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Galilean Genesis is generically plagued with a strong coupling problem, but this can be avoided
depending on the hierarchy between a classical energy scale of genesis and a strong coupling scale. In this
paper, we investigate whether the models of Galilean Genesis without the strong coupling problem can
explain the statistical properties of the observed cosmic microwave background fluctuations based on two
unified frameworks of Galilean Genesis. By focusing on the class in which the propagation speeds of the
scalar and tensor perturbations are constant, we show that the models avoiding strong coupling and
allowing a slightly red-tilted scalar power spectrum suffer from an overproduction of a scalar non-
Gaussianity.
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I. INTRODUCTION

Inflation [1–3] is currently the standard paradigm of the
early universe, even though it suffers from the initial
singularity [4]. To avoid the singularity, nonsingular alter-
native paradigms with the violation of the null energy
condition have also been studied so far (see, e.g.,
Refs. [5,6]). Inflation not only superbly resolves various
problems in the standard big-bang cosmology but also
successfully explains the origins of both the cosmic micro-
wave background (CMB) anisotropies and the rich structure
of our universe. Of particular interest is to see whether such
nonsingular paradigms can truly be alternatives to inflation
from both theoretical and observational perspectives.
Galilean Genesis [5] is one of the nonsingular alternative

scenarios in which the universe is quasi-Minkowski in the
asymptotic past. This scenario can resolve the problems in
the standard big-bang cosmology as well as inflation [7,8].
As the generic theoretical problem, the nonsingular scenar-
ios have been found to be plagued with the occurrence of
gradient instabilities in scalar perturbations [9–13], though
how to overcome that has been clarified (see, e.g.,
Refs. [11,12,14–21]). Besides this problem, Galilean
Genesis suffers from another theoretical problem: strong
coupling at an early stage of genesis [22–25], which
indicates that one can trust neither any analyses based
on the perturbation theory at the early stage nor any
successful observational predictions consistent with

CMB data based on it. One can avoid this problem as
long as some typical energy scale of genesis is much lower
than the scale at which strong coupling occurs [22–27].
So far the primordial power spectra of the scalar and

tensor perturbations have beenwell studied based on unified
frameworks of Galilean Genesis [7,8] proposed in the
Horndeski theory, the most general single-scalar-tensor
theory with second-order field equations [28–30] (see also
Ref. [31] for a review), whereas the strong coupling
problem has been studied in subclasses of the unified
frameworks [22–25,32] (and in an example outside the
frameworks [32]). Also, the primordial non-Gaussianities
are important quantities as well from both theoretical and
observational viewpoints, though those have not been
calculated in the context of Galilean Genesis so far. The
main purpose of the present paper is to see whether Galilean
Genesis without the theoretical problems can predict the
observational signatures consistently with the observed
CMB fluctuations. In the present paper, after revisiting
the strong coupling problem in the unified frameworks and
clarifying the parameter region of the models predicting the
slightly red-tilted scalar power spectrum, we evaluate the
scalar non-Gaussianity in the allowed parameter region and
discuss whether the models can enjoy all of the observa-
tional constraints on the early universe models.
This paper is organized as follows. In the following

section, we introduce two unified frameworks of Galilean
Genesis. In Sec. III, we give a brief review of the primordial
power spectra for scalar and tensor perturbations in both
frameworks. In Sec. IV, we first make arguments on the
strong coupling problem and then clarify the model space
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of Galilean Genesis with the scale-invariant scalar power
spectrum and without strong coupling. In Sec. V, we
calculate the scalar non-Gaussianity in the model space
and compare the non-Gaussianity of the curvature pertur-
bation with the current constraints on that. A summary of
our paper is given in Sec. VI.

II. FRAMEWORKS

In the present paper, we assume a spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
of the form

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð1Þ

where aðtÞ is the scale factor.
So far most models of Galilean Genesis have been

studied within the Horndeski theory [5,33–43]. (See
Refs. [14,32,44–49] for the models studied in beyond
Horndeski theories [31,50–53].) The Horndeski theory
yields the most general second-order field equations for
a scalar field ϕ and a metric gμν, and the Lagrangian of
which is [28–30]

L ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþG4ðϕ; XÞR
þG4X½ð□ϕÞ2 − ð∇μϕ∇νϕÞ2�

þG5ðϕ; XÞGμν∇μ∇νϕ −
G5X

6
½ð□ϕÞ3

− 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð2Þ

where Giði ¼ 2;…; 5Þ are arbitrary functions of ϕ and X
with X ≔ −gμν∇μϕ∇νϕ=2 being the kinetic term of the
scalar field, and GX stands for the partial derivative of G
with respect to X, i.e., GX ¼ ∂G=∂X. From the Horndeski
action, one can derive the Friedmann and evolution
equations denoted by E ¼ 0 and P ¼ 0, respectively, as
written in Appendix A.
In the scenario of Galilean Genesis [5], the cosmic

expansion starts from a quasi-Minkowski phase. In par-
ticular, by assuming the following configuration of the
scalar field:

Y ≔ e−2λϕX ≃ Y0 ¼ const; ð3Þ

giving

eλϕ ≃
1

λ
ffiffiffiffiffiffiffiffi
2Y0

p 1

ð−tÞ ; ð4Þ

the Lagrangian with appropriate choices of Gi admits a
quasi-Minkowski solution where the Hubble parameter
H ≔ ðda=dtÞ=a is asymptotic to 0 by a power-law manner
in the asymptotic past (a large jtj region). In the following
subsection, we briefly review two unified frameworks of
Galilean Genesis.

A. Generalized Galilean Genesis

The model of Galilean Genesis was originally proposed
in Ref. [5], and each Gi of the original model is of the form

G2 ¼ c1e2λϕX þ c2X2; G3 ¼ c3X;

G4 ¼
M2

Pl

2
; G5 ¼ 0; ð5Þ

with constant ci. The generalization in a way to include the
original model has been accomplished by choosing the
Horndeski functions as [7]

G2 ¼ e2ðαþ1Þλϕg2ðYÞ; G3 ¼ e2αλϕg3ðYÞ;

G4 ¼
M2

Pl

2
þ e2αλϕg4ðYÞ; G5 ¼ e−2λϕg5ðYÞ; ð6Þ

where giðYÞ (i ¼ 2;…; 5) are arbitrary functions of Y, and
α and λ are constant. Note that g2 ¼ c1Y þ c2Y2;
g3 ¼ c3Y; g4 ¼ g5 ¼ 0, and α ¼ 1 for the original model.
This unified framework is called generalized Galilean
Genesis. Starting with the discovery of the original model,
various models included in this framework have been
constructed in Refs. [33–42].
By assuming Eq. (3), the quasi-Minkowski solution has

been obtained in generalized Galilean Genesis as [7]

a ≃ 1þ 1

2α

h0
ð−tÞ2α ¼ 1þOðHtÞ; ð7Þ

where

H ≃
h0

ð−tÞ1þ2α ; ð8Þ

α > 0: ð9Þ

The background spacetime remains the quasi-Minkowski
one as long as

Hjtj ≪ 1: ð10Þ

In this framework, the Friedmann and evolution equations
have been found, respectively, to be [7]

E ≃ e2ð1þαÞλϕρ̂1ðY0Þ ¼ 0; ð11Þ

P ≃ 2G1
_H þ e2ð1þαÞλϕp̂1ðY0Þ ¼ 0; ð12Þ

where

G1 ≔ M2
Pl − 4λY0ðg5 þ Y0g05Þ; ð13Þ

ρ̂1ðYÞ ≔ 2Yg02 − g2 − 4λYðαg3 − Yg03Þ; ð14Þ

p̂1ðYÞ ≔ g2 − 4αλYg3 þ 8ð2αþ 1Þλ2Yðαg4 − Yg04Þ; ð15Þ
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and the dot and prime denote differentiations with respect to t
and Y, respectively. Equations (11) and (12) are used
todetermine thevaluesofY0 andh0, respectively. Inparticular,
the evolution equation is of the linear equation for h0, and h0
can easily be obtained and written as a compact form [7],

h0 ¼ −
1

2ð1þ 2αÞð2λ2Y0Þ1þα

p̂1ðY0Þ
G1

: ð16Þ

The various aspects of the background dynamics have also
been investigated in the presence of the spatial curvature and
spacetime anisotropies [7]. In Ref. [7], it has been shown that
both do not spoil the background evolution under Eq. (9).

B. New framework

In the Horndeski theory, a model having the quasi-
Minkowski solution has been studied outside generalized
Galilean Genesis as well [43]. That model is based
on the Lagrangian with Gi having the following ϕ and
X dependence1:

G2 ¼ −dλ4e6λϕ − e4λϕX þ λ8X3; G3 ¼ 0;

G4 ¼
M2

Plλ
8

2X2
; G5 ¼ 0; ð17Þ

with constant d. Another unified framework including the
above example has been proposed [8], and the Horndeski
functions have been chosen as2

G2 ¼ e2ðβþ1Þλϕg2ðYÞ þ e−2ðγ−1Þλϕa2ðYÞ þ e−2ðβþ2γ−1Þb2ðYÞ;
G3 ¼ e2βλϕg3ðYÞ þ e−2γλϕa3ðYÞ þ e−2ðβþ2γÞλϕb3ðYÞ;
G4 ¼ e−2γλϕa4ðYÞ þ e−2ðβþ2γÞλϕb4ðYÞ;
G5 ¼ e−2ðβþ2γþ1Þλϕb5ðYÞ; ð18Þ
where

a2ðYÞ ≔ 8λ2YðY∂Y þ γÞ2AðYÞ;
a3ðYÞ ≔ −2λð2Y∂Y þ 1ÞðY∂Y þ γÞAðYÞ;
a4ðYÞ ≔ Y∂YAðYÞ;
b2ðYÞ ≔ 16λ3Y2ðY∂Y þ β þ 2γ þ 1Þ3BðYÞ;
b3ðYÞ ≔ −4λ2Yð2Y∂Y þ 3ÞðY∂Y þ β þ 2γ þ 1Þ2BðYÞ;
b4ðYÞ ≔ 2λYðY∂Y þ 1ÞðY∂Y þ β þ 2γ þ 1ÞBðYÞ;
b5ðYÞ ≔ −ð2Y∂Y þ 1ÞðY∂Y þ 1ÞBðYÞ; ð19Þ

with arbitrary functions AðYÞ and BðYÞ. Note that g2 ¼
−dλ4 − Y þ λ8Y3; g3 ¼ 0; A ¼ −M2

Plλ
8=ð4Y2Þ; B ¼ 0, and

β ¼ γ ¼ 2 for the above example.
Before moving to the background dynamics in the new

framework, we refer to a model constructed in Ref. [10]. Its
Lagrangian that admits the quasi-Minkowski solution has
been constructed based on the Arnowitt-Deser-Misner
(ADM) formalism within the Horndeski theory. The
covariantized version of the Lagrangian can be reproduced
by choosing g2ðYÞ; g3ðYÞ; AðYÞ, and BðYÞ in the new
framework as3

g2ðYÞ ¼ c−2ðβþ1Þλ−4
�
−

Y
Y0

þ 1

3

�
Y
Y0

�
2
�

þ
ffiffiffi
2

p

4
c−ð2βþ1Þ ðβ − 1Þ

λ2Y3=2
0

Y2; ð20Þ

g3ðYÞ ¼
3

ffiffiffi
2

p

16
c−ð2βþ1Þ Y

λ3Y3=2
0

; ð21Þ

AðYÞ ¼ c2γλ−2
�
ln

�
Y
μ4

�
−
1þ 2γ

γ

�
; ð22Þ

BðYÞ ¼ 0; ð23Þ

where c is a dimensionless constant and μ is a mass-
dimension one. Note that γ < 0 and 1þ 2β þ 4γ < 0 have
been chosen in Ref. [10].
Under the ansatz, Eq. (3), the quasi-Minkowski solution

has been obtained in the new framework as

a ≃ 1þ 1

2ðβ þ γÞ
h̃0

ð−tÞ2ðβþγÞ ¼ 1þOðHtÞ; ð24Þ

where

H ≃
h̃0

ð−tÞ1þ2ðβþγÞ ; ð25Þ

β þ γ > 0: ð26Þ

Also, Eq. (10) is imposed to keep the background space-
time the quasi-Minkowski one. In this framework, the
Friedmann and evolution equations take the similar forms
as those in generalized Galilean Genesis:

E ≃ e2ð1þβÞλϕρ̂2ðY0Þ ¼ 0; ð27Þ1The explicit form of G4 in the Lagrangian in Ref. [43] is
G4 ¼ ðM2

Pl=2Þð1þ λ8=X2Þ. The first term in the parentheses of this
G4 is negligible at some large jtj, compared to the second one since
X−2 ∝ ð−tÞ4. By using this fact,we ignored the first term inEq. (17).

2In the previous paper [7], α and β have been introduced
instead of β and γ, respectively. However, by taking into account
that α has already been used in generalized Galilean Genesis, we
changed the notations to avoid confusion.

3We changed the notation of c in Ref. [10] as c → cλ
ffiffiffiffiffiffiffiffi
2Y0

p
. By

taking λ ¼ 1 (i.e., rescaling ϕ to be dimensionless, ϕ → λϕ) and
replacing β and γ with αþ δ=2 and −α, respectively, one can
check that the above Lagrangian is corresponding to the ADM
Lagrangian in Ref. [10].
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P ≃ 2G2
_H þ e2ð1þβÞλϕp̂2ðY0Þ ¼ 0; ð28Þ

where

G2 ≔ −2e−2γλϕY0ðA0 þ 2Y0A00Þ
þ 2e−ðβþ2γþ1ÞλϕH _ϕY0ð6B0 þ 9Y0B00 þ 2Y2

0B
000Þ;

ð29Þ

ρ̂2ðYÞ ≔ 2Yg02 − g2 − 4λYðβg3 − Yg03Þ; ð30Þ

p̂2ðYÞ ≔ g2 − 4βλYg3 þ 8γλH _ϕe−2ð1þβþγÞλϕYðA0 þ 2YA00Þ
− 4ð1þ 2β þ γÞλH2e−2ð1þ2βþ2γÞλϕY2

× ð6B0 þ 9YB00 þ 2Y2B000Þ: ð31Þ

The values of Y0 and h̃0 are derived from Eqs. (30) and
(31), respectively. The first and second terms of the
evolution equation are generally quadratic in h̃0 in the
case of BðYÞ ≠ 0 since GT has the linear term of h0 and p̂2

does the quadratic one of that. Thus, as opposed to the case
of generalized Galilean Genesis, h̃0 is determined by
solving the quadratic equation for h0 in general and written
as an intricate form, whereas in the particular case where
6B0 þ 9Y0B00 þ 2Y2

0B
000 ¼ 0, the following simple expres-

sion of h̃0 can be obtained:

h̃0¼
1

4ð1þ2βÞð2λ2Y0Þ1þβþγ

g2ðY0Þ−4βλY0g3ðY0Þ
Y0ðA0 þ2Y0A00Þ : ð32Þ

Similar to the case of generalized Galilean Genesis, the
background evolution is still valid even in the presence of
the spatial curvature under the condition Eq. (26) as has
been shown in [8], whereas one needs an additional
condition for the spacetime anisotropies not to spoil the
genesis background. We thus briefly review the property of
the spacetime anisotropy in the present framework. The
ratio of the anisotropic expansion rate (denoted by _β�) to
the isotropic one has been obtained in the Kasner spacetime
as [8]

_β�
H

∝ jtj1þ2β: ð33Þ

Therefore, the anisotropies do not spoil the background
evolution as long as the following condition holds:

β > −1=2: ð34Þ

III. PRIMORDIAL POWER SPECTRA

The scalar and tensor perturbations around the FLRW
background are defined in the perturbed metric under the
unitary gauge, δϕðt; x⃗Þ ¼ 0, as

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð35Þ

where

N ¼ 1þ δn; Ni ¼ ∂iχ; ð36Þ

gij ¼ a2e2ζ
�
δij þ hij þ

1

2
hikhkj þ � � �

�
; ð37Þ

with δn and χ being auxiliary fields, and we denote the
curvature and tensor perturbations by ζ and hij, respec-
tively. The quadratic actions for ζ and hij are found,
respectively, to be [30]

Sð2Þζ ¼
Z

dtd3xa3
�
GS

_ζ2 −
F S

a2
ð∂iζÞ2

�
; ð38Þ

Sð2Þh ¼ 1

8

Z
dtd3xa3

�
GT

_h2ij −
F T

a2
ð∂khijÞ2

�
; ð39Þ

where the auxiliary fields were eliminated by using the
constraint equations after expanding the Horndeski action
up to quadratic order in the perturbations. GS, F S, GT ,
and F T are defined in Appendix. B. Note that GS;GT > 0
and F S;F T > 0 are required to avoid the ghost and
gradient instabilities, respectively. We introduce the
squared of the propagation speeds of the curvature and
tensor perturbations defined, respectively, by c2s ≔ F S=GS

and c2h ≔ F T=GT .
We also define the Fourier transform of the perturba-

tions by

ζðt;xÞ ¼
Z

d3k
ð2πÞ3 ζ̃ðt;kÞe

ik·x; ð40Þ

hijðt;xÞ ¼
Z

d3k
ð2πÞ3 h̃ijðt;kÞe

ik·x: ð41Þ

In Fourier space, the quantized perturbations can be
expanded as

ζ̃ðt;kÞ ¼ ζkðtÞâk þ ζ�−kðtÞâ†−k; ð42Þ

h̃ijðt;kÞ ¼ ½hðsÞk âðsÞk þ hðsÞ�−k âðsÞ†−k �eðsÞij ; ð43Þ

where ζkðtÞ and hðsÞk ðtÞ are the mode functions of the scalar
and tensor modes, respectively, and the polarization tensor

eðsÞij satisfies

δije
ðsÞ
ij ðkÞ ¼ kieðsÞij ðkÞ ¼ 0; ð44Þ

eðsÞij ðkÞeðs
0Þ�

ij ðkÞ ¼ δss0 ð45Þ
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with s ¼ � being the helicity modes of hij. Here, âk (âðsÞk )

and â†k (âðsÞ†k ) are the creation and annihilation operators of
the scalar (tensor) modes, respectively, which enjoy the
canonical commutation relations

½âk; âk0 � ¼ ð2πÞ3δðkþ k0Þ; ð46Þ

½âðsÞk ; âðs
0Þ†

k0 � ¼ ð2πÞ3δss0δðkþ k0Þ; ð47Þ

others ¼ 0: ð48Þ
The equations of motion for the mode functions are derived
from the quadratic actions, Eqs. (38) and (39), as

∂tða3GS
_ζkÞ þ ak2F Sζk ¼ 0; ð49Þ

∂tða3GT
_hðsÞk Þ þ ak2F Th

ðsÞ
k ¼ 0: ð50Þ

Now we focus on the genesis phase (i.e., a ≃ 1 phase)
where the conformal time η is approximately the same as
the cosmic one t, i.e., η ≃ t. The solutions of the mode
functions are thus obtained by fixing the time dependence
of GS, F S, GT , and F T . In the present paper, we fix it by
requiring that the propagation speeds of the perturbations
are constant for simplicity as will be argued in the
following subsection.
Also, we solve Eqs. (49) and (50) under the

initial conditions such that the solutions of the mode
functions of the canonically normalized perturbations,

uk ¼ ffiffiffi
2

p
aðGSF SÞ1=4ζk and vðsÞk ¼ ðaðGTF TÞ1=4=2ÞhðsÞk ,

in the far past coincide with those in Minkowski spacetime:

lim
t→−∞

uk ¼ 1ffiffiffiffiffi
2k

p e−icskt; ð51Þ

lim
t→−∞

vðsÞk ¼ 1ffiffiffiffiffi
2k

p e−ichkt; ð52Þ

where cs; ch ¼ const was imposed as mentioned above.
The mode functions are thus given by the positive fre-
quency modes.
The power spectra for ζ andhij aredefined, respectively, by

hζ̃ðkÞζ̃ðk0Þi ¼ ð2πÞ3δðkþ k0Þ 2π
2

k3
Pζ; ð53Þ

hh̃ijðkÞh̃ijðk0Þi ¼ ð2πÞ3δðkþ k0Þ 2π
2

k3
Ph; ð54Þ

where

Pζ ≔
k3

2π2
jζkj2; ð55Þ

Ph ≔
k3

2π2
X
s¼�

jhðsÞk j2: ð56Þ

We also introduce the spectral indices defined by

nS − 1 ≔ 3 − 2jνSj ≔
d lnPζ

d ln k
; ð57Þ

nT ≔ 3 − 2jνT j ≔
d lnPh

d ln k
: ð58Þ

We evaluate the power spectra at the end of the genesis phase.
In the usual models of inflation, the times when the phase
oscillations of the mode functions stop (i.e., −cskt ¼ 1
and −chkt ¼ 1) are equivalent to those when each
mode crosses the Hubble (or sound) horizon (i.e., csk ¼
aH and chk ¼ aH), whereas both do not have such a one-to-
one relationship during the genesis phase where a ≃ 1
and Hjtj ≪ 1. We, however, call the times when t enjoys
−cskt ¼ 1 and −chkt ¼ 1 the horizon-crossing scales for
simplicity, and we evaluate the power spectra at t ¼ t�
when the perturbations are on the superhorizon scales,
i.e., −cskt�;−chkt� ≪ 1.
When Gi and F i are of the power-law functions of t as

GS;F S ∝ jtjp and GT;F T ∝ jtjq, one can derive the generic
forms of the power spectra [8]:

Pζ ¼
1

8π2
1

F Scs

1

t2

����
t¼t�

�
2jνSj−3=2

ΓðjνSjÞ
Γð3=2Þ

�
2

jcskt�jnS ; ð59Þ

Ph ¼
2

π2
1

F Tch

1

t2

����
t¼t�

�
2jνT j−3=2

ΓðjνT jÞ
Γð3=2Þ

�
2

jchkt�jnT ; ð60Þ

where

νS ≔
1 − p
2

; ð61Þ

νT ≔
1 − q
2

: ð62Þ

A. Generalized Galilean Genesis

In this subsection, we briefly summarize the spectral
indices of the scalar and tensor power spectra in generalized
Galilean Genesis. As we explained before, it is determined
by fixing the time dependence of the coefficients in the
quadratic actions.
For the tensor perturbations, the time dependence has

been obtained as [7]

GT;F T ≃ const; ð63Þ
giving nT ¼ 2 irrespective of the concrete model.
For the scalar perturbations, the time dependence has

been found to be [7]

GS;F S ∝ ð−tÞ2α; ð64Þ

giving νS ¼ ð1 − 2αÞ=2. Thus the spectral index reads
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nS − 1 ¼
�
2αþ 2 ð0 < α < 1=2Þ;
4 − 2α ðα > 1=2Þ: ð65Þ

The two divided cases are associated with the time
evolution of the superhorizon modes. In the present setup,
the dominant mode of the perturbation on the superhorizon
scales can be written as ζk ∝ jtjνS−jνSj, and thus the
amplitude of the dominant mode is constant for νS > 0
while that grows for νS < 0. The scale invariance (i.e.,
nS ¼ 1) can be realized only for α ¼ 2 (νS ¼ −3=2).

B. New framework

First, let us focus on the tensor perturbations. The time
dependence of the coefficients in the quadratic action is [8]

GT ∝ ð−tÞ2γ; ð66Þ

F T ≃Að2B0 þ Y0B00Þð−tÞ2ðβþ2γÞ þ Bð−tÞ2γ; ð67Þ

whereA and B are nonzero constants.4 For the models with
c2h ¼ const, 2B0 þ Y0B00 ¼ 0 is imposed.
Then, we consider the scalar perturbations. During the

genesis phase (a ≃ 1), F S approximately takes the form

F S ≃ ∂t

�
G2
T

Θ

�
− F T; ð68Þ

and the first term can be rewritten as

∂t

�
G2
T

Θ

�
¼ ð1þ 2β þ 4γÞ δ

Ht
GT ∝ ð−tÞ2ðβþ2γÞ; ð69Þ

where

δ ≔
HGT

Θ
¼ const; ð70Þ

and we used Θ ∝ ð−tÞ−ð1þ2βÞ and GT ∝ ð−tÞ2γ which are
shown in Appendix B. The first and second terms of
Eq. (68) are proportional to ð−tÞ2ðβþ2γÞ and ð−tÞ2γ , respec-
tively. Notice that the gradient instabilities occur in either
the scalar or the tensor perturbations if the first term
vanishes, i.e., β and γ satisfy 1þ 2β þ 4γ ¼ 0, since F S ¼
−F T in that case. We thus assume 1þ 2β þ 4γ ≠ 0.
In Ref. [8], by taking into account β þ γ > 0 (and also
1þ 2β þ 4γ ≠ 0), the second term of Eq. (68) has been
ignored, which indicates that

F T

F S
¼ O

�
c2h

Ht
δ

�
≪ 1: ð71Þ

Also, GS is of the form

GS ¼
ΣG2

T

Θ2
þ 3GT; ð72Þ

where the first and second terms are proportional to
ð−tÞ2ðβþ2γÞ and ð−tÞ2γ , respectively. As opposed to F S,
the first term can vanish in the case of ρ̂02ðY0Þ ¼ 0

(Σ ∝ ρ̂02ðY0Þ). The present framework thus has two divided
cases about the time dependence of GS: ρ̂02ðY0Þ ¼ 0 and
ρ̂02ðY0Þ ≠ 0. The latter corresponds to the class of the
models with c2s ¼ const, and hereafter we only consider
the case where

GS ∝ ð−tÞ2ðβþ2γÞ: ð73Þ

In the case of ρ̂02ðY0Þ ≠ 0, the second term of Eq. (72) has
been ignored [8]: GS ≃ ΣG2

T=ðΘ2Þ where the following
approximation has been imposed,

GT

GS
¼ O

�
c2s

Ht
δ

�
≪ 1: ð74Þ

We have used Eq. (71) to derive the above expression.
Under the conditions, Eqs. (71) and (74), one can derive

the spectral indices, nT ¼ 3 − 2jνT j and nS − 1 ¼ 3 − 2jνSj
with

νT ¼ 1

2
− γ; ð75Þ

νS ¼
1

2
− β − 2γ: ð76Þ

The scale invariance of the scalar power spectrum can be
realized for β þ 2γ þ 1 ¼ 0 (i.e., νS ¼ 3=2) and β þ 2γ −
2 ¼ 0 (i.e., νS ¼ −3=2).5 Different from the case of
generalized Galilean Genesis, the constant mode
(νS ¼ 3=2) yields the scale-invariant scalar power spectrum
in addition to the growing one (νS ¼ −3=2).

IV. STRONG COUPLING

Both frameworks have the parameter region where the
coefficients of the quadratic actions are asymptotic to 0 in
the far past:

GS;F S ∝ jtjp; ð77Þ

GT;F T ∝ jtjq; ð78Þ

4Strictly speaking, A is proportional to 1þ 2β þ 4γ [8] which
can vanish at the present stage. However, as shown later, this
cannot vanish in light of the stability conditions.

5In Refs. [10,22–25], the model with 1þ 2β þ 4γ < 0 (i.e.,
νS > 1) has been studied. In this parameter region, the scale-
invariant scalar power spectrum is realized only from the constant
mode (νS ¼ 3=2 > 1).
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with p and/or q being negative. A concrete model having
those asymptotic properties was constructed in Ref. [10].
Equations (77) and (78) imply that couplings of nonlinear
interactions for the canonically normalized perturbations
naively diverge, and thus strong coupling occurs. Also,
even if GS, F S, GT , and F T increase as the time goes back
(i.e., p, q > 0), strong coupling can occur if couplings
of higher-order interactions, e.g., the cubic interactions,
diverge. In the present paper, if the canonically normalized
perturbations are strongly coupled at cubic order in
the far past, we require, similar to Refs. [22–27], that
the classical energy scale of the genesis background E�
(MaxfH; _H1=2; _H=H; etc:g) is much lower than the scale Λ
at which strong coupling occurs:

E� ∼
1

t
≪ Λ; ð79Þ

where we used H ≪ _H1=2 ≪ _H=H ∼ 1=t. We stress that
the above scaling also corresponds to the frequencies of the
perturbations at the horizon-crossing scale. Therefore,
Eq. (79) would also be necessary to avoid the strong
coupling problem around the horizon-crossing scale.

A. Generalized Galilean Genesis

We first write down the cubic interaction terms of the
curvature perturbation. The components of the cubic
interactions are obtained as

Lð3Þ
ζ ⊃ ð−tÞ1þ6αð∂tÞ3ζ3; ð−tÞ4αð∂tÞ2ζ3;

ð−tÞ2ð1þ3αÞð∂tÞ2ð∂iÞ2ζ3; ð−tÞ1þ4αð∂tÞð∂iÞ2ζ3;
ð−tÞ3ð1þ2αÞð∂tÞð∂iÞ4ζ3; ð−tÞ0ð∂iÞ2ζ3;
ð−tÞ2ð1þ2αÞð∂iÞ4ζ3; ð80Þ

where we used the cubic action summarized in Appendix B
and also Eqs. (63), (64), (B13), (B14), (B27), and (B28).
After a change of a variable from the original variable, ζ, to
the canonically normalized one, u ¼ ffiffiffi

2
p

aðGSF SÞ1=4ζ, we
obtain the conventional form of the cubic action for the
canonically normalized curvature perturbation as

Lð3Þ
u ¼ 1

Λs
1
2
ð∂tÞ3u3 þ

1

Λs
2

ð∂tÞ2u3

þ 1

Λs
3
3
ð∂tÞ2ð∂iÞ2u3 þ

1

Λs
4
2
ð∂tÞð∂iÞ2u3

þ 1

Λs
5
4
ð∂tÞð∂iÞ4u3 þ

1

Λs
6

ð∂iÞ2u3 þ
1

Λs
7
3
ð∂iÞ4u3; ð81Þ

where Λs
i ði ¼ 1;…; 7Þ characterize the strong coupling

scales of the interaction terms. Each scale evolves in time as

Λs
1 ∝ ð−tÞ−ð1þ3αÞ=2; Λs

2 ∝ ð−tÞ−α;
Λs
3 ∝ ð−tÞ−ð2þ3αÞ=3; Λs

4 ∝ ð−tÞ−ð1þαÞ=2;

Λs
5 ∝ ð−tÞ−ð3þ3αÞ=4; Λs

6 ∝ ð−tÞ3α;
Λs
7 ∝ ð−tÞ−ð2þαÞ=3: ð82Þ

Here, Λs
i (i ≠ 6) are always asymptotic to 0 in the far past

since α > 0, and hence we impose Eq. (79) on Λs
i (i ≠ 6) to

avoid strong coupling. By parametrizing the time depend-
ence of Λs

i as Λs
i ∝ ð−tÞ−xi , we obtain the following

conditions:

1 > xi: ð83Þ

In particular, the condition obtained from the Λs
1 term (i.e.,

1 > x1) reads

α < 1; ð84Þ

which is incompatible with the condition for the scalar
power spectrum to be nearly scale-invariant, i.e., α ≃ 2. In
this framework, the strong coupling problem is thus
unavoidable if one requires the scale-invariant power
spectrum.

B. New framework

By following the same procedure as in the previous
subsection, we can obtain the conventional form of the
cubic action of the canonically normalized perturbation. In
general, the most dangerous terms in the cubic action are

Lsss ⊃
2μG2

S

G2
T

_ζ3;
ΓG2

S

2ΘGT

_ζ3; ð85Þ

⇒
1

Λ2
ð∂tÞ3u3 with Λ ∝ ð−tÞ−ð1þ3βþ2γÞ=2; ð86Þ

where we used Eqs. (66), (73), (B30), (B16), and (B24) to
derive the time dependence ofΛ. By requiring Eq. (79), one
obtains

1 − 3β − 2γ > 0; ð87Þ

which indicates jνSj < 3=2. Thus the spectral index of the
scalar power spectrum is blue. This is conflicted with the
Planck results, nS ≃ 0.96 (i.e., jνSj > 3=2). Note that by
replacing β and γ with β → αþ δ=2 and γ → −α, respec-
tively, and taking BðYÞ ¼ 0 (and hence μ ¼ 0), one can
check that our result in the case of μ ¼ 0 and Γ ≠ 0,
1 − 3β − 2γ > 0, can reproduce 2 − 3δ − 2α > 0 which
has been obtained as the strongest constraint on the
parameters in the previous papers [22–25].
Then, we impose both μ ¼ 0 and Γ ¼ 0. One can find

from Eqs. (18), (19), and (B24) that μ vanishes for
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6B0 þ 9Y0B00 þ 2Y2
0B

000 ¼ 0. The explicit form of Γ is
generally intricate due to the presence of H, and Γ ¼ 0
is realized by choosing AðYÞ; BðYÞ; g2ðYÞ, and g3ðYÞ
appropriately. We here emphasize that the Lagrangian in
Refs. [10,22–25] where G4 ¼ G4ðϕÞ and G5 ¼ 0 does not
admit Γ ¼ 0 since Γ ¼ GT > 0 in that model. In the present
case, the components of the cubic action read

Lsss ⊃ ð−tÞ1þ4βþ6γð∂tÞ3ζ3; ð−tÞ2ðβþ2γÞð∂tÞ2ζ3;
ð−tÞ2ð1þ2βþ3γÞð∂tÞ2ð∂iÞ2ζ3;
ð−tÞ1þ4βþ6γð∂tÞð∂iÞ2ζ3; ð−tÞ2γð∂iÞ2ζ3;
ð−tÞ2ð1þ2βþ3γÞð∂iÞ4ζ3; ð88Þ

where we used the cubic action in Appendix B and also
Eqs. (66), (67), (73), (69), (B15), (B16), (B29), and (B30).
Imposing Eq. (79) on the above interaction terms yields

1 − β > 0: ð89Þ

In contrast to the general case (i.e., μ ≠ 0 or Γ ≠ 0), the
slightly red scalar power spectrum is still allowed.
Strong coupling can also occur in the cross interactions

among the scalar and tensor perturbations and the self-
interaction among the tensor perturbations. Therefore, we
analyze all of the other cubic interactions of the scalar and
tensor perturbations. The arguments are parallel to the
previous ones, and thus we show only the results that are
obtained by using Eqs. (79) and (B31). The resultant model
space avoiding strong coupling is plotted in Fig. 1. In the
parameter space, the range of β is −1=2 < β < 0.
[The lower bound is determined from the argument on

the spacetime anisotropy, Eq. (34), and the upper one is
from that on strong coupling.] Note that the model
parameters which can yield the scale invariance of the
scalar power spectrum are located at the edge of the
parameter region without strong coupling. The parameter
region realizing nS ≃ 0.96 from the constant mode (i.e.,
νS ≃ 3=2) and avoiding strong coupling are not overlapped.
In the viable model space, only the models having the
growing mode (i.e., νS ≃ −3=2) can enjoy nS ≃ 0.96, and
the primordial power spectra of the curvature and tensor
perturbations can be obtained, respectively, as

Pζ ≃
1

8π2
1

F Scs

1

t2

����
t¼t�

; ð90Þ

Ph ¼
2

π2
1

F Tch

1

t2

����
t¼t�

�
2jνT j−3=2

ΓðjνT jÞ
Γð3=2Þ

�
2

jchkt�jnT ; ð91Þ

where νT¼ðβ−1Þ=2 and nT ¼ 2þ β with −1=2 < β < 0.
Then, the tensor-to-scalar ratio reads

r ≔
Ph

Pζ
≃ 16

F S

F T

cs
ch

����
t¼t�

�
2jνT j−3=2

ΓðjνT jÞ
Γð3=2Þ

�
2

jchkt�jnT : ð92Þ

Now, by recalling Eq. (71), one can find that the tensor-to-
scalar ratio is enhanced by F S=F T. However, the tensor tilt
is always blue: 3=2 < nT < 2, potentially leading to a small
tensor-to-scalar ratio due to the suppression factor,
jchkt�jnT ≪ 1. More explicitly, one has

r ∝
F S

F T

�
10−59Ht� ×

MPl

H

�
nT
����
t¼t�

�
k

0.002 Mpc−1

�
nT
:

ð93Þ

By inspecting the above at k ¼ 0.002 Mpc−1 to compare
with the Planck results [54], one can find that the tensor-to-
scalar ratio can be much smaller than unity for the models
in which H=MPl is sufficiently larger than 10−59Hjtjð≪
10−59Þ at the end of the genesis phase. Note that the blue-
tilted tensor power spectrum with nT ¼ Oð1Þ makes the
detection of the primordial gravitational waves on the CMB
scales challenging. In the following section, we investigate
the scalar non-Gaussianity to discuss the observational
consistency.
The above argument on the strong coupling problem

might be insufficient to conclude the presence or absence of
strong coupling. First, there is a possibility that strong
coupling occurs in higher-order interactions. It is hence not
evident that the analysis of strong coupling at higher-order
interactions does not yield tighter constraints on the model
parameters. Nevertheless, in Ref. [24], it has been shown in
the subclass of the new framework that the strongest
condition is obtained from the argument at cubic order.
Therefore, it would be important to ascertain the extent to

FIG. 1. The allowed parameter region in the β-γ plane where
μ ¼ 0 ¼ Γ. The orange and purple lines denote the parameter
region in which the scale invariant curvature perturbation is
generated from the constant and growing modes, respectively.
The blue shaded region is the parameter region in which the
strong coupling can be avoided.
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which this statement generally holds. Second, to verify that
the strong coupling problem is indeed absent at the onset of
genesis, one needs to consider the scattering process inside
the horizon (see further discussions [26,27,32]). The
consideration of the scattering process would clarify how
reasonable the present naive argument is. Furthermore, to
justify the use of the perturbation theory completely, one
would also need to take account of loop corrections (see,
e.g., Refs. [55,56]). We leave these points to future work
[57], and we have roughly evaluated Eq. (116) in the
present paper.
Before closing this section, we comment on a no-go

theorem for nonsingular cosmologies found in the previous
papers [9–12] in which it has been shown that nonsingular
cosmological solutions [i.e., aðtÞ > 0 during the entire
history] in the Horndeski theory are plagued with some no-
go theorem. This theorem states that the curvature pertur-
bations suffer from the gradient instabilities (i.e., F S < 0)
unless the following integral converges in the past infinity
(ti ¼ −∞) and/or future one (tf ¼ þ∞):

Z
tf

ti

aðt0ÞF Tðt0Þdt0: ð94Þ

As the nonsingular cosmological model to avoid the
gradient instabilities, the case which F T converges in
the past infinity has been considered so far [10,22–27].
By recalling F T ∝ ð−tÞ2γ , the models satisfying

1þ 2γ < 0 ð95Þ

correspond to the case. For the models with β þ 2γ ¼ 2
(i.e., the scale-invariant power spectrum of the curvature
perturbation), Eq. (95) is equivalent to

β > 3: ð96Þ

Equation (96) is incompatible with the result of the analysis
of the strong coupling since −1=2 < β < 0 in the allowed
region. Therefore, the examples avoiding the gradient
instabilities cannot realize the avoidance of strong coupling
and the scale invariance of the scalar power spectrum
simultaneously. One of the ways to overcome this is to
invoke beyond Horndeski terms at somewhere during the
entire history.6 In the present paper, we evade the no-go
theorem by supposing that the quasi-Minkowski phase
which we are focusing on is described by the Horndeski
theory, and some beyond Horndeski terms are developed at

some regime away from the genesis phase in the entire
cosmic expansion history. Under this assumption, we do
not invoke any beyond Horndeski terms in the present
paper, and we still continue to analyze the primordial non-
Gaussianities generated during the genesis phase in the
present setup.

V. PRIMORDIAL NON-GAUSSIANITY

In this section, we compute the primordial non-
Gaussianity generated from the viable models that realize
the slightly red scalar power spectrum and have no strong
coupling. In doing so, we use the mode function in the case
of the scale-invariant power spectrum generated from the
growing mode and eliminate γ by using the condition for
the scale invariance, β þ 2γ − 2 ¼ 0. Following the in-in
formalism, the three-point correlation function at the end of
the genesis phase can be computed as

hζ̂ðk1Þζ̂ðk2Þζ̂ðk3Þi

¼ −i
Z

t�

−∞
dt0aðtÞh½ζ̂ðt�;k1Þζ̂ðt�;k2Þζ̂ðt�;k3Þ; Hintðt0Þ�i

ð97Þ

≕ ð2πÞ7δðk1 þ k2 þ k3Þ
P2

ζ

k31k
2
2k

3
3

Aζ; ð98Þ

where Hint is the interaction Hamiltonian of the curvature
perturbation defined by

Hint ¼ −
Z

d3xLð3Þ
ζ : ð99Þ

Here, Lð3Þ
ζ denotes the cubic Lagrangian of the curvature

perturbation which has been obtained as [61–63]

Lð3Þ
ζ ¼ a3GS

�
Λ1

H
_ζ3 þ Λ2ζ _ζ

2 þ Λ3ζ
ð∂iζÞ2
a2

þ Λ4

H2
_ζ2
∂
2ζ

a2
þ Λ5

_ζ∂iζ∂iψ þ Λ6∂
2ζð∂iψÞ2

þ Λ7

H2

1

a4
½∂2ζð∂iζÞ2 − ζ∂i∂jð∂iζ∂jζÞ�

þ Λ8

H
1

a2
½∂2ζ∂iζ∂iψ − ζ∂i∂jð∂iζ∂jψÞ�

	
þ FðζÞES;

ð100Þ

where

FðζÞ ≔ −
Λred;1

H
ζ _ζ −

Λred;2

H
ð∂iζ∂iψ − ∂

−2
∂i∂jð∂iζ∂jψÞÞ

þ Λred;3

a2H2
ðð∂iζÞ2 − ∂

−2
∂i∂jð∂iζ∂jζÞÞ; ð101Þ

6It has been found in the context of the second-order scalar-
tensor theories that some higher-derivative extensions of the
Horndeski theory or an introduction of a cuscuton field [58,59]
are required to avoid the no-go theorem [11,12,14–17,19–21].
(See Refs. [12] and [13] for the no-go arguments in the presence
of multiple scalar fields, and also [60] and [18] for those in the
presence of the spatial curvature and vector modes, respectively.)
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ES ≔ −2∂tða3GS
_ζÞ þ 2aF S∂

2ζ: ð102Þ

Each Λi is defined in Appendix B. The explicit forms of
Λred;i are given by

Λred;1 ¼
HGTGS

ΘF S
; ð103Þ

Λred;2 ¼
HΓGS

2ΘGT
; ð104Þ

Λred;3 ¼
H2ΓGT

4Θ2
; ð105Þ

and hence Λred;ð2;3Þ ¼ 0 in the allowed parameter region.
Note that ES ¼ 0 is the equation of motion for the

linear curvature perturbation. One can eliminate the last
line of Eq. (100) by performing the following field
redefinition:

ζ → ζ − FðζÞ: ð106Þ

In light of that _ζ ≃ −3ζ=t on the superhorizon scales, the
field redefinition in Fourier space reduces to

ζðkÞ → ζðkÞ − 3Λred;1

Ht

Z
d3k0

ð2πÞ3 ζðk
0Þζðk − k0Þ: ð107Þ

The resultant form of Aζ reads

Aζ ¼
3

2

�
3

4

Λ1;0

Ht
−

9

2ðβ − 4Þ
Λ1;1

Ht

�����
t¼t�

X
i

k3i þ
�
−
1

8
Λ2;0 þ

3ð1þ 2βÞ
4ðβ − 1Þðβ − 4ÞΛ2;1

�����
t¼t�

X
i

k3i

þ 3

16ðβ − 4Þðβ − 1ÞΛ5;0jt¼t�
1

k21k
2
2k

2
3

�
ðβ − 4Þ

�X
i≠j

k7i k
2
j −

X
i≠j

k5i k
4
j

�
− 2ð1þ 2βÞk21k22k23

X
i

k3i

�

þ 3

8ðβ − 4Þðβ − 1ÞΛ6;0jt¼t�
1

k21k
2
2k

2
3

�
3
X
i

k9i − 3
X
i≠j

k7i k
2
j þ ðβ − 1Þ

X
i≠j

k6i k
3
j − ðβ − 1Þ

X
i≠j

k5i k
4
j

− ðβ − 1Þk21k22k23
X
i≠j

k2i kj

�
−
3

2

Λred;1

Ht
jt¼t�

X
i

k3i ; ð108Þ

where we ignored the terms proportional to the positive
powers of jcsKt�j which are suppressed on the super-
horizon scales, jcsKt�j ≪ 1. One here notices that the
amplitude of the non-Gaussianity is generically enhanced
in proportion to jHtj−1 ≫ 1. This factor is of OðϵÞ where ϵ
is the usual “slow-roll” parameter defined by ϵ ≔ − _H=H2.
In the case of inflation and matter bounce cosmology which
generate the scale-invariant scalar power spectrum, one has
ϵ ≪ 1 and ϵ ¼ Oð1Þ, respectively. However, in the present
case, ϵ is much larger than unity. This fact can result in an
enhanced non-Gaussianity, compared to the non-Gaussian-
ities from those models. Below we explore the possibility to
suppress this enhancement by detuning model parameters.
In doing so, we compare the non-Gaussian amplitude
with the observational constraint on that obtained by
Planck [64], and we evaluate the following nonlinearity
parameter:

fNL ≔
10

3

AζP
ik

3
i
; ð109Þ

at the squeezed, equilateral, and folded limits which are
defined by k1≪k2¼k3, k1 ¼ k2 ¼ k3, and k1 ¼ 2k2 ¼ 2k3,
respectively. The nonlinear parameters at these limits are
denoted by flocalNL , fequilNL , and ffoldNL , respectively.

Each of the nonlinearity parameters is obtained from
Eq. (108) as

flocalNL ¼ C þ 5ð2 − 5βÞ
16ðβ − 4Þðβ − 1Þ

k21
k22

GS

GT

����
t¼t�

; ð110Þ

fequilNL ¼ C −
5ð1þ 2βÞ

16ðβ − 4Þðβ − 1Þ
GS

GT

����
t¼t�

; ð111Þ

ffoldNL ¼ C þ 94 − β

4ðβ − 4Þðβ − 1Þ
GS

GT

����
t¼t�

; ð112Þ

where C denotes the terms contributed from the terms ∝P
i k

3
i in Eq. (108). To simplify the argument on the

consistency with the current constraints on fNL, we con-
sider the difference of each fNL instead of the magnitude of
itself. In doing this, the above common contributions do not
affect that argument, and hence we do not write the explicit
form of C. The difference of each nonlinearity parameter
reads

flocalNL − ffoldNL ≃ −
94 − β

4ðβ − 4Þðβ − 1Þ
GS

GT

����
t¼t�

; ð113Þ
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flocalNL − fequilNL ≃
5ð1þ 2βÞ

16ðβ − 4Þðβ − 1Þ
GS

GT

����
t¼t�

; ð114Þ

fequilNL − ffoldNL ¼ −
3ð2β þ 127Þ

16ðβ − 4Þðβ − 1Þ
GS

GT

����
t¼t�

; ð115Þ

where we used k1=k2 ≪ 1. As long as β enjoys
−1=2 < β < 0, the above three quantities are generally
much larger than unity. Therefore, at least two out of the
nonlinearity parameters are much larger than unity, which
indicates that the genesis models are ruled out by the
constraints on the primordial scalar non-Gaussianity [64].
One may consider the 1þ 2β → 0 limit, but at least one of
the nonlinearity parameters is much larger than unity in
such a case, and thus that case is also unacceptable from the
observational viewpoint.
The above arguments imply that the dangerous terms in

fNL are naively at most of OðGS=GTÞjt¼t� ∼OðjHtj−1Þjt¼t� .
To check the validity of the perturbation theory from both
theoretical and observational viewpoints, we estimate
fNLζ, which is roughly the ratio of the cubic action to
the quadratic one (see, e.g., Refs. [55,65,66]). This quantity
contributed from the dangerous terms can be evaluated as

fNLζ ∼
ζ

Ht
jt¼t� : ð116Þ

The amplitude of the curvature perturbation has been
constrained as ζðt�Þ ∼Oð10−5Þ. For the models enjoying
fNLζjt¼t� ≪ 1, say 10−3 ≲Hjtj ≪ 1 at t ¼ t�, the pertur-
bative analysis is still valid at the end of the genesis phase,
even though those are ruled out by the arguments on fNL.
Also, after the horizon crossing, Eq. (116) is proportional
to ðHt4Þ−1 ∝ ð−tÞβ−1 which monotonically increases with
time in the allowed parameter region (i.e., for
−1=2 < β < 0). Therefore, at least based on the present
naive arguments, the perturbative analysis would be guar-
anteed from the time of the horizon crossing to that of the
end of the genesis phase as long as it is guaranteed at the
latter time.

VI. SUMMARY

In the first half of the present paper, we have derived the
conditions to avoid the strong coupling problem in two
unified frameworks of Galilean Genesis in which the
propagation speeds of the perturbations are constant. As
a result, we have clarified that the new framework has the
parameter region without strong coupling and with the
slightly red-tilted scalar power spectrum. This is in contrast
to the case of the model studied in Refs. [22–25] where the
spectral index of the scalar power spectrum was blue in
the model space without strong coupling. In general, the

Lagrangian of the new framework includes the functional
degrees of freedom [g2ðYÞ; g3ðYÞ; AðYÞ, and BðYÞ, etc.] to
reduce the dangerous cubic interaction terms leading to
strong coupling. We particularly chose the general class of
the models which allow μ and Γ to vanish thanks to
the functional degrees of freedom. (Note that μ ≠ 0 and/or
Γ ≠ 0 yield the most dangerous cubic interaction terms.)
However, the theory in Refs. [10,22–25] explains where
μ ¼ 0 does not allow Γ ¼ 0. This difference has yielded the
parameter region without strong coupling and with the
slightly red power spectrum.
In the second half of the present paper, we have

calculated the non-Gaussianity of the curvature perturba-
tions. The primordial bispectrum has been calculated for
the first time in the context of Galilean Genesis in the
present paper. Note that the trispectrum has been studied in
Ref. [67]. We have also found that the non-Gaussian
amplitudes are generically enhanced and clarified that
the non-Gaussian signatures are different from those in
the other scenarios generating the scale-invariant power
spectrum because of the large value of the usual slow-roll
parameter, ϵ ¼ − _H=H2 ≫ 1. Then, by evaluating the non-
linearity parameters, we have shown that the models
considered in the present paper cannot be consistent with
the current CMB data due to the enhanced non-Gaussian
amplitudes.
As the further study of various aspects of the perturbative

analysis in the context of Galilean Genesis, it would be
important to investigate the scattering process and loop
corrections as has been mentioned in Sec. IV. It would be
also interesting to go outside the model space considered in
the present paper, e.g., by allowing the time variations of
the propagation speeds of the perturbations and using
beyond Horndeski theories [14,32,44–49].
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APPENDIX A: BACKGROUND EQUATIONS

From the Horndeski action, Eq. (2), one can obtain the
Friedmann and evolution equations, respectively, as
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E ¼ 2XG2X −G2 þ 6X _ϕHG3X − 2XG3ϕ − 6H2G4 þ 24H2XðG4X þ XG4XXÞ
− 12HX _ϕG4ϕX − 6H _ϕG4ϕ þ 2H3X _ϕð5G5X þ 2XG5XXÞ − 6H2Xð3G5ϕ þ 2XG5ϕXÞ; ðA1Þ

P ¼ G2 − 2XðG3ϕ þ ϕ̈G3XÞ þ 2ð3H2 þ 2 _HÞG4 − 12H2XG4X − 4H _XG4X − 8 _HXG4X

− 8HX _XG4XX þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 4XG4ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4ϕX − 2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5X

− 4H2X2ϕ̈G5XX þ 4HXð _X −HXÞG5ϕX þ 2½2ðHXÞ· þ 3H2X�G5ϕ þ 4HX _ϕG5ϕϕ: ðA2Þ

In generalized Galilean Genesis, the Friedmann and evolution equations have been obtained as [7]

E ¼ e2ðαþ1Þλϕρ̂1ðYÞ þ 6H _ϕe2αλϕ½Yg03 − 2αλg4 þ 2ð3 − 2αÞλYg04 þ 4λY2g004�
− 3H2½M2

Pl − 12λYg5 − 28λY2g05 − 8λY3g005� − 3H2e2αλϕð2g4 − 8Yg04 − 8Y2g004Þ þ 2H3 _ϕe−2λϕð5Yg05 þ 2Y2g005Þ; ðA3Þ

P ¼ 2GT
_H þ e2ðαþ1Þλϕp1 þ 8H _ϕαλe2αλϕðg4 − 2Yg04Þ

þH2½3M2
Pl − 4λYð3g5 þ 2Yg05Þ�

þ 6H2e2αλϕðg4 − 2Yg04Þ − 4H3 _ϕe−2λϕYg05; ðA4Þ

respectively. Substituting Eqs. (3) and (8) into Eq. (A3)
yields the leading-order terms of E and P in the asymptotic
past:

E ¼ e2ðαþ1Þλϕ½ρ̂1ðY0Þ þOðjtj−2αÞ�; ðA5Þ

P ¼ e2ðαþ1Þλϕ½2e−2ðαþ1ÞλϕG1
_H þ p̂1ðY0Þ þOðjtj−2αÞ�:

ðA6Þ

Note that ρ̂1ðY0Þ in E and both the first and second terms of
the bracket in Eq. (A6) are constant, and thus the Oðjtj−2αÞ
terms with α > 0 are subleading.
In the new framework, the Friedmann and evolution

equations are of the form [8]

E ¼ e2ð1þβÞλϕρ̂2ðYÞ þ 6e2βλϕH _ϕYg03 þ 6e−2γλϕH2Yð3A0 þ 12YA00 þ 4Y2A000Þ
− 2e−2ð1þβþ2γÞλϕH3 _ϕYð30B0 þ 75YB00 þ 36Y2B000 þ 4Y3B⁗Þ; ðA7Þ

P ¼ 2GT
_H þ e2ð1þβÞλϕp̂2ðYÞ þ 8γλH _ϕe−2γλϕYðA0 þ 2YA00Þ − 4ð1þ 2β þ 4γÞλH2e−ð2βþ2γÞλϕY2

× ð6B0 þ 9YB00 þ 2Y2B000Þ − 6H2e−2γλϕYðA0 þ 2YA00Þ þ 4H3 _ϕe−2ð1þβþ2γÞλϕYð6B0 þ 9YB00 þ 2Y2B000Þ; ðA8Þ

and the leading order of which in the asymptotic past can be
obtained as

E ¼ e2ðαþ1Þλϕ½ρ̂2ðY0Þ þOðjtj−2ðβþγÞÞ�; ðA9Þ

P ¼ e2ðβþ1Þλϕ½2e−2ðβþ1ÞλϕG2
_H þ p̂2ðY0Þ þOðjtj−2ðβþγÞÞ�:

ðA10Þ

We note that, as long as β þ γ > 0, the Oðjtj−2ðβþγÞÞ terms
of the brackets in Eqs. (A9) and (A10) are subleading since
ρ̂2ðY0Þ and both the first and second terms of the brackets in
Eq. (A10) are constant.

APPENDIX B: QUADRATIC AND CUBIC
ACTIONS

By substituting the perturbed metric, Eqs. (35) and (37),
into the Horndeski action (2) and expanding it up to cubic

order in the scalar and tensor perturbations, one obtains the
perturbed actions

S ¼ Sð2Þ þ Sð3Þ; ðB1Þ
where Sð2Þ and Sð3Þ denote the quadratic and cubic actions,
respectively. One can eliminate the auxiliary fields δn and χ
by solving the constraint equations, and the solutions of
which are

δn ¼ GT

Θ
_ζ; ðB2Þ

χ ¼ 1

aGT

�
a3GSψ −

aG2
T

Θ
ζ

�
; ðB3Þ

where ψ ≔ ∂
−2 _ζ. First, the quadratic action takes the form

Sð2Þ ¼ Sð2Þζ þ Sð2Þh ; ðB4Þ
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where Sð2Þζ and Sð2Þh are given in Eqs. (38) and (39), and the
coefficients of the quadratic actions read [30]

GS ≔ GT

�
ΣGT

Θ2
þ 3

�
; ðB5Þ

F S ≔
1

a
d
dt

�
aG2

T

Θ

�
− F T; ðB6Þ

GT ≔ 2½G4 − 2XG4X − XðH _ϕG5X −G5ϕÞ�; ðB7Þ

F T ≔ 2½G4 − Xðϕ̈G5X þ G5ϕÞ�; ðB8Þ

with

Θ ≔ − _ϕXG3X þ 2HG4 − 8HXG4X − 8HX2G4XX þ _ϕG4ϕ þ 2X _ϕG4ϕX

−H2 _ϕð5XG5X þ 2X2G5XXÞ þ 2HXð3G5ϕ þ 2XG5ϕXÞ; ðB9Þ

Σ ≔ XG2X þ 2X2G2XX þ 12H _ϕXG3X þ 6H _ϕX2G3XX − 2XG3ϕ − 2X2G3ϕX − 6H2G4

þ 6½H2ð7XG4X þ 16X2G4XX þ 4X3G4XXXÞ −H _ϕðG4ϕ þ 5XG4ϕX þ 2X2G4ϕXXÞ�
þ 2H3 _ϕð15XG5X þ 13X2G5XX þ 2X3G5XXXÞ − 6H2Xð6G5ϕ þ 9XG5ϕX þ 2X2G5ϕXXÞ: ðB10Þ

Note that G1 in Eq. (12) and G2 in Eq. (28) are correspond-
ing to the leading-order terms of GT in each framework. We
also note that Σ and Θ can be rewritten as

Σ ¼ Y
∂E
∂Y

þH
2

∂E
∂H

; ðB11Þ

Θ ¼ −
1

6

∂E
∂H

: ðB12Þ

By using the above and Eqs. (A3) and (A7), these time
dependences in generalized Galilean Genesis and the new
framework are obtained, respectively, as

Σ ∝ ð−tÞ−2ðαþ1Þ; ðB13Þ

Θ ∝ ð−tÞ−ð2αþ1Þ; ðB14Þ

and

Σ ∝ ð−tÞ−2ðβþ1Þ; ðB15Þ

Θ ∝ ð−tÞ−ð2βþ1Þ: ðB16Þ

By using the above, one can derive Eqs. (63), (64), (66),
and (67).
The cubic action is of the form

Sð3Þ ¼
Z

dtd3xa3½Lsss þ Lssh þ Lshh þ Lhhh�; ðB17Þ

where Lsss;Lssh;Lshh, and Lhhh stand for the cubic
Lagrangians of the scalar-scalar-scalar, scalar-scalar-tensor,
scalar-tensor-tensor, and tensor-tensor-tensor interactions,
respectively, and the explicit forms are [61–63]

Lsss ¼
�
GT

�
−9ζ _ζ2 þ 2_ζ

a2
ðζ∂2χ þ ∂iζ∂iχÞ þ

1

a4
ð∂iχÞ2∂2ζ þ

1

2a4
ζðð∂2χÞ2 − ð∂i∂jχÞ2Þ

�

− GT
δn
a2

ðð∂iζÞ2 þ 2ζ∂2ζÞ þ F T

a2
ζð∂iζÞ2 þ 3Σζδn2 þ 2Θδnð9ζ _ζ − ζ∂2χ − ∂iζ∂iχÞ

þ μ

�
2_ζ3 −

2

a2
∂
2χ _ζ2 þ

_ζ

a4
ðð∂2χÞ2 − ð∂i∂jχÞ2Þ þ 4δn_ζ

∂
2ζ

a2
−
2δn
a4

ð∂2ζ∂2χ − ∂i∂jζ∂i∂jχÞ
�

þ Γ
�
3δn_ζ2 −

2

a2
δn_ζ∂2χ þ 1

2a4
δnðð∂2χÞ2 − ð∂i∂jχÞ2Þ

�
þ Ξδn2

�
_ζ −

∂
2χ

3a2

�

þ ðΓ − GTÞ
δn2

a2
∂
2ζ −

1

3
ðΣþ 2XΣX þHΞÞδn3

�
; ðB18Þ
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Lssh ¼ a

�
2Θδn∂i∂jχhij þ

Γ
2
δn∂i∂jχ _hij þ

μ

a2
δn∂i∂jχ∂2hij −

3GT

2
ζ∂i∂jχ _hij − 2GT

_ζ∂i∂jχhij þ μ_ζ∂i∂jχhij

− F T∂iζ∂jζhij − 2GT∂iδn∂jχhij þ μ∂iδn∂jζ _hij þ
GT

2a2
∂kχ∂i∂jχ∂khij þ

μ

a2
∂kχ∂i∂jχ∂k _hij

�
; ðB19Þ

Lshh ¼ a3
�
3GT

8
ζ _h2ij −

F T

8a2
ζð∂khijÞ2 −

μ

4
_ζ _h2ij −

Γ
8
δn _h2ij −

GT

8a2
δnð∂khijÞ2

−
μ

2a2
δn _hij∂2hij −

GT

4a2
∂kχ _hij∂khij −

μ

2a2
ð∂i∂jχ _hik _hjk −

1

2
∂
2χ _h2ijÞ

�
; ðB20Þ

Lhhh ¼ a3
�
F T

4a2
ðhikhjl −

1

2
hijhklÞ∂k∂lhij þ

μ

12
_h3ij

�
; ðB21Þ

where

Γ ≔ 2G4 − 8XG4X − 8X2G4XX − 2H _ϕð5XG5X þ 2X2G5XXÞ þ 2Xð3G5ϕ þ 2XG5ϕXÞ; ðB22Þ

Ξ ≔ 12 _ϕXG3X þ 6 _ϕX2G3XX − 12HG4 þ 6½2Hð7XG4X þ 16X2G4XX þ 4X3G4XXXÞ − _ϕðG4ϕ þ 5XG4ϕX þ 2X2G4ϕXXÞ�
þ 90H2 _ϕXG5X þ 78H2 _ϕX2G5XX þ 12H2 _ϕX3G5XXX − 12HXð6G5ϕ þ 9XG5ϕX þ 2X2G5ϕXXÞ; ðB23Þ

μ ≔ _ϕXG5X: ðB24Þ

Note that Ξ and Γ can be written as

Ξ ¼ ∂Σ
∂H

; ðB25Þ

Γ ¼ ∂Θ
∂H

: ðB26Þ

Then by using Eqs. (A3), (A7), (B11), and (B12), the
time dependences of the above quantities in generalized
Galilean Genesis and the new framework are obtained,
respectively, as

Ξ ∝ ð−tÞ−ð2αþ1Þ; ðB27Þ

Γ ¼ const; ðB28Þ

and

Ξ ∝ ð−tÞ−ð2βþ1Þ; ðB29Þ

Γ ∝ ð−tÞ2γ: ðB30Þ

Also, the time dependence of μ is derived from Eqs. (3) and
(18) as μ ∝ ð−tÞ1þ2βþ4γ .
By taking into account the time dependence of

GS;F S;GT;F T;Θ;Σ;Ξ;Γ, and μ, one can write down
the components of the cubic actions as written in
Eqs. (80), (82), and (88), and also those of the other cubic
actions in the new framework used in Sec. IV as

Lð3Þ ⊃ ð−tÞ2ð2βþ3γÞð∂tÞ2ζ2hij; ð−tÞ1þ4βþ6γ
∂tð∂iÞ2ζ2hij; ð−tÞ2γð∂iÞ2ζ2hij; ð−tÞ2ð1þ2βþ3γÞð∂iÞ4ζ2hij;

ð−tÞ2ðβþ2γÞð∂tÞ2ζh2ij; ð−tÞ1þ2βþ4γð∂tÞð∂iÞ2ζh2ij; ð−tÞ2γð∂iÞ2ζh2ij; ð−tÞ2γð∂iÞ2h3ij; ðB31Þ

where we imposed μ ¼ 0 and Γ ¼ 0 in light of the strong coupling argument.
For the calculation of the scalar non-Gaussianity, it is convenient to derive the following expression [61–63]:

Sð3Þζ ¼
Z

dtd3xa3GS

�
Λ1

H
_ζ3 þ Λ2ζ _ζ

2 þ Λ3ζ
ð∂iζÞ2
a2

þ Λ4

H2
_ζ2
∂
2ζ

a2
þ Λ5

_ζ∂iζ∂iψ þ Λ6∂
2ζð∂iψÞ2

þ Λ7

H2

1

a4
½∂2ζð∂iζÞ2 − ζ∂i∂jð∂iζ∂jζÞ� þ

Λ8

H
1

a2
½∂2ζ∂iζ∂iψ − ζ∂i∂jð∂iζ∂jψÞ�

	
þ
Z

dtd3xFðζÞES; ðB32Þ
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where

Λi ¼
X1
a¼0

Λi;a for ði ≠ 3; 4Þ; ðB33Þ

Λ3 ¼
X2
a¼0

Λ3;a; ðB34Þ

Λ4 ≔ H2

�
Ξ
3

G3
T

GSΘ3
þ 6

μGT

GSΘ
þ ð3Γ − GTÞ

G2
T

GSΘ2

�
; ðB35Þ

with

Λ1;0 ≔ H

�
−
H
3

G3
TΞ

Θ3GS
þ 1

GS

�
3GT

Θ
ðGT þ ΓÞ þ ΞG2

T

Θ2
þ 2μ

�	
;

ðB36Þ

Λ1;1 ≔ H
�
GT

Θ

�
1

c2s
− 1

�
−
ΞGT

3Θ2
−
2Γ
Θ

−
2μ

GT

þ 2

3

G3
T

Θ3GS
ðΣ − XΣXÞ

�
; ðB37Þ

Λ2;0 ≔ 3

�
1 −

HGTGS

ΘF S

�
; ðB38Þ

Λ2;1 ≔
HGTGS

ΘF S
ðgT − fS − fΘÞ; ðB39Þ

Λ3;0 ≔
GT

GS

�
c2h −

HGT

Θ

�
; ðB40Þ

Λ3;1 ≔
HGT

Θ

�
1 −

GT

GS
ð2gT − fΘÞ

�
; ðB41Þ

Λ3;2 ≔
HGT

Θ
ðgT þ gS − fΘÞ; ðB42Þ

Λ5;0 ≔ −
GS

2GT

�
1þ 3HΓ

Θ
þ 6μH

GT

�
; ðB43Þ

Λ5;1 ≔ −
GS

2GT

�
HΓ
Θ

ðgT − fΓ þ fΘÞ þ
2μH
GT

ð2gT − fμÞ
�
;

ðB44Þ

Λ6;0 ≔
3GS

4GT

�
1 −

HΓ
Θ

−
2μH
GT

�
; ðB45Þ

Λ6;1 ≔ −
GS

4GT

�
HΓ
Θ

ðgT − fΓ þ fΘÞ þ
2μH
GT

ð2gT − fμÞ
�
;

ðB46Þ

Λ7;0 ≔
H2G3

T

6Θ2GS

�
1 −

HΓ
Θ

−
6μH
GT

�
; ðB47Þ

Λ7;1 ≔
H2G3

T

Θ2GS

�
HΓ
Θ

�
3gT − 3fΘ þ fΓ −

3ΘF S

HG2
T

�

þ 6μH
GT

�
2gT − 2fΘ þ fμ −

2ΘF S

HG2
T

��
; ðB48Þ

Λ8;0 ≔ −
HGT

Θ

�
1 −

HΓ
Θ

−
4μH
GT

�
; ðB49Þ

Λ8;1 ≔ −
HGT

2Θ

�
HΓ
Θ

�
gT þ fΓ − 2fΘ −

2ΘF S

HG2
T

�

−
4μH
GT

�
fΘ − fμ þ

ΘF S

HG2
T

��
: ðB50Þ

We also defined

gT ≔
_GT

HGT
; gS ≔

_GS

HGS
; fS ≔

_F S

HF S
;

fΘ ≔
_Θ

HΘ
; fΓ ≔

_Γ
HΓ

; fμ ≔
_μ

Hμ
: ðB51Þ

In the calculation of the non-Gaussianity in Sec. V, we used
the following time dependence:

Λ1;0;Λ3;0;Λ4;Λ7;0 ∝ ð−tÞ−2ðβþγÞ;

Λ1;1;Λ2;0;Λ3;1;Λ8;0 ¼ const;

Λ1;2;Λ3;2;Λ5;0;Λ6;0 ∝ ð−tÞ2ðβþγÞ: ðB52Þ

We note that Λ5;1;Λ6;1;Λ7;1, and Λ8;1 vanish in the case of
μ ¼ 0 ¼ Γ.
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