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We reexamine the Hartle-Hawking wave function from the point of view of a quantum theory which
starts from the connection representation and allows for off-shell nonconstancy of Λ (as in unimodular
theory), with a concomitant dual relational time variable. By translating its structures to the metric
representation we find a nontrivial inner product rendering wave packets of Hartle-Hawking waves
normalizable and the time evolution unitary; however, the implied probability measure differs
significantly from the naive jψ j2. In contrast with the (monochromatic) Hartle-Hawking wave function,
these packets form traveling waves with a probability peak describing de Sitter space, except near the
bounce, where the incident and reflected waves interfere, transiently recreating the usual standing wave.
Away from the bounce the packets get sharper both in metric and connection space, an apparent
contradiction with Heisenberg’s principle allowed by the fact that the metric is not Hermitian, even
though its eigenvalues are real. Near the bounce, the evanescent wave not only penetrates into the
classically forbidden region but also extends into the a2 < 0 Euclidean domain. We work out the
propagators for this theory and relate them to the standard ones. The a ¼ 0 point (aka the “nothing”) is
unremarkable, and in any case a wave function peaked therein is typically non-normalizable and/or
implies a nonsensical probability for Λ (which the Universe would preserve forever). Within this theory it
makes more sense to adopt a Gaussian state in an appropriate function of Λ, and use the probability
associated with the evanescent wave present near the time of the bounce as a measure of the likelihood of
creation of a pair of time-symmetric semiclassical Universes.
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I. INTRODUCTION

The Hartle-Hawking wave function of the Universe was
one of the first proposals of a concrete framework for
quantum creation of the Universe out of nothing [1]. Its
interpretation and derivation has aroused much interest
(e.g., [2–4]), with a revival in recent years (e.g., [5–7]).
Even back in the 1980s, when the pioneering work of
Hartle and Hawking was done, an almost orthogonal
approach to quantum gravity was developed, making the
connection, rather than the metric, the central character
of the theory (e.g., [8]). One of its earliest solutions was
the Chern-Simons-Kodama state [9,10], but in the face of
its problems (e.g., [11]) this was superseded by the loop
representation, with sporadic backtracking [12–18].

The metric- and connection-driven approaches then led
separate lives. It was not until recently that it was realized
that the Chern-Simons-Kodama state is in fact the Fourier
dual of the Hartle-Hawking wave function under the most
minimal assumption: that the connection is real [19]. The
point of this paper is to explore what can be learnt from this
duality regarding the initial conditions of the Universe.
The metric and connection appear as duals in the

quantum theory and the choice of representation in quan-
tum cosmology is not innocuous. It can lead to inequivalent
theories: different natural ranges of variation for the
variables and different natural inner products and proba-
bility interpretations, for example. It is only in the most
standard setting, where the inner product is trivial and fixed
a priori and the ranges for the variables are a given on
physical grounds, that one may appeal to the Stone-von
Neumann theorem and claim unitary equivalence between
the representations. In contrast, in quantum cosmology
the choice of representation may shed new light on the
old issue of “boundary conditions.” The reason why the
position representation is usually favored in standard
quantum mechanics is that it is physically clearer for
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defining boundary conditions. But in quantum gravity/
cosmology it is far from obvious which representation
should receive primacy in this respect. In this paper we
reassess the metric driven no-boundary proposal and the
Hartle-Hawking wave function from the point of view of a
theory which starts from the connection representation.
In order to do this, an extra ingredient is needed. The

physical interpretation of the Chern-Simons-Kodama state
is improved by a minimal extension of Einstein’s gravity:
“unimodular” gravity [20] in its fully diffeomorphism
formulation [21]. This happens for two reasons. First,
the unimodular extension introduces a physical time
variable (unimodular or 4-volume time [22]), so that the
waves nowmove “in physical time.” Second, it introduces a
natural (unitary) inner product with respect to which
normalizable wave packets, superposing states with differ-
ent Λ, may be built [23,24]. From the point of view of
unimodular theory, fixed-Λ wave functions are just the
“spatial” factors of monochromatic partial waves.1

Pathologies found in the fixed-Λ theory (infinite norms,
lack of a time variable) are cured for the wave packets built
from these partial waves, and physical behavior is found.
In particular the peak of the probability (induced by the
inner product) follows the classical trajectory in unimod-
ular time in the semiclassical regime [24]. Quantum
deviations around this trajectory give predictability to the
theory (see Refs. [25,26] for examples).
The narrative line of this paper is as follows. We first

review results on the connection-driven (Sec. II) and unim-
odular (Sec. III) quantum theories, as well as the metric-
connection duality exposed in [19] (Sec. IV). In Sec. V we
then translate into the metric formalism the construction of
unimodular wave packets selecting the connection contour
associated with Hartle-Hawking waves, paying particular
attention to the inner product they acquire, the implied
probability measure and the structure of the Hilbert space.
Surprises are found at once. In Sec. VI we explicitly

construct packets of Hartle-Hawking waves for a Gaussian
amplitude in ϕ ¼ 3=Λ. These packets are dramatically
different from the usual standing waves: they form well
separated traveling waves even without the need of
Vilenkin boundary conditions. Their peaks follow the
semiclassical limit and get sharper as the Universe gets
larger, in an apparent contradiction with the Heisenberg
principle which we resolve by inspection of the effects of
our unusual inner product.
In an attempt to make contact with creation out of

nothing and the no-boundary proposal, we evaluate the
unimodular propagators in Secs. VII and VIII. The math-
ematics is straightforward but serious problems are

identified in Sec. IX when trying to force the theory into
creation out of a ¼ 0. Briefly, such an initial condition is
naturally non-normalizable, and would in any case imply a
nonviable distribution for Λ (which the Universe would
have to live with for ever). Having started from the
connection representation, the dual is also a2, not a, with
the whole real line naturally appearing in the theory.
All of this points to the creation of a pair of time-

symmetrical semiclassical Universes out of the full evan-
escent wave resent around the bounce, with a Gaussian
state, as argued in Sec. X. In a concluding section we
summarize the take-home messages of this paper.

II. SUMMARY OF CONNECTION-BASED
RESULTS

The roots of connection led approaches, such as the
Ashtekar formalism, are in the Einstein-Cartan (EC)
formalism [8]. We will only need the reduction to minis-
uperspace (MSS) in this paper, but start by presenting the
full theory because this will illuminate some peculiarities.
The EC action subject to a 3þ 1 split takes the form:

SEC ¼
1

16πG

Z
dtd3x½2 _Ki

aEa
i − ðNH þ NaHa þ NiGiÞ�;

where Ki
a is the extrinsic curvature connection (from which

the Ashtekar connection can be built by a canonical trans-
formation [8]), Ea

i is the densitized inverse triad, and the last
three terms are the Hamiltonian, Diffeomorphism and Gauss
constraints, enforced by corresponding Lagrange multipliers.
Quantization derives from implementations of:

½Ki
aðxÞ; Eb

j ðyÞ� ¼ il2Pδ
b
aδ

i
jδðx − yÞ ð1Þ

where lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ
p

is the reduced Planck length.
Adding Λ, in MSS this action becomes (e.g., [19,27]):

S0 ¼
3Vc

8πG

Z
dt

�
_ba2 − Na

�
−ðb2 þ kÞ þ Λ

3
a2
��

; ð2Þ

where a is the expansion factor, b is the only MSS
connection variable (an off-shell version of the Hubble
parameter, since b ¼ _a on-shell, if there is no torsion), k is
the normalized spatial curvature (assumed k ¼ 1, as usual),
N is the lapse function and Vc ¼

R
d3x is the comoving

volume of the region under study, assumed finite through-
out this paper (in the quantum cosmology classical liter-
ature one usually chooses k¼1 and Vc¼2π2; see Ref. [28]
for a discussion of the criteria for the choice of Vc).
Hence, (1) becomes:

½b̂; â2� ¼ i
l2P
3Vc

≡ ih; ð3Þ

1“Spatial” here is used not in the sense of x, which is trivial in
minisuperspace, but in the sense of dependent on the nontime
variables, here the metric or the connection, as well as the
“frequency” conjugate to the time variable, hereΛ itself. This will
be clearer later, cf. (6) vs (15), or (31) vs (34).

BRUNO ALEXANDRE and JOÃO MAGUEIJO PHYS. REV. D 107, 063501 (2023)

063501-2



so that in the b representation:

â2 ¼ −i
l2P
3Vc

∂

∂b
¼ −ih

∂

∂b
; ð4Þ

leading (with suitable ordering) to the WDW equation:

�
−ðb2 þ kÞ − ih

Λ
3

∂

∂b

�
ψ s ¼ 0; ð5Þ

where we introduce the subscript s to solutions of the
WDWequation for later convenience. This is solved by the
Chern-Simons-Kodama (CSK) state reduced to MSS:

ψ sðb;ϕÞ ¼ ψCSðb;ϕÞ ¼ N b exp
�
i
h
ϕXðbÞ

�
; ð6Þ

where N b is a normalization factor,2 ϕ ¼ 3=Λ and

XðbÞ ¼ LCS ¼
b3

3
þ kb ð7Þ

is the MSS reduction of the Chern-Simons functional. It is
known [19] that the CSK state is the Fourier dual of both
the Hartle-Hawking (HH) and Vilenkin (V)wave functions,
depending on the choice of contour (and sign of Λ, as we
will see). Indeed the literature on the HH and V state uses
the CSK state unwittingly (see Ref. [4] for example).
Although not strictly needed in this paper we assume that b
covers the whole real line (so that we have a HH dual for
Λ > 0). Dropping this assumption will be investigated
elsewhere: there are some technical differences.
As announced in the introduction, the representation

from which one starts matters. By starting from the
connection we have made the following choices which
are not innocuous when reexamined from the metric
viewpoint:

(i) The natural variable is ϕ ¼ 3=Λ and not Λ. Clas-
sically this amounts to a canonical transformation:
Λ → ϕðΛÞ and T → Tϕ ¼ T=ϕ0ðΛÞ. The quantum
mechanical theories that follow are not equivalent,
as we shall presently see.

(ii) Starting from the metric we are led to the pair
fa; pag (possibly with a > 0), whereas starting from
the connection the natural pair is fb; a2g. This is
because the conjugate of the connection is the
densitized inverse triad Ei

a, and in MSS this is a2.
Again they are canonically related, but lead to
quantum theories naturally based on different as-
sumptions. Instead of a > 0, in the b representation
a2 should cover the whole real line including
the negative-Euclidean section. This is because b

generates translations in a2, and remains most
naturally Hermitian if left to act unencumbered.

III. REVIEW OF THE UNIMODULAR
CHERN-SIMONS STATE

We use the Henneaux and Teitelboim formulation of
“unimodular” gravity [21], where full diffeomorphism
invariance is preserved (so that “unimodular” is actually
a misnomer). In this formulation one adds to S0 a new term:

S0 → S ¼ S0 −
3

8πG

Z
d4xϕ∂μTμ ð8Þ

(the prefactor is chosen for later convenience). Here Tμ is a
density, so that the added term is diffeomorphism invariant
without the need of a

ffiffiffiffiffiffi−gp
factor in the volume element or

of the connection in the covariant derivative. Since the
metric and connection do not appear in the new term, the
Einstein equations and other standard field equations are
left unchanged. The only new equations of motion are

δS
δTμ ¼ 0 ⇒ ∂μϕ ¼ ∂μΛ ¼ 0 ð9Þ

δS
δΛ
¼ 0 ⇒ ∂μTμ ∝

ffiffiffiffiffiffi
−g
p ð10Þ

i.e., on-shell-only constancy for Λ (the defining character-
istic of unimodular theories [20,21,29–32]) and the fact that
T0 is proportional to a prime candidate for relational time:
4-volume time [20–22,33,34].
Reduction to MSS gives:

S0 → S ¼ S0 þ
3Vc

8πG

Z
dtx _ϕT ð11Þ

(where we identify T ≡ T0), so classically nothing changes
except that we gain a canonical pair enforcing the con-
stancy of Λ as an equation of motion, and a “time” variable:

_T ¼ N
a3

ϕ2
¼ N

Λ2

9
a3: ð12Þ

However, the quantum mechanics is very different, since:

½ϕ; T� ¼ ih; ð13Þ

that is ϕ and T are quantum complementaries. Hence, we
can choose either the ϕ (i.e. Λ) representation, leading
to the WDW equation (5) for ψsðb;ϕÞ, or its dual time
representation, leading to a Schrodinger equation:

�
−ih

1

b2 þ k
∂

∂b
− ih

∂

∂T

�
ψðb; TÞ ¼ 0; ð14Þ2Irrelevant in much of the original work on the CSK state, but

essential here, as we will see.
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for a wave function depending on time T instead. From
the unimodular perspective [35] the CSK state is just the
spatial factor, ψ s ¼ ψCS, of a monochromatic wave (with
fixed Λ) moving in unimodular time T conjugate to ϕ.
The general solution to the Hamiltonian constraint is the
superposition:

ψðb; TÞ ¼
Z

∞

−∞
dϕAðϕÞ exp

�
−
i
h
ϕT

�
ψ sðb;ϕÞ;

¼
Z

∞

−∞

dϕffiffiffiffiffiffiffiffi
2πh
p AðϕÞ exp

�
i
h
ϕðXðbÞ − TÞ

�
; ð15Þ

for some amplitude function AðϕÞ. We have chosen
normalization N 2

b ¼ jψ sj2 ¼ 1=ð2πhÞ so that the inver-
sion formula is symmetric:

AðϕÞ ¼
Z

dXψðb; TÞ e
− i
hϕðX−TÞffiffiffiffiffiffiffiffi
2πh
p : ð16Þ

For a Gaussian amplitude centered on ϕ0 leading to a
probability with variance σϕ we find wave packets:

ψðb; TÞ ¼ e−
i
hϕ0ðX−TÞ

ð2πσ2TÞ
1
4

exp

�
−
ðX − TÞ2

4σ2T

�
ð17Þ

with

σT ¼
h
2σϕ

ð18Þ

saturating the Heisenberg uncertainty relation following
from (13).
Within the unimodular perspective, the natural inner

product between two states is given by:

hψ1jψ2i ¼
Z

dϕA⋆
1ðϕÞA2ðϕÞ; ð19Þ

and this product is automatically conserved with respect
to time T, i.e., unitarity is enforced, since it is defined in
terms of T-independent amplitudes. By virtue of Parseval’s
theorem (with the assumption that b is real) this product is
equivalent:

hψ1jψ2i ¼
Z

dXψ⋆
1ðb; TÞψ2ðb; TÞ: ð20Þ

Hence the probability in terms of b is

PðbÞ ¼ jψðb; TÞj2 dX
db
¼ jψðb; TÞj2ðb2 þ kÞ ð21Þ

where we note the measure factor.3 Note that this could
have been guessed directly from the conserved current:

jT ¼ jX ¼ jψ j2 ð22Þ

associated with the Schrodinger equation (14) written as:

�
∂

∂X
þ ∂

∂T

�
ψ ¼ 0; ð23Þ

(∂aja ¼ 0, for a ¼ T, X). Note also that one can bypass
expansion (15) to find the general solution:

ψðb; TÞ ¼ FðT − XÞ; ð24Þ

where F can be any function. Hence the waves written in
terms of X are nondispersive. This allows us to guess the
propagator directly.
Given that we have unitarity, it is reasonable to define

physical states as any state derived from an amplitudeAðϕÞ
such that:

hψ jψi ¼
Z

dϕjAðϕÞj2 ¼ 1; ð25Þ

that is any state with norm 1. Hence a delta function is not
acceptable since the integral of the square of a delta
function is not 1, supporting the view aired previously
that fixed Λ “monochromatic” waves (whether HH or V, or
CSK states) are not physical, because non-normalizable.
The Gaussian states are normalizable, and as we will see,
lead to a sound semiclassical limit. However, we stress that
not all AðϕÞ lead to a semiclassical limit, so there is no
a priori reason why perfectly physical states should be
semiclassical at all. For example, a normalized uniform
distribution in ϕ (confined within a finite range) is never
semiclassical. We should not be surprised that semiclassi-
cality is a matter of choice/selection of state, rather than
an imposition from mathematical consistency, or physical
Hilbert space. Fully and endemic quantum behavior is
perfectly physical.
We close this review by specifying why the canonical

transformations Λ → ϕðΛÞ and T → Tϕ ¼ T=ϕ0ðΛÞ, lead
to theories which are all classically equivalent (and in fact
have the same semiclassical limit), but their quantum
mechanics is different. Their solutions (15) are different:
a Gaussian in Λ is not a Gaussian in a generic ϕðΛÞ; the
frequency ΛT is not invariant under the canonical trans-
formation. The natural unimodular inner product (19) is
also not invariant [24,25]. Although all these quantum
theories are different, for a generic ϕ chosen within reason,

3This inner product is exact and should not be confused with its
approximate semiclassical cousins required in more complicated
situations (such as multifluids or minority clocks [24,25,36]).
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their border with the semiclassical limit is the same, as we
will comment in more detail later.

IV. THE MONOCHROMATIC METRIC DUALS
OF THE CSK STATE

Our first purpose is to translate the constructions
reviewed in the last two sections to the metric representa-
tion. We start with the metric dual of the CSK state,
extending [19] to suit our purposes. We assume that both b
and a2 are real and unconstrained, so that:

ψ sða2;ϕÞ ¼
Z

∞

−∞

dbffiffiffiffiffiffiffiffi
2πh
p e−

iba2
h ψ sðb;ϕÞ ð26Þ

ψ sðb;ϕÞ ¼
Z

∞

−∞

da2ffiffiffiffiffiffiffiffi
2πh
p e

iba2
h ψ sða2;ϕÞ ð27Þ

(in [19] we did not define (27); note the symmetrical
convention adopted here in contrast with [19]). Note
that (25) implies boundary conditions both as a2 → ∞
and a2 → ∞. We will often assume thatAðϕÞ is peaked at a
positive ϕ and exponentially suppressed at ϕ < 0, but in
some parts of this paper a general ϕ will be required. It was
shown in [19] that the CSK state is the Fourier dual of both
the HH and V wave functions, depending on the choice of
contour and that imposing the reality of b selects the HH
wave function if Λ > 0 (which for simplicity and definite-
ness was assumed throughout [19]). We will relax this
assumption here, and not only confirm the results of [19]
for Λ > 0, but also show that the reality of b selects the V
wave function if Λ < 0.
This is straightforward to show using the integral

representation of the Airy-like functions:

fð−zÞ ¼ 1

2π

Z
∞

−∞
eið

t3
3
−ztÞdt; ð28Þ

noting that it maps onto (26) with [19]:

z ¼ −
�
ϕ

h

�
2=3

�
k −

a2

ϕ

�
; ð29Þ

t ¼
�
ϕ

h

�
1=3

b: ð30Þ

For ϕ > 0, a real b implies a real t, so that (28) gives an
Airy function:

ψsða2;ϕÞ ¼ N aAið−zÞ ð31Þ

N a ≡ 1

ϕ1=3h2=3
ð32Þ

that is, the HH wave function suitably normalized to match
the normalization N b chosen for its connection dual.4 For
ϕ < 0, however, a real b implies a contour in t shifted from
the real axis by eiπ=3, producing the V wave function:

ψ sða2;ϕÞ ¼
N a

2
½Aið−zÞ þ iBið−zÞ� ð33Þ

(where the modulus of ϕ is to be used in the first factor
in (29) so that the argument is real). This is not surprising,
since the HH and V wave functions are known to be related
by ϕ → −ϕ, a2 → −a2 (or Λ → eiπΛ, a → eiπ=2a, as [2]
puts it). Notice that given that k ¼ 1 and Λ < 0 there are no
Lorentzian classical solutions (cf. the Hamiltonian con-
straint). All the solutions will necessarily be Euclidean,
indeed related to the ones we are about to find via a
a2 → −a2 transformation.
This detail will be largely a formality, since we will

mostly choose amplitudes sharply peaked around a positive
Λ. However, in generic formal calculations we should not
forget that the basis functions ψ sða2;ϕÞ, usually the real
HH (stationary) wave functions forΛ > 0, are not generally
real within the unimodular formalism, since a priori we
cannot assume that A only has support on ϕ > 0. This
clears apparent contradictions when later in this paper we
evaluate the propagators (Sec. VII, in particular around (79)
and footnote 8). These apparent contradictions only arise if
we forget this detail.

V. UNIMODULAR METRIC THEORY

Moving on to the unimodular theory, we can define the
metric-representation superpositions as:

ψða2; TÞ ¼
Z

∞

−∞
dϕAðϕÞ exp

�
−
i
h
ϕT

�
ψ sða2;ϕÞ ð34Þ

so that we have:

ψða2; TÞ ¼
Z

dbffiffiffiffiffiffiffiffi
2πh
p e−

iba2
h ψðb; TÞ ð35Þ

ψðb; TÞ ¼
Z

da2ffiffiffiffiffiffiffiffi
2πh
p e

iba2
h ψða2; TÞ; ð36Þ

mimicking (26) and (27) for the fixed-Λ theory. This is true
because the integrals in ϕ and those in b and a2 commute.

4We notice that this normalization is at odds with the assertion
made in [2] that ψsð0Þ should be a constant as a function of Λ [see
their Eq. (4.19)], an assumption that ultimately pegs down the
final result for the probability of tunneling in [2]. The apparent
contradiction results from the fact that the two theories are
different (the one in [2] identifies Λ with the potential energy
domination of a scalar field; the Λ here is an unimodular Λ).
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We can also introduce the ϕ eigenstates as seen by
unimodular theory

ψϕðq; TÞ ¼ ψ sðq;ϕÞe−
i
hϕT; ð37Þ

with q ¼ b; a2 for the metric and connection representa-
tions, respectively. These are the full expressions (with time
factors) for the monochromatic partial waves, and we can
write the packets as:

ψðq; TÞ ¼
Z

∞

−∞
dϕAðϕÞψϕðq; TÞ; ð38Þ

in lieu of (15) and (34).

A. Metric representation of the inner product

We can now translate into the metric representation the
inner product that most naturally arises in the connection
representation of unimodular theory [i.e. (19) or (20)].
Substituting (36) in (20) we find:

hψ1jψ2i¼
Z

dbj∂bXj
da2da02

2πh
e
ib
h ða02−a2Þψ�1ða2;TÞψ2ða02;TÞ:

Given that ∂bX ¼ b2 þ k, we can use:

Z
db
2πh

e
i
hbΔa

2 ¼ δðΔa2Þ; ð39Þ
Z

dbb2e
i
hbΔa

2 ¼ −2πh3δ00ðΔa2Þ ð40Þ

(where Δa2 ¼ a02 − a2) to obtain, after two integrations by
parts:

hψ1jψ2i ¼
Z

∞

−∞
da2ðkψ⋆

1ða2; TÞψ2ða2; TÞ

þ h2∂a2ψ
⋆
1ða2; TÞ∂a2ψ2ða2; TÞÞ: ð41Þ

This is the general form of the metric representation of
our inner product,5 and given that it ultimately comes
from (19), its time-independence is guaranteed. If one of
the states is an eigenstate of ϕ (with whatever normaliza-
tion) we can perform and integration by parts and use the
Airy equation to simplify its expression to:

hψ1jψ2i ¼
Z

∞

−∞
da2

a2

ϕ
ψ⋆
1ða2; TÞψ2ða2; TÞ

¼
Z

∞

−∞
dμða2Þψ⋆

1ða2; TÞψ2ða2; TÞ: ð42Þ

In this case only, the metric inner product is a change in the
measure factor, dμða2Þ, which happens to be identical
do dXðbÞ using the Hamiltonian constraint for fixed ϕ
(since dX ¼ ðb2 þ kÞdb and b2 þ k ¼ a2=ϕ).
Later on we will need metric representation counterpart

to inversion formula (16). Inserting (36) into (16) leads to:

AðϕÞ ¼
Z

da2ðkψ⋆
ϕða2; TÞψða2; TÞ

þ h2∂a2ψ
⋆
ϕða2; TÞ∂a2ψða2; TÞÞ ð43Þ

mimicking the inner product (41). This is hardly surprising,
with (16) and (43) expressing:

AðϕÞ ¼ hϕjψi ð44Þ

where we denote jϕi the ϕ eigenstate, in whatever
representation. We can also apply the simplification (42),
leading to:

AðϕÞ ¼
Z

dμða2Þψ⋆
ϕða2; TÞψða2; TÞ: ð45Þ

B. The structure of the wave functions space

Once we recognize the nontrivial nature of the inner
products in both representations some of our results can be
put into the standard bra and ket notation. The unimodular
general solutions (15) and (34) can be seen as an expression
of the partition:

1 ¼
Z

dϕjϕihϕj ð46Þ

with:

ψðq; TÞ ¼ hqTjψi ð47Þ

AðϕÞ ¼ hϕjψi ð48Þ

ψϕðq; TÞ ¼ hqTjϕi ð49Þ

ψ sðq;ϕÞ ¼ hqjϕi ð50Þ

with factorization for the eigenfunctions:

hqTjϕi ¼ hqjϕihTjϕi ¼ ψ sðq;ϕÞe−
i
hϕT: ð51Þ

That is, we can rewrite our general solutions in the
equivalent form:

5To the best of our knowledge this inner product is different
from any previously proposed in the literature.
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hqTjψi ¼ hqTj
�Z

dϕjϕihϕj
�
jψi

¼
Z

dϕhϕjψihqTjϕi

¼
Z

dϕhϕjψihqjϕihTjϕi

⇔ ψðq; TÞ ¼
Z

dϕAðϕÞψϕðq; TÞ;

¼
Z

dϕAðϕÞ exp
�
−
i
h
ϕT

�
ψ sðq;ϕÞ ð52Þ

Notice also how the form of the inner product (19) can be
obtained by an insertion of (46), given (44).
A similar formal development can be applied for

q ¼ fb; a2g with a proviso. We would want the inner
products (20) and (41) to result from an insertion of a
completeness relation, but clearly we would need a special
⊗ reflecting the nontrivial inner product (41):

1 ¼
Z

dqjqi ⊗ hqj ð53Þ

with:

ja2i ⊗ ha2j ¼ kja2iha2j þ h2ja2i ∂a2
 �

∂a2
�!ha2j ð54Þ

in the case of a2. We do know that if this is inserted into at
least one eigenstate of ϕ the expression simplifies. In such
as case, and for q ¼ b the completeness relations are just:

1 ¼
Z

dμðqÞjqihqj ð55Þ

Expressions (16) and (45) are such insertions into (44).

C. Probability interpretation

The inner product (41) implies the exact unitary defi-
nition of probability in metric space (with measure da2):

Pða2Þ ¼ kjψða2; TÞj2 þ h2j∂a2ψða2; TÞj2; ð56Þ

and

Z
da2Pða2; TÞ ¼ 1 ð57Þ

is guaranteed by (19) (and has been extensively verified
numerically for all the solutions shown in this paper, as a
check). This probability density is very interesting. It
contains a term controlled by the curvature k ¼ 1, which
is just the Born probability, using da2 as a measure. It then
contains a new term related to the derivative of the wave
function, controlled by prefactor h. Contrary to what might

be expected, as we shall see in the next section, in the
semiclassical limit the second term dominates:

Pða2Þ ≈ h2j∂a2ψða2; TÞj2; ð58Þ

with the more obvious first term only relevant at the time of
the bounce (T ∼ 0) when the incident and reflected wave
interfere, as well as in the classically forbidden region.
This probability not only integrates to 1 at all times but

in the relevant case k ¼ 1 is positive definite. The same
happens if k ¼ 0, but not if k ¼ −1. In this case, our
definition shares with the Wigner function and some other
quasiprobabilities, the fact that in strongly nonclassical
situations it is not positive definite. Indeed it would be
interesting to work out the Wigner functions for these
theories. Note that we are not implying that k ¼ −1 should
be discounted as unphysical because of this; merely that the
probability interpretation for this k and deep in the quantum
phase [where the k term is relevant in (56)] is more subtle
than defining a conserved measure. As with the Wigner
function, the density providing the norm still integrates
to 1, but it is not positive definite. This oddity complies
with the correspondence principle as laid down in [37],
with the difference that we require less drastic novelties
(such as loss of unitarity) deep in the Planck epoch.

VI. HARTLE-HAWKING WAVE PACKETS
AND THE SEMICLASSICAL LIMIT

We can now build wave packets by inserting the
amplitude:

AðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðϕ;ϕ0; σϕÞ

q
ð59Þ

(where N denotes a normal distribution) into (34). For
this choice, the distribution of ϕ [associated with inner
product (19)] is a Gaussian centered at ϕ0 > 0 with
standard deviation σϕ, with σϕ ≪ ϕ0 assumed. Note that
the integral (34) is then negligible for ϕ < 0, hence we have
essentially packets of HH wave functions [i.e., with ψ s
given by (31) and not (33)]. We have numerically checked
this fact. Recall that this amplitude implies an uncertainty in
time σT according to the saturated Heisenberg relation (18).
Illustrative examples of the numerical integration of (34) are
plotted in Figs. 1–4. The salient features are

(i) Unlike for the HH wave function, its corresponding
unimodular packets are not generally real (even
when the amplitude A is real), because the time
factor of each partial wave is complex [see Eq. (34)].
Consequently the unimodular packets are not stand-
ing waves, even though the ψ s are standing waves
(for Λ > 0, as assumed here). See Fig. 1.

(ii) In contrast with the HH wave function, these
packets are localized in a2, i.e., have exponential
fall-off on either side of their envelope’s peak
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(see Figs. 1 and 2 for an illustration). Replotting
Fig. 1 at different T (see also Fig. 3) reveals that
they form traveling waves, with a peak moving in
toward a2 ¼ a2⋆ ¼ kϕ0 for T < 0, then moving out
for T > 0, after a reflection at a2 ¼ a2⋆ and T ∼ 0.
This happens without the need to appeal to
Vilenkin’s traveling waves (for Λ > 0). Hence
the “outgoing wave” of Vilenkin is realized by
HH states within unimodular theory for large
positive times. It will be analytically proved in
the next subsection that at large jTj the peak of the
packets follows the classical trajectory.

(iii) The only time when the wave function is real is at
T ¼ 0, when we have a superposition of perfectly
symmetric incident and a reflected traveling waves.
This forms an instantaneous standing wave, depicted
in Fig. 2. (For jTj < σT there is interference between
the two waves, even if they are not symmetric.) In
the bottom panel of Fig. 2 (a close up of the top
panel around a2⋆) we can also seen the evanescent
wave penetrating the classically forbidden region
(a2 < a2⋆) and smoothly extending to the Euclidean
region at a2 < 0. There is nothing special about
the point a2 ¼ 0 corresponding to the “no-boundary
proposal.”

(iv) These features are confirmed by an evaluation of the
probability Pða2Þ defined by Eq. (56), as depicted
in Fig. 3. Indeed, the probability travels in tandem
with the envelope of the wave packet. For jTj < σT
the probability has many oscillations inside the
envelope, but these disappear at jTj increases, as
illustrated. Furthermore, the width of the probability
decreases, i.e. the packets get sharper, as jTj
increases. This is in contrast with other metric
formulations [25] and will be proved analytically
in the next subsection.

(v) In Fig. 3 we have also plotted the contribution to
Pða2Þ of the two terms contributing to (56): the Born-
like term kjψ j2 and the gradient term h2j∂a2ψ j2. As
already announced around Eq. (58), the gradient term
is dominant in the semiclassical limit. In fact, the only
occasion when the Born term, jψ j2, dominates is
around T ¼ 0 (or for jTj < σT) and for a2 < a2⋆
(or for a2 > a2⋆ but a2 ∼ a2⋆). For an illustration
see Fig. 4.

FIG. 1. Real (top panel) and imaginary (bottom panel) parts of
the wave packet ψða2; TÞ as a function of a2 at T ¼ 100, for
ϕ0 ¼ 1, k ¼ 1, σϕ ¼ 0.01 [and h ¼ 1 implying a σT ¼ 50

according to the saturated Heisenberg relation (18)].

FIG. 2. The same wave packet ψða2; TÞ at T ¼ 0. The bottom
panel is a close up of the top panel. At time T ¼ 0 the wave
function is real, forming an instantaneous standing wave resulting
from the superposition of perfectly symmetric incident and
reflected waves. The bottom panel close up illustrates the evan-
escent wave penetrating the classically forbidden region and
smoothly extending to the Euclidean section, a2 < 0 (the orange
vertical line represents a ¼ a�). There is nothing special about the
point a2 ¼ 0 corresponding to the “no-boundary proposal”.
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A. Semiclassical limit

The WKB approximate solutions are useful for under-
standing the behavior of our analytically exact (but numeri-
cally obtained) solutions, as well as for proving that for
large jTj the packets follow the classical trajectory.
We start with the ψ s. Well away from a2⋆ (z ¼ 0) we can

use the approximations for the Airy function:

Aið−zÞ ≈ 1ffiffiffi
π
p

z1=4
sin

�
2

3
z3=2 þ π

4

�
ð60Þ

≈
1

2
ffiffiffi
π
p jzj1=4 exp

�
−
2

3
jzj3=2

�
ð61Þ

valid for z ≫ 1 and z ≪ 1 respectively (the last case
included for later reference). Assuming jTj≫ σT (semi-
classical regime), in the construction of our wave packets
we will only need the regime where a2 ≫ a2⋆, and so:

z ≈
a2

ϕ1=3h2=3
≫ 1 ð62Þ

FIG. 3. Probability Pða2Þ, according to Eq. (56), for times T ¼ 0, 100, 200 and 400 (still with the same parameters, which we recall
imply σT ¼ 50). For jTj ∼ σT the probability has many oscillations inside the envelope, but these disappear at jTj increases, as
illustrated. We have also plotted the Born and gradient contributions to the probability according to (56). The gradient contribution
dominates in the semiclassical limit. We see that for increasing jTj ≫ σT , the width of the probability decreases, that is the uncertainty in
a decreases.

FIG. 4. Close up of the probability in metric space as a function
of a2 at T ¼ 0, and the respective contributions of the module
squared of the wave function and its derivative. The only occasion
when the Born term, jψ j2, dominates is around T ¼ 0 (or for
jTj < σT) and for a2 < a2⋆ (or for a2 ≳ a2⋆). The orange vertical
line represents a ¼ a�.
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leading to:

ψ sða2;ϕÞ ≈
CðϕÞffiffiffi

a
p sin

�
2

3

a3ffiffiffiffi
ϕ
p

h

�
ð63Þ

with:

CðϕÞ ¼ 1ffiffiffiffiffiffi
πh
p

ϕ1=4 ; ð64Þ

where we have ignored the k and the π=4 phases, since
these will not matter for wave packet’s peak position (even
though they do matter for the phases of the beatings within
them). We can expand the sine wave into two complex
terms:

sin
P
h
¼ e

i
hP − e−

i
hP

2i
ð65Þ

with wave number:

Pða;ϕÞ ¼ 2

3

a3ffiffiffiffi
ϕ
p ; ð66Þ

so that inserting the approximate ψ s into the integral (34)
converts the timeless HH standing wave into superposition
of two identical traveling waves moving in opposite
directions:

ψða2; TÞ ¼
Z

dϕAðϕÞ CðϕÞ
2i

ffiffiffi
a
p ðe− i

hðϕT−PÞ − e−
i
hðϕTþPÞÞ;

as a result of the time complex phase ∼ expð−iϕT=hÞ.
For a delta function AðϕÞ (and so σT ¼ ∞) this leads to a
standing wave: all that changed was the insertion of a time
factor in an otherwise timeless wave function (indeed, a
standing wave can be seen as a superposition of identical
traveling waves moving in opposite directions).
For a Gaussian (59) amplitude, however, the story is very

different. Taylor expanding P around ϕ ¼ ϕ0 (mimicking
the procedure for the connection representation; see
Ref. [24]), and keeping all slow-varying factors at their
peak value (since we are not interested in the overall
normalization, but only the peak position), we find:

ψða2;TÞ¼ Cðϕ0Þ
2i

ffiffiffi
a
p ð2πσ2TÞ1=4

ðψþða2;TÞþψ−ða2;TÞÞ ð67Þ

with incident (þ) and reflected (−) wave packets:

ψ�ða2; TÞ ¼ e−
i
hðϕ0T∓Pða2;ϕ0ÞÞe

−ðXeff∓TÞ2
4σ2

T ; ð68Þ

where:

Xeff ¼
∂P
∂ϕ

����
ϕ0

¼ −
a3

3ϕ3=2
0

ð69Þ

and σT ¼ h=ð2σϕÞ saturates the Heisenberg uncertainty
relation following from (13), just as was found (with
fewer approximations) in the connection representation
[cf. Eqs. (17) and (18)].
Hence, the wave packets are localized to within

σðXeffÞ ∼ σT , and given that the sign of Xeff is fixed, but
the sign of T changes for the two waves, only one of them
is unsuppressed for jTj≫ σT (the þ wave for T < 0 and
the − wave for T > 0). Consequently they do not interfere
in this regime, forming independent traveling waves,
dominating at different epochs (signs for T). Moreover,
since their peaks are at Xeff ¼ �T, they follow the classical
trajectory for a contracting an expanding de Sitter Universe,
respectively, given that

_T ¼ a3

ϕ2
0

ð70Þ

_Xeff ¼ − _a
a2

ϕ3=2
0

ð71Þ

reproduces the Friedmann equation:

_a
a
¼ ∓ 1ffiffiffiffiffi

ϕ0

p ¼ ∓
ffiffiffiffiffiffi
Λ0

3

r
ð72Þ

for the incident and reflected waves. Near the reflection
at T ¼ 0, however, the incident and reflected waves are
superposed and interfere. For jTj≪ σT we recover a
standing wave dressed by an exponential fall off, as
illustrated in Figs. 2–4.
The surprising thing here is that the packets get sharper

as jTj increases. This can be derived using error propaga-
tion and σðXeffÞ ¼ σT , because:

σðaÞ
a

≈
1

3

σðXeffÞ
Xeff

≈
σTϕ

3=2
0

a3
: ð73Þ

The phenomenon is illustrated in Fig. 3. What is surprising
is that this happens in tandem with the peaks in b
sharpening up as shown, e.g., in [24], but can also be
seen from (17) using the same method:

σðbÞ
b

≈
1

3

σðXCSÞ
XCS

≈
σT
b3

: ð74Þ

Hence, for this theory, as the Universe gets larger (or when
it was larger, before the bounce) the packets in both b
and a2 are sharper, in apparent contradiction with the
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naive Heisenberg uncertainty relation following from (3)
(see also [38]).

B. Non-Hermiticity of a2 operator

This apparent contradiction with the Heisenberg
principle has an explanation. Hermiticity is an essential
assumption in the derivation of the Heisenberg-Schrödinger
principle. Starting from the connection representation we
are led to the inner product (20), in terms of which b and the
Hamiltonian are Hermitian; however a2 is not.
This follows directly from examining whether the

identity:

hψ1jÔψ2i − hψ2jÔψ1i⋆ ¼ 0 ð75Þ

is valid for generic normalizable states. Using Eq. (20) we
find that this is true for O ¼ b̂ as long as b is real (as is the
assumption in this paper). For O ¼ a2 we have:

hψ1jâ2ψ2i − hψ2jâ2ψ1i⋆ ¼ 2ih
Z

dbbψ⋆
1ψ2; ð76Þ

since the required integration by parts hits the b dependent
factor in the measure dX ¼ dbðb2 þ kÞ. The right-hand
side (rhs) of (76) becomes more and more prominent the
larger the b where the wave packet peaks, and so the more
classical the regime. This explains why the Heisenberg
principle is violated precisely in the semiclassical regime.
Note that the same conclusion could be drawn by

evaluating the inner products in (76) in the a2 representa-
tion, using Eq. (41). Performing this exercise we see that
the non-Hermiticity of a2 now arises from the second term
in (56), that is the gradient term. This is consistent with the
observation that this term dominates in the classical regime.
The non-Hermiticity of a2 is not a problem. We stress that

its eigenvalues are real. There is extensive literature claiming
that Hermiticity is overrated in quantum mechanics, and that
one should relax the criterion for what constitutes observ-
ables and acceptable Hamiltonians. Real eigenvalues seem
to be more important than Hermiticity [39,40].6 Ironically,
some of this work arises from attempts to define time (in
standard quantum mechanics) perhaps more conventional
than the unimodular proposal (in quantum cosmology)
presented here.
As an object lesson, this example demonstrates how the

Heisenberg relations may be more dynamical than they
seem. True, the Heisenberg-Schrödinger derivation of
the uncertainty relations only relies on the commutation
relations and hermiticity, resulting from a straightforward
application of the Cauchy-Schwarz inequality for an
assumed inner product. The latter is trivial in the standard
theory, and has no dynamical input. But in nonstandard

situations, such as some approaches to quantum gravity,
the inner product can have a strong dynamical input (for
example the constraints may be implemented as a con-
dition on physical states via the inner product, rather than
as operator conditions). In our case the inner product was
directly suggested by the dynamics in the connection
representation, shaping the violation of one of the
assumptions of the Heisenberg principle (Hermiticity),
since this violation of Hermiticity happens with respect to
this inner product.

VII. THE UNIMODULAR PROPAGATORS

We now proceed to make first contact with the ideas of
quantum creation from nothing by evaluating the unim-
odular propagators and showing how they relate to those in
the fixed-Λ theory. Elsewhere we will evaluate these
propagators using the path integral formalism [41]. Here
we show how they can be read off directly from the
formalism developed so far.
The unimodular propagators are defined from:

ψðq; TÞ ¼
Z

dμðq0ÞGðq; T; q0; T 0Þψðq0; T 0Þ: ð77Þ

with suitable measure dμðq0Þ, where q ¼ ðb; a2Þ and
q0 ¼ ðb0; a20Þ (that is, we have connection, metric, and
mixed propagators). They can be read off from the general
expansions in terms of the amplitudes evaluated at time T,
together with the expressions of the amplitudes in terms of
the wave function evaluated at time T 0.
For q ¼ b and q0 ¼ b, choosing dμ ¼ dXðb0Þ, Eqs. (15)

and (16) lead to:

Gðb; T; b0; T 0Þ ¼
Z

dϕψϕðb; TÞψ⋆
ϕðb0; T 0Þ

¼
Z

dϕe−
i
hϕΔTψ sðb;ϕÞψ⋆

s ðb0;ϕÞ

¼ δðX − X0 − ΔTÞ; ð78Þ

withΔT ¼ T − T 0. As already pointed out around (24), this
could have been guessed from the fact that the waves are
nondispersive in X (or that X is a linearizing variable in
MSS [24,42]), so that any solution must be a function of
X − T. Hence the solution at any time takes the same
functional form once we retard it by ΔT, explaining the
delta function in the propagator.
For q ¼ a2, choosing dμða2Þ ¼ da2a2=ϕ in (77),

using (34) and (45) we recover (77) with propagator:

Gða2; T;a20; T 0Þ ¼
Z

dϕψϕða2; TÞψ⋆
ϕða20; T 0Þ

¼
Z

dϕe−
i
hϕΔTψ sða2;ϕÞψ⋆

s ða20;ϕÞ ð79Þ6We stress that our Hamiltonian is Hermitian.
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where we stress that the ψ s are only real Airy functions if
ϕ > 0 (cf., (31) and (33); this will be important in some
manipulations).
Likewise we can derive similar expressions for the mixed

propagators, adjusting the integration measure dμðq0Þ to
whatever variable is chosen for T 0.
As before, these expressions can be seen as insertions of

completeness relations. Equation (77) is an insertion of

1 ¼
Z

dμðq0Þjq0T 0ihq0; T 0j ð80Þ

into ψðq; TÞ ¼ hqTjψi, with:

Gðq; T; q; T 0Þ≡ hq; Tjq0; T 0i; ð81Þ

assuming a further insertion of Eq. (46), giving:

G ¼ hq; Tjq0; T 0i

¼
Z

dϕhq; Tjϕihϕjq0; T 0i

¼
Z

dϕψϕðq; TÞψ⋆
ϕðq0; T 0Þ; ð82Þ

that is, we recover (78) and (79). Moreover, we can relate
the propagators in unimodular theory with those in the
fixed-Λ case. Applying (52) to (82) we have:

hq; Tjq0; T 0i ¼
Z

dϕe−
i
hϕΔThqjϕihϕjq0i ð83Þ

so that, noting that the fixed-Λ propagators are7

hqjq0iϕ ¼ hqjϕihϕjq0i ¼ ψ sðq;ϕÞψ⋆
s ðq0;ϕÞ; ð84Þ

we have:

hq; Tjq0; T 0i ¼
Z

dϕe−
i
hϕΔThqjq0iϕ: ð85Þ

Hence, the unimodular propagators are related to, but
should not be confused with the fixed-Λ propagators, even
setting ΔT ¼ 0.

A. Another form for the propagators

“Retardation” is a useful concept in the connection
representation, since (78) can be written as:

hbTjb0T 0i ¼ δðX0 − XretÞ ¼
δðb0 − bretÞ
b02 þ k

: ð86Þ

with:

Xretðb;ΔTÞ≡ XðbÞ − ΔT ð87Þ

defining bret ¼ bðXretÞ. Solving for the only real solutions
of the cubic equation, we obtain explicitly:

bret ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k3 þ 9X2

ret

p
þ 3Xret

3

q
ffiffiffi
23
p −

ffiffiffiffiffi
2k3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k3 þ 9X2

ret

p
þ 3Xret

3

q

(which simplifies to bret ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3 − 3ΔT3
p

if the curvature k
can be neglected).
We can evaluate the other propagators inserting the

integral representation of the Airy functions into (85).8

We find for the mixed propagator:

hbTja2T 0i ¼ e
i
hbreta

2

ffiffiffiffiffiffiffiffi
2πh
p ðb2ret þ kÞ ; ð88Þ

ha2TjbT 0i ¼ e−
i
hbadva

2

ffiffiffiffiffiffiffiffi
2πh
p ðb2adv þ kÞ ; ð89Þ

(with Xadvðb;ΔTÞ≡ XðbÞ þ ΔT and ΔT still defined as
ΔT ¼ T − T 0). For the metric propagator we have:

ha2Tja20T 0i ¼
Z

db
2πh

e−
i
hðba2−breta20Þ

b2ret þ k

¼
Z

dbret
2πh

e−
i
hðba2−breta20Þ

b2 þ k
ð90Þ

[since dbretðb2ret þ kÞ ¼ dbðb2 þ kÞ]. In some cases this
simplifies, for example the equal-time expression is

ha20ja200i ¼ e
−jΔa2 j ffiffikp

h

2
ffiffiffi
k
p

h
: ð91Þ

B. The equal-time norms of the metric
and connection states

From the above we collect the equal-time limit of the
propagators:

hb0jb00i ¼ δðX0 − XÞ ¼ δðb0 − bÞ
b02 þ k

; ð92Þ

hb0ja20i ¼ e
i
hba

2

ffiffiffiffiffiffiffiffi
2πh
p ðb2 þ kÞ ð93Þ

7This is consistent with the path integral literature [4] if the
correct contours are chosen (even when wave functions in terms
of “the momenta conjugate to a” are not recognized as the CSK
state). 8The subtlety pointed out around Eq. (33) is relevant here.
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ha20ja200i ¼ e
−jΔa2 j ffiffikp

h

2
ffiffiffi
k
p

h
: ð94Þ

We see that the b eigenstates are orthogonal (in fact,
orthonormal with respect to measure dX), and that the a2

and b eigenstates have the inner product expected from the
fact that they are duals (still accounting for the dX measure).
However, the a2 eigenstates are not orthogonal, their inner
product displaying an exponential fall off with correlation
length of the order of

ffiffiffi
h
p

k1=4. This implies an intrinsic
smearing of this order in any measurement in a2 [like in
some on positive operator valued measures (POVMs) [39]].
That the eigenvectors of â2 are not orthogonal is to be

expected and explains how its eigenvalues can be real while
the operator is non-Hermitian. In the traditional quantum
mechanics literature the suggestion is often made that if an
operator has real eigenvalues but is not Hermitian, then the
inner product could be redefined so that it does become so.
But that cannot be done for both metric and connection, at
least within the framework proposed here.

VIII. RETAILORING PROPAGATORS FOR
UNIMODULAR THEORY

Creation “out of nothing” and the no-boundary proposal
in the fixed-Λ metric theory involves the propagator:

ha2⋆j0iϕ ¼ N 2
aAið0ÞAið−z0Þ

∝ exp

�
−
2

3

ϕ

h
k3=2

�

¼ exp

�
−
6Vck3=2

l2PΛ

�
ð95Þ

(where z0 ≡ zða2 ¼ 0Þ ¼ −ðϕ=hÞ2=3k and approximation
(61) is used in the first step). This is loosely identified
with the probability of nucleation of the smallest possible
classical Universe (with a2 ¼ a2⋆) out of nothing (with
a2 ¼ 0). One may be tempted to generalize this propagator
to unimodular theory as:

ha2⋆Tj00i ¼
Z

db
2πh

e−
i
hba

2⋆

b2ret þ k
ð96Þ

[note that for T ¼ 0, given (91), this is essentially (95)].
However, this makes no sense.
First, Eq. (79) shows that any transition from a2 ¼ 0 to

any a2 is an unweighted integral over ϕ:

ha2Tj00i ¼
Z

dϕe−
i
hϕΔTψ sða2;ϕÞψ⋆

s ð0;ϕÞ:

But a2⋆ ¼ kϕ depends on ϕ. Hence, although this is well-
defined in ha2⋆j0iϕ, it cannot appear in the left-hand side

(LHS) of (96), or outside the integral in ϕ. We should
instead consider a transition from a2 ¼ 0 to the generic
smallest allowed a2cl, defined as:

ha2clTj00i ¼
Z

dϕe−
i
hϕΔTψ sða2⋆;ϕÞψ⋆

s ð0;ϕÞ:

The Airy integral representation then leads to:

ha2clTj00i ¼
Z

db
2πh

1

ðb3 þ 3kbþ 3TÞ2=3 : ð97Þ

instead of the rhs of (96).
This could be an interesting result were it not for a

second snag. The unimodular propagator we have defined
appears as an unweighted integral over ϕ, and we may not
want to assume that ϕ is uniformly distributed. But with
the standard definition of propagator this is unavoidable.
Propagators are defined such that whatever we fix at the end
points must leave the complementary variables totally
undefined. They are also defined with fully fixed final
and initial times. But within unimodular theory (or any
other relational time theory), the notion that propagators
must have fixed final and initial times implies that a totally
undefined complementary variable (ϕ in this case) at the
end points. Since ϕ is a constant of motion, it must be
totally undefined at all times, and hence the unweighted
integral in the expression for our propagators.
This is very unsatisfactory. In unimodular theory a

totally undefined ϕ is the exact converse of a fully fixed
one, and both are nonphysical because non-normalizable.
To be able to account for normalizable states, ψ , defined by
less extremeAðϕÞ, we must therefore relax the requirement
that the initial and final times are precisely defined. We
propose the definition:

ha2Tja200iψ ¼
Z

dϕAðϕÞe− i
hϕTψ sða2;ϕÞψ⋆

s ða20;ϕÞ

with an implicit smearing in the initial and final T. Note
how this reduces to

ha2Tja200iϕ ¼ e−
i
hϕTha2ja20iϕ ð98Þ

for a (non-normalizable) delta function in ϕ. This is just the
fixed-Λ theory’s propagator times the monochromatic time
evolution factor.
In view of what we said, we therefore argue that a better

definition for the creation out of nothing amplitude in
unimodular theory is

ha2clTj00iψ ¼
Z

dϕAðϕÞe− i
hϕΔTψ sða2⋆;ϕÞψ⋆

s ð0;ϕÞ:

But even this proves unsatisfactory, since it contains no
information about the probability measure of the theory.
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How would we convert this amplitude into a probability?
Would a2 ¼ 0 be a physically acceptable initial state?

IX. CRITIQUE OF “CREATIO EX NIHILO”
IN UNIMODULAR GRAVITY

In the standard studies a ¼ 0 is an isolated point across
an effective potential barrier. It makes sense to start the
Universe there, either Vilenkin or Hartle-Hawking style. In
this section we examine the problems with this perspective,
should we start from a connection based unimodular theory.

A. Problems of a= 0 as an initial condition
in unimodular theory

In Sec. VI we saw how for a Gaussian state in ϕ
[Eq. (59)] one can obtain a sound semiclassical limit.
Nowhere in the evolution do we find a “vacuum initial
state.” peaked at a ¼ 0. We can turn the problem around
and ask, what amplitude AðϕÞ would be required for a
“a2 ¼ 0” initial state to be a possible solution of the theory?
Suppose that we define the vacuum initial state as:

ψða2; 0Þ ¼ δða2Þ
a2

ð99Þ

as suggested by the appropriate measure in the
propagator (77). Then (45) implies:

AðϕÞ ¼ N a

ϕ
Aið−z0Þ ≈

exp ½− 2
3
ϕ
h k

3=2�
2

ffiffiffi
π
p

ϕ3=2h1=2k1=4
ð100Þ

for ϕ > 0, and

AðϕÞ ¼ N a

2ϕ
ðAið−z0Þ þ iBið−z0ÞÞ ð101Þ

≈
i exp ½2

3

jϕj
h k3=2�

2
ffiffiffi
π
p jϕj3=2h1=2k1=4 : ð102Þ

for ϕ < 0. Hence, within unimodular theory, the well-
known amplitude (95) is reinterpreted as the amplitude of ϕ
as implied by a vacuum initial state. The Universe is then
stuck with this probability for ϕ forever, which is particu-
larly worrying, as a negative cosmological constant is
vastly preferred over a positive one.
But even before worrying about this, there is another

problem: such a state is non-normalizable under (41). This
can also be seen directly from (19), or even transforming to
the b representation to find ψðbÞ ¼ 1, with the obvious
implications under (20). Ditto with:

ψða2; 0Þ ∼ δða2Þ ð103Þ

(or any variations thereof). For this state ψðbÞ ¼ ikb,
equally non-normalizable.

We can try to evade this, by considering normalizable
states [under (41)] which are highly peaked around a2 ¼ 0:

ψða2; 0Þ ¼ exp
−a4

4σ2a

ð2πσ2aÞ1=4
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ h
4σ2a

q ∝
ffiffiffiffiffi
σa
p

exp
−a4

4σ2a ; ð104Þ

where we took the limit σa → 0. This suffers from the same
problems as the definition of the square-root of a delta
function (strictly speaking the wave function is zero). But
even ignoring these, we see that it leads to amplitude:

AðϕÞ ∼ −
N aσ

7=2
a

ϕ4=3h2=3
Ai0ð−z0Þ ∼ σ7=2a exp

�
−
2

3

ϕ

h
k3=2

�

for ϕ > 0 and a similar expression for ϕ < 0. This has the
same asymptotic form as before, with the same problems
(a preference for a negative Λ). It would also imply a
Gaussian wave function in b, with σb ¼ h=ð2σaÞ, so that:

PðbÞ ¼ ðb2 þ kÞjψ j2 ∼ ðb2 þ kÞ exp
�
−

b2

2σ2b

�
ð105Þ

with σb → ∞, i.e. a near uniform distribution with two soft
peaks at b ¼ �2 ffiffiffi

2
p

σb, curiously very different from the
b ¼ �i expected by applying a2 ¼ 0 to the Hamiltonian
constraint.
Note that these issues of measure and normalizability

are well-hidden in the standard treatment appealing to
propagators.

B. The unremarkable nature of the nothing

Furthermore, there is nothing special about a ¼ 0 in the
theory we are considering. This follows from the con-
nection representation, even before one adds the unim-
odular extension. If b is the starting point, then its conjugate
is a2 (and not a), the densitized inverse metric (see
discussion in Sec. II). The natural range for b, and so
for its dual a2 as well, is the whole real line. Hence in the
dual representation to b we should include the Euclidean
section a2 < 0.
It follows that any creation from nothing theory, as well

as the no-boundary proposal, makes little sense here, since
a ¼ 0 is not a no-boundary. Quite the opposite: it is the
fence between Lorentzian and Euclidean spaces. Making
it a boundary actually requires supplementary boundary
conditions.
We stress that “Euclidean” here has a different meaning

to that in Hawking’s no-boundary proposal. In HH it means
Euclideanizing space right at 0 < a2 < a2⋆, with a t ¼ iτ
rotation associated the semiclassical treatment of tunneling.
Here it means allowing a2 to be negative (keeping time and
N real), and no instanton or semiclassical treatment is
implied: we evaluated directly the exact evanescent wave.
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In addition, the fact that a2 < 0 is covered by an
evanescent wave implies that in all of our solutions the
a2 < 0 section is always off-shell, so we should not
expect a connection with classical Euclidean GR. On-
shell expressions such as _T ¼ Na3=ϕ2 or _a ¼ Nb, valid
for the peak of the wave function for semiclassical states,
cannot be used there. Hence there is no contradiction with
b being real and a2 < 0. Also we should not expect T to
be imaginary.

X. QUANTUM CREATION
IN UNIMODULAR THEORY

In view of the above it may make more sense within
the quantum unimodular theory we are using to do the
following:

(i) Adopt a Gaussian state with σðϕÞ=ϕ0 ≪ 1 (or any
other sharp function) and use it as a basis for a theory
of initial conditions, rather than impose an initial
condition in a and endure the implied AðϕÞ for the
rest of the life of the Universe.
This feature is a consequence of the unimodular

extension.
(ii) Equate “quantum creation” of the Universe with the

process by which a semiclassical state at a2 > a⋆
emerges from the full region −∞ < a2 < a2⋆, at time
jTj ∼ σT . (Note that for the chosen AðϕÞ, a2cl can be
confused with a2⋆ defined by ϕ ¼ ϕ0.)
This feature is implied by the use of the con-

nection b as the starting point, so that within the
metric dual there is nothing unique about a ¼ 0,
a > 0 or indeed a2 > 0. The whole −∞ < a2 < a2⋆
should then be seen as the “initial state” of the
Universe.

(iii) Evaluate the probability for such quantum creation
directly in terms of the wave function and the
associated unitary probability, rather than propaga-
tors (which may hide issues of normalizability and
probability).
This is a general point. In our case the form of

the probability in metric space derives both from
the unimodular extension (the probability is origi-
nally defined by (19) in terms of A) and the
primacy of the connection representation, so that
ϕ ¼ 3=Λ is chosen in (19), leading to (20) and
ultimately (41). In relation to the previous point,
note that the probability only integrates to 1 at all
times if the full domain −∞ < a2 < ∞ is included.
Hence including the Euclidean section in our
considerations is non-negotiable once the proba-
bility measure is considered, and unitarity in
enforced.

We should then backtrack to Sec. VI. Therein, we saw
that packets of HH wave functions reproduce the semi-
classical limit for all T, with the exception of jTj < σT ,

where the incident and reflected waves interfere, creating a
multipeaked probability (see Fig. 3). Even at jTj ≲ σT the
bulk of the probability is in a2 > a2⋆: whatever quantum
effects are present, they are most relevant in the classically
allowed region, with only a small “penetration” probability
into the wall (see Fig. 4). This small probability, associated
with the evanescent wave inside the full infinite wall,
should be associated with the probability of quantum
creation of the semiclassical Universe.
We thus evaluate

PcrðTÞ ¼
Z

a2⋆ðϕ0Þ

−∞
da2Pða2; TÞ: ð106Þ

for a Gaussian state (as in Sec. VI), to be interpreted as
the probability of the quantum creation of the Universe.
This probability is a function of time; so, time exists even
before the creation of the semiclassical Universe in this
scenario. Naturally, T is a purely quantum variable when
jTj≲ σT , and can only be identified with unimodular time
[i.e. acquire its on-shell expression or “time formula,”
Eq. (12)] once the Universe enters its semiclassical
regime, for jTj≫ σT. With this proviso, σT [defined
by (18)] is the “time” it takes to create the Universe in
this scenario. We have plotted the numerical result for
our illustrative model in Fig. 5. The curve has formal
similarities with Pða2 ¼ 0; TÞ, depicted in Fig. 6, but the
physical background is totally different.
How to interpret this process? The fact that we have a

Hamiltonian constraint provides leeway not usually found
in quantum mechanics. Could the process we have
described be seen as the creation of a Universe/
anti-Universe pair out of the full classically forbidden
regions inside the “wall region,” including the Euclidean
section? The contracting Universe can be seen as the time

FIG. 5. The probability of quantum creation of a classical
Universe from the classically forbidden region, as a function of T
(which cannot be identified with the on-shell expression for
unimodular time in this regime). We have used the same
illustrative parameters as in Sec. VI.
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reversal (the “antiparticle”) of the expanding semiclassical
Universe. The pair can be created without a supply of the
energy because the whole system has zero energy through-
out. In effect, a pair of time-reversed Universes is spat
out of the wall by purely quantum effects. It would be
interesting to seek a condensed matter analogue to this
process.

XI. CONCLUSIONS

The achievements of this paper are of two types: those
regarding the late-life of the Universe and those concerning
its birth.
For the first, a major result is that we do not need the

Vilenkin wave function to obtain a late-time outgoing wave
function (corresponding to a pure expanding Universe)
once an unimodular extension is implemented.9 The
unimodular Hartle-Hawking wave packets are complex
(unlike the real Hartle-Hawking wave function) and already
contain pure outgoing and a pure incoming well-localized
and noninterfering waves, with one suppressed and the
other dominating in their respective epochs defined by
unimodular time (T > 0 or T < 0). The two waves only
mix around the bounce (jTj ≲ σT), producing a temporary
standing wave. Obviously, letting σT → ∞ (i.e., fully fixing
Λ) we recover the standard result, but the picture is very
different otherwise.
Furthermore, starting from the connection variable we

are led to a natural unitary inner product in the metric
representation which is not the naive Born jψ j2, and this is
most relevant precisely in the semiclassical regime. What
is remarkable is that with respect to this inner product b is
self-adjoint but a2 is not, even though its eigenvalues are
real. Not only is this non-Hermiticity not a problem, but we

argue that it is in fact a requirement for a proper semi-
classical regime. If nothing broke down in the assumptions
of the Heisenberg principle, then the principle would imply
metric-connection squeezing, the peaks in connection
space typically becoming sharper and the metric ones
wider [25,43]. It is possible that this would not be
observable, but better still is to have a situation where
both observables become sharper and sharper as the
Universe becomes supposedly classical. Such is the case
of the theory in this paper, the tension with the Heisenberg
principle resolved by the fact that one of the observables is
not self-adjoint.
On the other side of the cosmic story, this paper sheds

new light into the possibility that our Universe might have
been created as a quantum fluctuation out of nothing.
Several problems with this concept have been identified
[5,6]; here we add to the discussion remarks that may be
specific to the unimodular extension and connection
representation primacy. The “nothing” in these theories
is non-normalizable and implies a disastrous probability
for Λ. It is also a platitude within the bigger range for the
densitized inverse triad implied by its connection dual.
If we are going to accept quantum creation, the whole
forbidden region, including the Euclidean section (in the
sense of −∞ < a2 < 0, must be involved for unitarity
with respect to the inner product to be preserved. With
exact solutions and an inner product in our armory we
can then evaluate the probability for a semiclassical
Universe to be created. This can be seen as the creation
of a pair of Universe/anti-Universes, popping out of the
full forbidden wall.
It would be interesting to see what implications this has

for the stability of tensor modes, in particular the damning
results of [5,6] derived within the path integral metric
formalism. What would that matter look like if phrased
from the connection starting point, in particular within the
canonical formalism and possibly with an unimodular
extension? Could the instability identified in [5,6] be
related to the well-known issues plaguing, or not, the
various versions of the Chern-Simons-Kodama state
[11,13,18,44,45]? And what input into the matter would
the unimodular extension offer? We note that, strictly
speaking, without this extension (already pioneered in
[33,34]) the Chern-Simons-Kodama state can never be
physical or normalizable.
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FIG. 6. Probability P at a2 ¼ 0 as a function of time T, given
here for comparison.

9This is not to say that it would not be interesting to investigate
unimodular extensions to the Vilenkin wave function. Note the
obvious technical hurdle: the fact that b now has a nonreal section
[19] implies that (26) and (35) would need to be replaced by the
Laplace transform. Its inverse would seem to locate the proba-
bility on the HH contour only, but there may be subtleties.
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