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Gravitational waves from primordial scalar and tensor perturbations
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We investigate the second order gravitational waves induced by the primordial scalar and tensor
perturbations during a radiation-dominated era. The explicit expressions of the power spectra of the second
order GWs are presented. We calculate the energy density spectra of the second order GWs for the
monochromatic primordial power spectra P = A:k.8(k —k,) and P), = A,k.6(k —k,). For large k
(k > k,), the primordial tensor perturbation will affect the total power spectrum of second order GWs
significantly. For f, = 1.3 x 1073 and A; = 0.02, the effects of the primordial tensor perturbation will lead
to an around 100% increase of the signal-to-noise ratio (SNR) for LISA observations if the tensor-to-scalar

ratio r = A, /A, > 0.4.
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I. INTRODUCTION

The inflationary cosmology suggests that cosmological
perturbations are originated from quantum fluctuations in
early universe [1]. Since the gravitational waves (GWs)
were detected by LIGO and Virgo [2], GWs have attracted a
lot of attention in cosmology. Further observations on
stochastic GWs background could help us test inflationary
models on small scale [3].

The cosmological perturbations can be decomposed
as scalar, vector, and tensor perturbations based on the
behavior under the spatial coordinate transformation. The
cosmological perturbations generated at inflation epochs
are known as primordial perturbations. The power spectrum
of primordial perturbations is one of the most important
predictions in inflation theory. On large scales (21 Mpc),
the primordial power spectra are well constricted by the
observations of the cosmic microwave background and
large-scale structure [4,5]. For the primordial scalar and
tensor perturbations, it indicates a nearly scale-invariant
primordial power spectrum of scalar perturbations with
amplitude ~2 x 107, and tensor perturbations with tensor-
to-scalar ratio r < 0.06 on large scales. However, the
constraints on primordial scalar and tensor perturbations
are much weaker on small scales (<1 Mpc) [6]. In recent
years, scalar perturbations on small scales have been
attracting a lot of interest. The primordial scalar perturba-
tions with large amplitude on small scales have close
relations with the primordial black holes (PBHs) and the
scalar induced gravitational waves (SIGWs) [7-26].
Similarly, the primordial tensor perturbations on small
scales could be much larger than it is on the large
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scales [27,28]. The higher order GWs can also be induced
by the primordial tensor perturbations.

The large primordial tensor perturbations on small scales
may be realized by many models of early universe, such as
G?-inflation [29], cyclic/ekpyrotic models [30], loop quan-
tum cosmology [31] and so on [27]. In this paper, we study
the second order GWs induced by the primordial scalar and
tensor perturbations during a radiation-dominated (RD) era.
In this case, these are three kinds of source terms for the
second order GWs. Namely, the source term of the first
order scalar perturbation S ~ ¢(Vgp(1), the source term of
the first order scalar perturbation and the first order tensor
perturbation S ~ ¢(V4(1), and the source terms of the first
order tensor perturbation S ~ (VA1) These source terms
and the corresponding kernel functions are studied sys-
tematically in this paper. Here, we consider a monochro-
matic power spectra for the primordial scalar and tensor
perturbations with different tensor-to-scalar ratio r =
Aj /A, on small scales. We derive the explicit expressions
of the power spectra of the second order GWs and calculate
the corresponding energy density spectrum. The results
show that the effects of the first order tensor perturbation
enhance the density spectrum significantly for high fre-
quency second order GWs.

This paper is organized as follows. In Sec. II, we present
the equation of motion of the second order GWs. We
calculate the kernel functions of seven source terms. In
Sec. 111, the explicit expressions of the power spectra of the
second order GWs are presented. We calculate the energy
density spectrum of the second order GWs for a mono-
chromatic primordial power spectra. The SNR LISA
observations are calculated in this section. Finally, the
conclusions and discussions are summarized in Sec. IV.

© 2023 American Physical Society
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II. EQUATION OF MOTION AND KERNEL
FUNCTIONS

The perturbed metric in the flat FRW spacetime with
Newtonian gauge is given by

ds? = —a? Kl + 2¢(1)>d112 + ((1 - 2w<1>)5ij

1 o
+h) + 5 hf?) dx’dx/} , (1)

where ¢") and w(! are first order scalar perturbations,

hf]>(n = 1,2) are n-order tensor perturbations. The sol-
utions of first order scalar perturbations and the first order
tensor perturbation in momentum space are given by

w(1.1) = bl K) = BTy (kn) =3 T (k).

h*(n, k) = hi T, (kn), (2)

where ¢ and hj are the primordial scalar and tensor
perturbations respectively. The transfer functions T, (kn)
and 7,(kn) in the RD era are given by [16]

=3 (o) -e((5)) B
(3)

where we have defined x = k7. We use the xpand package
to study the higher order perturbations of Einstein equation
on FRW spacetime. The equation of motion of second order
GWs takes the form of

2 "
hz('j) (1,

X) +2HA (1.%) = AR (.%) = —4AL ST (7. %),

(4)

where H = a’/a is the conformal Hubble parameter, Af;” is

the decomposed operator to extract the transverse and
traceless terms. The source terms of the second order GWs
are given by

7
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+ aqu“)amcb(”’) + 419,09,V
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—Wazfﬁ(l) I, (6)
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—20,hM P pD — 2 AR (7)

8531),2(’1,) IO’Hh ¢ +3h()¢()
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2010 = ~ LA +5ach;;a 0. G

82 (n.x) = hb" 10.0,h!) — hb‘ 10.0,,h). (9
Sps(n.x) = —%Ohhﬁiﬂa%f”“), (10)
S2g(n.x) = 5 00,0, (1)
S2(n.x) = =000, 1) (12)

As shown in Eqgs. (6)—(12), there are three kinds of source
terms in Eq. (4). The source term S, | is the same as the
source term of the second order SIGWs. The source terms

Sim2 is composed of the product of the first order scalar

perturbation ¢(!) and the first order tensor perturbation h;;f .

The source terms S, 3 ~ S, 7 are composed of the first
order tensor perturbation hg;)

can be written as

h/l,(2)” (’7’

. In momentum space, Eq. (5)

k) + 2Hh*

7
=> 485/ (n.k), (13)
i=1

eI(k)h (n.k) and $42) (g, k) =

). The sfj(k) is polarization tensor. The

@ (n. k) + K0+ (n. k)

where 7*(?)(n,k) =
m 2
—eH ()8 1. k

source terms Sf'(z) (n,k) in Eq. (13) can be expressed as

A2 &Ep o m 2

Sl( >('7? k) - - (2]_[)3/2 et (k)plpmf(l )
X (0, v, x) Py _p Dy, (14)

@) _ EP i 2)

10 = = [ e ) )k
x (u, v,x)d)k_ph’:,', (15)
2.(2) o &’p Im(k _

St k) = = [ el ke —p)

x &2 (P2 (u, v.x)hy_ hy, (16)

(2)(77ak) _ _/ (Zd )137/28/11”1( ) /11,b6<k —p)

x (2eﬁfb<p>pcpl>ff><u,ux)hf;_phff, (17)
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&3
k) =- / o ;;ze“'% Jene(k —p)efi(p) (k= ) p £ (. v.x) g by,

a? :
$0K) = = [ S ) = p)ety (0)p 1 (i

22 Ep i c 2
5% 0nk) = - | €0k = D) (P)pipm Sy (1, 0. 5L ph

where the transfer functions f l(-z)(u, v,x) are given by

2) d
fi7(u,v,x) = 3T 4 (ux)T 4 (vx) + 2uxd( )T¢(ux)T¢(vx) + x%uw ) T 4(ux) o) T,(vx),
2 u d JZ 5
fg (w0, %) = %mqu(ux)Th(vx) + 3M2WT¢(ux)Th(vx) + §u2T¢(ux)Th(vx)

+ (1 = v* = u?)T y(ux)T),(vx) + 20*T 4 (ux) T}, (vx),

(18)

(19)

(20)

(1)

(22)

[

5 1 —u?—2? where 1 (k) (i = 1~7) can be expressed as

£ (v, x) = - T, (ux) T, (v)

4

d d &
—ﬂ—Th ux)——Tp(vx), (23) h’11’<2)(;7,k):—/ P ehm(k )p,pmlgz)(u,v,x)tbk_pd>

2 d(ux) ( )d(ux) (27)3/?

fgz)(u,v,x):%Th(ux)Th(vx), (i=4.56), (24)

: TP dim gt
Pl = raone. ey 8O0 [ imeradee

2
Here, the explicit expressions of T, and T have been given x Iy (u, v, )Py _phy',

in Eq. (3). We have defined |k — p| = uk and p = vk.

we obtain

Solving Eq. (13) in terms of the Green’s function method, 2 dp m
g b (19 B 0k) == [ o e k)e (- p)

(2n)7

7 X 8bm< )kz] (u’ U’x)hil—phéz’
ZRION SED P (8 3} (26)

d*p
W@ (k) = — Ty (k) (k - p) (2622, (p)pepi )19 (. v, )Ry by,
(27)¥
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2 - e
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FIG. 1. Thekernel functions /; (i = 1,2, ..

than other kernel functions. The second largest kernel function is / @

here the kernel functions / 52)(u, v, x) in Egs. (27)—(33) are
given by

19 (u, v, x) = %A 4% G sin (x — 2)f (1, u,sc)>,
(i=1~7) (34)

As we mentioned before, the source term S, | is the same
as the source term of the second order SIGWs and therefore
Eq. (27) is the formal expression of the second order
SIGWs. The expressions in Eqs. (28)—(33) are quite
different from the second order SIGWs in Eq. (27), we
will study these expressions in Sec. III. In the end of this
section, we calculate the kernel functions in Eq. (34).
We present the kernel functions (I;(u=1,v=1,x))>
(i=1~7) as a function of x = kn in Fig. 1. As shown
in Fig. 1, the kernel function of second order SIGW [/ 52) is
much larger than other kernel functions. The second largest

kernel function is Igz)’ Which is the kernel function of the

source term S ~ ¢

III. ENERGY DENSITY SPECTRA
OF SECOND ORDER GWs

The two-point function (4% h*(2)) can be expressed as

h/l,(Z) hz’,(z)
( )

I
—
=
N
fag
S
=
Tx
Py
S
=

A2), 2,2 A2), 1,2
= (Dn Py 4 PRy 4 (35)

The two-point correlation function and the power spectra
are related by

., 7) calculated from Eq. (34). The kernel function of second order SIGW I, ) is much larger

, which is the kernel function of the source term Sé M P RDA,

<M®Mkﬁ“%mwﬁ=¥%&+w%—ph(’)

(36)
Substituting Egs. (27)-(33) into Eq. (35), we will encounter
six kinds of four-point functions of the primordial scalar and
tensor perturbations, namely (D) phﬁ'hk', ,hff,), (DPy_p P,
7 2
Oy b)), (@, @by hE), (@, PPy Dy),
2 yi 2 Jl yi A
(@k_phy d)k,_p,hp‘,>, and (hk’_phpzhk‘,_p,hpz,>. These
four-point functions can be studied in terms of the
Wick’s theorem. We assume that the two-point function
(Dy lh{1(2> = 0 for arbitrary k; and k,. Therefore, we only
need to consider the last three four-point functions. The
explicit expressions of the four-point functions are given in

Appendix A. Substituting Eq. (27) and Egs. (A1)—(A3) into
Eq. (36), we obtain

/ /|1+v| 40?7 — (1 + 0> —u?)?\?
1 duv

x (k21§ (u, v,x)) PO (k) PY (wk), (37)

/ /1|1+v| iv 16(—u? 7; v?+1)2
(u?+ o2+ 1) )2( 2,0 2 2
" ( . +4) ) <k 12, >>

x PO (k)P (wk), (38)
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PR _ l/oo dv/lJrvl duw
" 4 Jo 10| (uv)?
X <k2152)(u, v, x)kzllg-z)(u, U,x)>

x Py (kP (wk). (ij=3~T7).  (39)

where Pg) and 7721) are primordial power spectra of @, and
hy, respectively. In Eq. (39), the polynomials P¥(u, v)
(i, j = 3 ~7) can be calculated in terms of the contraction of
the polarization tensor efj(k). The polarization tensors are
given in Appendix B and the explicit expressions of
P (u,v) (i, j = 3 ~ 7) are given in Appendix C. The power
spectrum P}! is the power spectrum of second order scalar
induced gravitational waves, it comes from the source term

ngn)’l. The power spectrum P22 comes from the source term
S which is the source term of the first order scalar

im,2
perturbation and the first order tensor perturbation ¢! 4(1)-

The power spectra 7327 (i,j = 3 ~7) come from the source

terms SEEJS ~ ngfj

order tensor perturbation A4 p()4  The total energy
density spectra of second order GWs is defined as [32]

A

which are the source terms of the first

2
@) _powlnk) 1 kK \ho
Byt =00 =54 (i) P 0

(40)

where

7
P k) =P k) + PP k) + Y PP (.k).

ij=3
(41)

In Eq. (41), 73511) is the power spectrum of primordial GWs.
The last three terms are the power spectra of second order
GWs induced by primordial scalar and tensor perturbations.
Here we consider the monochromatic primordial power
spectra, namely

,Pg: = Aé‘k*é(k - k*), Ph - Ahk*5(k - k*), (42)
where k. is the wave number at which the power spectrum
has a 6 function peak. As we mentioned before, P, =
9/4Pg is the primordial power spectra of £, = 3/2®. As
mentioned in Sec. I, the large primordial tensor perturbations
on small scales may be realized by many models of early
universe. The large tensor perturbations on small scales with
peaks may be constructed in these framework with fine-
tuning [27-31]. In Fig. 2, we plot the current energy density
spectra of GWs

Qaw (10, k) = Q, x Qgw (1. k). (43)
where Q, is the density parameter of radiation at present. In
Fig. 2, the red dashed curve represents the power spectrum of
second order GWs induced by P = Ak.8(k — k, ), which
was first studied in Refs. [12,13]. The solid curves represent
the total power spectrum of second order GWs for different

tensor-to-scalar ratio r. It shows that the effects of the first
order tensor perturbation enhance the density spectrum

1074 -

R Q(Z),LOL(T — 0.2)
—— Q@i = 0.6)

L —— Q@ =1.0) \
52(2),11
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FIG. 2. The total energy density spectra Q) for different tensor-to-scalar ratio r (solid curve) and the energy density spectrum for
second order scalar induced gravitational waves Q-1 (orange dashed curve). The sensitivity curve of LISA [33,34] (purple dotted
curve) for 4 years observation time is also shown. Here we have set the A, = 0.02 and f, = 1.3 X 1073 Hz.
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FIG. 3. The SNR of LISA for Q) (o blue solid curve) and Q' (p!!, red dashed curve), where f, = k,/(2z). We also give

Ap/p'!t = p©/p!t — 1 (bottom panel).

significantly for high frequency second order gravita-
tional waves.

To quantify the effect of the first order tensor perturba-
tion to the induced GWs, we give the SNR p in Fig. 3. For
LISA, SNR is given by [34]

- Al

where Q,(f) = 22%f3S,/3H} and S, is the strain noise
power spectral density, 7 is the observation time. In this
paper, we set T = 4 yr. Other explicit parameters of LISA
can be found in Ref. [35]. As shown in Fig. 3, the effects
of the primordial tensor perturbation lead to an around
30% increase of the SNR for LISA observations for the
tensor-to-scalar ratio r = A, /A = 0.2. And it is found that

400% [

350% [

300% [

250% [

200% [

Ap/ptt

150% [

100%

50% -

0% L
0.0 0.2

0.4 0.6 0.8 1.0
r

FIG. 4. Ap/p'' = p*/p!l —1 for different tensor-to-scalar
ratio . We have set f, = 1.3 x 1073,

the source term S, ~ (V1) dominates the effects of the
first order tensor perturbation. The effects of the source
term S; ~ h(Dp (i =3 ~7) are negligible for r = 0.2.
Moreover, as presented in Fig. 4, we calculate SNR for
LISA observations for different tensor-to-scalar ratio r. It
shows that Ap/p'! > 100% if r > 0.4, namely, the effect of
primordial tensor perturbation will be larger than the effect
of primordial scalar perturbation if r > 0.4.

IV. CONCLUSION AND DISCUSSION

The scalar induced gravitational waves have been
studied for many years. However, the first order tensor
perturbation has been always neglected. In this paper, we
consider the effects of the first order tensor perturbation, the
first order scalar and tensor perturbations all induce the
second order GWs. We conclude that the effects of the first
order tensor perturbation enhance the density spectrum
significantly for high frequency second order GWs even
for small tensor-to-scalar ratio r. For f, = 1.3 x 1073 and
Ay = 0.02, the effects of the primordial tensor perturbation
will lead to an around 100% increase of the signal-to-noise
ratio (SNR) for LISA observations if » > 0.4.

The explicit expressions of the power spectra of the
second order GWs were presented. Here, we only consid-
ered the monochromatic primordial power spectra, one
can calculate the power spectra of the second order
GWs for various primordial power spectra in terms of
Egs. (37)-(39). As we mentioned in Sec. I, the large
primordial tensor perturbations on small scales may be
realized by many models of early universe, these models
can be constrained by the current and future observations of
second order GWs.
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The second order power spectra of GWs induced by
primordial scalar and tensor perturbations can be written as

77512) ~ (h®h@) + (hWKB)). Here, we only studied the
contributions of second order GWs. We found that the
effects of the primordial tensor perturbation in <h(2)h(2>> are
important in the UV region (k > k). In Ref. [36], the IR
behaviors (k < k,) of (h()h(3)) were investigated in detail.
Further researches might be given in the future.

Our results show that the effects of the first order tensor
perturbation on small scales are very important for the
second order GWs. Therefore, it is necessary to consider
the effects of the first order tensor perturbation when one
calculates the higher order scalar and vector perturbations
[37,38]. The first order tensor perturbation on small scales
will affect the observations related to second order scalar,
vector, and tensor perturbations. Meanwhile, these second
order perturbations will affect the observations of higher
|

order perturbations such as the third order induced GWs
[21]. Perhaps, a complete study on these higher order
perturbations might be presented in the future.
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APPENDIX A: FOUR-POINT FUNCTION OF
PRIMORDIAL PERTURBATIONS

In this appendix, we calculate three kinds of four-point
functions used in Sec. III in terms of the Wick’s theorem.

(D _p @y Pro_y @) = (Dp_y Py} (DD ) + (D Py ) (P Pro_y)

= (5(k—p+k’—p’)

+ (5(k -p+p)

2w
k —

2

2
quaﬂk -pl)

2

p?

272
é(p+p) FRD(P)

I

Pak=p) ) (306 -0+ )%

P

)

%(p))

2

272 272
= (310022 Pallic = p)) (300 + )5 Palr))
[k —p| p
272 272
+ <5(k + k') WPd)(kl)) (5(1(/ -p'+p) chb(l?))
! (2772)2 ! ! !
=0k +k )m (6(p+p') +6(k'=p’ +p))Po(|k —p))Pa(p), (Al)
| 2 s LR S LA e pd
<hf'(—ph£ hk’—p’hp’> = <hf’(—phk’—p’><hf) hp’> + <hf(—php’><h?’ hk’—p’>
, 27? , 272
= (30t —p o= 2Pk - D) ) (5400 4 8) 25 P
) 27° ) 27>
+ (5/1‘/125(1( -p+p) mphﬂk - P|)> (5/12/1‘5(13 +k'—p') ?Ph(PO
n_ (27%)? 1A A / A Ik ST o
=06k +k )m(fs 116%%25(p + p') + 8128%46(k" —p' +p))Pi(lk —p)Pu(p).  (A2)
A A
(@y_phy Dy_phi)) = (D, Py (hp'h))
27? , 272
= (304 1) 2 Puli—pD) ) (54000 -+ 9) 25 Py ) )
[k —p| p
1 27[2 2
=+ W) Lo ) Pak = pP(0) (A3)
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APPENDIX B: POLARIZATION TENSOR

In this appendix, we present the explicit expressions of
the polarization tensor for a given coordinate system. The
polarization tensor is defined as

(k) = e;(k)e ei(k)e

&7(k) _ﬁ( i(ke;(k) +ei(k)e;(k)),  (BI)

+ _i e: e — 2. e.

&;(k) _\/Z( i(ke;(k) —ei(k)e;(k)),  (B2)
where (k;/|k|, e;(k),e;(k)) is the normalized bases in

three dimensional momentum space. For a given coordinate
system, we set

k = (0,0,k), ei(k) =(1,0,0),

Then the polarization tensors &/;(k — p) and &/,(p) can be
written as

e5(k—p) (k—p)z;(k—p)+2&(k—p)e;(k—p)).

1
:ﬁ(ei
e (k=) = (e: (k= ple,(k—p) =2,k ~p)e, (k=)

\/_
ex(p) =%<ei<p>é,<p> +2,(D)e()).
%ef(p)e,(p)—a-<p>é,<p>>, (B4)

where

1 1
k—p:k(—\/vz—z(—u2+vz+1)2,0,5(142—1)2—&—1)),

W=+ 1 V=it 4 2u0? + 2u® — vt 4 207 — 1
ei(k—p) = .0, ,
2u 2u
ei(k —p) = (0.1,0), (B5)
2 Lo 2ol 2 o
p==k U—Z(—u +v —I—l),O,E(—u +vr 4+ 1),
®) - +vr+ 1 0 V-t 202 (0P 1) = (02 = 1)2
€; = - s Uy ’
AP 2v 2v
ei(p) = (0,1,0). (B6)
APPENDIX C: P¥ (u.v)
The explicit expressions of P, (i, j =3 ~7) are given by
1 2
B —— (=222 + 1)+ (0P = 1)? ) (u* + 6 (v + 1) + v* + 607 + 1), (C1)
256u*v
1 2
PH = Seg <u4 —2u*(v* 4+ 1) + (¥ - 1)2) <u6 —ut(50% 4+ 3) + u?(=25v* + 6v% 4+ 3) — (v — 1)*(30? + 1)),
utv
(C2)
55 ! 4 20,2 22)
P :m<u —21/!(1) +1)+(U—1)>

X <u8 —4uS(v? = 1) + 2u* (3v* = 20% = 5) — 4 (1° + v* = 90 = 1) + (0¥ = 1)2(v* + 60% + 1)), (C3)
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1 2
Po — TooaT <u4 —2u*(v* + 1)+ (v = 1)2> (u8 — 4ubv? + 2ut (3v* + 802 — 1) — 4u?v? (v* + 802 + 3)
u*v
+ (0¥ + 1)2(v* + 1407 + 1)), (C4)
[P’77:71 ut =21 (v* + 1)+ (0¥ = 1)? ’
10244 v*
x (u8 +4ub(7v* = 1) + u*(700* — 600% + 6) + 4u* (v — 1)*(7Tv* = 1) + (v* — 1)4>, (C5)
1 2
P34 = ST <u4 = 2u*(v* + 1)+ (v* = 1)2> (Bu* +2u? (90 — 1) +3v* =202 = 1), (Co)
utv
1 2
P = ST <u4 —2u*(v* 4+ 1) + (v - 1)2> (ub —ut(v* = 5) —u?(v* + 1807 +5) + 10+ 50 =502 = 1),  (C7)
utv
1 2
P36 = Sy <u4 2> (v + 1)+ (v* = 1)2> (u® —ut(v? = 7) —u?(v* + 602 = 7) +1° + To* + 70 + 1), (C8)
utv
1 2
P37 =S5 <u4 =2 (V2 + 1) + (02 = 1)2> <u6 +ut(150% = 1) + u?(150* = 60> = 1) + (v> = 1)?(v* + l)>, (C9)
utv
651 ut—v* =607 =1 ) ut = 20> (V¥ + 1)+ (¥ = 1)? ’ (C10)
512u*v* '
46 1 4 2(,2 o)
P = S (u —2u*(v*+ 1)+ (v* - 1) )
x <u8 = 2ubv? + 2ut (v® = 1) + 2u?v? (v* + 207 — 11) — 0¥ — 60° + 607 + 1>, (C11)
1 2
47 = W(uz - ’1)2 - 1) <M4 - 2u2(112 + 1) + (7)2 - 1)2) <M6 + 3144(502 - 1) + 31"2(51)4 - 61}2 + 1) + (Uz - 1)3> P
utv
(C12)
1 2
56:7]024 : 4(u2—vz—1)(u2—112+1)(u4—2u2(v2—3)+1}4+602+1)<u4—2u2(vz+1)+(vz—l)2> , (C13)
utv
1 3
P57 = Topa (u4 + 6uv? + vt — 1> <u4 =2u*(v? + 1) + (v? - 1)2> , (C14)
P = _ ut =20 (v* + 1) + (v¥ = 1)? ’
1024u*v*

X <u8 +4ub(v? = 1) = 2u* (5v* + 207 = 3) + 4u?(1° + 9v* — v® — 1) + (v® = 1)2(v* + 607 + 1)) (C15)
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