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We present a systematic study of fast neutrino-flavor conversion (FFC) with both small-scale and large-
scale numerical simulations in spherical symmetry. We find that FFCs can, in general, reach a quasisteady
state, and these features in the nonlinear phase are not characterized by the growth rate of FFC instability
but rather angular structures of the electron neutrino lepton number (ELN) and the heavy one. Our result
suggests that neutrinos can almost reach a flavor equipartition even in cases with low growth rate of
instability (e.g., shallow ELN crossing) and narrow angular regions (in momentum space) where flavor
conversions occur vigorously. This shows that ELN and heavy-neutrino lepton number angular
distributions cannot provide a sufficient information to determine total amount of flavor conversion in
neutrinos and antineutrinos of all flavors. Based on the results of our numerical simulations, we provide a
new approximate scheme of FFC that is designed so that one can easily incorporate effects of FFCs in
existing classical neutrino transport codes for the study of core-collapse supernova and binary neutron star
merger. The scheme has an ability to capture key features of quasisteady state of FFCs without solving
quantum kinetic neutrino transport, which will serve to facilitate access to FFCs for core-collapse
supernova and binary neutron star merger theorists.
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I. INTRODUCTION

There is mounting evidence that neutrinos undergo
flavor conversion. Occurrences of flavor conversion imply
that neutrinos have multiple eigenstates with different
masses, and their mass eigenstates do not coincide with
the flavor ones. In the framework of three flavors, the mass
and flavor state can be connected through the Pontecorvo-
Maki-Nakagawa-Sakata matrix with three different mixing
angles and a CP-violation phase. Determining the mixing
parameters and the mass differences of neutrinos is a
fundamental problem in particle physics, which is also
of great importance in understanding astrophysical phe-
nomena involving neutrinos.
Neutrino flavor conversions can be interpreted through

the dispersion relation (DR). The disparity of DR due to
different masses of neutrinos leads to the oscillation of
flavors while propagating in vacuum. When neutrinos
propagate in a medium, the DR is modified by refractive
effects due to coherent forward scatterings by matter.
This triggers large flavor conversions if refractive effects
resonate with vacuum oscillation, which is known as
Mikheyev-Smirnov-Wolfenstein resonance [1,2]. On the

other hand, coherent forward scatterings of neutrinos
themselves also provide another refractive effects [3].
One noticeable feature is that off-diagonal components
of self-interaction Hamiltonian are in general not zero on
the flavor basis, which is qualitatively different from matter
potential, and more importantly the flavor conversion
occurs nonlinearly. This generates rich phenomenologies
of neutrino dynamics including collective neutrino oscil-
lations (see, e.g., [4]).
Fast neutrino-flavor conversion (FFC) has attracted a

great deal of attention recently [5–8]. FFC does not
depend on differences of neutrino mass, but rather being
solely dictated by neutrino self-interactions. Recent studies
of FFCs by linear stability analysis [9], its surrogate
methods [10–14], and some toy models (e.g., [15]) have
suggested that FFC instabilities would occur in core-
collapse supernova (CCSN) [16–23] and in binary neutron
star mergers (BNSMs) [14,15,24–28]. The growth time-
scale of the instability can be an order of subnanoseconds,
which is much shorter than any scale on interest in these
systems. This shows that FFCs may radically change the
neutrino radiation fields in CCSN and BNSM.
Increasing the possibility of occurrences of FFCs pro-

vided the impetus to link FFCs to theoretical models of
CCSN and BNSM. The ab initio approach to incorporate*hiroki.nagakura@nao.ac.jp
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effects of FFC into CCSN/BNSM simulations requires
solving seven-dimensional (on in time, three in space, and
three in momentum space) quantum kinetic equation
(QKE). This poses a formidable computational challenge,
however. The wavelength of neutrino oscillation is several
orders of magnitude smaller than the scale height of the
fluid flow, making these simulations intractable under
currently available computational resources. Thus far,
previous studies have mostly concentrated their efforts
on local simulations [29–44] (but see also other efforts for
global simulations [26,45,46]), or on neutrino-radiation
hydrodynamic simulations with phenomenological models
of FFCs [27,28,47]. In the latter approach, the neutrino
transport is essentially a classical treatment, but effects
of flavor conversion are incorporated by some neutrino-
mixing prescriptions. More specifically, they impose a
certain condition to detect occurrences of FFCs (which
is based on stability analyses), and then the total amount of
flavor conversion is determined with a parametric way (or
assumed to be a flavor equipartition). These simulations are
useful to demonstrate how FFCs give impacts on CCSN
and BNSM dynamics qualitatively. On the other hand, their
outcome hinges on the instability criteria and the choice of
parameter for neutrino mixings, exhibiting that better
approximate prescriptions are required to gauze accurate
sensitivity of CCSN and BNSM dynamics to FFCs.
Recently we proposed a novel approach to pave the way

towards incorporating FFCs into CCSN and BNSM sim-
ulations [48] (hereafter the paper is referred to as NZV1). In
this approach, neutrino transport is solved with quantum
kinetic treatments with attenuating neutrino Hamiltonian
potentials parametrically. Thanks to the attenuation of the
Hamiltonian, large-scale FFC simulations can be carried
out with feasible computational costs. It is also worthwhile
to note that our proposed method can be used for other
studies of neutrino flavor conversions; for instance, [49]
recently carried out large-scale simulations of collisional
instability with attenuating Hamiltonian.
In NZV1, we performed FFC simulations in 50 km

spatial scales (50 km ≤ R ≤ 100 km), and then we ana-
lyzed their global features. We found that the time-averaged
neutrino distributions are insensitive to the attenuation of
Hamiltonian,1 suggesting that the similar time-averaged
profile would appear in the case without the attenuation. We
also found in NZV1 that the difference of angular dis-
tributions of ELN (electron-neutrino lepton number) and
XLN (heavy-neutrino lepton number) is a key quantity to
determine the nonlinear saturation of flavor conversion,
and to characterize the subsequent quasisteady state of
FFCs. In fact, the ELN-XLN angular crossings become

very shallow or even disappear in the time-averaged profile
after the system reaches nonlinear saturation. As such,
NZV1 illustrated that the proposed method, attenuating
Hamiltonian, can bring new insights on FFCs. This method
is also expected to play a crucial role to connect local and
global features of neutrino quantum kinetics.
In this paper, we extend our previous study in NZV1 by

covering various initial states of neutrinos. This study is
motivated by the fact that we focused on the ability of our
new approach in NZV1, and therefore we fixed the initial
angular distributions of neutrinos. However, it is necessary
to carry out a systematic study for various initial conditions
so as to capture generic features of FFCs. To analyze the
large-scale numerical simulations, we also carry out local
simulations in the vicinity of inner boundary without
attenuation of Hamiltonian. We shall show that some
intrinsic features of FFCs can be complemented from these
small-scale simulations. Finally, we provide an approxi-
mate method that determines quasisteady states of FFC
without solving QKE. For future users, we provide a recipe
of the method, which can be easily implemented in existing
classical neutrino transport codes.
This paper is structured as follows. In Sec. II we

first review the essence of our approach, attenuation of
Hamiltonian potentials, for large-scale QKE simulations.
We then describe our models in Sec. III. All numerical
results presented in this paper are encapsulated in Sec. IV.
The approximate method to determine the quasisteady state
of FFCs is described in Sec. V. Finally, we summarize our
conclusions and key messages from the present work in
Sec. VI. Throughout the paper, we use the unit with
c ¼ ℏ ¼ 1, where c and ℏ are the light speed and the
reduced Planck constant, respectively; we choose the metric
signature of −þþþ.

II. METHOD

The numerical simulations presented in this paper are
carried out with a newly developed QKE neutrino transport
code, GRQKNT. Details of the design and a suite of
tests are presented in [50]. Here, we describe only the
essential components of the code directly related to this
present work.
In GRQKNT, we adopt a discrete-ordinate Sn method.

The transport operator is handled with fifth-order weighted
essentially nonoscillatory scheme with a five-stage fourth-
order total variation diminishing (TVD) Runge-Kutta. In
this study, we assume spherical symmetry and ignore
general relativistic effects, fluid-velocity dependence, and
the collision term. The resultant QKE can be written as

∂ f
ð−Þ

∂t
þ 1

r2
∂

∂r
ðr2 cos θν f

ð−Þ
Þ − 1

r sin θν

∂

∂θν
ðsin2θν f

ð−Þ
Þ

¼ −iξ½H
ð−Þ

; f
ð−Þ

�; ð1Þ

1A word of caution should be spent here. Extreme attenuation
of Hamiltonian potential lead to no flavor conversion. This
indicates that there is a threshold in the attenuation-parameter
to capture the qualitative trend of FFCs in global scales.
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where f and f̄ represent the density matrix of neutrinos and
antineutrinos, respectively. t; r, and θν denote time, radius,
and neutrino flight angle with respect to radial direction,
respectively. H (H̄) represents the neutrino (antineutrino)
oscillation Hamiltonian potential, which is composed of
vacuum-, matter-, and self-interaction components. In this
study, the matter potential is set to be zero, but we reduce
the mixing angle in the vacuum potential from that con-
strained by experiments. This is a common prescription to
effectively include effects of matter potential.2 In this study,
the vacuum potential is added as a perturbation to trigger
FFCs.3 Following the previous studies as NZV1, we adopt
the two-flavor approximation with Δm2 ¼ 2.5 × 10−6 eV2,
θmix ¼ 10−6, and Eν ¼ 12 MeV, where Δm2 and θmix
denote a squared mass difference of neutrinos, mixing
angle, and neutrino energy, respectively. We solve QKE on
a single neutrino-energy bin, i.e., adopting monochromatic
energy approximation. This is a reasonable treatment for
FFCs, unless energy dependence of neutrino-matter inter-
actions (i.e., collision term) has an influence on flavor
conversion [52].
ξ (0 ≤ ξ ≤ 1) in the right-hand side of Eq. (1) is not a

physical quantity. It is a parameter that controls the
attenuation of all neutrino oscillation Hamiltonian (vac-
uum, matter, and self-interaction components). When we
set ξ ¼ 1 (for local simulations), this restores the original
QKE equation. On the other hand, we set ξ to be less than
unity so as to make large-scale simulations (>10 km)
tractable. In these simulations, spurious evolutions of
FFC inevitably arise, but these unphysical features sensi-
tively depend on ξ, indicating that we can identify these
artifacts by convergence study with respect to ξ. In NZV1,
we performed such a convergence study and demonstrated
how physically meaningful features can be extracted from
these simulations. Another thing we do notice here is that
results of local simulations help us to understand those
of large-scale simulations, which will be demonstrated
in Sec. IV.

III. MODEL

Numerical setup in the present study is designed so as to
emulate situations in the core of CCSN and BNSM. In this
study, we pay special attention to FFCs driven by neutrinos
propagating outwards (cos θν ≥ 0) outside of neutrino
sphere (50 km ≤ R ≤ 100 km). According to recent
theoretical studies (see, e.g., [14,16,20,23,27,28]), ELN

crossings likely appear in these regions, that exhibits the
sign of occurrences of FFCs. It should be mentioned that
FFCs can also occur inside of neutrino spheres; for
instances, optically thick region [16,18,20,53] and in a
semitransparent one [45,46]. In these regions, neutrino
angular distributions are nearly isotropic, indicating that
neutrinos propagating in all angles have non-negligible
contributions on the self-interaction Hamiltonian potential.
In addition to this, the interplay between FFCs and
neutrino-matter interactions would lead to more complex
dynamics in neutrino radiation field. Addressing the issue
of FFCs inside the neutrino sphere is a beyond the scope of
this paper, and the detailed investigation will be made in a
separate paper.
In our models, we set Rin ¼ 50 km, where Rin denotes

the radius of inner boundary. We adopt a Dirichlet
boundary condition for outgoing neutrinos, and their
angular distributions of νe and ν̄e are determined with
the following equation,

f
ð−Þ

ee ¼ h f
ð−Þ

eeið1þ β
ð−Þ

eeðcosθν − 0.5ÞÞ cosθν ≥ 0: ð2Þ

For the sake of simplicity, other components of density
matrix are set to be zero. For incoming neutrinos
(cos θν < 0), we use a free-streaming boundary condition,
which is appropriate to meet the causality requirement. At
the outer boundary, on the other hand, we adopt the
Dirichlet boundary condition for incoming neutrinos,
which are

f
ð−Þ

ee ¼ h f
ð−Þ

eei × η cos θν < 0: ð3Þ

η represents the diluteness of incoming neutrinos, and we
set η ¼ 10−6. Due to the small number of incoming
neutrinos, they do not contribute the self-interaction poten-
tial. Similar as the inner boundary condition, we adopt a
free-streaming boundary condition for outgoing neutrinos
to be consistent with the causality.
We construct angular distributions of νe and ν̄e by setting

four parameters: two for h f
ð−Þ

eei and two for β
ð−Þ

ee in Eqs. (2)

and (3). h f
ð−Þ

eei is a parameter to characterize the number
density of νe (nνe) and ν̄e (nν̄e) at the inner boundary. In this
study, we fix hfeei in all models so that nνe becomes
6×1032 cm−3 at R ¼ 50 km, which is the same as that used
in NZV1. To determine hf̄eei, we introduce α defined as

α≡ nν̄e
nνe

: ð4Þ

β
ð−Þ

ee characterizes the shape of the angular distribution of

neutrinos. This should be set in the range of −2 ≤ β
ð−Þ

ee ≤ 2

2It is also equivalent to work with polarization vectors of
neutrinos in a corotating frame, see Ref. [51].

3As we shall show in Sec. IV, flavor conversions are affected
by vacuum potentials in some of our models. Although the
neutrino dynamics in these models are not purely dictated by the
instability of FFC, their results are interesting because some
interactions between fast and slow modes emerge. See Sec. IV for
more details.
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so that f
ð−Þ

ee becomes positive in all angles [see Eq. (2)]. In

this study we only consider the case with β
ð−Þ

ee ≥ 0, since
the neutrinos where we consider in the situations for CCSN
and BNSM have forward-peaked angular distributions

outside of neutrino sphere. We note that β
ð−Þ

ee ¼ 0 corre-
sponds to the case with a flat angular distribution in
cos θν ≥ 0, and that the degree of forward peaking

increases with β
ð−Þ

ee.
The existence of ELN crossing is a necessary and

sufficient condition for occurrences of FFCs. We, hence,

determine a set of parameters of α and β
ð−Þ

ee so that an ELN
crossing appears in outgoing directions (cos θν > 0). From
Eq. (2), the crossing point (cos θνðcÞ) can be analytically
given as

cos θνðcÞ ¼
ðα − 1Þ þ 0.5ðβee − αβ̄eeÞ

βee − αβ̄ee
: ð5Þ

The set of parameters for all models is listed in Table I.
The angular distributions of νe and ν̄e at the inner boundary
for some representative models are displayed in Fig. 1. In
our reference models (GL-Ref and LO-Ref), we set α ¼ 1

(i.e., hfeei ¼ hf̄eei), βee ¼ 0, and β̄ee ¼ 1. We note that
“GL” and “LO” in the name of these models denote
“global” and “local” simulations, respectively; ΔR in

Table I represents the radial width of simulation box.4 It
is worthwhile to note that the neutrino angle of ELN

crossing does not depend on β
ð−Þ

ee when we adopt α ¼ 1
[see Eq. (5)]; the crossing point is always located at
cos θνðcÞ ¼ 0.5. We also note that GL-Ref corresponds to
the same initial condition that used in NZV1.5 We run 17
QKE simulations in total with varying these parameters
systematically.
The α dependence can be studied by comparing to the

reference model to “GL(LO)-α09” and “GLðLOÞ-α11.”
In these models, the parameters are the same as those used
in the reference model but for α ¼ 0.9 and 1.1, respectively.
The ELN crossing point for “GLðLOÞ-α09” and
“GLðLOÞ-α11” is cosθνðcÞ ¼11=18 and 9=22, respectively.
We study β̄ee dependence under the choice of α ¼ 1 and

βee ¼ 0 (these are the same as those used in reference
model). It is worth to note that β̄ee characterizes the depth
of ELN crossing. In fact, the crossing becomes shallower
with decreasing β̄ee (for instance, the depth becomes ∼1%
for the choice of β̄ee ¼ 10−2; see also Fig. 1). We also note

TABLE I. Set of parameters in our models. See Eqs. (1)–(4) for the definition of α, β
ð−Þ

ee, and ξ. ΔR corresponds to
the width of computational domain. We note that the inner boundary is located at R ¼ 50 km for all models
(including local simulations). Nr and Nθν represent the number of grid points in space and in neutrino angular
directions, respectively. We employ uniform grids for each direction. Tsim corresponds to the physical time of
simulation. The values in parentheses in the same column (but only for reference models) denote Tsim for extended
simulations to analyze temporal variations of FFC by Fourier analysis; see text for more details.

Model α βee β̄ee ξ ΔR [km] Nr Nθν Tsim [ms]

GL-Ref 1 0 1 2 × 10−4 50 49152 128 0.5(1)
LO-Ref 1 0 1 1 10−2 49152 128 10−4ð2 × 10−4Þ
GL-α09 0.9 0 1 2 × 10−4 50 49152 128 0.5
LO-α09 0.9 0 1 1 10−2 49152 128 10−4

GL-α11 1.1 0 1 2 × 10−4 50 49152 128 0.5
LO-α11 1.1 0 1 1 10−2 49152 128 10−4

GL-β̄01ξ-3 1 0 0.1 2 × 10−3 50 49152 128 0.5
LO-β̄01 1 0 0.1 1 10−2 49152 128 10−4

GL-β̄001ξ-2 1 0 10−2 2 × 10−2 50 49152 128 0.5
LO-β̄001 1 0 10−2 1 0.1 49152 128 10−3

GL-β̄0001ξ-1 1 0 10−3 2 × 10−1 50 49152 128 0.5
GL-H-β̄0001ξ-1 1 0 10−3 2 × 10−1 50 98304 256 0.5
LO-β̄0001 1 0 10−3 1 1 49152 128 10−2

GL-β05ξ-3 1 0.5 1 2 × 10−3 50 49152 128 0.5
LO-β05 1 0.5 1 1 10−2 49152 128 10−4

GL-Flip 1 1 0 2 × 10−4 50 49152 128 0.5
LO-Flip 1 1 0 1 10−2 49152 128 10−4

4The simulation box is Rin ≤ r ≤ Rin þ ΔR.
5It should be noted, however, that the numerical setup is not

exactly the same as that used in NZV1. In NZV1, we changed the
number density of neutrinos to control the degree of self-
interaction potential, meanwhile the vacuum potential was not
changed. In this study, we multiply ξ for the total Hamiltonian
[see Eq. (1)], implying that the vacuum potential is also affected
by ξ.
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that the ELN crossing point does not depend on β̄ee under
the choice of α ¼ 1. This suggests that we can study the
sensitivity of FFC to the depth of ELN crossing under
fixing the ELN crossing point. In this study, we consider
four different cases: β̄ee ¼ 1; 0.1; 10−2, and 10−3. In total,
we run nine models (including reference models) to study
the β̄ee dependence. GL-β̄01ξ-3 and LO-β̄01 correspond
to the case with β̄ee ¼ 0.1; GL-β̄001ξ-2 and LO-β̄001 are
for the case with β̄ee ¼ 10−2; GL-β̄0001ξ-1, and LO-β̄0001
represent the case for β̄ee ¼ 10−3. We note that ξ for the
global models increases with decreasing β̄ee, i.e., relaxing
the attenuation of Hamiltonian potential. This is possible
because the depth of crossing becomes shallower with
decreasing β̄ee, indicating that the growth rate and the
oscillation wavelength of FFCs become slower and longer
with decreasing β̄ee. On the other hand, we need to widen
the size of simulation box for local simulations of these
models with smaller values of β̄ee, since the default
simulation box (ΔR ¼ 10 m) would not be large enough
to study the nonlinear phase of flavor conversion. We,
hence, set ΔR ¼ 100 m and 1 km for LO-β̄001 and
LO-β̄0001, respectively.
One of the striking results in this study is that strong

flavor conversions can occur even in a very shallow ELN
crossing such as the model with β̄ee ¼ 10−3. To confirm
that the result is not a numerical artifact, we carry out a
resolution study (GL-H-β̄0001ξ-1 model), in which we
employ twice higher resolutions for both in space and
neutrino angles than those of GL-β̄0001ξ-1.
We also run simulations with a nonflat νe angular

distribution (GL-β05ξ-3 and LO-β05). In these models,
we adopt α ¼ 1, βee ¼ 0.5, and β̄ee ¼ 1. For the sake of
completeness, we also prepare “GL-Flip” and “LO-Flip”
models. In these models, νe and ν̄e angular distributions are
flipped from those used in the reference model. This
corresponds to the case that ν̄e angular distributions are
more forward peaked than νe. Although it may not be

realistic in CCSN and BNSM environments, this model is
meaningful to understand basic characteristics of FFCs.
Given the angular distributions at the inner boundary, we

first run simulations with turning off neutrino oscillations,
corresponding to classical neutrino transport, until the
system reaches steady state. The obtained steady state
distributions are used as initial conditions for QKE sim-
ulations. The radial and angular resolutions in our QKE
simulations are summarized in Table I. The resolution is set
by reference to NZV1; Nr ¼ 49152 and Nθν ¼ 128, the
number of radial and neutrino angular grids, respectively,
are sufficient to resolve flavor conversions and to capture
qualitative trends in the nonlinear phase. The physical time
of global simulations is set to be Tsim ¼ 0.5 ms, which is a
factor of ∼3 longer than the light-crossing time of the
simulation box (for neutrinos propagating along the radial
direction). The physical time for local simulations are
scaled by the ratio of spatial width of simulation box.
We note that the local simulations in the present study cover
a more than ten times wider spatial region than those
presented in our previous paper [50].
Before we move on to numerical results, two important

caveats need to be mentioned. First, we assume in this
study that incoming neutrinos (cos θν < 0) are dilute.
However, they should be handled more precisely to study
FFCs in CCSN and BNSM environments. As the radius
decreases, the incoming neutrinos get more populated
through neutrino emission and scattering with matter,
and then neutrino angular distributions eventually become
isotropic in optically thick regions. We also note that
neutrinos undergo smooth transitions between optically
thin and thick regions, suggesting that the discontinuous
change of angular distributions at cos θν ¼ 0 in our
numerical setup is not realistic. This would affect FFC
dynamics. In fact, the increase of neutrino number at
cos θν ¼ 0 may result in reducing the growth rate of
FFCs (see, e.g., [54]). It should be noted, however, that
the effects of incoming neutrinos would be subdominant in
the neutrino transparent region upon which we focus in this
paper. We also note that angular distributions of incoming
neutrinos hinge on the neutrino-matter interactions and
spatial distributions of fluid. This exhibits that systematic
studies are mandatory to study the impacts of incoming
neutrinos on FFCs in CCSN and BNSM. Addressing this
issue is beyond the scope of this paper.
Second, we inject neutrinos with ELN crossings from

inner boundary in this study, but we need to keep in mind
that this setup is artificial. In reality, ELN crossings are
formed by interplay between neutrino advection and
species-dependent matter interactions (see, e.g., [45,46]),
indicating that they appear smoothly with changing radius
but our simulations discard FFC dynamics in such a
transition layer. Since FFCs can evolve rather quickly even
with shallow ELN (or ELN-XLN) crossings, these cross-
ings may be smeared out before large crossings build up (as

FIG. 1. Angular distributions of νe and ν̄e at the inner boundary.
We show some representative distributions used in our simu-
lations. The vertical axis is normalized by hfeei. See text for
further details.
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set in some of our models). Addressing this issue, however,
also requires appropriate treatments of neutrino matter
interactions under realistic matter profiles of CCSN and
BNSM. This exhibits that we face the same issue as the first
one. We also leave these studies in future work.

IV. RESULT

In this section, we present results of our numerical
simulations. In most of the analysis, we focus on neutrinos,
whereas we omit to display the relevant figures of anti-
neutrinos, since they are almost identical to those of
neutrinos.

A. Dynamics

We first focus on reference models (GL-Ref and LO-Ref)
to show the overall trend of FFCs, and we postpone the
detailed investigation of model dependence to Sec. IV C.
Figure 2 displays fxx and jfexj (norm of off-diagonal
component of density matrix) as functions of radius and
neutrino angles at three different time snapshots (T ¼ 0.05,
0.1, and 0.5 ms) for GL-Ref model. For visualization
purposes, we normalize them by the value of fee þ fxx at
the same radius and neutrino angle in the color map. The
solid and dashed lines represent the angular trajectory of
neutrinos (as a function of radius) emitted in the direction

of cos θν ¼ 0, and 0.5, respectively, at the inner boundary
(R ¼ 50 km). We note that cos θν ¼ 0.5 corresponds to the
neutrino angle where the ELN is zero, i.e., the zero-crossing
point (see Sec. III) at the inner boundary. These lines
portray the transition of neutrino angular distributions to
forward-peaked ones with increasing radius by a geomet-
rical effect (spherical geometry).
The appearance of νx exhibits the occurrence of flavor

conversion, since they are set to be zero initially and we do
not inject them during the simulation (see also Sec. III). The
top panels of Fig. 2 clearly show the appearance of νx. On
the other hand, jfexj (see bottom panels of Fig. 2) repre-
sents the correlation between the two flavor states, which
contains information on the vigor of flavor conversion. In
the early phase (left panels), flavor conversions can be seen
around the inner region of ∼60 km, and these neutrinos
propagate outwards with time (see middle and right
panels), that induces flavor conversions at large radii.
We also find that the neutrino mixing can be mature
enough to go through their nonlinear saturation (left and
middle panels of Fig. 2), and eventually the system reaches
a quasisteady state (right panels of Fig. 2).
Before entering into detailed discussions, there are three

remarks that need to be mentioned. First, the flavor
conversion observed in GL-Ref is dominated by fast mode,
which is also confirmed by linear stability analysis (see

FIG. 2. Top: color map of fxx as functions of radius and cos θν for GL-Ref model. Bottom: the same as the left panel but for jfexj (norm
of off-diagonal component of density matrix of neutrinos). Both maps are normalized by fee þ fxx. From left to right, we display the
result at T ¼ 0.05, 0.1, and 0.5 ms, respectively. The solid line on each panel represents the angular trajectory for neutrinos emitted in
the direction of cos θν ¼ 0 at the inner boundary (R ¼ 50 km). The dashed line portrays the angular trajectory for neutrinos emitted in
the cos θν ¼ 0.5, which corresponds to the ELN crossing point for GL-Ref, at the inner boundary.
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Sec. IV C). The ratio of vacuum potential to self-interaction
potentials is ∼10−8. Second, as displayed in all panels of
Fig. 2, both fxx and jfexj are very low around the inner
(outer) boundaries for outgoing (incoming) neutrinos. This
is attributed to the Dirichlet boundary condition (see
Sec. III). The injected νe and ν̄e from each boundary are
constant in time, while other components of density matrix
are set to be zero. This indicates that the spatial region near
the boundary becomes the linearly growing regime of
flavor conversions even after the system reaches quasis-
teady phase. On the other hand, we attenuate the
Hamiltonian potential in GL-Ref model (ξ ¼ 2 × 10−4),
leading to the artificial expansion of the spatial width for
the linear growth regime. In fact, we found in NZV1 that
this spatial width sensitively hinges on the choice of
attenuation parameter (see Fig. 1 in NZV1). LO-Ref
model suggests that the actual width (i.e., in the case with
ξ ¼ 1) should be ∼20 cm (see Fig. 3), which is also
consistent with our previous study (see the left panel of
Fig. 2 in [50]).
Third, we find that FFCs in GL-Ref model arise at small

radii, and then propagate outward with time. However, the
propagation velocity observed in GL-Ref should be differ-
ent from the case with ξ ¼ 1. In the case without attenu-
ation of Hamiltonian potential, the growth of FFCs is so
rapid, indicating that flavor conversions can be matured
locally. This suggests that the spread of FFCs looks acausal,
and such a feature is observed in LO-Ref. As shown in the
left panel of Fig. 3, flavor conversion occurs in the entire
simulation box at T ¼ 10−5 ms, meanwhile the neutrinos
emitted at inner boundary at T ¼ 0 reaches up to ∼1 m.
This suggests that the flavor conversion is not due to
neutrino advection from the inner region but rather the local
development of FFCs. It should be noted, however, that the
self-interaction potential rapidly decreases with radius
(since the neutrino number density decreases with radius
and the forward-peaked angular distributions also causes to
weaken the self-interaction potential), which indicates that

the advection timescale eventually becomes shorter than
that of FFCs at large radii.
One of the intriguing features displayed in Fig. 2 is that

flavor conversions for neutrinos emitted in the direction of
cos θν ≳ 0.5 at the inner boundary are less vigorous than
neutrinos emitted in other outgoing directions. In NZV1,
the same feature was also observed. According to the
convergence study for the attenuation of Hamiltonian
performed in NZV1, this trend does not depend on the
attenuation of Hamiltonian. In fact, the same feature of
neutrino angular distribution also emerges in LO-Ref
model. As shown in Fig. 3, the white color (i.e., less
vigorous FFCs) in the region of cos θν ≥ 0.5 spreads
outwards roughly with a speed of light from inner to
outer region. This shows that the inner boundary condition
is responsible for the anisotropic angular distribution. It
should be mentioned that local simulations performed
in [50] exhibited that the angular distributions of neutrinos
are qualitatively different if we impose a periodic boundary
condition (see Fig. 11 in the paper). We also note that more
detailed investigations of effects of boundary conditions
will be presented in another paper separately [55].
We also find that incoming neutrinos (cos θν ≤ 0) in the

entire simulation box (but except for the vicinity of outer
boundary) experience large flavor conversions. This is
induced by outgoing neutrinos through the neutrino self-
interactions. These neutrinos having nonzero fex can
advect inward from large radii, which potentially provide
large seed perturbations to trigger FFCs at smaller radii.
Since the vacuum contribution is suppressed by matter
potential there, this can be a primary agent accelerating
FFCs or even slow modes at semitransparent and optically
thick regions, which opens a new possibility to facilitate
flavor conversions in CCSN and BNSM environments.
Although quantifying the impact of inward advection of fex
on developments of FFCs is an important task, these studies
require self-consistent treatments of neutrino-matter inter-
actions. We leave the detailed study to future work.

FIG. 3. Color map of fxx=ðfee þ fxxÞ as functions of radius and neutrino angles for LO-Ref model. We focus on the angular
distributions for outgoing neutrinos (cos θν > 0). The dashed line highlights cos θν ¼ 0.5, which corresponds to the ELN crossing point
for LO-Ref model.
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B. Temporal variations

Temporal variations of neutrinos induced by FFCs are
worth to be investigated. Fourier analysis is suited to
capture their qualitative trend; hence, we compute them
with particular focusing on the phase after the system
reaches a quasisteady state. In practice, however, the data
output of our QKE simulations is not frequent enough to
study the rapid oscillation of FFCs,6 which prevents us
from performing a postprocessing analysis. We hence
extend the simulation of GL-Ref from T ¼ 0.5 to 1 ms,
and we compute the Fourier integrals simultaneously
during the extended simulation. This allows us to capture
the rapid temporal variations of FFCs and it saves the
storage.
Figure 4 displays the Fourier transform of neutrinos at

fixed spatial points for the extended GL-Ref model. In the
computation of Fourier integral, we adopt the Hann
window with the window size of 0.5 ms. The left panel
of Fig. 4 portrays the power spectrum for nνe (zeroth
angular moment for νe) at different radii. We note that the
vertical axis is normalized by the power at F ¼ 0, where F
denotes the frequency in Hertz. Although the temporal
variation is rather mild for nνe, there are perceptible
excess around the region of 105 ≲ F ≲ 106 Hz at R ¼ 55;
60; 70 km. On the other hand, the power around the same
frequencies becomes weak at large radii (see, e.g., blue
lines). This is due to the phase cancellation of temporal
variations. Neutrinos propagating different angles have

different histories of FFCs, suggesting that the high
frequency variation on each neutrino angle is random.
Consequently, incoherent variations are canceled with each
other through neutrino self-interactions, which dampens
the temporal variations.
The temporal variations of f are different from those of the

zeroth angular moment. f in the angular region where FFCs
occur vigorously varies with time even after FFCs reach
nonlinear saturation. This is one of the intrinsic features of
collective neutrino oscillations (see, e.g., [56,57]). The right
panel of Fig. 4 depicts the power spectrum for temporal
variations of fee with two different neutrino angles
(cos θν ¼ 1 and 3=4) at R ¼ 60 km. As clearly displayed
in the panel, the temporal variation of f strongly depends on
the neutrino angle. fee with cos θν ¼ 1 weakly varies with
time, which is consistent with the fact that FFCs are less
vigorous in the angular region (see Fig. 2).On the other hand,
fee with cos θν ¼ 3=4 has strong temporal variations around
the region of 105 ≲ F ≲ 106 Hz, and the power is remark-
ably higher than that of zeroth angular moment. This result
suggests that the characteristic frequency of temporal var-
iations are essentially common for all neutrinos, and they are
also the same as their angular moments, whereas the random
component of temporal variations indifferent neutrino angles
is canceled when we compute the angular moment. This
indicates that QKE solvers with lower angular moment
schemes (such as two-moment methods) may not be
capable of capturing intrinsic temporal variations of flavor
conversion.
It should be mentioned that the temporal variation in GL-

Ref is strongly affected by the attenuation of Hamiltonian
potential (ξ < 1). To quantify the impact, we performed the
same Fourier analysis to LO-Ref as done to GL-Ref. We
extended the simulation of LO-Ref from T ¼ 1 × 10−4 ms

FIG. 4. Finite-time Fourier transform of neutrinos for GL-Ref model. We employ Hann window function to compute the spectrum. We
display the power spectrum normalized by that at F ¼ 0. Left: spectrum for nνe (zeroth angular moment for νe) at selected radii
(specified by color). Right: spectrum for fee for cos θν ¼ 1 and 3=4 at R ¼ 60 km. For comparison, the result of nνe at the same radius is
also displayed as a gray line. We note that the Fourier analysis is performed by extending GL-Ref simulation; see text for more details.

6As described in Sec. III, we carry out simulations with high
spatial resolutions, indicating that the high-cadence output
presses a storage capacity. We output the data of GL-Ref
simulation each 0.01 ms, which is ∼10 times lower than required
frequency. See text for more details.
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to 2 × 10−4 ms with simultaneously computing Fourier
integrals. The obtained power spectrum at R ¼ 50 kmþ
5 m is displayed in Fig. 5. As shown in the plot, we find
some excess in the spectrum, and the characteristic fre-
quency is ∼104 times higher than GL-Ref, which is roughly
consistent with 1=ξ ∼ 5 × 103. We note that the slight
difference of the frequency (a factor of ∼2) is due to the
difference of neutrino number density. The power spectrum
of GL-Ref displayed in the right panel of Fig. 4 is computed
at R ¼ 60 km, where the neutrino number density becomes
roughly a half of that at R ¼ 50 kmþ 5 m. As a result, the
characteristic frequency becomes a factor of 2 higher than
1=ξ. Our analysis suggests that the temporal variation can
be simply scaled by 1=ξ for the same neutrino number
density. It should also be mentioned that the power
spectrum of fee for cos θν ¼ 3=4 is clearly higher than
that of nνe around the region of 109 ≲ F ≲ 1010 Hz. This
trend is common with that found in GL-Ref. We, hence,
conclude that the attenuation of Hamiltonian potential does
not compromise capturing the qualitative trend for the
temporal variations of FFCs, although we need to multiply
F by a factor of 1=ξ to obtain the actual characteristic
frequency.

C. Model dependence

Thus far, we have focused on GL-Ref and LO-Ref to
discuss some basic properties of FFCs. We now turn our
attention to model-dependent properties of FFCs. Before
we begin the detailed discussion, we show some essential
results of linear stability analysis of our models. Figure 6
portrays the DR of neutrinos at the inner boundary for
local simulations (no attenuation of Hamiltonian potential,
i.e., ξ ¼ 1). Both axes are normalized by μ−1, where μ≡ffiffiffi
2

p
GFnνe (GF denotes the Fermi constant). In Fig. 7,

we show the eigenvector (Qv) for the mode with the
maximum growth rate on each model. As shall be shown
below, some intrinsic properties of flavor conversion can be
extracted by combining the results of our QKE simulations
with the DRs and eigenvectors.
Let us first discuss α-dependent features of FFCs. Their

overall features in global scales can be seen in Fig. 8. As

FIG. 5. Same as the right panel of Fig. 4 but for LO-Ref model.
We compute the power spectrum at R ¼ 50 kmþ 5 m.

FIG. 6. DR of collective neutrino oscillations for models of
local simulations (ξ ¼ 1, i.e., no attenuation of Hamiltonian
potentials). In the computation of DR, the vacuum contribution is
taken into account. The horizontal and vertical axes denote the
wave number (ReK) and growth rate of their unstable modes
(ImΩ), respectively. In both axes, we show the result in unit of
μ−1. In this plot, we omit to display the result of LO-Flip, which is
the same as LO-Ref but changing the sign of ReK. It should be
noted that we multiply a factor of 1=β̄ee to both growth rate and
wave number for LO-β̄01, LO-β̄001, and LO-β̄0001 in this figure.
This is not only for the visualization purpose but also for
exhibiting that flavor conversion of LO-β̄0001 is not dominated
by fast mode; see text for more details.

FIG. 7. Eigenvectors (Qv) with respect to the mode with
maximum growth rate (see Fig. 6). They are normalized so as
to be

R
1
−1 jQvjd cos θν ¼ 1.
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shown in the left and middle panels, the growth of flavor
conversion in GL-α11 (GL-α09) is faster (slower) than GL-
Ref. We note that the three models have the common
ξð¼ 2 × 10−4Þ, indicating that ξ does not affect the order
of the growth rate. In fact, the growth feature of FFCs is
consistentwith theDR (seeFig. 6); themaximumgrowth rate
for GL-α11 (GL-α09) model is higher (lower) than that in
GL-Ref. At the end of these simulations (T ¼ 0.5 ms), we
also find that the spatial region of linear growth regime for
GL-α11 (GL-α09) model is narrower (wider) than GL-Ref
(see right panels in Fig. 8), which is also consistent with the
DR. Let us make another remark; the ELN crossing angle in
these two models is different from the reference model,
which can be seen by comparing dashed lines in each panel to
that in Fig. 2. The different ELN angular distribution changes
the shape of DR (see Fig. 6), which gives an impact on FFCs
in the nonlinear phase (see below).
An interesting feature of FFCs emerges in a nonlinear

regime. As shown in the right panels of Fig. 8, FFCs occur
in the almost entire neutrino angles for GL-α09 (see the top,
right panel in Fig. 8), whereas they appear vigorously only
in the limited neutrino angles for GL-α11. Consequently,
the total amount of flavor conversion in GL-α09 is higher
than GL-α11.7 This exhibits that the growth rate is not a

good metric to determine the vigor of flavor conversion in
the asymptotic state. We note that this is in line with the
work of [58], which demonstrated by homogeneous sim-
ulations that the amount of flavor conversion does not
always correlate with the growth rate.
We also find another intriguing feature in LO-α09. As

shown in Fig. 9, FFCs are matured earlier in the angular
region of cos θν ≳ cos θνðcÞ. However, flavor conversions in
other angles become more active with time, and eventually
FFCs at cos θν ≲ cos θνðcÞ reach nearly flavor equipartition.
This feature is a bit different from LO-Ref (see Fig. 3), in
which flavor conversions grow rapidly in the all angles, and
then those in cos θν ≳ cos θνðcÞ become weaker after the
neutrinos emitted from the inner boundary reaches there.
The difference between the two models can be interpreted
by linear stability analysis. As shown in Fig. 7, the
eigenvector that has the maximum growth rate is very
different from each other. In LO-α09, the eigenvector has
the sharper forward-peaking angular profile than that in
LO-Ref, that accounts for the earlier development of FFCs
in the region of cos θν ≳ cos θνðcÞ. On the other hand, one
thing we do notice here is that the strong flavor conversion
at cos θν ≲ cos θνðcÞ in the quasisteady state is universal
among models, which is a key feature to develop an
approximate scheme of FFC (see Sec. V).
Next, we consider the β̄ee dependence of FFCs. As we

have already mentioned in Sec. III, β̄ee represents the depth

FIG. 8. Same as the top panels of Fig. 2 [color map of fxx=ðfee þ fxxÞ as functions of radius and cos θν] but for GL-α09 (top) and
GL-α11 (bottom). We note that the ELN crossing angle in these models is different from that in GL-Ref; hence the dashed line on each
panel is not identical to that displayed in Fig. 2.

7The degree of flavor conversion will be quantified in
Sec. IV D.
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of ELN crossing; the smaller β̄ee has the shallower cross-
ing. As shown in Fig. 10, we find that strong flavor
conversion occurs even in very small β̄ee. One of the
noticeable findings is that the angular distribution
of neutrinos are almost identical between GL-Ref,
GL-β̄01ξ-3, and GL-β̄001ξ-2. This property can be under-
stood as follows. First, the shape of ELN angular distri-
bution is identical among these models. More specifically,
the only difference is the depth of ELN crossing. Under the
assumption that vacuum potential can be neglected, FFCs
properties should also be similar; the frequency of temporal
variation is different but it can be scaled by the depth of
ELN crossing. This can be seen in Fig. 6, which shows that
DRs of LO-β̄01 and LO-β̄001 become identical to that of
DR when we multiply by a factor of 1=β̄ee for both growth
rate and the wave number. This is the reason why the
dynamics and quasisteady feature of GL-β̄01ξ-3 and
GL-β̄001ξ-2 models is the same as GL-Ref.
Here, we make an important remark. It has been argued if

large flavor conversions can occur in CCSNe, since the
typical depth of ELN crossing may be an order of ∼1%
according to some recent CCSN models (see, e.g., [16,23]).
However, our present result suggests that strong flavor
conversion can happen even in such tiny ELN crossings. It
should be stressed that more comprehensive study for
realistic ELN angular distributions is needed to draw a
more robust conclusion.
It should also be mentioned that GL-β̄0001ξ-1 has

qualitatively different properties from other models (see
the third panels from top in Fig. 10). For instance, the flavor
conversion in the model occurs in the almost entire angles,
whereas it is very weak around cos θν ¼ 1 for other three
models. The bottom panels in Fig. 10 show that the result is
not changed in the high resolution model, indicating that
the difference is not due to numerical artifacts. The
anomaly of the model can also be seen in the DR relation
of LO-β̄0001. As shown in Fig. 6, the scaled DR is clearly
deviated from the reference model. This indicates that the
vacuum potential affects the DR in GL-β̄0001ξ-1, i.e., the

maximum growth mode is not dominated by FFCs. This is
understandable, since the depth of ELN crossing is tiny
(10−3). This illustrates that the contribution from the
vacuum potential is no longer negligible in the model.
The observed flavor conversion in GL-β̄0001ξ-1 is, hence,
affected by slow modes8; consequently, the overall dynam-
ics becomes different from other models.
In the models we have discussed so far, the νe angular

distribution at the inner boundary is assumed to be flat in
the region of cos θν ≥ 0. In reality, however, νe has nonflat
(forward-peaked) angular distributions, and therefore the
dependence of FFCs upon νe angular distributions is also
worth to be investigated. GL-β05ξ-3 (and LO-β05) pro-
vides an important information to this question. As shown
in Fig. 11, strong flavor conversions occur in GL-β05ξ-3,
and their overall features are essentially the same as those in
GL-Ref.9 One thing we notice here is that the shape of ELN
angular distribution is the same between GL-β05ξ-3 and
GL-Ref, and the difference is the depth of the crossing.
Since FFCs are dictated solely by ELN angular distribu-
tions, the overall dynamics for these models should be
similar to each other. This is the reason why GL-β05ξ-3 has
the similar dynamics as GL-Ref. As we shall quantify in
Sec. IV D, however, the total amount of flavor conversion is
not identical between the two models. This illustrates that
the ELN angular distribution is not sufficient to determine
the asymptotic states of νe (and ν̄e), but rather we need
species-dependent information.

FIG. 9. Same as Fig. 3 but for the LO-α09 model. We note that the ELN crossing point is located at 11=18, which is displayed with a
dashed line in each panel.

8We also note that the growth rate of LO-β̄0001ξ is smaller
than that expected from fast mode (see Fig. 6). This is attributed
to the fact that we adopt a positive Δm2, i.e., normal-mass
ordering, which works to suppress flavor conversions. We
confirm that the trend becomes opposite, i.e., higher growth rate
than the case only with FFCs for the case with inverted-mass
hierarchy.

9In the simulation of GL-β05ξ-3, we employ ξ ¼ 2 × 10−3,
which is 10 times higher than that used in GL-Ref. This is
possible because the linear growth rate of FFCs in LO-β05 is
lower than GL-Ref (see Fig. 6).
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Finally, we show the result of GL-Flip in Fig. 12. As
expected, the overall trend in GL-Flip is the same as that in
GL-Ref. On the other hand, the total amount of flavor
conversion of this model also slightly deviates from that in
GL-Ref, which shall be quantified in the following section.

D. Nonlinear saturation and quasisteady state

In all models, FFCs undergo nonlinear saturation and the
system achieves a quasisteady state. In this section, we

underline their key properties, which provide important
clues to develop approximate method for which to deter-
mine a quasisteady state of FFCs without solving QKE
(see Sec. V).
In the left and right panels of Fig. 13, we display the

time-averaged profile of fee and jfexj (the color map is
normalized by fee þ fxx), respectively, as functions of
radius and neutrino angles for GL-Ref. The time average
is taken after the system establishes a quasisteady state
(0.3;ms ≤ t ≤ 0.5 ms). The left panel clearly exhibits that

FIG. 10. Same as the top panels of Fig. 2 [color map of fxx=ðfee þ fxxÞ as functions of radius and cos θν] but for models with different
β̄ee. From top to bottom, the panels display the result of GL-β̄01ξ-3, GL-β̄001ξ-2, GL-β̄0001ξ-1, and GL-H-β̄0001ξ-1, respectively.
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the time-averaged flavor conversion is very small for out-
going neutrinos in the angular region of cos θν ≳ cos θνðcÞ,
whereas strong flavor conversions are observed in other
angles.Another intriguing feature displayed in Fig. 13 is that

the time averaged jfexj is remarkably smaller than that of

fxx, and its typical value is ≲0.1, showing that the time-

averaged neutrinos are essentially in flavor states. The

angular dependence of jfexj=ðfee þ fxxÞ is also weak

FIG. 11. Same as the top panels of Fig. 2 [color map of fxx=ðfee þ fxxÞ as functions of radius and cos θν] but for GL-β05ξ-3.

FIG. 12. Same as the top panels of Fig. 2 [color map of fxx=ðfee þ fxxÞ as functions of radius and cos θν] but for GL-Flip.

FIG. 13. Color maps of time-averaged fxx=ðfee þ fxxÞ (left) and jfexj=ðfee þ fxxÞ (right) as functions of radius and neutrino angles
for GL-Ref model. The time-average is taken in the time window of 0.3 ms ≤ T ≤ 0.5 ms.
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compared to that of fxx. Importantly, these trends are
commonly observed in other models.
As discussed in NZV1, ELN-XLN angular distributions

are useful quantities to characterize FFCs. In Fig. 14, we
show these angular distributions measured at different
radii for GL-Ref in the left panel. In the figure, we focus
on the angular region of cos θν ≥ 0, and the vertical axis is
normalized so that the norm of fELN − fXLN (where fELN
and fXLN are defined as fee − f̄ee and fxx − f̄xx, respec-
tively) at cos θν ¼ 0 becomes unified at the inner boundary.
As shown in the left panel, the depth of ELN-XLN angular
crossing decreases with radius. At R ¼ 54 km, the ELN-
XLN crossing can be seen in the angular distribution,
indicating that this is still in the linear growth regime for
FFCs. At R ∼ 60 km, the angular crossing almost disap-
pears. This trend is commonly observed in all large-scale
simulations; see the right panel of Fig. 14. This panel
portrays the ELN-XLN angular distribution of different
models at R ¼ 80 km. As can be seen in the figure, the
ELN-XLN angular crossing is rather weak or disappears.
We note that the ELN-XLN angular distributions in GL-
Flip and GL-Ref have a mirror symmetry with respect to
fELN − fXLN ¼ 0. This is due to the fact that the angular
distributions of νe and ν̄e in GL-Flip are swapped from
those in GL-Ref model.
Our result suggests that the disappearance of ELN-XLN

angular crossing in the time-averaged profile is one of the
common properties of FFCs. This can be understood
through the linear stability analysis. As long as the off-
diagonal component is remarkably smaller than diagonal
ones (this condition is actually satisfied in our simulations;
see the right panel of Fig. 13), the linear analysis provides a
reasonable diagnostics for the stability, and it suggests
that the existence of ELN-XLN angular crossing provides
a necessary and sufficient condition for instability of
fast mode.

Below, we discuss the total amount of neutrino-flavor
conversion in a quasisteady state. From Figs. 15–17, we
show the time-averaged number density of neutrinos as a
function of radius. In Fig. 15, we focus on α dependence.
As shown in the left panel, nνe decreases almost discon-
tinuously at R ∼ 55 km, exhibiting that FFCs enters into
the nonlinear phase. It is important to note that the
change of nνe in GL-α09 is the largest among the three
models, which is also consistent with the middle panel, in
which we show the number density of nνx normalized by
nνe þ nνx . These panels clearly show that the total amount
of neutrino-flavor conversion in GL-α09 is the highest
among the three models. In local simulations, we also find
that the same trend, which can be seen in the right panel of
Fig. 15.10 On the other hand, as we discussed in Sec. IVA,
the growth rate of flavor conversion in LO-α09 is the
lowest among the three models. This illustrates that the
growth rate and saturation amplitude do not correlate with
each other.
In Fig. 16, we display the same quantities as those shown

in Fig. 15 but focusing on β̄ee dependence. It should be
stressed again that strong flavor conversions occur even in
the shallow ELN-crossing at the inner boundary, and the
saturation of flavor mixing is almost universal among

FIG. 14. ELN-XLN angular distributions for cos θν ≥ 0. In the left panel, we display the result at different radii for GL-Ref model.
In the right panel, we compare ELN-XLN angular distributions for different models at R ¼ 80 km.

10We display the radial profile of nνx normalized by nνe þ nνx
only for the spatial region of Rin ≤ R ≤ Rin þ 5 m in the right
panel of Fig. 15. We note that the neutrinos at larger radii in local
simulations have not reached a quasisteady state. This is because
the neutrinos propagating in the direction of cos θν ∼ 0 stagnates
around the initial position. This suggests that we need much
longer time simulations than the light-crossing time of neutrinos
with cos θν ¼ 1 so that all neutrinos interact with each other in the
computational domain. On the other hand, it is not our purpose
that we make the whole system of local simulations establish the
quasisteady state. Rather, we use local simulations to interpret the
result of large-scale ones.
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GL-Ref, GL-β̄01ξ-3, and GL-β̄001ξ-2. We also note that
flavor conversion in GL-β̄0001ξ-1 is not dominated by fast
modes; consequently, the saturation property deviates from
others (see also Sec. IVA). In fact, the angular structure of
flavor conversion in GL-β̄0001ξ-1 is remarkably different

from GL-Ref (see the middle panel in Fig. 16), and the total
amount of flavor conversion becomes the highest among
these models, despite of the fact that the growth rate is
much smaller than that of GL-Ref (see in the right panel of
Fig. 16). This is also consistent with the above argument

FIG. 15. The time-averaged number density of neutrinos as a function of radius. We focus on α-dependence in this figure. For global
models (left and middle panels), the time average is taken in the time window of 0.3 ms ≤ T ≤ 0.5 ms. For local simulations (the right
panel), the window is 6 × 10−5 ms ≤ T ≤ 10−4 ms. In the left panel, we show the radial profile of nνe normalized by that at the inner
boundary. The middle panel displays nνx=ðnνe þ nνxÞ, exhibiting the angular-averaged mixing degree of neutrinos for global
simulations. The right panel shows the same as the middle panel but for local simulations.

FIG. 16. Same as Fig. 15 but for the comparison of β̄ee dependence. In the right panel, the time average for LO-β̄01, LO-β̄001, and
LO-β̄0001 is taken 6 × 10−4 ms ≤ T ≤ 10−3 ms, 6 × 10−3 ms ≤ T ≤ 10−2 ms, and 6 × 10−2 ms ≤ T ≤ 0.1 ms, respectively.

FIG. 17. Same as Fig. 15 but for comparing between Ref, β05ξ-3, and Flip models.
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that the growth rate does not determine the total amount of
flavor conversion.
In Fig. 17, we display the results for GL-Ref,

GL-β05ξ-3, and GL-Flip. It should be mentioned that
the shape of ELN angular distribution at the inner boundary
is common among all models. The difference from GL-Ref
is the depth of ELN crossing and the sign of self-interaction
potential for GL-β05ξ-3 and GL-Flip, respectively.
Although the total amount of flavor conversion is almost
identical among these three models, we find that they are
not exactly identical. The flavor conversion in GL-β05ξ-3
is slightly lower than GL-Ref, and GL-Flip is the lowest
among these three models. The same trend can be observed
in the local simulations (see the right panel in Fig. 17).
This result is also another evidence that the total amount

of flavor conversion can not be determined by ELN and
XLN distributions but rather we need species-dependent
information. Our interpretation for this argument is as
follows. If there are many neutrinos and antineutrinos in the
angular region where FFCs occur vigorously, then the total
amount of flavor conversion also becomes large. It is
important to note that the number of both neutrinos and
antineutrinos can be increased at specific angular directions
with sustaining the ELN-XLN angular distributions.11 This
is a key to understand the trend observed in our simulations.
We find that the total amount of flavor conversion tends to
be large for models that have large number of neutrinos in
the angular region where flavor conversions vigorously
occur. This also exhibits a possibility that large flavor
conversions can be induced even if they occur in narrow
angular regions, since we can centralize neutrinos in the
unstable angular region without changing ELN and XLN
distributions.
In the following section, we provide a new approximate

method for which to determine quasisteady state of neutrino
distributions in FFCs.Our proposed approach captures some
key trends of FFCs that we have discussed above. Our
method provides a useful way to incorporate effects of FFCs
in classical neutrino transport methods including full
Boltzmann neutrino transport and other approximate meth-
ods used in CCSN and BNSM simulations.

V. APPROXIMATE SCHEME TO DETERMINE
QUASISTEADY STATE OF FFC

A. Basis

Before we begin, let us make some remarks. First, the
proposed method should be considered provisional.
Although they are in reasonable agreement with FFC
simulations presented in this paper, more systematic studies
are required to assess if our method can capture all key

features of quasisteady state for arbitrary FFCs. One of the
major concerns is the applicability to FFCs in semitrans-
parent and optically thick regions, since the background
neutrino angular distributions are qualitatively different
from those studied in this paper. We also note that interplay
between flavor conversions and neutrino-matter inter-
actions would affect the asymptotic state of FFCs.
Another limitation in our proposed method is that it is
developed based on the assumption that initial angular
distributions of neutrinos have single ELN-XLN crossings.
Although single crossings would be the majority in the
optically thin region [16,23], multiple crossings would
occur in the vicinity of proto-neutron star (PNS) [18,53].
It is interesting to compare our approximate scheme to

others (see, e.g., [42]). It should be mentioned, however,
that other approximate methods are developed based on
local simulations with a periodic boundary condition,
which is different from ours. Since the boundary condition
has strong influence on angular structure of FFCs in
quasisteady states [50], our approximate scheme would
not be compatible with others. We leave a more in-depth
analysis for impacts of boundary conditions on quasisteady
states to another paper [55].
The key idea of our method is that we determine neutrino

distributions in quasisteady states so as to eliminate ELN-
XLN angular crossings (see Sec. IV D). Another important
indication from our numerical simulations is that FFCs are
always vigorous in the region of cos θν ≲ cos θνðcÞ, where
θνðcÞ denotes the ELN-XLN angular crossing for the initial
distribution of neutrinos. Interestingly, it does not depend
on angular structure of eigenvectors of unstable modes
obtained by linear stability analysis (see Fig. 7). In fact,
FFCs are strong in the region of cos θν ≲ cos θνðcÞ after the
system reaches a quasisteady state, despite the fact that jQvj
at cos θν ∼ 1 is remarkably higher than those at cos θν ∼ 0
(for instance, see jQvj for LO-α09 in Fig. 7).
We make two remarks on our claim that FFCs are always

strong in the angular region of cos θν ≲ cos θνðcÞ. First, the
vigor of FFCs in the region of cos θν ≲ cos θνðcÞ would be
due to effects of radial advection. The radial velocity of
neutrinos is proportional to cos θν, indicating that the
neutrinos in the region of 0 < cos θν ≲ cos θνðcÞ slowly
propagate in the outgoing radial direction. This suggests
that those neutrinos have enough time to grow FFCs before
they advect. Second, our result can be applied only for the
forward-peaked angular distributions of neutrinos. More
specifically, the condition can be written as

Z
0

−1
jfELN−fXLNjdcosθν<

Z
1

0

jfELN−fXLNjdcosθν: ð6Þ

If this inequality is not satisfied, then our proposed method
would not be a good approximation. Although this is an
issue that we need to improve, the proposed method is still
powerful for CCSNe and BNSMs, since the condition of

11This is because the ELN (XLN) represents the difference
between electron(heavy leptonic)-type neutrinos and their
antineutrinos.
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Eq. (6) is always satisfied in the optically thin region upon
which we are currently focusing in this paper.
In our approximate scheme, we determine the angular-

dependent survival probability of neutrinos from initial
states to quasisteady ones. In the two-flavor approximation,
the asymptotic state of neutrinos (f2fl) can be written in
terms of survival probability of neutrinos (p2fl) and anti-
neutrinos (p̄2fl) as

f2fle ðθνÞ ¼ p2flðθνÞf0eðθνÞ þ ð1 − p2flðθνÞÞf0xðθνÞ;
f̄2fle ðθνÞ ¼ p̄2flðθνÞf̄0eðθνÞ þ ð1 − p̄2flðθνÞÞf̄0xðθνÞ;
f2flx ðθνÞ ¼ ð1 − p2flðθνÞÞf0eðθνÞ þ p2flðθνÞf0xðθνÞ;
f̄2flx ðθνÞ ¼ ð1 − p̄2flðθνÞÞf̄0eðθνÞ þ p̄2flðθνÞf̄0xðθνÞ; ð7Þ

where f0 denotes the initial state of neutrinos. In the three-
flavor case, it can be written as [59–61]

f3fle ðθνÞ ¼ p3flðθνÞf0eðθνÞ þ ð1 − p3flðθνÞÞf0xðθνÞ;
f̄3fle ðθνÞ ¼ p̄3flðθνÞf̄0eðθνÞ þ ð1 − p̄3flðθνÞÞf̄0xðθνÞ;

f3flx ðθνÞ ¼
1

2
ð1 − p3flðθνÞÞf0eðθνÞ þ

1

2
ð1þ p3flðθνÞÞf0xðθνÞ;

f̄3flx ðθνÞ ¼
1

2
ð1 − p̄3flðθνÞÞf̄0eðθνÞ þ

1

2
ð1þ p̄3flðθνÞÞf̄0xðθνÞ;

ð8Þ

where we assume f0x ¼ f0μ ¼ f0τ and f̄0x ¼ f̄0μ ¼ f̄0τ , which
are reasonable conditions for neutrinos in CCSN and
BNSM. The flavor equipartition can be obtained by p2fl ¼
p̄2fl ¼ 1=2 and p3fl ¼ p̄3fl ¼ 1=3 for two-flavor and three-
flavor cases, respectively.
There are mainly two noticeable properties of FFCs.

First, the survival probability does not depend on neutrino
energy; hence, we drop the energy dependence in Eqs. (7)
and (8). Second, FFCs induce pairwise neutrino-flavor
conversions, i.e., pðθνÞ ¼ p̄ðθνÞ. It should be mentioned,
however, that the angular-averaged survival probability for
neutrinos and antineutrinos are, in general, different from
each other, which is simply because f0 is not equal to f̄0.

B. Implementation

In the approximate method, we start with computing
energy-integrated neutrino distributions but we leave the
angular dependence in momentum space. For multiangle
neutrino transport scheme, this is straightforward. For
approximate ones such as two-moment method, it is
necessary to reconstruct full angular distributions of neu-
trinos from low angular moments. There are currently
multiple options to do this. The most useful approach
may be to use a so-called maximum-entropy comple-
tion [12,14,62], in which the full angular distributions are
reconstructed so as to maximize the entropy under given
zeroth and first angular moments. This approach can be

adopted in both CCSN and BNSM simulations. For CCSN
simulations, another approach proposed in our previous
paper [63] may offer a more accurate prescription, since the
method is specifically designed for CCSN. In this method,
angular distributions of neutrinos, obtained by CCSN
simulations with full Boltzmann neutrino transport, are
fitted by two quadratic functions in a picewise manner,
which allows us to reconstruct full angular distributions
from the zeroth and first angular moments.
Given energy-integrated neutrino distributions, we then

make a rough estimation of the timescale of FFCs (τFFC)
by using an empirical formula in [16,19] with a minor
extension,

τFFC ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðRG>0 GðΩÞ dΩ4πÞðRG<0GðΩÞ dΩ4πÞ

q ; ð9Þ

where

GðΩÞ≡ ffiffiffi
2

p
GF

Z
∞

0

ðfELN − fXLNÞ
E2
νdEν

2π2
: ð10Þ

In the expression, we write the speed of light explicitly;
Ω represents the solid angle in momentum space, which
specifies neutrino flight direction.
We then define an advection timescale (τadv) as

τadv ≡ R
c
: ð11Þ

By using the two timescales, we define a new variable q as

q≡min

�
τadv
τFFC

; 1

�
; ð12Þ

which is a metric how large neutrino mixings occur in the
system. In the case with q ¼ 1, the timescale of FFC is
shorter than the advection one, i.e., FFCs can be matured
locally. For q ≪ 1, the neutrinos would advect before FFC
develops substantially. We control p and p̄ by using q;
more specifically, the angular dependent p and p̄ is
computed as

pðθνÞ ¼ p̄ðθνÞ ¼ qptmpðθνÞ þ ð1 − qÞ; ð13Þ

where

ptmp ¼
�peq ðcos θν ≤ cos θνðcÞÞ
A cos θν þ B ðcos θν > cos θνðcÞÞ

; ð14Þ

with
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A ¼ 1 − peq

1 − cos θνðcÞ
;

B ¼ peq − cos θνðcÞ
1 − cos θνðcÞ

: ð15Þ

In the expression, peq denotes the survival probability for
the case with flavor equipartition, i.e., peq ¼ 1=2 and 1=3
for two-flavor and three-flavor cases, respectively [see also
Eqs. (7) and (8)].
A few important remarks should be made here. First, the

growth rate of FFC is only used to judge if FFCs can occur
for given neutrino distributions. As long as the condition of
τadv > τFFC is satisfied, the growth rate has no influence on
determining flavor conversions. Second, q becomes zero in
the case of no ELN-XLN crossing (τFFC → ∞), which
guarantees that no flavor conversions occur. Third, our
method guarantees that ELN-XLN crossing disappears in
the case of q ¼ 1, since ELN-XLN becomes zero in the
angular region of cos θν ≤ cos θνðcÞ. Fourth, the survival
probability in our proposed method is a continuous
functions of θν and q, which would be suited for sustaining
stabilities of numerical simulations.
Another thing we do notice here is that our proposed

method is capable of capturing an important property of
FFCs found in our numerical simulations; the angular-
averaged survival probability is different between neutrinos
and antineutrinos. This is by virtue of the fact that we leave
the angular dependence of p and p̄ in this method. As a
result, both angular distributions of neutrinos and antineu-
trinos have direct influences on the total amount of flavor
conversions, leading to different survival probabilities.
Although detailed inspections of the ability of the

approximate scheme is postponed to another paper, we
check the ability of the approximate scheme by comparing

nνx=ðnνe þ nνxÞ for some selected models (LO-Ref,
LO-α09, LO-α11, and LO-β05) to those obtained in
numerical simulations (see Fig. 18). In numerical simu-
lations, we compute the spatial average of nνx=ðnνe þ nνxÞ
in the region of 50 kmþ 1 m < R < 50 kmþ 5 m at the
end of each simulation.12 We confirm that the results
computed by the approximate method is in reasonable
agreement with these local simulations.
We should mention two caveats, however. First, the

approximate method has a relatively large deviation from
numerical simulations for LO-α09 and LO-α11. This is due
to a crude treatment of angular distribution of flavor con-
version. For the sake of simplicity, we adopt a linear
interpolation of ptmp, in the angular region of cos θν >
cos θνðcÞ [see Eq. (14)]. However, numerical simulations
suggest that FFCs in the angular region should be weaker
(stronger) than those obtained by our approximate scheme
for LO-α09 (LO-α11). It would be possible to improve the
determination of ptmp in the corresponding angular region,
but work on improvements is currently underway. Second,
our approximate scheme cannot give an accurate estimation
in cases that FFC is not the dominant mode of the instability.
LO-β̄0001 is such a case among our local simulations. This
suggests that we need another parameter representing which
mode (slow or fast) dominates the instability. We address
these important issues in future work.
It is also important to test the ability of approximate

scheme in global scale. One thing we need to notice here is
that the asymptotic angular distribution of neutrinos are
determined locally in the approximate scheme. However,

FIG. 18. Comparison between FFC simulations (purple filled circles) and the approximate scheme (green triangles). The left panel
displays νx=ðνe þ νxÞ after the system reaches in quasisteady states. In FFC simulations, we employ results of local simulations, and
compute the spatial average in the region of 50 kmþ 1 m < R < 50 kmþ 5 m, where the system establishes the quasisteady state, at
the end of our simulations. Right panel displays the result for antineutrinos.

12The spatially averaged profile represent the quasisteady state
of FFCs, and they are almost identical to time-averaged ones in
local simulations.
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the obtained distributions can not be the asymptotic state in
global scale, since geometrical effects of neutrino advection
have influence on them. We, hence, need to assess the
approximate scheme in global scale. Here, we carry out a
new simulation, in which we set the same initial condition
of GL-Ref, and then run the simulation with turning off
neutrino oscillations, meanwhile the approximate scheme is
implemented. This simulation runs until the system reaches
steady state (1 ms). In Fig. 19, we compare the results of
time-averaged radial profile of nνx=ðnνe þ nνxÞ (for both
neutrinos and antineutrinos) to those obtained from
classical neutrino transport with approximate scheme. As
shown in this figure, they are in reasonable agreement with
each other (the error is less than 10%) except for very inner
region (≲55 km). We note that the suppression of FFC at
the inner region in GL-Ref is due to attenuation of the
Hamiltonian (see Sec. IVA), indicating that the deviation is
not a matter of concern. This test illustrates the fidelity of
the approximate scheme in global simulations.

VI. SUMMARY

In this paper we present a systematic study of collective
neutrino oscillation, paying special attention to FFC, by
performing local (∼10 m) and large-scale (50 km) simu-
lations in spherical symmetry. In large-scale simulations,
we attenuate the neutrino Hamiltonian potential in a para-
metric manner so as to make the simulations tractable, and
we extract physically meaningful features by combining
these results with those in local simulations. Based on
numerical results, we develop a novel approximate method
to determine neutrino radiation field in quasisteady state of
FFC without solving QKE. The key findings and con-
clusions in the present study are summarized below.

(1) Our proposed method (attenuating Hamiltonian
potential in a parametric manner) has an ability to
capture intrinsic properties of collective neutrino
oscillations in global scales, as consistent with our
previous study [48]. It is possible to get rid of
spurious features due to the artificial prescription by
a convergence study and comparisons to local
simulations.

(2) We find that the temporal variations of angular
moments of neutrinos become mild, since incoherent
variations are cancelled in the angular integration.
This suggests that numerical results in low angular
moment schemes as two-moment methods would
underestimate the temporal variations of flavor
conversion. On the other hand, the characteristic
frequency is essentially the same among neutrinos in
different angles and their angular moments (see
Sec. IV B).

(3) Strong FFCs can occur even for the case with low
growth rate of flavor conversion. This exhibits that
the growth rate of flavor conversion is not a good
metric to determine the total amount of flavor
conversion in the nonlinear phase. In fact, our results
suggest that shallow ELN crossings can trigger large
flavor conversions (see, e.g., GL-β̄001ξ-2 and
LO-β̄001 models, whose results are presented in
Sec. IV C).

(4) When the ELN crossing is very shallow, the slow
mode overwhelms the fast one in flavor conversion.
This leads to a distinct property from FFCs; for
instance, the angular structure of flavor conver-
sion is remarkably different; see GL-β̄0001ξ-1,
GL-H-β̄0001ξ-1, and LO-β̄0001 models, whose re-
sults are discussed in Sec. IV C.

(5) ELN-XLN angular distributions determine the over-
all characteristics of FFC dynamics. We confirm that
FFCs are saturated when angular crossings disap-
pear in the time-averaged ELN-XLN distributions. It
should be stressed, however, that ELN-XLN distri-
butions do not have sufficient information to deter-
mine the total amount of flavor conversion.

(6) The total amount of flavor conversion is less corre-
latedwith thegrowth rate but rather angular structures
of neutrino distributions. It can be determined by how
many neutrinos are contained in angular regions
where flavor conversions occur vigorously (see the
discussion at the end of Sec. IV D).

(7) Our numerical simulations suggest that neutrinos
propagating in the angle of cos θν ≲ cos θνðcÞ (θνðcÞ
denotes the ELN-XLN angular crossing point)
undergo strong flavor conversion in cases with
forward-peaked angular distributions of neutrinos.
On the other hand, FFCs in the region of cos θν ≳
cos θνðcÞ tend to be less vigorous than those in
cos θν ≲ cos θνðcÞ. It should be noted, however, that

FIG. 19. Radial profiles of nνx=ðnνe þ nνxÞ (red) and their
antineutrinos (blue). The solid line shows their time-averaged
profiles for GL-Ref model. The dashed line represents the results
obtained by classical neutrino transport with our approximate
scheme. See text for more details.
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FFCs in this region can be strong if the ELN crossing
is cos θνðcÞ → 1; see, e.g., the results of GL-α09 and
LO-α09 models.

(8) The guiding principle of our approximatemethod is to
determine survival probability of neutrinos so as to
eliminate ELN-XLN angular distributions. This can
be realized by imposing a condition that neutrinos
(and antineutrinos) in the region of cos θν ≲ cos θνðcÞ
achieve the flavor equipartition, i.e., p ¼ p̄ ¼ peq.

(9) We assess the ability of our approximate method by
comparing the total amount of flavor conversion to
those obtained from numerical simulations, that
lends confidence to our method. We provide a recipe
of the method in Sec. V B so as for other groups to
implement the approximate method easily in their
classical neutrino transport schemes.

One of the important conclusions in the present study is
that FFCs would radically change the neutrino-radiation
field in CCSN and BNSM even if the ELN(-XLN) crossing
obtained from classical neutrino transport is very shallow. It
is an intriguing question how they affect fluid dynamics,
neutrino signal, and nucleosynthesis. Addressing these
issues requires accurate CCSN and BNSM modeling with
incorporating feedback between neutrino transport, matter
interactions, and flavor conversions (but see Ref. [64] for
our recent study of impacts of flavor conversion on
explosive nucleosynthesis in CCSN). This present study

provides a feasible and reasonable approach to tackle the
issue by existing classical neutrino transport codes.
Hopefully, the proposed method will serve to facilitate
access to QKE and collective neutrino oscillations for the
community of CCSN and BNSM theorists.

The data table is available from https://hirokinagakura
.github.io/scripts/data.html.
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