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Galilean Genesis is generically plagued with a strong coupling problem, but this can be avoided
depending on the hierarchy between a classical energy scale of genesis and a strong coupling scale. In this
paper, we investigate whether the models of Galilean Genesis without the strong coupling problem can
explain the statistical properties of the observed cosmic microwave background fluctuations based on two
unified frameworks of Galilean Genesis. By focusing on the class in which the propagation speeds of the
scalar and tensor perturbations are constant, we show that the models avoiding strong coupling and
allowing a slightly red-tilted scalar power spectrum suffer from an overproduction of a scalar non-

Gaussianity.
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I. INTRODUCTION

Inflation [1-3] is currently the standard paradigm of the
early universe, even though it suffers from the initial
singularity [4]. To avoid the singularity, nonsingular alter-
native paradigms with the violation of the null energy
condition have also been studied so far (see, e.g.,
Refs. [5,6]). Inflation not only superbly resolves various
problems in the standard big-bang cosmology but also
successfully explains the origins of both the cosmic micro-
wave background (CMB) anisotropies and the rich structure
of our universe. Of particular interest is to see whether such
nonsingular paradigms can truly be alternatives to inflation
from both theoretical and observational perspectives.

Galilean Genesis [5] is one of the nonsingular alternative
scenarios in which the universe is quasi-Minkowski in the
asymptotic past. This scenario can resolve the problems in
the standard big-bang cosmology as well as inflation [7,8].
As the generic theoretical problem, the nonsingular scenar-
ios have been found to be plagued with the occurrence of
gradient instabilities in scalar perturbations [9—-13], though
how to overcome that has been clarified (see, e.g.,
Refs. [11,12,14-21]). Besides this problem, Galilean
Genesis suffers from another theoretical problem: strong
coupling at an early stage of genesis [22-25], which
indicates that one can trust neither any analyses based
on the perturbation theory at the early stage nor any

CMB data based on it. One can avoid this problem as
long as some typical energy scale of genesis is much lower
than the scale at which strong coupling occurs [22-27].

So far the primordial power spectra of the scalar and
tensor perturbations have been well studied based on unified
frameworks of Galilean Genesis [7,8] proposed in the
Horndeski theory, the most general single-scalar-tensor
theory with second-order field equations [28-30] (see also
Ref. [31] for a review), whereas the strong coupling
problem has been studied in subclasses of the unified
frameworks [22-25,32] (and in an example outside the
frameworks [32]). Also, the primordial non-Gaussianities
are important quantities as well from both theoretical and
observational viewpoints, though those have not been
calculated in the context of Galilean Genesis so far. The
main purpose of the present paper is to see whether Galilean
Genesis without the theoretical problems can predict the
observational signatures consistently with the observed
CMB fluctuations. In the present paper, after revisiting
the strong coupling problem in the unified frameworks and
clarifying the parameter region of the models predicting the
slightly red-tilted scalar power spectrum, we evaluate the
scalar non-Gaussianity in the allowed parameter region and
discuss whether the models can enjoy all of the observa-
tional constraints on the early universe models.

This paper is organized as follows. In the following
section, we introduce two unified frameworks of Galilean

successful observational predictions consistent with . ) ) . ) :
P Genesis. In Sec. 111, we give a brief review of the primordial
- power spectra for scalar and tensor perturbations in both
fshingo.akama@uj.edu.pl frameworks. In Sec. IV, we first make arguments on the
"hirano.s.ai @m.titech.ac.jp strong coupling problem and then clarify the model space
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of Galilean Genesis with the scale-invariant scalar power
spectrum and without strong coupling. In Sec. V, we
calculate the scalar non-Gaussianity in the model space
and compare the non-Gaussianity of the curvature pertur-
bation with the current constraints on that. A summary of
our paper is given in Sec. VI.

II. FRAMEWORKS

In the present paper, we assume a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
of the form

ds? = —dr* + a*(1)5;;dx'dx/, (1)

where a(t) is the scale factor.

So far most models of Galilean Genesis have been
studied within the Horndeski theory [5,33—43]. (See
Refs. [14,32,44-49] for the models studied in beyond
Horndeski theories [31,50-53].) The Horndeski theory
yields the most general second-order field equations for
a scalar field ¢ and a metric g,,, and the Lagrangian of
which is [28-30]

L = Gy(¢h.X) = G3(. X)04 + Gy($. X)R

+Gux[(0¢)* = (V,pV,0)?)

Gsx
23X (g

-30¢(V,V.9)* +2(V,V.8)°). (2)

+ Gs(¢. X)G, VIV g —

where G;(i =2, ...,5) are arbitrary functions of ¢ and X
with X == -V ,¢V /2 being the kinetic term of the
scalar field, and Gy stands for the partial derivative of G
with respect to X, i.e., Gy = 0G/0X. From the Horndeski
action, one can derive the Friedmann and evolution
equations denoted by £ =0 and P = 0, respectively, as
written in Appendix A.

In the scenario of Galilean Genesis [5], the cosmic
expansion starts from a quasi-Minkowski phase. In par-
ticular, by assuming the following configuration of the
scalar field:

Y :=e X ~Y, = const, (3)
giving
1 1
LN — 4
2, (1) “)

the Lagrangian with appropriate choices of G, admits a
quasi-Minkowski solution where the Hubble parameter
H := (da/dr)/a is asymptotic to 0 by a power-law manner
in the asymptotic past (a large || region). In the following
subsection, we briefly review two unified frameworks of
Galilean Genesis.

A. Generalized Galilean Genesis

The model of Galilean Genesis was originally proposed
in Ref. [5], and each G; of the original model is of the form

G2 = C1€2/1¢X+ C2X2, G3 = C3X,
MZ
G4 = TPI7 GS = 07 (5)

with constant c¢;. The generalization in a way to include the
original model has been accomplished by choosing the
Horndeski functions as [7]

G2 _ eZ((Frl)/{(/)gz(Y)7 G3 = 62111(/593()/)’

M2
Gy = B4 i, (1),

2 Gs = P g5(1), (6)

where g;(Y) (i = 2, ...,5) are arbitrary functions of ¥, and
a and A are constant. Note that g, = c|Y + ¢, V2,
g3 =c3Y, g4 = g5 =0, and a = 1 for the original model.
This unified framework is called generalized Galilean
Genesis. Starting with the discovery of the original model,
various models included in this framework have been
constructed in Refs. [33-42].

By assuming Eq. (3), the quasi-Minkowski solution has
been obtained in generalized Galilean Genesis as [7]

I h
a~1+4——20

ya e = |+ O, (7)
where

- ®)

a>0. 9)

The background spacetime remains the quasi-Minkowski
one as long as

H|tf| < 1. (10)

In this framework, the Friedmann and evolution equations
have been found, respectively, to be [7]

£ = A4, (V) =0, (11)
P~ 2G H + 219, (Yg) = 0, (12)

where
G\ = My — 42Y,(g5 + Yod5), (13)

p(Y) = 2Y9’2—92—4AY(0‘93 - Y%) (14)

131(Y) =g, —4al¥g; + 8(205 + 1)/12Y(0594 - Y%)v (15)
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and the dot and prime denote differentiations with respect to ¢
and Y, respectively. Equations (11) and (12) are used
to determine the values of Y, and &, respectively. In particular,
the evolution equation is of the linear equation for 4, and A,
can easily be obtained and written as a compact form [7],

1 P1(Yo)
201+ 20) 2227, G,

hy = — (16)
The various aspects of the background dynamics have also
been investigated in the presence of the spatial curvature and
spacetime anisotropies [7]. In Ref. [7], it has been shown that
both do not spoil the background evolution under Eq. (9).

B. New framework

In the Horndeski theory, a model having the quasi-
Minkowski solution has been studied outside generalized
Galilean Genesis as well [43]. That model is based
on the Lagrangian with G; having the following ¢ and
X dependencel:

G, = —d)* e —

M3 28
2X2

X+ X3, Gy =0,

Gs =0, (17)

4=

with constant d. Another unified framework including the
above example has been proposed [8], and the Horndeski
functions have been chosen as

G2 — 62(ﬁ+1> ¢ ( ) + e~ (7 I)A(/)az(y) + 6_2(/}+27_1)b2(Y),
Gy = ePMgy(Y) + e ay(Y) + e H20M by (v),
Gy = e q,(Y) + e 224D, (),

G5 — e—2(/3+27+1)2¢b5(y)’ (18)
where

ay(Y) = 822Y(Yoy +y)*A(Y),

az(Y) == =2A(2Ydy + 1)(Yay + y)A(Y),

as(Y) = YoyA(Y),

by(Y) := 1623Y2(Yoy + B + 2y + 1)*B(Y),

b3(Y) == —422Y(2Y0y + 3)(Ydy + B+ 2y + 1)?B(Y),
by(Y) = 2AY(Ydy + 1)(Ydy + p + 2y + 1)B(Y),
bs(Y) :== —(2Y0y + 1)(Yoy + 1)B(Y), (19)

"The explicit form of G4 in the Lagrangian in Ref. [43] is
Gy = (M3,/2)(1 + 28 /X?). The first term in the parentheses of this
G, is negligible at some large |#|, compared to the second one since
X2 « (—t)*. By using this fact, we ignored the first term in Eq. (17).

’In the previous paper [7], @ and f have been introduced
instead of § and y, respectively. However, by taking into account
that a has already been used in generalized Galilean Genesis, we
changed the notations to avoid confusion.

with arbitrary functions A(Y) and B(Y). Note that g, =
—d* =Y +28Y3,93 =0,A = -M3,23/(4Y?),B =0, and
p =y = 2 for the above example.

Before moving to the background dynamics in the new
framework, we refer to a model constructed in Ref. [10]. Its
Lagrangian that admits the quasi-Minkowski solution has
been constructed based on the Arnowitt-Deser-Misner
(ADM) formalism within the Horndeski theory. The
covariantized version of the Lagrangian can be reproduced
by choosing ¢,(Y),¢3(Y),A(Y), and B(Y) in the new
framework as

Y 1/Y\2
Y) =20+ —4 | - 4 Z [
9¥)=c [ Yo+3<Yo> ]

QC—Q/HI) (ﬁ — 1) 2

+ 5 Y (20)
4 12Y0/

3\/ Y
Y —(2p+1) 21
g3( ) 16 23}78/2’ ( )
A(Y) = 12 {m <£4> L 2@, (22)

H Y

B(Y) =0, (23)

where ¢ is a dimensionless constant and p is a mass-
dimension one. Note that y < 0 and 1 + 2§ + 4y < 0 have
been chosen in Ref. [10].

Under the ansatz, Eq. (3), the quasi-Minkowski solution
has been obtained in the new framework as

1 o
~1 =1+ O(H1), 24
U Gty o — PO, Y
where
ho
H ~ TR (25)
p+y>0. (26)

Also, Eq. (10) is imposed to keep the background space-
time the quasi-Minkowski one. In this framework, the
Friedmann and evolution equations take the similar forms
as those in generalized Galilean Genesis:

£ = 21Dy (vy) = 0, (27)

We changed the notation of ¢ in Ref. [10] as ¢ — cA/2Y. By
taking 4 = 1 (i.e., rescaling ¢ to be dimensionless, ¢ — A¢) and
replacing f and y with @ + §/2 and —a, respectively, one can
check that the above Lagrangian is corresponding to the ADM
Lagrangian in Ref. [10].
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P ~2G,H + 2194, (¥y) =0, (28)
where

Gy 1= =27y (A" 4 2Y(A")
+ 2~ P2tV HpY (6B’ + 9YB" + 2Y3B"),
(29)

p2(Y) :=2Yg, — gy —44Y (Bgs — Ydh), (30)

Pa(Y) = gy — 4PAY g3 + 8yAH e 2P HMY (AT 4 2V A"
— 4(1 + Zﬂ + }’)/1H2€_2(1+2/}+27>M) Y2
x (6B +9YB" + 2Y?B"). (31)

The values of Y, and h, are derived from Egs. (30) and
(31), respectively. The first and second terms of the
evolution equation are generally quadratic in /, in the
case of B(Y) # 0 since Gy has the linear term of 4, and p,
does the quadratic one of that. Thus, as opposed to the case
of generalized Galilean Genesis, fzo is determined by
solving the quadratic equation for 4 in general and written
as an intricate form, whereas in the particular case where
6B’ +9YB" +2Y3B" = 0, the following simple expres-
sion of /i, can be obtained:

- 1

P 92(Y) —4pAY595(Yo)
07 4(1428)(222Y o) TP

Yo(A'+2Y,A")

(32)

Similar to the case of generalized Galilean Genesis, the
background evolution is still valid even in the presence of
the spatial curvature under the condition Eq. (26) as has
been shown in [8], whereas one needs an additional
condition for the spacetime anisotropies not to spoil the
genesis background. We thus briefly review the property of
the spacetime anisotropy in the present framework. The
ratio of the anisotropic expansion rate (denoted by /) to
the isotropic one has been obtained in the Kasner spacetime
as [8]

P o i+, (33)
H

Therefore, the anisotropies do not spoil the background
evolution as long as the following condition holds:

p>-1/2. (34)

III. PRIMORDIAL POWER SPECTRA

The scalar and tensor perturbations around the FLRW
background are defined in the perturbed metric under the
unitary gauge, 5¢)(7,X) = 0, as

ds? = —N2d22 + g;;(dxi + Ndr)(dw/ + Nidr),  (35)
where

N:1+5n, N,»Z@l-)(, (36)

1
gij = a2€2€ <5l]+hl]+§hlkhf+ >, (37)

with én and y being auxiliary fields, and we denote the
curvature and tensor perturbations by ¢ and h;;, respec-
tively. The quadratic actions for ¢ and h;; are found,
respectively, to be [30]

s = / dd3xa? [Gsé“z—%(aiéf]v (38)

1 L F
st = g / drd3xa? {grh?j —a—j(akhij)z}, (39)

where the auxiliary fields were eliminated by using the
constraint equations after expanding the Horndeski action
up to quadratic order in the perturbations. Gg, Fg, Gr,
and F; are defined in Appendix. B. Note that G5, Gy > 0
and Fg, Fr >0 are required to avoid the ghost and
gradient instabilities, respectively. We introduce the
squared of the propagation speeds of the curvature and
tensor perturbations defined, respectively, by ¢? := Fg/Gg
and C%, = fT/gT.

We also define the Fourier transform of the perturba-
tions by

3
4’(t,x):/((21ﬂ]§3 E(t.k)ex, (40)

hiy(1.%) = /%/zu(n K)elkx, (41)

In Fourier space, the quantized perturbations can be
expanded as

C(t, k) = G (Day + é’ik(t)&ik’ (42)

Ryl k) = (e + A (43)

ij
where () (1) and hff) (1) are the mode functions of the scalar
and tensor modes, respectively, and the polarization tensor

()

e;; satisfies
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with s = =+ being the helicity modes of &;;. Here, ay (&gf))

and a; (&f) ") are the creation and annihilation operators of
the scalar (tensor) modes, respectively, which enjoy the
canonical commutation relations

lay, a] = (27)°6(k + k'), (46)
). &) = (21)6,8(k + K'). (47)
others = 0. (48)

The equations of motion for the mode functions are derived
from the quadratic actions, Eqgs. (38) and (39), as

at<a3gSék> + ak? F sy =0, (49)

0,(a3Grh\") + ak®> Frh{) = 0. (50)

Now we focus on the genesis phase (i.e., a ~ 1 phase)
where the conformal time # is approximately the same as
the cosmic one ¢, i.e., # ~t. The solutions of the mode
functions are thus obtained by fixing the time dependence
of Gg, Fg, Gr, and Fr. In the present paper, we fix it by
requiring that the propagation speeds of the perturbations
are constant for simplicity as will be argued in the
following subsection.

Also, we solve Egs. (49) and (50) under the
initial conditions such that the solutions of the mode
functions of the canonically normalized perturbations,
u, = v2a(GsF5) ¢ and o) = (a(GrFp)/*/2)m),
in the far past coincide with those in Minkowski spacetime:

1

= e o
g1

Jim vy = Vol (52)

where ¢y, ¢;, = const was imposed as mentioned above.
The mode functions are thus given by the positive fre-
quency modes.

The power spectra for { and /;; are defined, respectively, by

B0 = @apalk + k)5 P (53)
(hij(k)h;;(k")) = (27)38(k + k') 2k—’§27>h, (54)

where
P =l (55)
Pu g S 56

We also introduce the spectral indices defined by

dlnP

ng—1:=3—=2|vg| = dln/f’ (57)
dlnP

ny =3 =2y = dlnk”. (58)

We evaluate the power spectra at the end of the genesis phase.
In the usual models of inflation, the times when the phase
oscillations of the mode functions stop (i.e., —ckt =1
and —c,kt =1) are equivalent to those when each
mode crosses the Hubble (or sound) horizon (i.e., ¢,k =
aH and c,k = aH), whereas both do not have such a one-to-
one relationship during the genesis phase where a ~1
and H|7| < 1. We, however, call the times when ¢ enjoys
—cykt =1 and —c,kt = 1 the horizon-crossing scales for
simplicity, and we evaluate the power spectra at t =1,
when the perturbations are on the superhorizon scales,
ie., —c kt,, —cpkt, < 1.

When G; and F; are of the power-law functions of ¢ as
Gg, Fg  |t|? and G7, Fr  |t]9, one can derive the generic
forms of the power spectra [8]:

Pe = #J’lctlz =, {2%'_3/2 %} ednps, (59)
where
Vs = 1—Tp (61)
vr = 1% (62)

A. Generalized Galilean Genesis

In this subsection, we briefly summarize the spectral
indices of the scalar and tensor power spectra in generalized
Galilean Genesis. As we explained before, it is determined
by fixing the time dependence of the coefficients in the
quadratic actions.

For the tensor perturbations, the time dependence has
been obtained as [7]

Gr, Fr ~ const, (63)
giving ny = 2 irrespective of the concrete model.

For the scalar perturbations, the time dependence has
been found to be [7]

Gs. Fs o (—1)%, (64)

giving vg = (1 — 2a)/2. Thus the spectral index reads
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20+2 (0<a<1/2),

"5_1:{4—2a (@>1/2). (65)

The two divided cases are associated with the time
evolution of the superhorizon modes. In the present setup,
the dominant mode of the perturbation on the superhorizon
scales can be written as (j o |¢[*s”sl, and thus the
amplitude of the dominant mode is constant for vg > 0
while that grows for vg < 0. The scale invariance (i.e.,
ng = 1) can be realized only for a =2 (vg = —3/2).

B. New framework

First, let us focus on the tensor perturbations. The time
dependence of the coefficients in the quadratic action is [8]

gT X (—t)zy, (66)

Fr=AQB + Y B")(=1)>F+2) 1 B(=1)>, (67)
where A and B are nonzero constants.* For the models with
¢ = const, 2B’ + Y,B” = 0 is imposed.

Then, we consider the scalar perturbations. During the
genesis phase (a ~ 1), Fg approximately takes the form

g2
Fg=0, <—T) - Fr. (68)
and the first term can be rewritten as
0 g—% =(14+26+4y) igT x (—t)z(ﬁ”” (69)
"\ e Ht ’

where

_H9r
®

K = const, (70)

and we used © « (=)~ and G  (—1)* which are
shown in Appendix B. The first and second terms of
Eq. (68) are proportional to (—#)2#*2) and (—t)%, respec-
tively. Notice that the gradient instabilities occur in either
the scalar or the tensor perturbations if the first term
vanishes, i.e., # and y satisfy 1 4+ 2f + 4y = 0, since Fg =
—F7 in that case. We thus assume 1+ 2544y #0.
In Ref. [8], by taking into account f+y > 0 (and also
1 +2p + 4y # 0), the second term of Eq. (68) has been
ignored, which indicates that

F Ht
f—zzo(cﬁg) < 1. (71)

“Strictly speaking, A is proportional to 1 4 2 + 4y [8] which
can vanish at the present stage. However, as shown later, this
cannot vanish in light of the stability conditions.

Also, Gy is of the form

2
g5 =21 1 3g,. (72
(C]

where the first and second terms are proportional to
(=1)2+2) and (—t1)%, respectively. As opposed to Fg,
the first term can vanish in the case of p4(Y,) =0
(2  p4(Yy)). The present framework thus has two divided
cases about the time dependence of Gg: p,(Y,) =0 and
P5(Yo) #0. The latter corresponds to the class of the
models with ¢ = const, and hereafter we only consider
the case where

Gs o (=120, (73)

In the case of p(Y,) # 0, the second term of Eq. (72) has
been ignored [8]: Gy~ XG3/(©%) where the following
approximation has been imposed,

gTﬁ 2@
g—s—(’)<cs 5) < L (74)

We have used Eq. (71) to derive the above expression.

Under the conditions, Egs. (71) and (74), one can derive
the spectral indices, ny = 3 — 2|vy| and ng — 1 = 3 — 2|ug]
with

vpr=5-7 (75)

1

The scale invariance of the scalar power spectrum can be
realized for f+2y+ 1 =0 (i.e.,, vg = 3/2) and f + 2y —
2=0 (e, vg= —3/2).5 Different from the case of
generalized Galilean Genesis, the constant mode
(vs = 3/2) yields the scale-invariant scalar power spectrum
in addition to the growing one (vg = —3/2).

IV. STRONG COUPLING
Both frameworks have the parameter region where the
coefficients of the quadratic actions are asymptotic to O in
the far past:
Gs. Fs o |t]7, (77)

Gr. Fr o |1]1, (78)

In Refs. [10,22-25], the model with 1 4+ 2+ 4y <0 (i.e.,
vg > 1) has been studied. In this parameter region, the scale-
invariant scalar power spectrum is realized only from the constant
mode (vg =3/2 > 1).

063504-6
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with p and/or g being negative. A concrete model having
those asymptotic properties was constructed in Ref. [10].
Equations (77) and (78) imply that couplings of nonlinear
interactions for the canonically normalized perturbations
naively diverge, and thus strong coupling occurs. Also,
even if G, Fg, Gr, and F; increase as the time goes back
(i.e., p, g > 0), strong coupling can occur if couplings
of higher-order interactions, e.g., the cubic interactions,
diverge. In the present paper, if the canonically normalized
perturbations are strongly coupled at cubic order in
the far past, we require, similar to Refs. [22-27], that
the classical energy scale of the genesis background E,
(Max{H, H'?, H/H, etc.}) is much lower than the scale A
at which strong coupling occurs:

1
E, ~ " <A, (79)

where we used H < H'> < H/H ~ 1/t. We stress that
the above scaling also corresponds to the frequencies of the
perturbations at the horizon-crossing scale. Therefore,
Eq. (79) would also be necessary to avoid the strong
coupling problem around the horizon-crossing scale.

A. Generalized Galilean Genesis

We first write down the cubic interaction terms of the
curvature perturbation. The components of the cubic
interactions are obtained as

LY > (=1)469(9,38, (=1)*(9,)28,
(=0)20530)(9)2(9)283, (=1)1+4(9,)(9;)23,
(=0)30429(9,)(3,)*83, (=1)°(,)28,

( t)2 1+2a (al>4é/%7 (80)

where we used the cubic action summarized in Appendix B
and also Eqgs. (63), (64), (B13), (B14), (B27), and (B28).
After a change of a variable from the original variable, {, to
the canonically normalized one, u = v/2a(GsFs)'/*C, we
obtain the conventional form of the cubic action for the
canonically normalized curvature perturbation as

1 1
9 3.3
L

a9,)%u?

1
AgB i 2M3 Aiz (at)(ai)2u3

1 . 1

2.3
A_g(al) u +A§3

(0%, (81)

where A!(i =1,...,7) characterize the strong coupling
scales of the interaction terms. Each scale evolves in time as

Ai o (_t>—(1+3a)/2 AS (_t)—a’

A% o (_[)—(2-&-301)/3 Aft - (—l) (1+a)/2’

Ag O(( l) (3+3a)/4 AS <_t)3a’

A o (—1)~CFa)/3, (82)

Here, A (i # 6) are always asymptotic to O in the far past
since a > 0, and hence we impose Eq. (79) on A{ (i # 6) to
avoid strong coupling. By parametrizing the time depend-
ence of A} as A« (—)™%, we obtain the following
conditions:

1> X;. (83)

In particular, the condition obtained from the A{ term (i.e.,
1 > x) reads

a<l, (84)

which is incompatible with the condition for the scalar
power spectrum to be nearly scale-invariant, i.e., @ ~ 2. In
this framework, the strong coupling problem is thus
unavoidable if one requires the scale-invariant power
spectrum.

B. New framework

By following the same procedure as in the previous
subsection, we can obtain the conventional form of the
cubic action of the canonically normalized perturbation. In
general, the most dangerous terms in the cubic action are

Zﬂgs Fg%
1
= p(at)%ﬁ with A o (=£)~(1436+2)/2 (86)

where we used Eqgs. (66), (73), (B30), (B16), and (B24) to
derive the time dependence of A. By requiring Eq. (79), one
obtains

1-38-2y>0, (87)

which indicates |vg| < 3/2. Thus the spectral index of the
scalar power spectrum is blue. This is conflicted with the
Planck results, ng ~0.96 (i.e.,
replacing f and y with f — a + 6/2 and y — —a, respec-
tively, and taking B(Y) =0 (and hence x = 0), one can
check that our result in the case of u =0 and I' # 0,
1 —-3p—-2y >0, can reproduce 2 —36—2a > 0 which
has been obtained as the strongest constraint on the
parameters in the previous papers [22-25].

Then, we impose both g = 0 and I' = 0. One can find
from Egs. (18), (19), and (B24) that u vanishes for
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6B’ +9YB” +2Y3B"” = 0. The explicit form of T is
generally intricate due to the presence of H, and I' =0
is realized by choosing A(Y),B(Y),¢,(Y), and g5(Y)
appropriately. We here emphasize that the Lagrangian in
Refs. [10,22-25] where G4 = G4(¢) and G5 = 0 does not
admitI" = 0 since I' = Gy > 0 in that model. In the present
case, the components of the cubic action read

Ly D (=0)H561 (9,383, (=1)2P+21)(0,)2C7,
( t) (1+2ﬁ+%y< ) ( )2413
(=) +9401(0,)(0:)°C, (=0)¥(0:)*C°,
(—t)2(1+2ﬁ+37)(6i)4C3, (88)

where we used the cubic action in Appendix B and also
Egs. (66), (67), (73), (69), (B15), (B16), (B29), and (B30).
Imposing Eq. (79) on the above interaction terms yields

1-p>0. (89)

In contrast to the general case (i.e., 4 # 0 or I # 0), the
slightly red scalar power spectrum is still allowed.
Strong coupling can also occur in the cross interactions
among the scalar and tensor perturbations and the self-
interaction among the tensor perturbations. Therefore, we
analyze all of the other cubic interactions of the scalar and
tensor perturbations. The arguments are parallel to the
previous ones, and thus we show only the results that are
obtained by using Eqgs. (79) and (B31). The resultant model
space avoiding strong coupling is plotted in Fig. 1. In the
parameter space, the range of g is —1/2 <p <0.
[The lower bound is determined from the argument on

B

08}
06l
04}

)
02r 1 —ne=1(vs=-32)

0.0 Y

-1.0 -0.5 0.0 0.5 1.0 1.5 20

FIG. 1. The allowed parameter region in the f-y plane where
1 =0=T. The orange and purple lines denote the parameter
region in which the scale invariant curvature perturbation is
generated from the constant and growing modes, respectively.
The blue shaded region is the parameter region in which the
strong coupling can be avoided.

the spacetime anisotropy, Eq. (34), and the upper one is
from that on strong coupling.] Note that the model
parameters which can yield the scale invariance of the
scalar power spectrum are located at the edge of the
parameter region without strong coupling. The parameter
region realizing ng~0.96 from the constant mode (i.e.,
vg ~ 3/2) and avoiding strong coupling are not overlapped.
In the viable model space, only the models having the
growing mode (i.e., vg ~ —3/2) can enjoy ng ~ 0.96, and
the primordial power spectra of the curvature and tensor
perturbations can be obtained, respectively, as

1 1 1
LI 90
Pe 87% Fcy 2|, (90)
211 NE
_ 2 U e LU DS, e (01
Ph 7[2 ]_'Tch t2 — |: F(3/2> |Ch | ( )

where vy =(f—1)/2 and ny =2 + f with —=1/2 < < 0.
Then, the tensor-to-scalar ratio reads

_Pu Fses

_an L(lvr])]?
T~ \V'r\ 32 AP nr
Pg 16]__T el [2 (3/2) |chkt*| . (92)

Now, by recalling Eq. (71), one can find that the tensor-to-
scalar ratio is enhanced by F ¢/ F ;. However, the tensor tilt
is always blue: 3/2 < ny < 2, potentially leading to a small
tensor-to-scalar ratio due to the suppression factor,
|cpkt, " < 1. More explicitly, one has

roc S (10=0ms, xMm) (k"
Fr H =, \0.002 Mpc™~

(93)

By inspecting the above at k = 0.002 Mpc~! to compare
with the Planck results [54], one can find that the tensor-to-
scalar ratio can be much smaller than unity for the models
in which H/Mp, is sufficiently larger than 107 H|t|(<
107%%) at the end of the genesis phase. Note that the blue-
tilted tensor power spectrum with ny = O(1) makes the
detection of the primordial gravitational waves on the CMB
scales challenging. In the following section, we investigate
the scalar non-Gaussianity to discuss the observational
consistency.

The above argument on the strong coupling problem
might be insufficient to conclude the presence or absence of
strong coupling. First, there is a possibility that strong
coupling occurs in higher-order interactions. It is hence not
evident that the analysis of strong coupling at higher-order
interactions does not yield tighter constraints on the model
parameters. Nevertheless, in Ref. [24], it has been shown in
the subclass of the new framework that the strongest
condition is obtained from the argument at cubic order.
Therefore, it would be important to ascertain the extent to
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which this statement generally holds. Second, to verify that
the strong coupling problem is indeed absent at the onset of
genesis, one needs to consider the scattering process inside
the horizon (see further discussions [26,27,32]). The
consideration of the scattering process would clarify how
reasonable the present naive argument is. Furthermore, to
justify the use of the perturbation theory completely, one
would also need to take account of loop corrections (see,
e.g., Refs. [55,56]). We leave these points to future work
[57], and we have roughly evaluated Eq. (116) in the
present paper.

Before closing this section, we comment on a no-go
theorem for nonsingular cosmologies found in the previous
papers [9—12] in which it has been shown that nonsingular
cosmological solutions [i.e., a(f) > 0 during the entire
history] in the Horndeski theory are plagued with some no-
go theorem. This theorem states that the curvature pertur-
bations suffer from the gradient instabilities (i.e., Fg < 0)
unless the following integral converges in the past infinity
(t; = —oo) and/or future one (7; = +o00):

/ " a(¢)Fo(£)dr, (94)

As the nonsingular cosmological model to avoid the
gradient instabilities, the case which F; converges in
the past infinity has been considered so far [10,22-27].
By recalling F; o (—t)%, the models satisfying

1427 <0 (95)

correspond to the case. For the models with f+ 2y =2
(i.e., the scale-invariant power spectrum of the curvature
perturbation), Eq. (95) is equivalent to

B> 3. (96)

Equation (96) is incompatible with the result of the analysis
of the strong coupling since —1/2 < f < 0 in the allowed
region. Therefore, the examples avoiding the gradient
instabilities cannot realize the avoidance of strong coupling
and the scale invariance of the scalar power spectrum
simultaneously. One of the ways to overcome this is to
invoke beyond Horndeski terms at somewhere during the
entire history.6 In the present paper, we evade the no-go
theorem by supposing that the quasi-Minkowski phase
which we are focusing on is described by the Horndeski
theory, and some beyond Horndeski terms are developed at

®It has been found in the context of the second-order scalar-
tensor theories that some higher-derivative extensions of the
Horndeski theory or an introduction of a cuscuton field [58,59]
are required to avoid the no-go theorem [11,12,14-17,19-21].
(See Refs. [12] and [13] for the no-go arguments in the presence
of multiple scalar fields, and also [60] and [18] for those in the
presence of the spatial curvature and vector modes, respectively.)

some regime away from the genesis phase in the entire
cosmic expansion history. Under this assumption, we do
not invoke any beyond Horndeski terms in the present
paper, and we still continue to analyze the primordial non-
Gaussianities generated during the genesis phase in the
present setup.

V. PRIMORDIAL NON-GAUSSIANITY

In this section, we compute the primordial non-
Gaussianity generated from the viable models that realize
the slightly red scalar power spectrum and have no strong
coupling. In doing so, we use the mode function in the case
of the scale-invariant power spectrum generated from the
growing mode and eliminate y by using the condition for
the scale invariance, 4+ 2y — 2 = 0. Following the in-in
formalism, the three-point correlation function at the end of
the genesis phase can be computed as

€k p)E(ka)E(Ks))
_ /_ oo dra(t)([E(t,. k) E(t. k)2 (1, K3). Hin(£)])
(97)
=: (27)75(k; + Kk, + ks) P—EA@ (98)

kik3ks

where H;, is the interaction Hamiltonian of the curvature
perturbation defined by

Hy, = — / &L, (99)

Here, £é3) denotes the cubic Lagrangian of the curvature
perturbation which has been obtained as [61-63]

)2
£é3> = a3gs{Alé;3 + AL+ AL (a;?
A 0%
H‘; g2 ‘ AsCO Loy + Ne0*L ()
H2 — [025(5 $)? = $0,0;(9,£0,0)]
A
+ ﬁg_z [0°¢0,L0,w — 0,0 (aiCaj’l’)]} + F({)Es,
(100)
where
F(é’) — redl (a é‘al// o0~ 20161(6,&3/1//))
A
+ o2 ((a,.g)z — 0720,0;(0,£0;¢)). (101)
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Eg == =20,(aGsC) + 2aF s0%C. (102)

Each A, is defined in Appendix B. The explicit forms of
Apeq; are given by

linear curvature perturbation. One can eliminate the last
line of Eq. (100) by performing the following field
redefinition:

Ay = HG; G ’ (103) = {—F(0). (106)
o OF )
HT In light of that { ~ —3(/t on the superhorizon scales, the
- 793 (104) field redefinition in Fourier space reduces to
red,2 ’
209G
HZFgT 3Ared 1 d3k
Apgz = ——— 1 k k) - - (k)¢ (k — K’ 107
w03 = agrt (105) 200 = £l 23t [ S ek, (107)
and hence Arq(23) = 0 in the allowed parameter region.
Note that Eg =0 is the equation of motion for the  The resultant form of A; reads
|
3[3A 9 Ay 3(1+2p)
- — — K+ |- fA ———A i}
alam - | 28 TR g - e |, 28
3
—_ 4 kI —=S kY ) =21 +28)k3k3k% S k3
+16(ﬂ—4)(ﬁ— ) 50|ttk2k2k2 [(ﬁ )(;z J ;z j) ( + /) 1 23Zi:z:|
— 3y k-3 k7k2 Kkd—(p—1 k4
R e R IR D WD WA RNED DD W
3 Aeat
- (- DRBRY k| -3 YR (108)

i#]

where we ignored the terms proportional to the positive
powers of |c,Kt,| which are suppressed on the super-
horizon scales, |c,Kt,| < 1. One here notices that the
amplitude of the non-Gaussianity is generically enhanced
in proportion to |Ht|~' > 1. This factor is of O(e) where €
is the usual “slow-roll” parameter defined by € :== —H /H?.
In the case of inflation and matter bounce cosmology which
generate the scale-invariant scalar power spectrum, one has
€ < 1 and e = O(1), respectively. However, in the present
case, € is much larger than unity. This fact can result in an
enhanced non-Gaussianity, compared to the non-Gaussian-
ities from those models. Below we explore the possibility to
suppress this enhancement by detuning model parameters.
In doing so, we compare the non-Gaussian amplitude
with the observational constraint on that obtained by
Planck [64], and we evaluate the following nonlinearity
parameter:

10 A
EDh

at the squeezed, equilateral, and folded limits which are
deﬁnedby kl < k2 :k3, kl = k2 = k3,and k1 = 2k2 = 2k3,
respectively. The nonlinear parameters at these limits are
denoted by flocal, 7Sl and £ respectively.

AN (109)

Each of the nonlinearity parameters is obtained from
Eq. (108) as

local __ 5(2 — Sﬁ) k_%%
N = e -1 86, Y
equil _ » 5(1+2ﬁ) %
= np-ne ).,
u-p G
O R . £ 12
G- p-n6l.,

where C denotes the terms contributed from the terms
>k} in Eq. (108). To simplify the argument on the
consistency with the current constraints on fy, we con-
sider the difference of each fy; instead of the magnitude of
itself. In doing this, the above common contributions do not
affect that argument, and hence we do not write the explicit
form of C. The difference of each nonlinearity parameter
reads

local __ fold,\,_&% 11
NeINE T 4 -4 (- 1) Gy, (113)
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local __ gequil 5(1 +2p) %

N - ap-06,., Y
equil _ orod __ O(2+127) Gy

N e - g,, )

where we used k;/k, < 1. As long as f enjoys
-1/2 < <0, the above three quantities are generally
much larger than unity. Therefore, at least two out of the
nonlinearity parameters are much larger than unity, which
indicates that the genesis models are ruled out by the
constraints on the primordial scalar non-Gaussianity [64].
One may consider the 1 4+ 2 — 0 limit, but at least one of
the nonlinearity parameters is much larger than unity in
such a case, and thus that case is also unacceptable from the
observational viewpoint.

The above arguments imply that the dangerous terms in
/i are naively at most of O(Gs/Gr)|,—, ~ O(|Ht|™")],_, .
To check the validity of the perturbation theory from both
theoretical and observational viewpoints, we estimate
JnL¢, which is roughly the ratio of the cubic action to
the quadratic one (see, e.g., Refs. [55,65,66]). This quantity
contributed from the dangerous terms can be evaluated as

¢
Sag ~ ﬁt |t:t*'

(116)
The amplitude of the curvature perturbation has been
constrained as ¢(t,) ~ O(107>). For the models enjoying
faell—, <1, say 107 S HJt| < 1 at t = t,, the pertur-
bative analysis is still valid at the end of the genesis phase,
even though those are ruled out by the arguments on fy;..
Also, after the horizon crossing, Eq. (116) is proportional
to (H*)™!' « (—1)#~! which monotonically increases with
time in the allowed parameter region (i.e., for
—1/2 < f < 0). Therefore, at least based on the present
naive arguments, the perturbative analysis would be guar-
anteed from the time of the horizon crossing to that of the
end of the genesis phase as long as it is guaranteed at the
latter time.

VI. SUMMARY

In the first half of the present paper, we have derived the
conditions to avoid the strong coupling problem in two
unified frameworks of Galilean Genesis in which the
propagation speeds of the perturbations are constant. As
a result, we have clarified that the new framework has the
parameter region without strong coupling and with the
slightly red-tilted scalar power spectrum. This is in contrast
to the case of the model studied in Refs. [22-25] where the
spectral index of the scalar power spectrum was blue in
the model space without strong coupling. In general, the

Lagrangian of the new framework includes the functional
degrees of freedom [¢,(Y), g3(Y),A(Y), and B(Y), etc.] to
reduce the dangerous cubic interaction terms leading to
strong coupling. We particularly chose the general class of
the models which allow g and I' to vanish thanks to
the functional degrees of freedom. (Note that 4 # 0 and/or
I # 0 yield the most dangerous cubic interaction terms.)
However, the theory in Refs. [10,22-25] explains where
4 = 0does not allow I' = 0. This difference has yielded the
parameter region without strong coupling and with the
slightly red power spectrum.

In the second half of the present paper, we have
calculated the non-Gaussianity of the curvature perturba-
tions. The primordial bispectrum has been calculated for
the first time in the context of Galilean Genesis in the
present paper. Note that the trispectrum has been studied in
Ref. [67]. We have also found that the non-Gaussian
amplitudes are generically enhanced and clarified that
the non-Gaussian signatures are different from those in
the other scenarios generating the scale-invariant power
spectrum because of the large value of the usual slow-roll
parameter, € = —H/H? > 1. Then, by evaluating the non-
linearity parameters, we have shown that the models
considered in the present paper cannot be consistent with
the current CMB data due to the enhanced non-Gaussian
amplitudes.

As the further study of various aspects of the perturbative
analysis in the context of Galilean Genesis, it would be
important to investigate the scattering process and loop
corrections as has been mentioned in Sec. IV. It would be
also interesting to go outside the model space considered in
the present paper, e.g., by allowing the time variations of
the propagation speeds of the perturbations and using
beyond Horndeski theories [14,32,44-49].
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APPENDIX A: BACKGROUND EQUATIONS

From the Horndeski action, Eq. (2), one can obtain the
Friedmann and evolution equations, respectively, as
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£ =2XGyx — G, + 6X¢pHGx — 2X Gy — 6H*>G, + 24H?X (Gyx + XGaxx)

— 12HX (G yyx — 6HPGyy + 2HXP(5Gsx + 2XGsxx) — 6H*X(3Gsy + 2XGisyx ),

(A1)

P = G, —2X(Gsp + §Gay) + 2(3H? + 2H)G, — 12H?XG,x — 4HXG,x — 8HX Gy
~ 8HXXGxx + 2( + 2Hp)Gay + 4XGpy + 4X( — 2HP)Gayx — 2X(2H ¢ + 2HH  +3H?))Gsx

— AH?X?¢Gsyy + 4HX (X — HX)Gsyx + 2[2(HX) + 3H*X|Gs,, + 4HX G-

(A2)

In generalized Galilean Genesis, the Friedmann and evolution equations have been obtained as [7]

£ = eX@tDidp (V) + 6Hpe® Y, — 2adgy + 2(3 — 2a)AY g, + 4AY2gl]]

— 3H?[M3}, — 122Y g5 — 284Y?* g — 8AY3 ¢!]

P =2G H + 2letDVidp, 4 8Hq.5a/1€2""{¢(g4 —-2Ydq,)
+ H2[3M1231 - 4/1Y(3g5 + 2Yg’5)]

+ 6H?29 (g, — 2Y () — AHP e Yds, (A4)

respectively. Substituting Egs. (3) and (8) into Eq. (A3)
yields the leading-order terms of £ and P in the asymptotic
past:

£ = 2@V [p (v,) + O]t 2], (AS5)

— 3H?%(2g, — 8Y g, — 8Y?g))) + 2H e (5Y gy + 2Y2gl),

(A3)

P = et hible e VG T 4y (¥y) + O(11 )
(46)

Note that p;(Y,) in £ and both the first and second terms of
the bracket in Eq. (A6) are constant, and thus the O(|#|72%)
terms with a > 0 are subleading.

In the new framework, the Friedmann and evolution
equations are of the form [8]

&= Hp(Y) + 6P HPY ¢y + 6e 2P H?Y (3A" + 12YA" + 4Y2A")

— 2 2P 3Gy (30B + T5YB" + 36Y2B" + 4Y*B"),

(A7)

P =2GH + 24D b, (V) + 8yAHpe Y (A’ + 2YA") — 4(1 + 2 + 4y)AH2 e~ (26t y2

x (6B' +9YB" 4 2Y?B") — 6H?e Y (A' + 2YA") + 4H? e 21 +F 1210y (6B’ 4+ 9YB" + 2Y2B"),

and the leading order of which in the asymptotic past can be
obtained as

& = 2tV py(Y) + O(Je| 2P, (A9)

P = 62(/f+1)i¢[26—2(/f+1)/1¢g2;1 + Pa(Yo) + O(Jt]2B+0)].
(A10)

We note that, as long as # + y > 0, the O(|¢t|2#*7)) terms
of the brackets in Egs. (A9) and (A10) are subleading since
P(Y,) and both the first and second terms of the brackets in
Eq. (A10) are constant.

APPENDIX B: QUADRATIC AND CUBIC
ACTIONS

By substituting the perturbed metric, Eqs. (35) and (37),
into the Horndeski action (2) and expanding it up to cubic

(A8)

order in the scalar and tensor perturbations, one obtains the

perturbed actions
S =283 4 56) (B1)

where S@ and S©® denote the quadratic and cubic actions,
respectively. One can eliminate the auxiliary fields 6n and y
by solving the constraint equations, and the solutions of
which are

on = %g’“, (B2)

_ 1 3 _a%
Z—a—gT<a Gsw ?5:),

where y := 6‘25 . First, the quadratic action takes the form

(B3)

s@ =57 457, (B4)
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where S\ and S} are given in Egs. (38) and (39), and the

coefficients of the quadratic actions read [30] Gr =2[G4 — 2XGux — X(H ¢G5X - GS(/})]’ (B7)
G
Gs = Gr (—T + 3) (B5) )
Fr=2[Gy — X(¢Gsx + Gsy)]. (B8)
aGy
Fgi= Fr, B6
’ adt(®> ! BO) i
|
@ = —pXGay + 2HG, — SHXGyx — 8HX?Gyxx + ¢Gay + 2X PGy
— H2)(5XGsy + 2X2Gsyx) + 2HX (3G, + 2XGsyy), (B9)
% = XGoy + 2X2Goxy + 12HPX Gy + 6HPX*Gaxx — 2X Gy — 2X>Gayx — 6H?G,
+ 6[H>(TXGyy + 16X2Guxy + 4X3Gaxxx) — HP(Gay + 5XGuyx + 2X>Gyxx)]
+2H3G(15XGsy + 13X2Gsxx + 2X3Gsxxx) — 6H*X(6Gsy + 9XGsyx + 2X>Gisyxx)- (B10)
[
Note that G, in Eq. (12) and G, in Eq. (28) are correspond- and
ing to the leading-order terms of G in each framework. We
also note that £ and © can be rewritten as T o (—1)720H), (B15)
0 HoE O « (—1)~(F+1) (B16)
X=Y—+——, B11 :
oY * 2 0H (B11)
By using the above, one can derive Egs. (63), (64), (66),
1 0&
O=———'. (B12)  and (67).
60H The cubic action is of the form

By using the above and Egs. (A3) and (A7), these time
dependences in generalized Galilean Genesis and the new
framework are obtained, respectively, as

S(3) - /dtd3x03[£sss + ‘css‘h + Eshh =+ ‘chhh]’ (B17)

where L, Logns Lonn, and Ly, stand for the cubic

—2(a+1
T oc (=)t (BI3) Lagrangians of the scalar-scalar-scalar, scalar-scalar-tensor,
Cat1) scalar-tensor-tensor, and tensor-tensor-tensor interactions,
O o« (-1) ’ (B14) respectively, and the explicit forms are [61-63]
|
5 1 232 1 2 2
on F .
= Gr 5 (0,0 +200°C) + 3 £(0,0)? + 3ZLon” +208n(9 — (0% — 0,{0;7)
: ¢ .0*¢C 26n
(2= 208 4 5 (P - 0 + 400 %5 25 e - 00 00,0)

. . . 2
+T <35n§2 - %6}14’62;( + ﬁén((a%m - (aia_,-;()z)> + Eon? <¢: - a_;(>

on

+ (= QT)—a2¢—1(z+2xzx+H =)on ]

3a?

(B13)
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QT

F . .
g
—_ fTalCOJZ:hU —_ ZQTai(Sn /'{hlj +ﬂ0 57’[0/8:]/1” + 2 T ak)((),aj)(akh,j + 0k)(0,6j)(0khu . (Blg)
3
Lan =[50 f—iaakh =iz~ Lot~ I on(aun, 2
8a a’
Lon = @ FT(h hj L )0R0yh; + L= i, (B21)
hhh 4a 2 ik 2 ijt kL) YkYI 12 ij|»
where
[ = 2G, — 8XGyx — 8X>Gyxy — 2HP(5XGsy + 2X>Gsyx) + 2X(3Gsy + 2XGsyx), (B22)

[1]

4= $XGsy. (B24)
Note that E and I" can be written as
oz
E=—, B25
3 (B25)
00
= B26
A (B26)

Then by using Egs. (A3), (A7), (B11), and (B12), the
time dependences of the above quantities in generalized
Galilean Genesis and the new framework are obtained,
respectively, as

[1]

o (—1)~(Ratl), (B27)

£(3)D(—t)2(25+37>(0t)262h~ (_ )1+4ﬂ+6ya( )2€2hw( )27@1‘)252}11‘]‘7(—f)z(HzﬂHy( )4C2h
(=0)20420(9,12Eh2,, (=) 24 (0,) (0, 2Ch,, (=) (0, °Ch,, (=) (0,)* i,

i= 12X Gsx + 69X2Gsxy — 12HG, + 6[2H(7X Gy + 16X2Gaxy + 4X3Gaxxx)
+ 90H?PX Gy + T8H*PX>Gsxy + 12H*GX> Gsyxx — 12HX(6Gsy + 9XGsyy + 2X>Gsyxx)s

— (b(G4¢ + 5XG4¢X + 2X2G4¢XX)]

(B23)
I' = const, (B28)
and
B o (=)@, (B29)
[ o (—1)% (B30)

Also, the time dependence of u is derived from Egs. (3) and
(18) as p o (—t)1+2h+4r,

By taking into account the time dependence of
Gs, Fg,Gr, Fr,®, X, E, T, and p, one can write down
the components of the cubic actions as written in
Egs. (80), (82), and (88), and also those of the other cubic
actions in the new framework used in Sec. IV as

lj7
(B31)

where we imposed ¢ = 0 and I' = 0 in light of the strong coupling argument.
For the calculation of the scalar non-Gaussianity, it is convenient to derive the following expression [61-63]:

s0 | dtd3xa3gs{ o+ Ml + M-S

A7
HZ g

(0 C)

A4 22 0%¢

H2C e + AsCO,Low + A0 (9 )?

Ag 1
PL(0:0)? - £0,9,(0,£0,0) +§;[azcai§aiw—c:a,-a,,-(a,-cajw)]} + [asr©Es. (B32)
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where
1
A=Y A, for (i #3.4). (B33)
a=0
2
A3 = ZAS.a’ (B34)
a=0
E G uGr Gz
— 2 (= T et _ T
Ayi=H [3 gs®3+6gS®+(3r Qr)gse)z], (B35)
with
H GE 113 =G2
Apg = {—ggfgerg—S[gT(ng)Jr @gj+2uﬂ,
(B36)
_y|9r (L _\_EB9r _2U 2
Au=Hig <c§ 1) 302 0 G
2 G
*Tog, =" sz)} : (B37)
HG7Gy
Ao _3(1 oF ) (B38)
HG:G
Moy =gz, (or=Ffs=fo) (B39)
G HG
A30 = g—z (C% —_ #) N (B40)
_HG | _Gr,
A3,1 = 0 [1 Gs (29T f@)} (B41)
H
Az p = %(QT +9s—fo)s (B42)
s (), 3T e
Aso==35 <1+ 5 Qr)’ (B43)
Ge [HT 2uH
As) = _Z—QST |:6(9T_f1" + fo) +g—T(2.gT_fﬂ) ,
(B44)

Nep=-F (1 =———F .
4Gr ® G
G {HF 2uH
Negpi=——— |— + +—(2
6,1 4G, | © (9r = fr + fo) Gr gr
H?G. HT"  6uH
A= e (1= = ).
' 60-Gg ® gr
H*G3. [HT 30F
Agy = ®2g§ [E (39T —3fe+ fr _H—ng)
6uH 20F
(20, =2 _==F 3
HG; HT'  4uH
Nggi=—— 1 —————
=g (15
HGy [HT 20F
Agy = Ty {G) (gT+fF_2f®_Hg%>
_— — + .
Gr < o~/ HG3
We also defined
g ::& g ::i f = fs
T HG,’ s HGy' s HFS
0] r i
fe = He fr-—ﬁ, Su '_H—y'

(B45)

(B43)

(B49)

(B50)

(B51)

In the calculation of the non-Gaussianity in Sec. V, we used

the following time dependence:

Al.O’ A3$Oa A4, A7,0 X (—[)_Z(ﬁ“r}')’

Al,l s AZ.O’ A3’1 s AS.O = const,

A1,27 A3’2, AS,O? A6.0 x (—[)z(ﬁJr}’).

(B52)

We note that As 1, Ag 1, A7, and Ag; vanish in the case of

u=0=r.
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