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We address a quantization mechanism that can allow us to understand why the cosmological constant is
not large under the quantum corrections from studying the circle compactification solution of the Standard
Model coupled to Einstein gravity which is subject to the constraint of the swampland conjectures. A novel
result in the present work compared to the previous investigations in the literature is that the radius of the
compactified dimension and the 4D cosmological constant Λ4 must in fact be quantized. The quantization
rule of the cosmological constant is given byΛ4 ∝ n2 with n ¼ 1; 2; 3; 4;…, which means that the values of
Λ4 are not arbitrary but only its specific values are allowed. In general, the quantum corrections as well as
other effects would break this quantization rule. Hence, it could prevent the quantum fluctuations from
generating zero-point energy contributions to the cosmological constant.
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The current cosmological and astrophysical observations
[1] have implied a positive cosmological constant of the
value around ∼10−120M4

Pl ≃ ð2.4 × 10−3 eVÞ4 [2] (respon-
sible for the late accelerating expansion of the universe)
which is a very small number compared to the electroweak
scale around ∼102 GeV and the Planck energy scale
MPl ∼ 1019 GeV. There is no problem at all with respect
to having such a tiny value for the cosmological constant at
the classical level. However, the problem arises when the
quantum corrections (and other corrections such as non-
perturbative effects coming from the QCD instantons) for
the cosmological constant are included, which would make
the value of the cosmological constant much bigger, and
hence its small value is not stable to the large quantum
corrections [3,4]. For instance, with the cutoff at the Planck
energy scale, the quantum fluctuations would additionally
contribute to the cosmological constant with a quantity
around ∼M4

Pl. In order to yield the correct physical result, a
cancellation between the bare cosmological constant and
the quantum corrections must be fine-tuned to an unimagi-
nable precision which is around ∼120 orders of magnitude
in order. Therefore, the cosmological constant problem has
been regarded as one of the most important problems in
modern physics [5,6].

The traditional approach to understanding why the
cosmological constant is not large under quantum correc-
tions is based on a certain symmetry (either continuous or
discrete), which provides a mechanism to cancel the
quantum contributions precisely. The most promising
symmetry is perhaps supersymmetry which, if unbroken,
would lead to a very precise cancellation between boson
and fermions contributing to the vacuum energy since their
contributions are opposite signs. Unfortunately, the super-
partners of the Standard Model (SM) particles have not
been observed so far since supersymmetry must be sponta-
neously broken down at least at the TeV scale. It was also
suggested that the one-loop contribution to the cosmologi-
cal constant might vanish in certain string models with
broken supersymmetry [7,8]. However, it was argued that
the higher-order quantum corrections would spoil this
vanishing [9,10]. In addition, these string models need
to have the supersymmetric non-Abelian sector [11–13].
Another promising symmetry to solve the cosmological
constant problem is scale invariance or conformal sym-
metry which forbids the quantities or the terms in
Lagrangian with the length scale dimension and hence
the cosmological constant has to be zero. However, the
observed world simply is not invariant under the scale
transformation. For other ideas which have been proposed
in the literature, see [14,15] for reviews. Although there
have been attempts which have been made to solve the
cosmological constant problem there is indeed no known
solution to this problem at present.
The swampland program aims [16–18] to seek the

universal features of quantum gravity and the consis-
tency criteria which distinguish effective field theories
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UV-completed consistent with quantum gravity from
those which cannot or are in the swampland. In particular,
this program leads to interesting implications for infla-
tionary cosmology (corresponding to the early accelerat-
ing expansion of the universe) which is constrained by the
swampland criterion for de Sitter [19,20] and trans-
Planckian censorship conjecture [21,22]. In this paper,
based on the swampland program we will point to a novel
and simple mechanism which could forbid quantum
fluctuations (as well as other effects) to generate zero-
point energy contributions to the cosmological constant.
Although this mechanism is far from a solution to the
cosmological constant problem, we hope that it could
give a step toward a complete solution.
If a theory satisfies the swampland constraints and is

completed into quantum gravity in UV, then a lower-
dimensional theory that is obtained from its compactifica-
tion to lower dimensions must do as well. On the contrary, if
the theory upon compactification is inconsistent with
quantum gravity then its parent higher dimensional theory
itself is pathological. Because the SM coupled to general
relativity (GR) is a good effective low energy theory and
thus cannot be in the swampland, its compactification
solution down to lower dimensions [23–25] must be
consistent with quantum gravity. In this sense, the swamp-
land conjectures impose the constraints not only on the SM
coupled to GR itself but also on its compactification
solution. This has motivated the intensive investigations
in the literature with the significant implications between the
cosmological constant and the neutrino masses [26–30]
arising when applying the non-SUSYAdS conjecture [31]
(motivated by theweak gravity conjecture [32]) and the AdS
distance conjecture [33] (realized in string theory and also
supported by the evidence of bottom-up physics [34–36]).
In the present work, in this direction, we study the

compactification of the SM coupled to GR on a circle S1.
However, a new point here is that we consider the
compactified coordinate dependence of the 3D tensor
component of the 4D metric in a natural way which is
usually ignored in the literature. Interestingly, from inves-
tigating the wave function profile of the 3D tensor
component along the compactified dimension we find a
novel aspect that the radius of the compactified dimension
and the 4D cosmological constant are in fact quantized.
Here, we obtain a quantization rule of the 4D cosmological
constant Λ4 as Λ4 ∝ n2 with n ¼ 1; 2; 3; 4;…. In this way,
the values of the 4D cosmological constant are not arbitrary
but only its specific values are allowed. This quantization or
this discrete spectrum could prevent the quantum fluctua-
tions from generating zero-point energy contributions to the
4D cosmological constant because in general, the addi-
tional contribution from the quantum fluctuations would
not respect the quantization rule. This is in analogy to that
the hydrogen atom would be unable to absorb the energy
which is not equal to the energy difference between two

initial and final states due to the quantization of its energy
levels.
The action of the SM coupled to GR in the presence of

the observed cosmological constant Λ4 is given as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
ðRð4Þ − 2Λ4Þ þ LSM

�
; ð1Þ

where Rð4Þ and LSM refer to the scalar curvature of 4D
spacetime and Lagrangian of the SM, respectively. We
consider the above system compactified on a circle S1

where one of three spatial dimensions of 4D spacetime is
periodic with the period of 2π, which means that the points
x3 and x3 þ 2π are identified. The 4D metric is generally
parametrized in terms of the 3D fields as follows

ds24 ¼ gijdxidxi þ R2½dx3 þ gAAidxi�2; ð2Þ

where gij is the 3D metric component, Ai the graviphoton,
R is the radion field which determines the radius of S1, gA is
a coupling constant, and i; j ¼ 0; 1; 2.1 Using this ansatz of
the 4D metric, we can expand explicitly the 4D scalar
curvature Rð4Þ given in the action (1) as

Rð4Þ ¼ Rþ 1

4R2
ð∂3gij∂3gij þ gijgkl∂3gij∂3gklÞ

−
g2AR

2

4
FijFij; ð3Þ

where R≡ gijð∂̂kΓ̂k
ji − ∂̂jΓ̂k

ki þ Γ̂k
jiΓ̂l

lk − Γ̂k
liΓ̂l

jkÞ with Γ̂k
ij≡

gkl

2
ð∂̂igjl þ ∂̂jgil − ∂̂lgijÞ, ∂̂i ≡ ∂i − gAAi∂3, and Fij ¼

∂iAj − ∂jAi. It is important to emphasize here that the
previous investigations about the compactification of the
SM coupled with GR on S1 [23–30] have not considered
the compactified dimension dependence of the 3D metric
gij and hence the second term in the right-hand side of
Eq. (3) was absent. But, in the present work, we will point
out that the presence of this term would lead to the
quantization of the 4D cosmological constant which could
provide a mechanism to prevent the vacuum fluctuations
as well as other effects contributing additionally to the
cosmological constant.
Let us find the wave function profile of the 3D metric gij.

In order to do this, first we obtain the equation of motion for
gij in the vacuum R ¼ constant, Ai ¼ 0, and the vanishing
matter fields by varying the action (1) in the 3D tensor
component of the 4D metric as follows

1We use the metric sign as ð−;þ;þ;þÞ.
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R̄ij −
1

2
gijR̄þ Λ4gij þ

1

4R2

�
gikgjl∂23g

kl − ∂
2
3gij

þ gkl∂3gkl∂3gij þ 2∂3ðgijgkl∂3gklÞ

−
1

2
gij

�
∂3gkl∂3gkl − ðgkl∂3gklÞ2

��
¼ 0; ð4Þ

where R̄ij ≡ ð∂kΓ̄k
ji − ∂jΓ̄k

ki þ Γ̄l
jiΓ̄k

kl − Γ̄l
kiΓ̄k

jlÞ with Γ̄k
ij ≡

gkl

2
ð∂iglj þ ∂jgki − ∂lgijÞ and R̄≡ gijR̄ij. One can solve

Eq. (4) by separating the variables as gijðxi; x3Þ ¼
χðx3Þgð3Þij ðxiÞ where gð3Þij ðxiÞ is identified as the metric of
the 3D effective theory and χðx3Þ is its wave function
profile along the compactified dimension. Then, substitut-
ing this variable separation into Eq. (4), we obtain the 3D
Einstein field equations determining the 3D effective
geometry of spacetime and the equation for the wave
function profile of the 3D metric as follows

Rð3Þ
ij −

1

2
gð3Þij R

ð3Þ þ Λ3g
ð3Þ
ij ¼ 0; ð5Þ

χ00 þ 11

4

χ02

χ
þ κ2χ ¼ Λ3

R−2 ; ð6Þ

where Rð3Þ
ij (Rð3Þ) is the Ricci (scalar) curvature of 3D

effective spacetime, κ ≡ ffiffiffiffiffiffi
Λ4

p
=R−1, and Λ3 is a constant

which characterizes the dynamics of the 3Dmetric gij along
the compactified dimension and from Eq. (5) we see that it
plays the role of a 3D cosmological constant.
It is difficult to find an analytical solution for χðx3Þ in the

general case. However, in the situation of Λ3=R−2 ≪ 1
(which can be seen from Table 1 in Ref. [37]), we can
perturbatively solve Eq. (6) in the order of Λ3=R−2. The
solution of χðθÞ at the leading order is easily found as
follows

χðx3Þ ¼
�
1

2

�
1þ cos ð

ffiffiffiffiffi
15

p
κx3Þ

��
2=15

: ð7Þ

Due to the topology of S1, the wave function profile χðx3Þ
must be periodic with the period of 2π, i.e.
χðx3Þ ¼ χðx3 þ 2πÞ, which implies

ffiffiffiffiffi
15

p
κ ¼ n with

n ¼ 1; 2; 3;…. This thus leads to the quantization of the
radius R of the compactified dimension and 4D cosmo-
logical constant Λ4 as

Λ4R2 ¼ n2

15
: ð8Þ

Equation (8) means that the radius of the compactified
dimension and the 4D cosmological constant are not
arbitrary but must obtain the discrete values according to
the quantization relation (8). On the other hand, the radius

of the compactified dimension and the 4D cosmological
constant have no continuous spectrum but a discrete one.
This is a novel point of the circle compactification solution
of the SM coupled to GR which is pointed to the first time.
The quantization relation (8) results from the nontrivial

dynamics of the 3D metric along the compact direction in
the presence of the cosmological constant. From Eq. (6)
that describes the dynamic propagation of the 3D metric
along the compact direction, we see that the 4D cosmo-
logical constant Λ4 plays the role of a force proportional
linearly to the profile χ because its presence curves the
spacetime geometry, whereas the inverse radius R−1 of the
compactified dimension plays the role of a mass for the 3D
metric because its propagation is confined along the
compact direction. (Note that, the term 11χ02=ð4χÞ in
Eq. (6) comes from the nonlinear property of the gravita-
tional field which means that gravity is itself a source
creating the curvature of the spacetime geometry.) As a
result, it leads to the oscillation behavior of the 3D metric
along the compactified dimension with the corresponding
period depending on the ratio of

ffiffiffiffiffiffi
Λ4

p
to R−1. In addition,

the dynamic propagation of the 3D metric is constrained
by the periodic property of the compactified dimension.
Hence, both of these aspects result in the quantization of the
radius R of the compactified dimension and 4D cosmo-
logical constant Λ4.
In fact, the size of the compactified dimension can be

physically determined by the 3D effective potential of the
radion field which is generated by the dynamics of 3D
tensor component along the compactified dimension and
the one-loop quantum corrections with the Casimir energy
density calculated in Ref. [23] (see Appendix D for detailed
computation). Taking into account the stabilization mecha-
nism and from Eq. (8), we can find a general quantization
rule of the 4D cosmological constant in terms of the mass of
the light particles in the spectrum and the parameter Λ3 as
follows

Λ4 ¼ fðmi; ni;Λ3Þn2 ∝ n2; ð9Þ

where fðmi; ni;Λ3Þ is a function of mi (the mass of the ith
light particle), ni (the number of degrees of freedom
corresponding to the ith light particle), and Λ3. Note that,
the function fðmi; ni;Λ3Þ can be completely determined
from the minimum of the radion potential. The quantization
rule (9) implies that the ratio of the 4D cosmological
constant to a specific combination of the 3D cosmological
constant and the masses of the particles contributing to the
radion potential must lead to 1, 4, 9, 16, 25, …. In general,
under the quantum corrections this ratio would not lead
to 1, 4, 9, 16, 25, … which are only the allowed values.
Hence, we expect that the quantization rule (9) can provide
a mechanism to prevent the quantum fluctuations from
generating additional contributions to the 4D cosmological
constant.
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It is important to emphasize that Eq. (8) can be realized
as a quantum gravity sign that arises at the low-energy
regime. Hence, one expects that the quantization rule for
the radius of the compactified dimension and the cosmo-
logical constant could provide a step toward solving not
only the cosmological constant problem but also other
important problems (which require a complete theory of
quantum gravity) such as a microscopic description of the
black hole entropy. By considering the compactification of
dS5 on a circle S1 to obtain 4D effective field theory, we
can find a quantization relation for the size of the extra
dimension as R−1 ∝

ffiffiffiffiffiffi
Λ5

p
=n where Λ5 is the bulk cosmo-

logical constant and n ¼ 1; 2; 3;…, in analogy to what we
have done for the S1 compactification of the SM. Each
value of the positive integer n corresponding to a possible
value of the size of the extra dimension implies a possible
configuration of 4D effective field theory. Hence, we can
calculate the black hole entropy by summing over all
relevant configurations. We leave an exploration of this
proposal to future work.

APPENDIX A: THE EXPANSION OF Rð4Þ IN
TERMS OF 3D COMPONENTS

Because Eq. (3) is the main technical starting point, in
this appendix we present detailed computations of how to
obtain it. It is easy to do the calculations in the frame
f∂̂i; ∂̂3g≡ f∂̂μg where ∂̂i ≡ ∂i − gAAi∂3 and ∂̂3 ≡ ∂3 which
transform as a 3D vector and a 1D vector, respectively. The
corresponding coframe is given by fdxi; dx3 þ gAAidxig
which dual to f∂̂i; ∂̂3g, respectively. The components of 4D
metric and its dual are given in these bases as

ĝμν ¼ diagðgij; R2Þ;
ĝμν ¼ diagðgij; R−2Þ: ðA1Þ

Then, we can determine the Christoffel connection Γ̂ρ
μν and

the Riemann curvature tensor R̂λ
μρν in these bases as follows

Γ̂ρ
μν ¼ ĝρλ

2
ð∂̂μĝνλ þ ∂̂νĝμλ − ∂̂λĝμνÞ

þ ĝρλ

2
ðCσ

λμĝνσ þ Cσ
λνĝμσÞ þ

Cρ
μν

2
;

R̂λ
μρν ¼ ∂̂ρΓ̂λ

νμ − ∂̂νΓ̂λ
ρμ þ Γ̂σ

νμΓ̂λ
ρσ − Γ̂σ

ρμΓ̂λ
νσ

− Cσ
ρνΓ̂λ

σμ; ðA2Þ

where Cρ
μν defines the commutation of two frame fields as

½∂̂μ; ∂̂ν� ¼ Cρ
μν∂̂ρ: ðA3Þ

The 4D scalar curvature Rð4Þ reads

Rð4Þ ¼ ĝμνR̂ρ
μρν ¼ gijR̂ρ

iρj þ g33R̂ρ
3ρ3: ðA4Þ

The first and second terms are explicitly expanded as
follows

gijR̂ρ
iρj ¼ gijð∂̂ρΓ̂ρ

ji − ∂̂jΓ̂
ρ
ρi þ Γ̂ρ

jiΓ̂
λ
λρ − Γ̂ρ

λiΓ̂
λ
jρ−C

ρ
λjΓ̂

λ
ρiÞ

¼ gij½ð∂̂kΓ̂k
ji − ∂̂jΓ̂k

ki þ Γ̂k
jiΓ̂l

lk − Γ̂k
liΓ̂l

jkÞ
þ ð∂̂3Γ̂3

ji þ Γ̂3
jiΓ̂k

k3 þ Γ̂k
jiΓ̂3

3k þ Γ̂3
jiΓ̂3

33Þ
− ð∂̂jΓ̂3

3i þ Γ̂k
3iΓ̂3

jk þ Γ̂3
kiΓ̂k

j3 þ Γ̂3
3iΓ̂3

j3Þ
− ðC3

kjΓ̂
k
3i þ C3

3jΓ̂
3
3iÞ�; ðA5Þ

g33R̂ρ
3ρ3 ¼ g33ð∂̂ρΓ̂ρ

33 − ∂̂3Γ̂
ρ
ρ3 þ Γ̂ρ

33Γ̂
λ
λρ − Γ̂ρ

λ3Γ̂
λ
3ρ−C

ρ
λ3Γ̂

λ
ρ3Þ

¼ g33ð∂̂iΓ̂i
33 − ∂̂3Γ̂i

i3 þ Γ̂i
33Γ̂

j
ji þ Γ̂3

33Γ̂i
i3

−Γ̂j
i3Γ̂

i
3j − Γ̂3

i3Γ̂i
33 − C3

i3Γ̂
i
33Þ: ðA6Þ

In (A5) and (A6), we find the following combinations

gijð∂̂3Γ̂3
ji þ Γ̂3

jiΓ̂k
k3 þ Γ̂3

jiΓ̂3
33Þ≡∇μY

μ
1 þ

g33

2
∂̂3gij∂̂3gij;

ðA7Þ

gijð∂̂jΓ̂3
3i − Γ̂k

jiΓ̂3
3kÞ − g33Γ̂i

33Γ̂3
3i ≡∇μY

μ
2; ðA8Þ

g33ð∂̂iΓ̂i
33 þ Γ̂i

33Γ̂
j
ji þ Γ̂i

33Γ̂3
3iÞ

≡∇μY
μ
3 þ

gij

2
∂̂ig33∂̂jg33 þ gAgij∂̂3Aig33∂̂jg33; ðA9Þ

g33ð∂̂3Γ̂i
i3 − Γ̂3

33Γ̂i
i3Þ − gijΓ̂3

ijΓ̂k
k3 ≡∇μY

μ
4; ðA10Þ

where

Yμ
1 ≡ ð0; gijΓ̂3

jiÞ;
Yμ
2 ≡ ðgijΓ̂3

3j; 0Þ;
Yμ
2 ≡ ðg33Γ̂i

33; 0Þ;
Yμ
4 ≡ ð0; g33Γ̂i

i3Þ: ðA11Þ

The terms ∇μY
μ
a with a ¼ 1; 2; 3; 4 are divergences

corresponding to the boundary terms and as a result, they
vanish at infinity. Then, Rð4Þ is a sum of the remaining
terms as
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Rð4Þ ¼ R − gijðΓ̂k
3iΓ̂3

jk þ Γ̂3
kiΓ̂k

j3 þ Γ̂3
3iΓ̂3

j3 þ Γ̂3
ijΓ̂k

k3þC3
kjΓ̂

k
3i þ C3

3jΓ̂
3
3iÞ − g33ðΓ̂j

i3Γ̂
i
3j þ Γ̂3

i3Γ̂i
33

þ2Γ̂3
3iΓ̂i

33 þ C3
i3Γ̂

i
33Þ þ

g33

2
∂̂3gij∂̂3gij þ

gij

2
∂̂ig33∂̂jg33 þ gAgij∂̂3Aig33∂̂jg33

¼ Rþ 1

4R2
ð∂3gij∂3gij þ gijgkl∂3gij∂3gklÞ −

g2AR
2

4
FijFij; ðA12Þ

where R≡ gijð∂̂kΓ̂k
ji − ∂̂jΓ̂k

ki þ Γ̂k
jiΓ̂l

lk − Γ̂k
liΓ̂l

jkÞ≡ gijRij
and Fij ¼ ∂iAj − ∂jAi. Note that, in the calculation of
the scalar curvature Rð4Þ, we have considered the compo-
nents gij, Ai, and R to be the general functions of ðxi; x3Þ.
However, we observe that first the terms relating to ∂̂3Ai
automatically cancel together and hence they do not
contribute to Rð4Þ. This is because the spacetime curvature
which is caused by the nontriviality of the Uð1Þ principal
bundle is measured by the curvature of the connection Ai,
i.e. Fij. Second, the first-order derivative terms of R
associated with its kinetic terms do not appear in Rð4Þ

because the curvature of the S1 fiber is zero. But, the kinetic
terms of R would appear in Einstein frame derived by
rescaling the 3D metric as gij → Ω−2gij with Ω ¼ R=r
where r is introduced to keep the rescaled 3D metric
dimensionless and would be fixed equal to the vacuum
expectation value of the radion field.

APPENDIX B: EQUATIONS OF MOTION FOR
THE 3D COMPONENTS OF THE

BULK METRIC

First, let us obtain equations of motion for the 3D tensor
component gij from the following variation

δg3SEH ¼ δg3

Z
d4x

ffiffiffiffiffiffi
−g

p M2
Pl

2
ðRð4Þ − 2Λ4Þ

¼ M2
Pl

2

Z
d4x

�
ðRð4Þ − 2Λ4Þδg3

ffiffiffiffiffiffi
−g

p

þ ffiffiffiffiffiffi
−g

p
δg3R

ð4Þ
�
¼ 0; ðB1Þ

where δg3 refers to the variation in terms of gij and the
expansion ofRð4Þ is given in Eq. (A12). We find δg3

ffiffiffiffiffiffi−gp ¼
− 1

2

ffiffiffiffiffiffi−gp
gijδgij and

δg3R
ð4Þ ¼ δgijRij þ gijδg3Rij

þ 1

4
δg3ð∂3gij∂3gij þ gijgkl∂3gij∂3gklÞ

−
g2AR

2

4
δg3ðFijFijÞ: ðB2Þ

The second variation term in (B2) is calculated as

gijδg3Rij ¼ ∇kðgij∇kδgij −∇lδgklÞ
¼ ∇μX

μ
1 − Γ̂3

3kðgij∇kδgij −∇lδgklÞ
¼ ∇μX

μ
1 þ∇μX

μ
2 þ∇μX

μ
3 þ Γ̂3

3kΓ̂3
3lg

klgijδgij

þ∇kðgklΓ̂3
3lgijÞδgij − Γ̂3

3iΓ̂3
3jδg

ij

−∇iðΓ̂3
3jÞδgij; ðB3Þ

where

Xμ
1 ¼ ðgij∇kδgij −∇lδgkl; 0Þ;

Xμ
2 ¼ ð−gklΓ̂3

3lgijδg
ij; 0Þ;

Xμ
3 ¼ ðΓ̂3

3lδg
lk; 0Þ: ðB4Þ

The variation of the third term in (B2) reads

δg3ð∂3gij∂3gij þ gijgkl∂3gij∂3gklÞ
¼ ∇μX

μ
4 þ∇μX

μ
5 þ gikgjl∂3∂3gkl − ∂3∂

3gij

þ gkl∂3gkl∂3gijδgij þ 2∂3ðgijgkl∂3gklÞ
þ ðgkl∂3gklÞ2gijδgij − 2Γ̂3

33ð∂3gij þ gijgkl∂3gklÞδgij;
ðB5Þ

where

Xμ
4 ¼ ð0; 2∂3gijδgijÞ;

Xμ
5 ¼ ð0; 2gijgkl∂3gklδgijÞ: ðB6Þ

The last variation term is

δg3ðFijFijÞ ¼ 2Fi
kFjk: ðB7Þ

Finally, we find the equations of motion for gij as follows

Rij −
1

2
gijRþ Λ4gij þ

1

4R2

�
gikgjl∂23g

kl

−∂23gij þ gkl∂3gkl∂3gij þ 2∂3ðgijgkl∂3gklÞ

−
1

2
gijf∂3gkl∂3gkl − ðgkl∂3gklÞ2g

�

−
g2AR

2

2

�
Fi

kFjk −
1

4
FklFklgij

�

þ f1ðΓ̂3
3k; Γ̂3

33Þ ¼ 0; ðB8Þ
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where f1ðΓ̂k
k3; Γ̂3

33Þ refers to the terms which are propor-
tional to Γ̂3

3k, ðΓ̂3
3kÞ2, ∇kðΓ̂3

3lÞ, and Γ̂3
33 which are zero with

∂̂iR ¼ 0, ∂̂3R ¼ 0, and ∂3Ai ¼ 0.
Equations of motion for the 3D vector component Ai are

derived from the following variation

δASEH ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
δAR −

g2AR
2

4
δAðFijFijÞ

�
¼ 0

ðB9Þ

This variation leads to the equations of motion for Ai as

∇iFij þ R−2f2ðAj; ∂̂jgkl; ∂̂3gklÞ ¼ 0: ðB10Þ

Note that, the second term in Eq. (B10) is negligible
because it is strongly suppressed by R−2 which is in the
order of Λ4 (≈5.06 × 10−84 GeV2 [2]) as indicated in
Appendix D. Thus, Eq. (B10) can be approximated as
∇iFij ¼ 0.
Because the radion field R would get an effective

potential (generated from the cosmological constant term
and one-loop quantum corrections) by which the size of the
compactified dimension is physically fixed, we write the
equation of motion for the radion field R including this
radion potential, corresponding to the variation of the 3D
action (given in Appendix D) as follows

□R ¼ 1

R
ð∂iRÞ2 þ

R2

2M3

∂V
∂R

þ f3ðAi; FijÞ; ðB11Þ

where f3ðAi; FijÞ is a functional of Ai and Fij which
vanishes for Ai ¼ 0.

APPENDIX C: A DERIVATION OF
EQS. (5) AND (6)

In order to solve Eq. (4), we use the method of the
variable separation as gijðxi; x3Þ ¼ χðx3Þgð3Þij ðxiÞ where

gð3Þij ðxiÞ is the metric of the 3D effective theory whose
wave function profile along the compactified dimension is

χðx3Þ. First, by substituting gijðxi; x3Þ ¼ χðx3Þgð3Þij ðxiÞ into
Eq. (4), we find

Rð3Þ
ij −

1

2
gð3Þij R

ð3Þ þ Λ4χg
ð3Þ
ij þ 1

4R2

��
1

χ

�00
χ2 − χ00

þ 3χ02

χ
þ 6χ00 −

3χ

2

��
1

χ

�0
χ0 − 3

�
χ0

χ

�
2
��

gð3Þij ; ðC1Þ

where Rð3Þ
ij ≡ ð∂kΓk

ji − ∂jΓk
ki þ Γl

jiΓk
kl − Γl

kiΓk
jlÞ with Γk

ij ≡
gð3Þklð∂igð3Þlj þ ∂jg

ð3Þ
ki − ∂lg

ð3Þ
ij Þ=2 and Rð3Þ ≡ gð3ÞijRð3Þ

ij , and
0 denotes the derivative with respect to the coordinate x3.
After simplification, we obtain

Rð3Þ
ij −

1

2
gð3Þij R

ð3Þ þ
�
1

R2

�
χ00 þ 11

4

χ02

χ

�
þ Λ4χ

�
gð3Þij ¼ 0:

ðC2Þ

This equation can be written in the following way

Rð3Þ

6
¼ 1

R2

�
χ00 þ 11

4

χ02

χ

�
þ Λ4χ: ðC3Þ

It is clear that the left-handed and right-handed sides of
Eq. (C3) depend on the variables xi and x3, respectively.
This implies that these sides are equal to a constant denoted
by Λ3, which leads to

Rð3Þ ¼ 6Λ3; ðC4Þ

χ00 þ 11

4

χ02

χ
þ κ2χ ¼ Λ3

R−2 ; ðC5Þ

κ ≡ ffiffiffiffiffiffi
Λ4

p
=R−1. Note that, Eq. (C4) is equivalent to Eq. (5)

in the paper.

APPENDIX D: THE RADION POTENTIAL

The dimensional reduction of the 4D Einstein gravity on
S1 given in the Einstein frame reads

S3D⊃
Z

d3x
ffiffiffiffiffiffiffiffi
−g3

p �
M3

2

�
Rð3Þ−2

�
∂iR
R

�
2
�
−M3

�
r
R

�
2

Λ3

�
;

ðD1Þ

where g3 ≡ det½gð3Þij � and the 3D Planck energy scale is
identified as

M3 ≡ rM2
Pl

Z
π

−π
dx3χ1=2 ¼ 2

ffiffiffi
π

p
Γð17=30Þ

Γð16=15Þ rM2
Pl: ðD2Þ

The last term in the action (D1) is the tree-level potential of
the radion field generated by the dynamics of 3D tensor
component along the compactified dimension. In addition,
the one-loop quantum corrections would contribute to the
radion potential as

V1LðRÞ ¼
X
i

ð−1ÞsiniR
�
r
R

�
3

ρiðRÞ
Z

π

−π
dx3χ

3
2: ðD3Þ

Here si is equal to 0(1) for the fermions(bosons), ni is the
number of degrees of freedom corresponding to the ith
particle, and the Casimir energy density with respect to the
ith particle is given by [23]

ρiðRÞ ¼
X∞
n¼1

2m4
i

ð2πÞ2
K2ð2πnmiRÞ
ð2πnmiRÞ2

; ðD4Þ
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where mi and K2ðzÞ are the mass of the ith particle and
the modified Bessel function, respectively. It should be
noted here that due to the function K2ðzÞ suppressed for

z ≪ 1 the particles with their mass which is much
larger than R−1 do not contribute significantly to the
one-loop term of the radion potential and hence we
can ignore their contribution. On the other hand, only
the light degrees of freedom contribute significantly to
V1LðRÞ.
The radion potential VðRÞ thus is a sum of the tree and

loop level contributions, which is expanded in terms ofmiR
for miR ≪ 1 as

VðRÞ
2

ffiffiffi
π

p
r3

≃
�
Γð17=30Þ
Γð16=15Þ

M2
PlΛ3

R2
þ 1

16π2
Γð7=10Þ
Γð6=5Þ

1

R6

×
X
i

ð−1Þsini
�
1

90
−
ðmiRÞ2

6
þ ðmiRÞ4

48

��
: ðD5Þ

The behavior of the radion potential is depicted in Fig. 1.
Here, the bosonic contributions come from graviton and
photon, whereas the fermionic contributions come from the
lightest neutrino and an additional massless Dirac fermion.
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