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This paper proposes a new approach to separate the μ spectral distortions of the cosmic microwave
background from foregrounds with poorly defined spectral shapes. The idea is based on finding the optimal
response to the observed signal. This response is weakly sensitive to foregrounds with parameters that are
within some certain limits of their possible variations and, at the same time, very sensitive to the amplitude
of μ distortion. The algorithm described in this paper is stable, easy to implement, and simultaneously
minimizes the response to foregrounds and photon noise.
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I. INTRODUCTION

The detection of distortions in the frequency spectrum
of the cosmic microwave background (CMB) radiation is
one of the key tasks of observational cosmology [1–5].
Deviations of the CMB spectrum from the blackbody shape
represent a completely new channel of information about
the fundamental physical processes in the early Universe,
sometimes inaccessible to other observations [6–9].
The epoch of μ distortions [10] in the Universe takes

place in the interval of redshifts between z ¼ 2 × 106 and
z ¼ 105. The detection of such distortions can provide
essential information about the mechanisms of a possible
energy injection into the plasma during this period of
time [2,11–15]. At this stage the total number of photons in
the Universe remains unchanged, and the energy exchange
between electrons and photons is described by the
Kompaneets equation [16]. Therefore, any energy release
leads to heating of photons while maintaining their total
number, which means a deviation from blackbody dis-
tribution in the form of the Bose-Einstein spectrum with a
nonzero chemical potential (or μ distortion). Proposed
missions targeting spectral distortions are described
in [17,18].
The task of measuring μ distortions is very challenging

and complicated by the presence of foregrounds of various
origin [19]. The spectra created by some foregrounds as
well as by the optical system of the telescope are poorly
predictable. In reality, the observed cosmic foreground
spectrum (even for a single line of sight) is a superposition
of spectra with different parameters (for example, with

different dust temperatures). Such a “cocktail” of spectra is
difficult or even impossible to estimate and predict with the
accuracy required for μ distortion measurements [19–25].
Moreover, in contrast to observations of the Sunyaev-
Zel’dovich (SZ) effect (or y distortions), it is important
to find the monopole part of the signal when measuring μ
distortions. This means that the use of the difference in
signals from two different directions is not possible.
Therefore, the instrument should be well calibrated, and
radiation emitted by the optics should be taken into
account. This radiation is a barely modeled superposition
of radiations of different temperatures coming from differ-
ent parts of an unevenly cooled surface of the primary
mirror, which can change during flight.
As a rule, the foreground spectra are described by

analytical expressions that depend on the parameters.
The distribution of parameters in the observed signal
can, in principle, be arbitrary; i.e., the exact shape of the
foreground spectrum is hardly predictable. A smart way of
“rethinking” how to solve such a problem was proposed
in [26], where a moment approach was introduced, but it
extends the list of spectra to be separated from the μ signal.
Additionally, this approach implies strict assumptions on
the possible variation of the parameters.
The approach described here is completely different. A

method based on finding a special operator (“response”)
applied to the observed signal is proposed. This response
minimizes the contribution from foregrounds with param-
eters that are within a limited region of their possible
variations. The size and configuration of such a region can
be arbitrary and should be preestimated. At the same time,

PHYSICAL REVIEW D 107, 063506 (2023)

2470-0010=2023=107(6)=063506(9) 063506-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5400-1082
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.063506&domain=pdf&date_stamp=2023-03-06
https://doi.org/10.1103/PhysRevD.107.063506
https://doi.org/10.1103/PhysRevD.107.063506
https://doi.org/10.1103/PhysRevD.107.063506
https://doi.org/10.1103/PhysRevD.107.063506


the response to the normalized μ signal itself in this
algorithm is constant. It is shown below that, when
sufficient sensitivity is reached, the response to foregrounds
becomes negligibly small compared to the response to the
μ signal. Therefore, instead of modeling and disentangling
the foreground spectra with the necessary accuracy, the
described algorithm eliminates the contribution from any
set of such foregrounds. It is important to emphasize that
this approach can be applied to any observation with a
poorly defined foreground radiation spectrum.
To briefly demonstrate the effectiveness of our approach,

we restrict our analysis to three foreground components:
interstellar dust, cosmic infrared background (CIB), and
radiation from the telescope optics. We use a modified
blackbody to describe the emission from these three
components [27]. A simple modified blackbody may not
be suitable to approximate the interstellar medium dust
SEED at certain sensitivity levels [28,29]. However, the
radiation from dust can be fitted with good accuracy by a
linear combination of modified blackbody spectra. For
example, the two-component dust model can accurately
reproduce the emission observed from dust in the diffuse
interstellar medium of the Milky Way at 0.1-mm—3-mm
wavelengths [30]. The rationalization of the choice
between alternative fitting methods, among other ideas,
is discussed in [31].
The outline of this paper is as follows: In Sec. II the

algorithm for separation of μ distortion from foregrounds
with poorly defined spectral shapes is proposed. Section III
demonstrates the numerical results of applying the algo-
rithm: first, for the case with a single foreground and a
single parameter, and then for a more general case. Brief
conclusions are given in Sec. IV.

II. SEPARATION OF THE μ SIGNAL FROM
FOREGROUNDS WITH POORLY DEFINED

SPECTRAL SHAPES

In this section the algorithm for separation of the μ-type
distortion from foregrounds is proposed. The signal that we
need to isolate from the total observed spectrum has the
following form [19]:

Iμ ¼ I0
x4ex

ðex − 1Þ2
�
1

b
−
1

x

�
μ; ð1Þ

where x ¼ hν=kT0 and the CMB temperature is T0 ¼
2.72548 K [32,33]. The same estimated values for con-
stants b, I0, and μ as in [19] are used: I0 ¼ 270 MJy=sr,
μ ¼ 2 × 10−8, and b ¼ 2.1923. The total observed signal
can be written as follows:

SðνÞ ¼ aμIμðνÞ þ
XM
m¼1

ImðνÞ; ð2Þ

where aμ is the amplitude to be found and ImðνÞ are M
different foregrounds of various origin.
To study the spectral properties of signals like μ

distortion or the Sunyaev-Zel’dovich effect, a device with
a relatively low spectral resolution, such as a Fourier-
transform spectrometer (FTS), is usually used. It can
measure the spectrum from the minimum νmin to the
maximum νmax frequency in multiple frequency channels
νj, j ¼ 1; ::; J, with the width of each channel
Δν ¼ νjþ1 − νj. Thus, the discrete signal Sj [or vector
S ¼ ðS1; ::; SJ)] that we measure is

Sj ¼ aμI
j
μ þ

X
m

Ijm þ Nj; j ¼ 1; ::; J

Ijμ ¼
ZνjþΔν

2

νj−Δν
2

IμðνÞ
dν
Δν

; Ijm ¼
ZνjþΔν

2

νj−Δν
2

ImðνÞ
dν
Δν

; ð3Þ

where Nj is the random noise for the jth frequency channel
with zero mean and variances hNiNji ¼ Cij. The covari-
ance matrix of the noise is expected to be close to the
diagonal one: Cjj ¼ σ2j and Cij ¼ 0 if i ≠ j. The values
of σj depend on the photon noise coming from the sky
and from the telescope optics, FTS frequency range
ðνmin∶ νmaxÞ, spectral resolution Δν, number of FTS
frequency bands, number of independent beams, and the
integrating time (duration of observations).
In the general case, each Im depends on L parameters pl,

l ¼ 1; ::; L, and each of the observed foregrounds can be
written as follows:

IjmðνÞ ¼
Z
Ω
amðPÞfmðνj;PÞdP;

dP ¼ dp1dp2 · ·dpL; ð4Þ

where P ¼ ðp1; :; pLÞ is the set of parameters, fmðνj;PÞ
are the functions representing the foreground spectra
(as a rule, described by an analytical formula), Ω is the
parameter change region, and am are the amplitudes of
the foreground radiation as functions of parameters P.
Thus, if, for example, amðPÞ has the form of a delta
function amðPÞ ¼ Am · δðP − PmÞ, then the foreground
spectrum with index m will have a template with well-
defined parameters Pm and the amplitude Am: IjmðνÞ ¼
Am · fmðνj;PmÞ. Since we want to make our approach as
model independent as possible, we treat the functions
amðPÞ as random with unknown properties. We impose
very mild restrictions on these functions as follows:
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(1) The integrated absolute values of the amplitudes am
should be less than certain (preestimated) values Am:Z

Ω
jamðPÞjdP < Am;

amðPÞ ¼ 0 for P ∉ Ω:

(2) For foregrounds of different origins, random func-
tions am are independent of each other, and con-
sequently, am and ak are uncorrelated if m ≠ k. This
assumption is not exactly correct, and possible
correlations can be taken into account for a more
detailed analysis.

A. The algorithm

The total observed signal S can be naturally divided into
three parts (three vectors):

S ¼ aμIμ þ Fþ N;

F ¼ ðF1; ::; FJÞ; Fj ¼
X
m

Ijm;

N ¼ ðN1; ::; NJÞ ð5Þ

where Iμ is the μ signal, F is the total foreground, and N
represents the random noise. The task of the algorithm is to
find the optimal vector of weights ω ¼ ðω1; ::;ωJÞ for
frequency channels, which should have the following
property:

ω · ST ¼
XJ
j¼1

ωjSj → aμ for σj → 0; j ¼ 1; ::; J:

ð6Þ

Thus, the summation of the total observed signal over all
channels with appropriate weights should bring us as close
as possible to the estimation of the μ distortion ampli-
tude aμ.
We call the scalar product ω · ST ¼ RðSÞ the response to

the signal:

RðSÞ ¼ aμRðIμÞ þ RðFÞ þ RðNÞ: ð7Þ

The first condition imposed on the weights is quite obvious:

RðIμÞ ¼
X
j

ωjI
j
μ ¼ 1: ð8Þ

The second condition should minimize the response to the
remaining part of the signal in Eq. (7).
The mean square of the response to the foreground RðFÞ

can be written as follows [see Eqs. (4) and (5)]:

hR2ðFÞi ¼
*XM

m¼1

a2mðPÞ
"XJ
j¼1

fmðνj;PÞ · ωj

#
2
+
: ð9Þ

According to our assumptions above about amðPÞ, one can
write down the following inequality:

hR2ðFÞi < σ2F;max ¼
XJ
i;j¼1

"XM
m¼1

A2
mqmij

#
ωiωj;

qmij ¼
1

VΩ

Z
Ω
fmðνi;PÞfmðνj;PÞdP; ð10Þ

where VΩ is the volume of the Ω region. The integrals
qmij can be precalculated for all types of foreground
(m ¼ 1;…;M) numerically or, in some particular cases,
analytically depending on the configuration of the param-
eter region Ω.
Since hR2ðNÞi ¼ P

i;j Cijωiωj, the minimization of the
response to the foreground and to the noise is achieved with
weights ωj corresponding to the minimum of the quadratic
form Q:

hðRðFÞ þ RðNÞÞ2i ¼ hR2ðFÞi þ hR2ðNÞi < Q;

Q ¼
XJ
i;j¼1

"XM
m¼1

A2
mqmij þ Cij

#
ωiωj: ð11Þ

Finally, one can find the coefficients ωj for which the
minimum of the function Qðω1; ::;ωJÞ is reached:

∂Q
∂ωj

¼ 0; j ¼ 2; ::; J;

ω1 ¼
1

I1μ
−
XJ
m¼2

ωj
Ijμ
I1μ
: ð12Þ

Thus, ωj calculated by Eq. (12) represent the optimal set
of weights for estimating the amplitude aμ. In fact, the
solution of Eq. (12) is equivalent to the matched filter
[34–40] with covariance matrixQ ¼ ½Qij� and the template
in the form of the μ signal:

Qij ¼
XM
m¼1

A2
mqmij þ Cij;

ω ¼ α ·Q−1Iμ; ð13Þ

where the coefficient α is determined by the normalization
in Eq. (8). Note that instead of inverting the matrix Q, it is
much easier to solve the system of equations in Eq. (12). At
low values of photon noise (high sensitivity), the eigen-
values of this matrix can differ from each other by many
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orders of magnitude, which makes the process of inverting
a large Q matrix unstable.
To evaluate the efficiency of the algorithm, it is con-

venient to use the following notations: σ2F ¼ hR2ðFÞi,
σ2N ¼ hR2ðNÞi. The estimated amplitude ãμ coincides with
the true amplitude aμ with an accuracy of

ãμ ¼ aμ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F þ σ2N

q
: ð14Þ

According to the notations in Eqs. (1) and (2), the expected
amplitude in the considered model is aμ ¼ 1. According to
Eq. (10), σF;max > σF, and our estimate of the total variance

is always overestimated:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F;max þ σ2N

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F þ σ2N

p
.

It should be noted that the choice of the two conditions
indicated above (on which the calculation of the matrixQ is
based) cannot ensure that the truly optimal coefficients are
found. A more subtle approach would be to restrict the
functions amðPÞ from above in the following way:

jamðPÞj < AmðPÞ; P ∈ Ω: ð15Þ

Nevertheless, the lack of information about the foregrounds
forces us to sacrifice the accuracy of the μ signal amplitude
estimation. Otherwise, the risk remains that an incorrect
foreground model will lead to misinterpretations of the
observational data. A more detailed foreground modeling
approach could, in principle, provide better coefficients ω,
but this is outside the scope of our article. It should also be
noted that, in reality, hRðFÞi ≠ 0. This means that the aμ
estimate in our assumptions can be biased. Since we leave
the distribution of parameters unknown, we do not attempt
to make any corrections for the bias. Thus, the unknown
bias is “hidden” in the total variance. In the next section, we
give an example of a foreground model with a more or less
realistic distribution of parameters and show that this bias is
small compared to the variance.

III. EXTRACTION OF μ DISTORTION
FROM A SIGNAL WITH FOREGROUNDS

(NUMERICAL RESULTS)

This section demonstrates the effectiveness of the algo-
rithm in extracting the μ signal from the observed spectrum
in the presence of various foregrounds.
The contribution to the observed spectrum from some of

these foregrounds can be the sum of emissions with various
uncertain parameters.
For clarity, let us start with the problem for a single

parameter and then proceed to demonstrate a more gen-
eral case.

A. Unknown combination of graybody spectra
as an example of a foreground

The simplest case is a problem with the foreground in the
form of a superposition of graybody spectra:

IgbðνÞ ¼
ZTmax

Tmin

aðTÞBðν; TÞdT;

Bðν; TÞ ¼ 2ðkTÞ3
ðhcÞ2

x3

ex − 1
; x ¼ hν

kT
; ð16Þ

where Tmin∶ Tmax is the range of possible temperature
change from the minimum to the maximum value. This
range plays the role of the Ω region in the case of a single
parameter (temperature). One can always estimate (for
example, for a telescope’s primary mirror) this range of
temperature variations as well as the maximum possible
value for the mirror emissivity function:

R Tmax
Tmin

jaðTÞjdT <
Amax. The observed signal is

Sj ¼ aμI
j
μ þ

ZTmax

Tmin

aðTÞBjðTÞdT þ Nj;

BjðTÞ ¼
ZνjþΔν

2

νj−Δν
2

Bðν; TÞ dν
Δν

: ð17Þ

For simplicity, we consider the covariance noise matrix to
be a diagonal one.
In accordance with Eqs. (10) and (11), one can write an

expression for the quadratic form Q:

Q ¼ A2
max

XJ
i;j¼1

qijωiωj þ
XJ
j¼1

σ2jω
2
j ;

qij ¼
1

Tmax − Tmin

ZTmax

Tmin

BiðTÞBjðTÞdT: ð18Þ

Thus, Eqs. (12) and (18) give us weights ωj. If the
amplitude of the noise greatly exceeds the possible con-
tribution from the foreground, then the optimal weights will
be ωj ∼ Ijμ=σ2j (as expected in the case of no foreground).
For the noise uniformly distributed over all frequency
channels (σj ¼ σ), the weight function will have exactly

the shape of the signal: ωj ∼ Ijμ. By reducing the noise, we
begin to significantly change the optimal values of the
weights and thereby reduce not only the response to the
noise RðNÞ but also the response to an unknown fore-
ground signal RðFðTÞÞ. The response to a foreground is a
function of T, while the response to noise is just a number.
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In this numerical experiment the function aðTÞ is
random and unknown to us, butZ

11K

9K
jaðTÞjdT < Amax ¼ 10−3:

The total number J ¼ 128 of frequency channels νj were
used from 10 GHz to 2 THz with the channel width
Δν ¼ 15 GHz. Figure 1 demonstrates the maximum possible
response to the foreground jRð10−3 · BðTÞÞj > jRðFðTÞÞj
for two different values of photon noise, σ ¼ 3 Jy=sr and
σ ¼ 1 Jy=sr. W can clearly see that for sufficiently small
σ ¼ hN2

ji, the optimally chosen coefficients ωj provide a
response to the foreground that is negligible compared to the
response to the signal, RðIμÞ ¼ 1.
Below we show an example of applying our algorithm to a

real instrumental foreground created by telescope optics.
Figure 2 (left panel) shows a simplified model of the primary
telescope mirror in the experiment [18]. This model is a
10-meter-diameter mirror cooled to 10 K and consisting of
96 panels. Since the angular resolution is not a decisive
factor in the study of μ distortions, such a large mirror is
not necessary. Nevertheless, this experiment also involves
the study of y distortions and the effects associated with the
scattering of relic photons on plasma in galaxy clusters
(the SZ effect), where it is highly desirable to have a good
resolution. This picture shows the temperature distribution
over the surface of an unevenly cooled mirror. It is assumed
that each surface element radiates as a graybody with
temperature T and emissivity less than 10−3. The surface
temperature model of this mirror includes several terms:

(i) the average temperature T ¼ 10 K;
(ii) the temperature gradient from the center to the

periphery (due to the internal panels being cooled
more efficiently);

(iii) the hot spot due to one side of the telescope being
heated by the Sun;

(iv) a random Gaussian temperature distribution with a
characteristic scale of cold and hot spots approx-
imately corresponding to the size of the panels; and

(v) the gaps between panels that are noticeably hotter
than the rest of the surface.

The right panel of Fig. 2 shows the actual distribution
of the amplitude aðTÞ over temperature along with the
response to the foreground when the amplitude is in the
form of the delta function: aðT 0Þ ¼ 10−3 · δðT 0 − TÞ,
RðFÞ ¼ Rð10−3 ·BðTÞÞ (the same as in Fig 1). Thus, the
response to the actual foreground created by the mirror is

RðFÞ ¼
Z11K
9K

aðTÞRðBðTÞÞdT: ð19Þ

In this particular case, the response RðFÞ ¼ 0.091σF;max

is very small compared to the estimated maximum possible
variation. As noted above, the average value of the response
to the foreground is not equal to zero. In order to find it we
need to know the average distribution haðTÞi:

hRðFÞi ¼
Z11K
9K

haðTÞiRðBðTÞÞdT: ð20Þ

FIG. 1. Results of the algorithm application when the foreground is an unknown superposition of graybody spectra with temperatures
distributed in any possible way between 9 K and 11 K. We assume emissivity

R
11K
9K jaðTÞjdT < 10−3. Left panel: optimal weights ωj for

σ ¼ 3 Jy=sr. The points connected by the solid line show ωj when there is no foreground. Right panel: maximum possible absolute
value of the response to the foreground RðFÞ as functions of temperature for σ ¼ 3 Jy=sr and σ ¼ 1 Jy=sr shown in dashed and solid
lines, correspondingly, assuming that all radiation is concentrated at one temperature T: FðνÞ ¼ 10−3 · Bðν; TÞ. Any combination of
sources with different temperatures distributed between 9 K and 11 K with a restriction on aðTÞ will give a response of less than

1
ðTmax−TminÞ

R Tmax
Tmin

jRðFÞjdT. Horizontal dashed and solid lines represent the response to the noise. The horizontal dashed-dotted line is the
response to the μ signal. Vertical lines limit the region of temperature variation.
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In our particular model we can assume that this average
distribution does not differ much from the calculated aðTÞ
shown in Fig. 2. Thus, in real parameter distributions
the bias is not only less than σF;max but, as a rule, it is
significantly less than this overestimated variation. Since in
the general case we do not know the properties of the
function aðTÞ, we do not try to introduce any correction for
the bias.
In this simplified example, it is easy to see that modeling

the spectrum emitted by the telescope optics is an extremely
difficult (if not impossible) task. Any attempt to calculate
such a spectrum (changing over the course of observations)
is complicated by a large number of factors that must
be taken into account. Our approach overcomes these
difficulties. It is enough for us to know only three
quantities: the minimum and maximum possible temper-
atures of the mirror surface, and its maximum possible
emissivity. We also emphasize that the optics radiation
must be modeled by a combination of modified blackbody
radiation (the combination of graybody spectra is consid-
ered here for simplicity).
Figure 3 demonstrates how important it is to correctly

estimate the upper limit of the amplitude Amax. It shows the
dependence of σN and σF;max on the estimate of the upper
limit of the amplitude A. Underestimation of this amplitude
can lead to an increase in the response to the foreground
and an incorrect interpretation of the data. At the same time,
overestimation of this amplitude is not so risky in this case.
Nevertheless, in more general cases an overestimation
of the foreground amplitude can lead to a sharp increase

in the response to photon noise, which reduces the accuracy
of aμ estimation. The minimum of the total deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2N þ σ2F;max

q
of the response to the signal from the true

amplitude aμ is reached when A ¼ Amax.

FIG. 3. Dependence of σF and σN on the estimated upper limit
A ¼ R jaðTÞjdT of the amplitude. Any combination of radiation
sources in the form of a graybody with a temperature in the range
from 9 K to 11 K and a total integrated amplitude less than A will
give a response jRðFÞj that will be in the gray area below the line

σF;max. The minimum of the total deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F;max þ σ2N

q
is

reached when the estimation of A is correct: A ¼ Amax ¼ 10−3.

FIG. 2. Simplified model of the foreground created by the telescope’s primary mirror. Left panel: simulated temperature distribution
over the surface of the mirror in the experiment [18]. The gaps between the reflective panels have a slightly higher temperature than the
panels themselves. Since the cooling machines are close to the center, the interior of the mirror is cooled more efficiently than the
peripheral panels. The hot spot oriented at approximately 2 o’clock exists due to the corresponding orientation of the telescope relative to
the Sun. This spot moves with time and makes a complete revolution around the mirror in one year. Right panel: amplitude distribution
as a function of temperature aðTÞ shown as a dashed line. The narrow peak at approximately 10.5 K corresponds to the contribution to
the radiation from the gaps between the panels. The solid line shows the response to the graybody foreground when all radiation is
concentrated at temperature T; i.e., aðTÞ has the form of the delta function: aðT 0Þ ¼ 10−3 · δðT 0 − TÞ (same as in Fig. 1 for the photon
noise σ ¼ 1 Jy=sr).
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B. Dust and CIB foregrounds

As mentioned in the Introduction, dust and CIB con-
tributions to the total signal can both be written in the
following form:

Idust;CIBðν; T; βÞ ¼ τðν=ν0ÞβBðν; TÞ; ð21Þ

where the reference frequency ν0 of 353 GHz is used.
Analogously to Eqs. (3) and (17), the total signal S ¼
S1; ::; SJ is

Sj ¼ Ijμ þ
Z
Ω
aðT; βÞfðνj; T; βÞdTdβ þ Nj;

fðνj; T; βÞ ¼
ZνjþΔν

2

νj−Δν
2

ðν=ν0ÞβBðν; TÞ
dν
Δν

: ð22Þ

In order to determine the boundaries of the parameter ðT; βÞ
domain, Planck data [41,42] were used. The probability
distribution function for these parameters was calculated
using a 10-degree circular sky part centered at l ¼ 13.731°,
b ¼ −73.946°; see Fig 4 (bottom left panel). The isocon-
tour black lines limit the parameter region ΩðT; βÞ. (Note
that dust and CIB areas can, in principle, overlap. This does

not change anything in our analysis since in this case we
consider them as a single foreground.) The probability of
finding parameters outside this region is less than 0.0002.
At the same time, the maximum allowable value of
emissivity τ for the data we used does not exceed 10−6:R
Ω jaðT; βÞjdTdβ < Amax ¼ 10−6. As in Sec. III A, 128
channels of 15 GHz width from 10 GHz to 2 THz were
used. In order to compare the effectiveness of different
FTS configurations, the results for two different cases are
shown: single-band FTS and five-band FTS. Both of their
sensitivities (noise hN2

ji) are calculated using [43,44] for
the same integrating time (top left panel). Five-band FTS
divides the frequency range into five isolated parts.
Therefore, it is not surprising that it gives better sensi-
tivity. The top middle panel and top right panel show
results of calculating optimal weights ωj for one and five
bands, correspondingly. Unlike single-band weights, the
weight function for five bands has discontinuities at points
equal to the minimum and maximum frequencies of each
band. Results for the maximum possible foreground
response for these two cases are shown in the bottom
middle and bottom right panels. It is clear that the five-
band configuration provides us not only with a better
noise response but also with a smaller and safer fore-
ground response.

FIG. 4. Separation of the μ signal from dust and CIB contamination. Top left: sensitivity for the frequency channels for one- and
five-band FTS. Bottom left: probability distribution function for parameters Tand β jointly for dust and infrared background. Top middle
and top right: weights ωj for single-band and five-band sensitivity, correspondingly. Bottom middle and bottom right: maximum
possible foreground response jRðFðT; βÞÞj, RΩ jaðT; βÞjdTdβ < Amax ¼ 10−6 for dustþ CIB for single-band and five-band FTS,
correspondingly. Black color indicates the area where the response to the foreground is greater than the response to the signal:
jRðFðT; βÞÞj > RðIμÞ ¼ 1. Bright white filamentlike lines correspond to geometric points in the T, β coordinate plane where
RðFðT; βÞÞ ¼ 0. The responses to the noise are σN ¼ 0.124 and σN ¼ 0.046 for one and five bands, respectively.
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C. Other foregrounds

In the previous subsection the algorithm was applied to
the case with dust and CIB. We now look at how other
foregrounds can be included. First, we should add the
radiation created by the optics of the telescope since it is
described by the same modified blackbody formula and
depends on the same parameters. In this case one more
region is added to the two regions in the P ¼ ðT; βÞ plane in
Fig. 4. This region corresponds to variations in temperature
and spectral slope for the optical system. Its size and
configuration depend on the properties of the primary
mirror: average temperature, cooling system character-
istics, the quality of surface grinding, etc. The next fore-
grounds to be added are the spectral distortions associated
with the CMB radiation: CMB anisotropy (CMBA), SZ
effect (y distortions), and its first relativistic correction [45].
(The CMB monopole spectrum is well known and can
be subtracted from the total signal.) The most “harmful” is
the CMBA:

ICMBA ¼ 2ðkT0Þ3
ðhcÞ2

x4

ðex − 1Þ2 ·
ΔT
T0

;

x ¼ hν=kT0; ð23Þ

because its shape is exactly proportional to the first term in
Eq. (1) for μ distortion. This is not surprising because
CMBA and μ distortion have a similar physical origin.
Therefore, particularly the second term in Eq. (1) gives us
an opportunity to measure chemical potential. This term
manifests itself mainly for ν < 200 GHz. Therefore, it is
important to achieve good sensitivity at relatively low
frequencies. As for the maximum possible CMBA ampli-
tude, a safe estimate is j ΔTT0

j < ACMBA ¼ 10−4. The shape
of ICMBA does not depend on any parameters P, but
formally, we consider this dependence to be a constant.
Similarly, it is necessary to add the SZ effect and the first

relativistic correction to it. The upper limit for their
amplitudes depends on the specific position in the sky
and the presence of strong SZ sources. Adding other
foregrounds (synchrotron, free-free, etc.) with their floating
parameters one by one, we finally get a complete set of
components that must be taken into account when solving
the problem of μ signal separation.

IV. CONCLUSIONS

This paper presents a way to get rid of cosmic fore-
grounds with poorly defined spectral characteristics when
measuring μ distortion. The basis of this approach is the
algorithm for finding special weights for frequency chan-
nels. In the case of sufficient sensitivity, the sum of the
signal measurements with these weights (called the
response) is weakly sensitive to the presence of foregrounds
with parameters lying in some preestimated range of their
possible variations. Therefore, the response to the fore-
grounds becomes negligible in comparison with the
response to the μ signal. In this paper only some types
of foregrounds are considered. Applying the algorithm to
all possible foregrounds is the subject of a separate detailed
research.
It should be noted that this approach can be applied to

experiments related to the study of phenomena associated
with the SZ effect, for example Refs. [46–51], as well as to
any physical experiments with poorly defined foreground
spectra.
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