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The effective cold quark matter model by Alford, Braby, Paris, and Reddy (ABPR) is used as a tool for
discussing the effect of the size of the pairing gap in three-flavor (CFL) quark matter on the maximum mass
of hybrid neutron stars (NSs). This equation of state (EOS) has three parameters which we suggest to
determine by comparison with a nonlocal Nambu-Jona-Lasinio (nlNJL) model of quark matter in the
nonperturbative domain. We show that due to the momentum dependence of the pairing which is induced
by the nonlocality of the interaction, the effective gap parameter in the EOS model is well approximated by
a constant value depending on the diquark coupling strength in the Nambu-Jona-Lasinio (NJL) model
Lagrangian. For the parameter a4 ¼ 1–2αs=π a constant value below about 0.4 is needed to explain hybrid
stars with Mmax ≳ 2.0M⊙, which would translate to an effective constant αs ∼ 1. The matching point with a
running coupling at the 1-loop β function level is found to lie outside the range of chemical potentials
accessible in NS interiors. A dictionary is provided for translating the free parameters of the nlNJL model to
those of the ABPR model. Both models are shown to be equivalent in the nonperturbative domain but the
latter one allows to quantify the transition to the asymptotic behavior in accordance with perturbative QCD.
We provide constraints on parameter sets that fulfill the 2M⊙ mass constraint for hybrid NSs, as well as the
low tidal deformability constraint from GW170817 by a softening of the EOS on the hybrid NS branch with
an early onset of deconfinement at Monset < 1.4M⊙. We find that the effective constant pairing gap should
be around 100 MeV but not exceed values of about 130 MeV because a further increase of the gap would
entail a softening of the EOS and contradict the 2M⊙ mass constraint.
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I. INTRODUCTION

Two limits of the cold dense matter equation of state
(EOS) are precisely known: (1) the state of nuclear matter at
the nuclear saturation density n0 ¼ 0.15 fm−3 and below it;
and (2) the cold quark matter EOS of perturbative QCD
above about 40 n0. In between these limits the deconfine-
ment phase transition has to take place. But the open
question is whether its place could be in neutron star (NS)
interiors.
By the end of the 1980s, the answer to this question by

the authorities in the field was negative [1] were it not for
the possibility of exotic strange stars [2–7], made up of
absolutely stable strange quark matter (SSQM) [8]. At that
time, works on stable quark matter cores in NSs like
Ref. [9] not relying on the SSQM hypothesis but rather on
assumptions for an interaction energy density functional
were rather an exception. The nonrelativistic density

functional of the confining string-flip model (SFM) [10]
that was used in [9] was recently generalized in a relativistic
path integral formulation [11] which was successfully
applied to study hybrid NSs, even forming a third family
of compact stars [12,13].
Among the density functionals for describing dense

quark matter, those of the Nambu-Jona-Lasinio (NJL) type
with relativistic current-current interactions obeying chiral
symmetry but lacking confinement [14,15] have been
widely used, also in considering the question of quark
matter deconfinement in NS interiors. These studies have
shown that for a successful description of NS phenom-
enology with hybrid star sequences, two ingredients
beyond the minimal NJL model interaction were essential:
a vector meson channel for stiffening high-density quark
matter, thus describing high-mass NSs and a scalar diquark
interaction channel for lowering the onset of deconfinement
[16,17]. For a recent review on the role of stiffness and
color superconductivity in the description of the hadron-to-
quark matter transition in NSs, see [18]. To remedy the lack
of confinement that limits the application of NJL-type
models to the T ¼ 0 region of the QCD phase diagram, the
confining density functional approach has recently been

*david.blaschke@uwr.edu.pl
†udita.shukla28@gmail.com
‡oleksii.ivanytskyi@uwr.edu.pl
§science@liebing.cc

PHYSICAL REVIEW D 107, 063034 (2023)

2470-0010=2023=107(6)=063034(16) 063034-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8399-5183
https://orcid.org/0000-0003-2276-3765
https://orcid.org/0000-0002-4947-8721
https://orcid.org/0000-0003-3618-0886
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.063034&domain=pdf&date_stamp=2023-03-31
https://doi.org/10.1103/PhysRevD.107.063034
https://doi.org/10.1103/PhysRevD.107.063034
https://doi.org/10.1103/PhysRevD.107.063034
https://doi.org/10.1103/PhysRevD.107.063034


developed to contain chiral symmetry and diquark inter-
actions in the effective Lagrangian [19]. While this approach
and its generalization to finite temperatures [20] was still
concerned with two quark flavors only, a special simplified
version for three massless quark flavors in the color flavor
locking (CFL) phase with a very early deconfinement
transition triggered by light sexaquark condensation has
been developed in [21]. The corresponding CFL phase with
three degenerate light quark flavors may be called CFL-light
(CFLL). It is worth mentioning, that an early transition to
such a three-flavor CFL phase rather than to the two-flavor
color superconducting quark matter is in line with the
argument of high energy cost caused by imposing electric
and color neutrality in the two-flavor case [22]. At the same
time, electric neutrality of the CFL phase is provided
automatically and does not cause an increase of its free
energy [23].
Coming back to the present work, namely to join the

nuclear matter phase with asymptotic perturbative QCD
matter, we face the problem that the most advanced density
functional approaches to cold quark matter (NJL and SFM)
do not possess the pQCD limit, which may conveniently
be characterized by approaching the conformal limit for
the squared speed of sound, c2s ¼ 1=3, from below. The
persistence of collective mean fields in the vector and
diquark sector even at asymptotic densities makes NJL and
SFM models violate the conformal limit. Since central
densities in NSs reach only about 5 n0, one might argue
that it shall not be a problem at all to construct a matching
with the pQCD EOS at 40 n0, which fulfills the basic
constraints of causality (c2s ≤ 1) and thermodynamic sta-
bility. But as it has been shown in [24], there are EOS, e.g.,
in the CompOSE library of compact star EOS [25] which
do not allow such a matching unless it is introduced at
sufficiently low densities and thus having an influence on
the NS EOS.
Within the confining density functional approach, a

procedure has been suggested that suggests a microscopic
calculation of the medium dependence of vector and diquark
coupling constants using a massive gluon propagator ansatz,
so that the conformal limit is restored [26], see also [27].
In the present work, we want to suggest another

approach to define a quark matter EOS that unifies the
requirement of a pQCD asymptotics at high densities with
the nonperturbative features of confinement and color
superconductivity in the region of the hadron-to-quark
matter transition that likely takes place in the interior of
light NSs and is advantageous for fulfilling modern multi-
messenger constraints of NS phenomenology. The effective
quark matter EOS suggested by Alford et al. in [28] fulfills
these conditions and at the same time has the advantage of
simplicity that makes it suitable for extensive phenomeno-
logical studies. We will use this form of EOS for color
superconducting quark matter phases that was reused in
several studies and in Ref. [29] given the form

P ¼ ξ4a4
4π2

μ4 þ ξ2aΔ2 − ξ2bm2
s

π2
μ2 − Beff ; ð1Þ

where the quark chemical potential μ is equivalently
expressed through the baryon one μB ¼ 3μ and for the
color-flavor-locking (CFL) phase holds that ξ4 ¼ 3, ξ2a ¼
3 and ξ2b ¼ 3=4. This model has the disadvantage that it
uses four free parameters for which rather wide margins
exist: (1) the coefficient a4 ¼ 1–2αs=π that depends on the
running fine structure constant of the strong interaction αs
in first order; (2) the diquark pairing gapΔ; (3) the effective
bag pressure Beff ; and (4) the strange quark mass ms.
It has, however, the advantage that it is very easy to

use and allows to scan the space of opportunities for
discussing color superconducting quark matter in NSs,
bound to observational constraints for masses and radii. For
example, in Ref. [30], this model was employed in order to
conclude immediately after the first Shapiro-delay based
mass measurement on PSR J1614-2230 [31] (which was
revised in [32]) that a lower limit of 1.93M⊙ for maximum
mass of NSs would entail that quark matter has to be
strongly interacting (a4 < 0.63) and color superconducting
(a2 ¼ m2

s − 4Δ2 < m2
s) when the onset of deconfinement is

set to 1.5 n0 by an appropriate choice of Beff .
In this work, we will consider the CFLL phase that

allows to neglect the parameter ms and suggest to fix the
remaining three parameters by fitting them to the diquark
gap and the pressure of the nonlocal NJL model [33,34]. In
the latter, the scalar-pseudoscalar coupling, the light current
quark mass and the range of the interaction are determined
by low-energy vacuum QCD phenomenology, the pion
mass and decay constant as well as the chiral condensate.
The remaining unknown coupling constants in the vector
meson and diquark interaction channels, GV and GD, will
be mapped to the parameters of the ABPR model and can
be constrained by the NS phenomenology. In this way, the
present work will allow to link the parameters of an
effective low-energy QCD Lagrangian to the effective
ABPR quark matter model that is convenient to use in
NS phenomenology and has the attractive feature of an
asymptotic approach to the conformal limit which is in
accordance with pQCD.

II. COLOR SUPERCONDUCTING
QUARK MATTER

A. The ABPR model

In the following we will discuss a CFLL phase, where
the strange quark has the same current mass as the up and
down quarks, i.e. mu ¼ md ¼ ms ¼ m. For practical pur-
poses m ¼ 0 can be used as an excellent approximation. In
this phase all quark species are equivalent and subject to the
same paring gap Δ. Then, their distribution functions
become degenerate and consequently the partial densities
are equal. This entails that the CFLL quark matter is neutral
with respect to electric and color charges. Therefore, no
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leptons will appear in CFLL matter. For the coefficient
a4ðμÞ ¼ 1–2αsðμÞ=π we will use two cases that are glued
together at a matching point μMP ¼ 635 MeV,

αsðμÞ ¼
�
1; if μ < μMP

4π=½β0 lnðμ2=Λ2Þ�; otherwise;
ð2Þ

where β0 ¼ 11 − 2Nf=3 and Λ ¼ 315 MeV, see Fig. 1.
The resulting three-flavor, color superconducting quark

matter EoS reads

P ¼ 3

4π2
a4ðμÞμ4 þ

3

π2
Δ2μ2 − Beff ; ð3Þ

where the a4 coefficient becomes medium dependent for
chemical potentials above the matching point μ > μMP
where the strong coupling αsðμÞ starts to run. For the quark
number density follows

n ¼ ∂P
∂μ

¼ 3

π2

�
a4 þ

a04
4
μ

�
μ3 þ 6

π2
Δ2μ; ð4Þ

and the energy density is thus

ε ¼ μn − P

¼ 9

4π2

�
a4 þ

a04
3
μ

�
μ4 þ 3

π2
Δ2μ2 þ Beff : ð5Þ

An interesting quantity is the squared sound speed which
serves as a measure for the stiffness of the EOS. It is
obtained as

c2s ¼
dP
dε

¼ n
μ

dμ
dn

¼ 1þ ζ

3þ ζ

�
1 −

a04
3
μ

�
þOðα3sÞ; ð6Þ

where we introduced μ-dependent function

ζ ¼ 18Δ2

μ2B

�
a4 þ

a04
4
μ

�
−1
: ð7Þ

In our simple model (2) for the running coupling, we obtain
for the μ-derivative of the coefficient a4

a04 ¼
d
dμ

�
1 −

2αs
π

�
¼

�
0; if μ < μMP
β0
π2
α2s

1
μ ; otherwise:

ð8Þ

We would like to discuss the two limiting cases of the
matching model for a running αsðμÞ shown in Fig. 1.
In the first case (αs ¼ const) and for normal quark

matter, when Δ ¼ 0, the squared sound speed obeys the
“conformal limit” value c2s ¼ 1=3. Immediately after the
deconfinement transition, when μB ≈ μc ≈ 1150 MeV and
for large diquark pairing gap, Δ ≈ 150 MeV, the param-
eter ζðμcÞ ≈ 1 may be attained for a4 ¼ 0.3 so that
c2sðμcÞ ¼ 1=2. This value has been obtained as a typical
result for several parametrizations of a nonlocal chiral
quark model [34,35]. The behavior of the squared sound
speed in this case is shown in Fig. 2.
In the second case and for normal matter, ζ ¼ 0, the

squared sound speed approaches the “conformal limit”
value c2s ¼ 1=3 from below for large μ. When in this case
we consider a nonvanishing diquark gap, the squared sound
speed has a profile similar to the one of the quarkyonic
matter, rising to a peak above the conformal limit which is
followed by a dip and asymptotically, for large μ, approach-
ing c2s ¼ 1=3 from below.

B. Nonlocal NJL model for the CFLL phase

A simplified description of color superconducting three
flavor quark matter assumes the same current mass m of all
quark flavors. Consequently, in such a model all quark
flavors are degenerate and have the same partial densities.
This entails color and electric charge neutrality of this quark
matter as well as a flavor independent quark chemical
potential μ ¼ μB=3. In the case of the CFL phase, the
microscopic states of paired quarks split into singlet and
octet ones. The singlet states are characterized by the pairing
gap of amplitude 2Δ, being twice the one of the octet states
for which the pairing gap amplitude is Δ. Below we label
these states with the subscript index j ¼ sing for singlets
and j ¼ oct for octets. The assumption about the degener-
ation of the quark flavor states determines the CFLL phase.
In this work we model such phase of quark matter with a
version of the nonlocal NJL model in the spirit of Ref. [34].

FIG. 1. Running coupling αsðQ ¼ μÞ according to 1-loop β
function (black solid line) with a Landau pole at Q ¼ Λ ¼
315 MeV and a constant coupling at the level of the freezing
value αsð0Þ ∼ 1 (blue dotted line) which leads to a matching point
at Q ¼ μ ¼ 635 MeV.
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Within this approach different interaction channels appear
as correlations of quark currents, which are propagated
through space via the three-momentum dependent form-
factor gk. In this work we adopt the Gaussian parametriza-
tion of gk ¼ expð−k2=Λ2Þ where Λ determines the finite
range of the interaction in momentum space and replaces the
constant cutoff parameter of the local NJLmodel.We follow
Ref. [34] and set Λ ¼ 885.47 MeV. The chiral dynamics of
the present model is represented by the melting of the mass
gap amplitude σ from some large vacuum value σ0. In what
follows the subscript index “0” labels the quantities defined
in the vacuum, i.e. at μB ¼ 0. The mass gap amplitude
enters the momentum dependent effective quark mass as
Mk ¼ mþ σk with σk ≡ σgk. We adopt the current quark
mass m ¼ 2.29 MeV from Ref. [34]. Effects of the vector
repulsion are controlled by the zeroth component of the
vector meson field (see Refs. [16,34] for details), i.e. by ω.
Similar to Ref. [34], we assume the corresponding vector

interaction channel to be local, which formally corresponds
to the form-factor gVk ¼ 1. This simplification allows us to
avoid serious technical complications in evaluating the
Matsubara sums that would be caused by the appearance
of the Matsubara index in the expression for the effective
chemical potential of quarks.
With the above notations, the zero temperature thermo-

dynamic potential of the CFLL phase can be written as

Ω ¼ σ2

4GS
−

ω2

4GV
þ Δ2

4GD
þ Ωq: ð9Þ

Here GS, GV , and GD stand for couplings in the scalar-
pseudoscalar, vector, and diquark channels, respectively, and
Ωq is the quark contribution to the thermodynamic potential.
Two of the above couplings are parametrized by the
dimensionless quantities ηV ≡GV=GS and ηD ≡GD=GS.
Parametrizations of the CFLL EOS considered below are
labeled with pairs of numbers ðηV; ηDÞ. For example, (1.3,
0.6) corresponds to an EOS obtained for GV ¼ 1.3GS and
GD ¼ 0.6GS. The quark term in Ω is

Ωq ¼ −
X
j;a¼�

dj

Z
dk

ð2πÞ3
�
ϵajk
2

− ϵajkf
a
jk

�
: ð10Þ

The summation in this expression is performed over singlet
and octet quark (a ¼ þ) and antiquark (a ¼ −) states. The
degeneracy factors of the singlet andoctet states are expressed
through the spin-flavor-color degeneracy one d ¼ 2 × 3 × 3
as dsing ¼ d=9 and doct ¼ 8d=9. The corresponding single
particle distribution function fajk ¼ θð−ϵajkÞ is given in terms
of the single particle energy ϵajk shifted by the effective
chemical potential μ� ¼ �μ ∓ ω. For definiteness we con-
sider positive baryonic chemical potentials leading to μþ > 0
and μ− < 0. Thus

ϵajk ¼ sgnðϵk − μaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵk − μaÞ2 þ Δ2

jk

q
; ð11Þ

where ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

k

p
is the single particle energy of

unpaired quarks, while Δjk ¼ ζjΔgk with ζsing ¼ 2 and
ζoct ¼ 1 is introduced in order to unify the notations. At
ϵk ¼ μþ, which defines the Fermi momentum kF, ϵþjk
experiences a discontinuous jump of the amplitude
2Δjkjjkj¼kF , which is twice the gap of the energy spectrum
of the corresponding quark state. In order to quantify it we
introduce the effective pairing gap

Δeff ≡ Δgkjjkj¼kF : ð12Þ

The first term in the square brackets in Eq. (10)
corresponds to the divergent zero point contribution to
the thermodynamic potential. It can be regularized by
subtracting the constant vacuum value of Ω. This leads
to the regularized thermodynamic potential

FIG. 2. Upper panel: c2s vs μB for constant a4 ¼ 0.363 and for
running coupling, as well as for diquark gap Δ ¼ 150 MeV and
Δ ¼ 0. The solid black line corresponds to the instant switch
model for αs with a matching point at μB ¼ 1905 MeV, see
Fig. 1. Lower panel: c2s vs μB in the instant switch model for αs
for a4 ¼ 0.363 and four cases of a constant diquark gap Δ ¼ 30,
100, 202, and 383 MeV.
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Ωreg ¼ Ω −Ω0: ð13Þ

The physical values of the mass gap and pairing gap
amplitudes as well as the zeroth component of the vector
field can be found by minimizing the regularized thermo-
dynamic potential with respect to σ, ω, and Δ. This yields

σ ¼ 2GS

X
j;a¼�

dj

Z
dk

ð2πÞ3
�
1

2
− fajk

�
ϵk − μa

ϵajk

Mkgk
ϵk

; ð14Þ

ω ¼ 2GV

X
j;a¼�

dj

Z
dk

ð2πÞ3
�
1

2
− fajk

�
a
ϵk − μa

ϵajk
; ð15Þ

Δ ¼ 2GD

X
j;a¼�

dj

Z
dk

ð2πÞ3
�
1

2
− fajk

�
Δ
ϵajk

ζ2jg
2
k: ð16Þ

The equations for the amplitudes of the mass and pairing
gaps include the zero point terms, which are regular due to
the presence of the form-factor under the corresponding
momentum integrals. It is also worth mentioning that con-
trary to the case of local current interaction (see, e.g.,
Refs. [16,36]), Eqs. (14) and (15) do not include the terms
with the Dirac delta-function δðϵk − μaÞ arising from
differentiating sgnðϵk − μaÞ in the dispersion relation (11).
This is due to fajk ¼ 1=2 at vanishing ϵajk ¼ 0 providing zero
value of the factor 1=2 − fajk under the momentum integrals.
Having Eqs. (14)–(16) solved we can construct EOS of the
CFLL phase by defining its pressure P ¼ −Ωreg − ΔB,
baryon density nB ¼ dP=dμB ¼ ω=6GV, energy density
ε ¼ μBnB − P and squared speed of sound c2S ¼ dP=dε.
The contribution −ΔB to P is a phenomenological constant
pressure shift that could be motivated by a medium depend-
ence in the nonperturbative gluon background (confinement)
that is not captured by the nlNJL model for the quark
dynamics. Such a constant has been introduced, e.g., in
Refs. [37–39] in order to regulate the onset density of quark
deconfinement.
Before going further we would like to consider the

question about the instability of the vacuum with respect to
formation of the color superconducting state. This happens
if the diquark coupling exceeds some critical value G�

D. At
GD ¼ G�

D the second order phase transition to the CFLL
phase occurs in the vacuum. In other words, ∂2Ω=∂Δ2 ¼ 0
atΔ ¼ 0 in the vacuum (fajk ¼ 0). This allows us to find the
critical value of the diquark coupling as

G�
D ¼

�
8d
3

Z
dk

ð2πÞ3
g2k
ϵk

�−1
ð17Þ

parametrized via η�D ≡G�
D=GS. This expression includes

the vacuum value of the mass gap amplitude σ0 defined
by Eq. (14) under the conditions Δ ¼ 0 and μa ¼ 0.
Adjusting the scalar coupling GS ¼ 3.307 GeV−2 so that

σ0 ¼ 330 MeV, we obtain η�D ¼ 0.761. In order to provide
vacuum stability we limit our analysis to the values of the
diquark coupling respecting the requirement ηD ≤ 0.75.
The amplitudes of the pairing gap Δ and the mass gap σ

as functions of the baryonic chemical potential are shown
in Fig. 3 for different choices of the diquark coupling ηD. At
small but finite value of the baryon chemical potential σ has
its vacuum value and Δ vanishes. This corresponds to
the chirally broken normal phase of heavy unpaired quarks.

FIG. 3. Amplitude of the mass gap σ (upper panel) and diquark
gap Δ (lower panel) as functions of baryonic chemical potential
μB calculated for vanishing vector coupling ηV ¼ 0 and diquark
couplings ηD given in the legends and ΔB ¼ 0. The black dashed
curves on the lower panel represent the results of fitting the
pairing gap amplitude by Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ0ðμB − μ0Þ
p

as discussed in
the text.
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At a certain value of μB the mass gap amplitude starts
to melt, while the pairing gap amplitude starts to grow.
At small ηD ≪ 1 this happens discontinuously, with a
jump in the chiral (σ) and color superconductivity (Δ)
order parameters, signalling a first order phase transition
to the CFLL quark matter. At large ηD ≃ 1, however, this
transition is of the second order for the diquark con-
densate, with the onset starting from Δ ¼ 0 followed by a
continuous increase that goes over to a square root
behavior

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0ðμB − μ0Þ

p
ð18Þ

withΔ0 and μ0 being constant parameters. For a given value
of the diquark coupling these parameters are defined by
fitting the pairing gap amplitude within the range of
the baryon chemical potentials from μ1 ¼ 1 GeV to
μ2 ¼ 2 GeV, which covers the values typical for quark
matter in NSs. On the lower panel of Fig. 3, we demonstrate
the quality of the fit (18) and provide the parameters Δ0 and
μ0 for four cases of diquark couplings ηD.
Above the color superconductivity onset this square root

dependence perfectly describes behavior of Δ. It is inter-
esting to note that this scaling law for the diquark
condensate was found in a recent study of lattice simu-
lations of two-color QCD [40].
While Δ grows with μB, the momentum form-factor gk

defined at jkj ¼ kF exhibits the opposite behavior. As a
result the effective paining gap Δeff significantly flattens.
Its behavior is shown in Fig. 4. Within the range of baryon

chemical potentials from μ1 to μ2, the effective pairing gap
can be approximated by its average value

Δ� ¼ 1

μ2 − μ1

Z
μ2

μ1

dμBΔeffðμBÞ: ð19Þ

It is worth mentioning that this average value is almost
insensitive to the vector coupling, which does not impact
Δeff but simply renormalizes μB. Larger diquark couplings
lead to stronger quark pairing and, consequently, to larger
average values of the effective pairing gap of the CFLL
matter.
For the functional dependence of Δ� on ηD, we found a

quadratic fit, see the upper panel of Fig. 5,

Δ�½MeV� ¼ 77.65 − 521 ηD þ 1233.3 η2D: ð20Þ

On the other hand, ηV regulates the stiffness of the CFLL
EOS being in one-to-one correspondence with the slope of
pressure defined as a function of μB. As is seen from Fig. 6,
within the range of the baryonic chemical potentials typical
for quark matter in the cores of NS the vector coupling can
be adjusted so that the pressure slopes of the CFLL quark
matter and ABPR model coincide. We would like to stress,
the stronger is the diquark pairing the weaker should be the

FIG. 4. Effective pairing gap Δeff as a function of baryonic
chemical potential μB calculated for vanishing vector coupling
ηV ¼ 0 and diquark couplings ηD given in the legend. The black
dashed lines represent the average values of the effective pairing
gap Δ� discussed in the text.

FIG. 5. Dependence of the effective constant diquark gap Δ�
(top panel) and the bag pressure B (middle panel) of the ABPR
model on the diquark coupling ηD in the nlNJL model Lagran-
gian. The bottom panel shows the vector meson coupling ηV
required for the matching between nlNJL and ABPR model in the
low-energy domain of NS chemical potentials.
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vector repulsion providing the same slopes of the CFLL
and ABPR pressures. Coincidence of the absolute values of
pressures of these two models requires an adjustment of the
bag pressure B of the ABPR model, which grows with the
diquark coupling, see the lower panel of Fig. 5. Also for
this behavior a quadratic fit is found

B½MeV=fm3� ¼ 288 − 1070 ηD þ 1400 η2D: ð21Þ

To summarize, we note that for a fixed choice of the QCD
structure constant αs, the parametrization of the ABPR
model that would provide a matching with the nlNJL model
describing the CFLL quark matter is determined by the
choice of the diquark coupling ηD. There is a one-to-one
correspondence of this parameter to the constant pairing
gap Δ� expressed by Eq. (20). With a proper choice of ηV
that reproduces the curvature of the ABPR pressure in the
NS density range, the constant shift B follows unambig-
uously. There is a linear relationship between ηV and ηD

ηV ¼ 3.75 − 5.0 ηD: ð22Þ

The complete dictionary can be read-off Fig. 5. This
motivates us to establish a connection between relatively
simple phenomenological ABPR EOS and microscopic
nlNJL approach to the CFLL quark matter.

C. Parameter matching between ABPR
and nlNJL models

The ABPR model [28] is built on top of the bag model
with pQCD corrections by taking into account the effects of
quark pairing in a perturbative manner. The corresponding
pressure reads

PABPR ¼ Pfree þ Ppert þ Ppair − Beff . ð23Þ

The effective bag pressure Beff ¼ Bþ ΔB, which is present
in Eqs. (1) and (3) absorbs the two constant parameters B
and ΔB. It is worth mentioning that B provides consistency
of the ABPR and nlNJL EOSs, while ΔB is introduced to
adjust the onset density of quark deconfinement.
The negative of the regularized thermodynamic potential

(13) with m ¼ σ ¼ ω ¼ Δ ¼ 0 yields the pressure of free
massless quarks with the single particle energies shifted by
the chemical potential ek ¼ jkj − μ and the distribution
function being fk ¼ θð−ekÞ. Thus

Pfree ¼ −d
Z

dk
ð2πÞ3 ek fk ¼ 3

4π2
μ4: ð24Þ

The order OðαsÞ perturbative correction Ppert can be
obtained as a two-loop exchange energy of massless
quarks [41]. For Nf ¼ 3 flavors and Nc ¼ 3 colors it is

FIG. 6. Pressure of the CFLL quark matter P as function of
baryonic chemical potential μB calculated for several values of ηV
indicated in the legends and ηD ¼ 0.45 (top panel), ηD ¼ 0.5
(middle panel), and ηD ¼ 0.60 (bottom panel). The results are
compared to the pressure of the ABPRmodel with the pairing gap
Δ� and bag pressure Beff , which coincides with B for ΔB ¼ 0
shown here. The shaded area represents the approximate range of
μB typical for quark matter in NSs.
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Ppert ¼ −
NfðN2

c − 1Þg2
4

�Z
dk

ð2πÞ3
fk
ek

�
2

¼ −
3αs
2π3

μ4: ð25Þ

Here the QCD structure constant αs ¼ g2=4π is expressed
through the QCD coupling g. The effects of quark pairing
can be taken into account by introducing Ppair being
the negative of Ωreg with m ¼ σ ¼ ω ¼ 0 and subtracted
Pfree, i.e.

Ppair ¼
X
j

dj

Z
dk

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ Δ2

jk

q
fk − Pfree: ð26Þ

Note, the term −Δ2=4GD [see Eq. (9)] is neglected in this
expression since it is small compared to the final result
Ppair ∝ μ2Δ2. Naive perturbative treatment of the pairing
effects assumes expanding Eq. (26) in powers of the pairing
gap amplitude. However, in the present case this procedure
is ill defined since already in the leading order correction
expansion coefficient diverges logarithmically due to the
presence of the factor −e−1k under the momentum integral.
This requires another expansion parameter, which is
proportional to the pairing gap and provides convergence
of the expansion coefficients. In order to define such
parameter we notice that the main contribution to the
momentum integral in Eq. (26) is due to the momenta close
by the absolute value to μ. In this case ek is small and ekΔjk

can be used as a proper expansion parameter. In order to
make the next step we notice that in the leading order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ Δ2

jk

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔjk − ekÞ2 þ 2ekΔjk

q
¼ Δjk − ek þOðekΔjkÞ: ð27Þ

It is important that the leading order correction in this
expression includes the factor ek, which provides conver-
gence of the momentum integrals at the upper limit of
integration. Performing some algebra with Eq. (26) and
using the above expansion we arrive at

Ppair ¼
X
j

dj

Z
dk

ð2πÞ3
Δ2

jkfkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ Δjk

q
− ek

¼
X
j

dj

Z
dk

ð2πÞ3
Δ2

jkfk
Δjk − 2ek

þOðΔ3Þ: ð28Þ

The leading order term in this expression is proportional to
the squared pairing gap amplitude as is expected for the
ABPR amplitude. At the same time, the order OðΔ3Þ
correction in Eq. (28) is regular due to the presence of the
factor ek under the momentum integral. As we already
mentioned, the main contribution to this integral is due to
jkj ≃ μ. This allows us to replace the factor Δ2

jk in Eq. (28)
by its value at jkj ¼ μ, i.e. by ζ2jΔ2

eff since in the considered

case kF ¼ μ. Due to the same reason we approximate the
integration measure as

dk ≃ dðΔk − 2ekÞ
4πjkj2

∂

∂jkj ðΔk − 2ekÞ

����
jkj¼μ

: ð29Þ

The denominator in this expression is introduced in order
to compensate the factor arising form the differential
dðΔk − 2ekÞ. This denominator is −2þOðΔÞ. With this
Eq. (28) gets

Ppair ¼
X
j

djζ2jμ
2Δ2

eff

ð2πÞ2
Z

μ

0

dðΔjk − 2ekÞ
Δjk − 2ek

þOðΔ3Þ: ð30Þ

The momentum integral in Eq. (30) can be carried
explicitly. It yields lnð2μ=ζjΔeffÞ þOð1Þ. Thus, explicitly
summing over the singlet and octet states we obtain

Ppair ¼
3

π2
μ2Δ2

eff

�
ln

μ2

Δ2
eff

þ ln 2
6

�
þOðΔ3Þ: ð31Þ

Now we use the limit limx→0 xðln x−1 þ cÞ ¼ x, which is
derived in the Appendix for any constant c, for the case
x ¼ Δ2

eff=μ
2. It allows us to suppress the square bracket in

the previous expression. As it was argued in Sec. II B, in the
range of chemical potentials typical for quark matter in NSs
the effective pairing gap Δeff can be substituted by its
average value Δ�. With this the correction caused by quark
pairing becomes

Ppair ¼
3

π2
μ2Δ�2: ð32Þ

Finally, combining Eqs. (23), (24), and (32) we obtain an
effective EOS of paired quark matter, which has the well
known form of the ABPR model [28]. However, in our
formulation the key parameter of this model, i.e. the pairing
gap Δ�, is directly derived from the microscopic nlNJL
approach and can be straightforwardly connected to the
parameters of its Lagrangian.

III. HYBRID EOS AND HYBRID STARS

In order to obtain a hybrid EOS with a (hyper)nuclear
hadronic phase at low densities and a transition to the CFLL
quark matter phase at high densities, we shall employ the
two-phase approach. This means that in this work we do
not aim at a unified description of quark-hadron matter
where the hadronic phase would emerge when starting from
a microscopic approach we describe the hadrons as bound
states of quarks in going beyond the mean field approxi-
mation. Here we restrict ourselves to the latter and chose an
appropriate relativistic density functional model to describe
the hadronic phase. The transition between both phases is
obtained by a Maxwell construction.
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A. Maxwell construction with hadronic EOS

We consider as hadronic EOS the relativistic density
functional DD2npY-T with nucleons and hyperons [42],
which agrees with the low density constraint from the chiral
effective field theory [43].
For the quark matter phase, we employ the ABPR EOS

for which we fix the parameter a4 ¼ 0.363 and vary both
remaining free parameters, Δ� and Beff . Performing the
Maxwell construction results in a set of hybrid EOS with a
first order phase transition that occurs at a critical value of
the baryonic chemical potential μc and pressure Pc
obtained from the Gibbs condition of pressure balance

Pc ≡ PhðμcÞ ¼ PqðμcÞ: ð33Þ

Note, for a given μc hadronic EOS unambiguously defines
Pc and critical energy density εc ≡ εhðμcÞ. Since nature
prefers the EOS with the higher pressure, the physical
pressure at μB < μc is that of the hadronic phase and at
μB > μc, the hybrid EOS is given by the pressure of the
ABPR quark matter model.
In realizing the Maxwell construction, we observe that

there is only a small corridor for the free parameters of the
ABPR model, see Fig. 7. The strong limitation stems from
inaccessible regions in the 2D parameter space due to
impossibility of a Maxwell construction (red area) and a too
low onset of deconfinement (blue area). In between, there is

FIG. 8. Pressure P of cold electrically neutral quark-hadron
matter in β-equilibrium obtained within the ABPR model with
Δ� ¼ 100 MeV (upper panel), Δ� ¼ 128 MeV (middle panel),
and Δ� ¼ 202 MeV (lower panel), corresponding to ηD ¼ 0.45,
ηD ¼ 0.5, and ηD ¼ 0.6, respectively. An empty circle on the
hadronic curves indicates the hyperon onset. The nuclear matter
constraints represented by the shaded areas are discussed in
the text.

FIG. 7. Admissible free parameters of the ABPR model for a
hybrid EOS with DD2npY-T hadronic phase. Between inacces-
sible regions due to impossibility of a Maxwell construction (red
area) and too low onset of deconfinement (blue area), the
attainable maximum masses are shown by solid (2.0M⊙), dashed
(2.1M⊙), and dotted (2.2M⊙) lines in the white area.
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a white area where hybrid EOS can be found that lead to
reasonable hybrid NS sequences.
We note that replacing the Maxwell construction by a

crossover interpolation scheme [44] removes the strong
constraints on the parameter choice and allows to construct
hybrid EOS with color superconductivity that fulfill the
observational constraints in a wider parameter range of the
ABPR model [45].
Figure 8 shows the hybrid quark-hadron EOSs obtained

by matching the DD2npY-T hadronic EOS and the ABPR
quark matter ones by means of the Maxwell construc-
tion described above. These EOSs agree with the low
density constraint from the chiral EFT approach to nuclear
matter [43] by construction, and with the multipolytrope
analyses of Hebeler et al. (Ref. [46] with the observational
constraint from the high mass of PSR J1614þ 2230)
and by Miller et al. (Ref. [47] for the combined mass
and radius measurement of PSR J0740þ 6620) for the
cases of moderate values of diquark gaps Δ� ¼ 100,
128 MeV. One should bear in mind that the analyses of
Refs. [46,47] are not sensitive to the region of central
pressures Pðr ¼ 0Þ ≲ 20 MeV=fm3, which would corre-
spond to NS masses below ∼1.1M⊙, where no measure-
ments of pulsar masses and radii exist.1 For an orientation
how to relate a central pressure and mass of hadronic NSs,
please regard the open circle on Figs. 8 and 10 that stands
for the onset of hyperons in the DD2npY-T EOS.
The Fig. 8 indicates the effect of two parameters of the

ABPR EOS, i.e. Δ� and ΔB. The first of them regulates the
jump of the energy density across the hadron-to-quark
matter transition Δε. The larger Δ� the stronger is this
jump. At the same time,ΔB controls the onset density nc of
quark deconfinement. Increasing ΔB at a given value of the
effective pairing gap Δ� leads to a larger nc and smaller Δε.

In this work we considered only those values ofΔ� andΔB,
which provide positiveness of Δε across the hadron-to-
quark matter transition, being in agreement with the
Maxwell construction of a first order phase transition.
We list the values of Δε in Table I.
It is interesting to analyze influence of the effective

pairing gap on hybrid EOSs obtained for a given onset
density of quark matter. In Fig. 8 such EOSs are depicted
by the curves of the same color. As is seen from Fig. 8,
increase of Δ� softens the EOS. At first glance, this
conclusion contradicts the increase of the speed of sound
for a larger pairing gap (see the lower panel of Fig. 2). In
order to resolve this apparent paradox, we consider the
dimensionless interaction measure δ ¼ 1=3 − P=ε. Stiffer
EOSs correspond to smaller δ. Inverting c2s ¼ c2sðμBÞ, the
baryonic chemical potential can be eliminated from
the expression for the interaction measure, which can be
presented as a function of the speed of sound and bag
pressure. A larger c2s leads to smaller values of δ, while
increasing Beff causes the opposite effect. Using the Gibbs
criterion (33) we express the latter as

Beff ¼
3

4π2
a4

�
μc
3

�
4

þ 3

π2
Δ�2

�
μc
3

�
2

− Pc: ð34Þ

This expression demonstrates that the effective bag pres-
sure grows with Δ�, as the speed of sound does. As a result,
the growth of the pairing gap induces two competing
effects: a decrease of δ caused by c2s and its increase
due to Beff .
In order to show that within the range of baryonic

chemical potentials typical for NSs the second of these
effects dominates, we consider the derivative

∂δ

∂Δ� ¼
P
ε2

∂ε

∂Δ� −
1

ε

∂P
∂Δ� : ð35Þ

Using explicit expressions for P, ε, Beff and performing
straightforward manipulations, Eq. (35) becomes

TABLE I. Parameter matching between nlNJL model (columns 2 and 3) and the ABPR model (columns 3 and 4) for the chosen case
a4 ¼ 0.363. The parameter ΔB is added to both EOS to fix the onset of deconfinement.

Set ηD ηV

Δ�
[MeV]

B
[MeV=fm3]

ΔB
[MeV=fm3]

Δε
[MeV=fm3]

Monset
[M⊙]

Mmax
[M⊙]

μmax
B

[MeV]
εmax

MeV=fm3
R2.0
[km]

R1.4
[km] Λ1.4

I a 0.45 1.5 100 90 −7 0 1.37 2.19 1597 1020 13.05 13.17 678
I b 0.45 1.5 100 90 −8 26 0.84 2.20 1578 1016 12.99 13.04 623
I c 0.45 1.5 100 90 −11 86 0.24 2.23 1570 996 12.85 12.57 565

II a 0.5 1.25 128 103 15 70 1.37 2.03 1617 1217 11.48 13.13 660
II b 0.5 1.25 128 103 9 86 0.84 2.05 1624 1226 11.77 12.32 402
II c 0.5 1.25 128 103 2 139 0.24 2.10 1604 1172 11.74 11.65 349

III a 0.6 0.75 202 150 102 338 1.37 1.64 1740 2014 � � � 11.10 148
III b 0.6 0.75 202 150 77 316 0.84 1.69 1741 1994 � � � 9.96 81
III c 0.6 0.75 202 150 57 343 0.24 1.78 1695 1822 � � � 9.43 88

1We exclude here the case of the strangely light NS HESS
J1731 − 347 [48] which is still under debate, in particular
because there is no known mechanism for the formation of such
a light compact star with M ¼ 0.77þ0.20

−0.17M⊙.
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∂δ

∂Δ� ¼
12Δ�μ2

π2ε2

�
Pc −

3a4
4π2

�
μ2 −

�
μc
3

�
2
�

2
�
: ð36Þ

From this expression we conclude that δ increases with Δ�
if the baryonic chemical potential is below

μδ ¼ μc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6π

ffiffiffiffiffiffiffiffiffi
3Pc

a4μ4c

svuut ; ð37Þ

while at μB > μδ the interaction measure decreases
with the pairing gap growth. This corresponds to the
pairing gap induced softening and stiffening of the present
EOS, respectively. Since μδ always exceeds μc, then
δ > δjΔ�¼0 after the hadron-to-quark matter phase transi-
tion, which corresponds to softening of the ABPR EOS.

The corresponding ranges of the baryonic chemical poten-
tial are shown on the upper panel of Fig. 9. On the lower
panel of Fig. 9, we show the quantities which characterize
the onset of deconfinement, the critical pressure Pc, the
critical hadronic energy density εc. The figure also shows
mass of onset of quark matter in NS Monset, which is
discussed below.

B. Calculation of astrophysical observables

There is a one-to-one relationship between an EOS of
dense matter and a sequence of NS configurations in
the mass-radius diagram which is obtained by solving
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
spherically symmetric (nonrotating) case [49,50]. These
solutions can directly be compared to measurements of
mass and radius, e.g., from the combined observations by
NICER and XMM Newton of the millisecond pulsar
J0740þ 6620 (see the analysis of Miller et al. [47]).
The mass of this object, 2.08� 0.07M⊙ [51], sets a lower
limit for the maximum mass that obtained for a given
EOS by solving the TOV equations. Additionally, the tidal
deformability of a 1.4M⊙ NSs has been extracted from
the gravitational wave measurement of the binary NS
merger event GW170818. It has been obtained as 70 <
Λ < 580 [52]. The theoretical values of tidal deformability
of NSs in dependence of their mass is obtained from
solving a system of differential equations with the EOS as
an input.
The astrophysical observables were calculated on the

basis of the code by Andrea Maselli [53].

C. Observational constraints for EOS parameters

The results for the sequences of star configurations in the
mass-radius and tidal deformability-mass diagram are
shown in Fig. 10 for three choices of the CFLL diquark
pairing gap (upper, middle, and lower panels) with the
onset of deconfinement adjusted for each case to 0.24, 0.84,
and 1.37M⊙ by a proper choice of the corrective bag
pressure parameter ΔB. The characteristic values for mass,
radius and tidal deformabilities are extracted from these
solutions and given in Table I. The table also includes
values of the baryonic chemical potential μmax

B and energy
densities εmax reached in the centers of the heaviest NSs
with quark cores. Larger diquark couplings or, equivalently,
larger constant pairing gaps correspond to softer EOS of
quark matter, which leads to larger values of μmax

B and εmax.
At the same time, for given values of ηD and Δ� these
central chemical potentials and energy densities depend
only weakly on the onset mass Monset for quark deconfine-
ment, demonstrating a slightly rising behavior.
Table I indicates that an increase of Δ� leads to a smaller

maximum mass of the NS, which can be interpreted as an
apparent softening of the ABPR EOS considered above.
Concerning the maximum NS mass it is appropriate to
mention that Mmax is extracted from the solution of the

FIG. 9. Ranges of the pairing gap induced softening
(∂δ=∂Δ� > 0) and stiffening (∂δ=∂Δ� < 0) of the ABPR EOS,
separated by μδ (upper panel) as well as critical pressure Pc,
energy density εc and onset mass Monset for deconfinement (lower
panel) as a function of the critical chemical potential μc.
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FIG. 10. Left column: Mass-radius relation of hybrid NSs with the quark-hadron EOS presented in Fig. 8. An empty circle on the
hadronic curves indicates the hyperon onset. The astrophysical constraints depicted by the colored bands and shaded areas are discussed
in the text. Right column: Dimensionless tidal deformability Λ as a function of the NS mass M (upper panel) obtained with the same
hybrid EOS that were used in order to obtain the mass-radius relations shown in the left column. The observational constraint on the
dimensionless tidal deformability of a 1.4M⊙ NS is from the binary NS merger GW170817 [52].
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TOV equation, which does not contain the speed of sound
but pressure and energy density. Therefore, within the TOV
equation context it is reasonable to quantify the stiffness of
an EOS not by the speed of sound but by the dimensionless
interaction measure. The analysis of δ performed above,
indeed, evidences a softening of the ABPR EOS due to
increase of the effective pairing gap and consequent
decrease of the NS maximum mass.
The discontinuous behavior of the energy density caused

by the first order hadron-to-quark matter transition entails a
sizeable reduction of the tidal deformability of hybrid NSs
with quark corewhen compared to NSswith purely hadronic
interior. This has been discussed already inRef. [54], see also
the comment on it by Ref. [55]. In order to quantify this
effect, we introduce δΛ ≡ ðΛ − ΛDD2npYÞ=ΛDD2npY as a
parameter for the relative modification of the tidal deform-
ability compared to the case of purely hadronic NSs
represented byΛDD2npY. In Fig. 11 we show δΛ as a function
of the NS mass for our sets of hybrid EOSs. A reduction
(increase) ofΛ corresponds to a negative (positive) δΛ when
compared to purely hadronic NSs. We show in that figure
also δΛ for the tidal deformabilitymeasurementΛGW170817 ¼
190þ390

−120 thatwas extracted from the gravitationalwave signal
of the binary NS merger GW170817 [52] at the mass of
1.36M⊙ for the symmetric case.
The figure indicates that for an early onset of quark

deconfinement at Monset < 1.4M⊙, the tidal deformability
of an intermediate mass hybrid NS with quark core is
smaller than that of a purely hadronic NS. Thus, a strong
and early hadron-to-quark matter phase transition presents
a possible solution of the problem of the relatively low tidal
deformability ΛGW170817. This constraint could not be met
by some otherwise well-constrained hadronic matter EOS
as, e.g., DD2npY-T. But when an early deconfinement
transition with a large Δε occurs (see Table I), this problem
can be solved, as Fig. 11 shows. The possibility that the
NSs that merged in GW170817 were already hybrid NSs
before the merger event and could possibly have been
members of a third family branch of NSs, has been
discussed already, e.g., in Refs. [56–58].
As a result of the present work and the dictionary

we provided, one can constrain the values of the free
parameters in the nlNJL model Lagrangian for dense QCD
matter with the help of NS phenomenology. To this end, we
also indicated in Fig. 7 the isolines of the achievable
maximum mass for an admissible pair of ABPR EOS
parameters Δ� and Beff (white region). The larger the
chosen Δ�, the softer the EOS becomes and the smaller is
the achievable maximum mass. For Δ� ≳ 150 MeV, the
lower limit of the maximum mass cannot be reached. This
is also illustrated in Fig. 10 for the case Δ� ¼ 202 MeV.
From Fig. 5 one reads off that the upper limit for Δ� ≲
150 MeV constrains the dimensionless diquark coupling to
ηD ≲ 0.53. At the same time, for the dimensionless vector
coupling holds ηV ≳ 1.2.

FIG. 11. Relative modification of tidal deformability δΛ as a
function of the NS mass M calculated with the quark-hadron
EOS presented in Fig. 8. The observational constraint from
the GW170817 event represented by δGW170817 is discussed in
the text.
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IV. CONCLUSIONS

In this work, we have derived the effective cold quark
matter model by Alford, Braby, Paris, and Reddy (ABPR)
from a nonlocal Nambu–Jona-Lasinio model for the color
superconducting quark matter in the CFLL phase with three
light flavors.
We have discussed a generalization of the ABPR model

that uses an OðαsÞ perturbative QCD correction with
a running strong coupling constant αsðμÞ that assures
reaching the conformal limit for the squared speed of
sound c2s − 1=3 → 0− for high chemical potentials. Below a
matching point that is shown to lie above the range of
chemical potentials that can be accessed in NSs, the
running coupling is switched to a constant value αs ¼ 1
which is large enough to provide the necessary stiffness of
the quark matter phase for reaching maximum masses of
hybrid stars in accordance with the observational lower
limit Mmax ≥ 2.01M⊙.
We have shown that due to the momentum dependence of

the pairing which is induced by the nonlocality of the
interaction, the effective gap parameter in the EOSmodel has
a plateaulike behavior in the range of chemical potentials for
NSs that is well approximated by a constant value. The
dependence of this value on the diquark coupling strength in
the nlNJL model Lagrangian could be fitted to a parabola.
NS phenomenology constrains this pairing gap parameter to
values between 100 and 150 MeV which translate to the
narrow range of diquark couplings ηD ¼ 0.45…0.53. Due to
this large pairing gap, the sound speed of the ABPR EOS
exceeds the conformal limit value.
The dictionary for translating the vector meson and

diquark coupling as free parameters of the nlNJL model
to those of the ABPRmodel that is completed by relating the
effective bag pressure parameter to the vector meson
coupling. In order to fulfill also the low tidal deformability
constraint from GW170817, a softening of the EOS on the
hybrid NS branch is necessary which requires an early onset
of quark deconfinement at Monset < 1.4M⊙. In order to
illustrate this fact, we have introduced a new parameter, the
relative change of the tidal deformability due to the phase
transition compared to a hadronic baseline (DD2npY-T) and
discussed it for the hybrid NS sequences that resulted from
parametrizations of the color superconducting quark matter
EOS condidered in this work. To assure the early onset, a
small pressure correction of ΔB ∼ 10 MeV=fm3 is required
which could be justified by a modification of the non-
perturbative gluon sector at high baryon densities.
Summarizing, we have provided a microphysical

justification for the use of the ABPR EOS in NS phenom-
enology based on the nonlocal NJL model for color super-
conducting quark matter in the CFLL phase. A dictionary is
provided for relating the ABPR EOS parameters for which
constraints from the analysis of NS phenomenology are
fulfilled to the free parameters of the nlNJL model
Lagrangian for low-energy QCD. We find that a finite

pairing gap corresponds to a squared sound speed that
exceeds the conformal limit. Increasing the diquark cou-
pling and thus the pairing gap, however, softens the EOS
and entails a lowering of the maximum mass. An optimal
diquark pairing gap for which the maximum mass exceeds
2M⊙ is of the order of 100…120 MeV.
There are several routes one could follow in subsequent

work, based on the present study. In concluding, we would
like to mention a few of them. The assumption of the
degeneracy of the strange quark mass with that of the up
and down quarks could be relaxed. Then, one could follow
the route of the nonlocal NJL model for that case, or one
could employ the approach of the confining density
functional [19] which has been recently developed by
two of us (D. B., O. I.). The main difference would be in
the phase structure that is to be expected, namely the
existence or non-existence of a two-flavor color super-
conducting (2SC) phase and the possibility to address in a
microscopic model the case of absolutely stable strange
quark matter. Besides the simple Maxwell construction of
a hadron-to-quark matter transition, a crossover transition
could be constructed, eventually with a corridor of a first-
order transition and two critical endpoints. The appro-
priate method of a two-zone interpolation scheme [20] has
been developed by two of us (O. I., D. B.). Also, the
simple ansatz of the switch model for the running
coupling could be systematically developed. As a first
step, one could choose different values of the saturated
(constant) coupling in the nonperturbative domain. This
would change the switch point and eventually lead to an
intrusion of the region where the coupling is running to
the NS density domain. Such a variation of the a4
parameter of the ABPR model would then be reflected
in a variation of the ηV parameter of the nlNJL model
independently of the ηD parameter. A more realistic ansatz
for the running of the QCD coupling in the nonperturba-
tive domain [59] could be chosen. Then, a direct influence
of the detailed scheme of such a running coupling like,
e.g., that of the analytic perturbation theory, on the NS
phenomenology would be expected.
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APPENDIX: LIMIT OF EQ. (30)

Here for the readers convenience we derive the relation

lim
x→0

xa
�
ln
1

x
þ c

�
¼ lim

x→0

xa

a
: ðA1Þ

In Sec. II C it is used at a ¼ 1, while for the sake of
generality we derive it for any nonvanishing a. At the first
step we rewrite xa ¼ 1=x−a. This yields an indeterminate

form ð∞∞Þ. It can be treated using the L’Hôpital’s rule
assuming replacement of ln 1

x þ c and x−a by their deriv-
atives. Thus

lim
x→0

xa
�
ln
1

x
þ c

�
¼ lim

x→0

�
−
1

x

�	�
−

a
xaþ1

�
: ðA2Þ

After a simple algebra this relation arrives at the desired
form of Eq. (A1).
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