The expansion law in a
nonflat universe can not be properly formulated using the
proper invariant volume; it can only be done using the areal
volume. This is discussed in Refs. [46,65]. In our deriva-
tion, since it is written directly in terms of entropy, Eq. (11)
naturally selects the areal volume rather than the proper
invariant volume and avoids such issues.
From the general expansion law (11), we have obtained

the expansion law corresponding to different theories of
gravity like (nþ 1) Einstein, Lovelock, Gauss-Bonnet, and
Hořava-Lifshitz. In deriving the law of expansion in these
gravity theories, we need not have to define any effective
volume or surface degrees of freedom like in the previous
extensions of the law [19,20,28]. Instead, just a substitution
of the corresponding expression for entropy in the general
law is sufficient. We have also used the general law to

obtain the law of expansion with nonextensive entropy, like
Tsallis entropy.
We compared the general expansion law with the

previously proposed laws for different gravity theories.
The advantage of our approach is that both Nsur and Nbulk
are naturally identified from the first law of thermodynam-
ics. On the other hand, in the previous proposals, authors
have adopted ad hoc definitions for these degrees of
freedom. Hence, the unified law of expansion proposed
by us, following the thermodynamic principles, is general
and simpler than the previous proposals. The general
formalism we have proposed in Eq. (11) can be applied
to any theory of gravity.
The important point is that the derivation of the

expansion law from the first law of thermodynamics also
gives an alternative definition for the surface degrees of
freedom Nsur, which is given in Eq. (15). It is also shown
that this alternative definition is valid for a more general
set of gravity theories, including Lovelock gravity, for
which the entropy is not proportional to the horizon area.
Our alternative definition of Nsur is similar to the defi-
nitions of Nsur in the previous expansion laws in Gauss-
Bonnet and Lovelock gravity [19,20], except the appear-

ance of a coefficient α ¼ ðn−1Þ
2ðn−2Þ, where n is the spatial

dimension. The additional coefficient α in the literature is
motivated by Verlinde’s paper [17], where the author
assumes an extra factor 1=α with Newton’s constant in
higher-dimensional space. Also, the minimal area l2

p for a
(3þ 1)-dimensional universe is generalized as ln−1

p =α for
the (nþ 1)-dimensional universe [46]. Correspondingly,
the definition for bulk degrees of freedom also gets an
additional factor α in these formulations [66]. However, in
the emergent gravity paradigm, the minimal area in
(nþ 1)-dimensional spacetime is defined as ln−1

p in a
quite natural way [56,67]. We follow the simple gener-
alization without the additional factor α. This approach,
the formulation of the expansion law without α, is more
appealing and useful in further studies on the expansion
law in more general contexts of the emergent gravity
paradigm.
In the emergent gravity paradigm, the equipartition

energy of the horizon surface generally assumes the form
Eeq ¼ 2TS. Correspondingly, the surface degrees of free-
dom will take the form Nsur ¼ 2TS=ð1=2kBTÞ ¼ 4S
[43,55,56]. However, our derivation of the expansion
law from the first law of thermodynamics shows that
the equipartition energy on the horizon surface can be
identified as Eeq ¼ 2V

R −TdS
V . Corresponding to this, we

get the surface degrees of freedom different from 4S in
more general theories of gravity. What will be the key
reason for this? Is there any alternative formalism for
expansion law that has taken care of such thermodynamic
relations? These are the questions that we have to
investigate further.
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