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In recent years, artificial intelligence technology for gravitational wave data analysis has developed
rapidly. In this paper, we put forward a new artificial intelligence model for gravitational wave search. The
framework of such a model includes a detection stage and a testing stage. We first use the deep learning
technology to extract the envelope information of the gravitational wave candidate and use the coalescence
time obtained from the envelope to further confirm the detection results. Within the detection stage, we use
wavelet denoising and a special training strategy to improve the performance of the gravitational wave
detection model. The lowest false alarm rate of the detection model is about 1.7 per month without the
testing stage. When the testing stage is added, the lowest false alarm rate decreases to 0.046 per year. The
efficiency of our model is demonstrated by the data obtained from the first, second, and third observing
runs of the LIGO-VIRGO-KAGRA collaboration. The search results of confident events on the three
observing runs indicate that the efficiency of our deep learning algorithm can achieve 80% of the traditional
algorithm based on matched filtering.
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I. INTRODUCTION

In 1916, Albert Einstein predicted the existence of
gravitational waves (GWs) based on the theory of gen-
eral reality [1,2]. Due to the weakness of GW signals
arriving on the Earth, there was no effective method to
directly observe GW events at that time. On September 14,
2015, the advanced Laser Interferometer Gravitational
Wave Observatory (aLIGO) directly detected a GW event,
GW150914, for the first time in human history [3]. Recently,
aLIGO and advanced Virgo detectors have reported over
90 GW events through their three Observing runs (O1, O2,
and O3) [4–6]. These ground-breaking discoveries add GWs
to the growing set of detectable cosmic messengers and have
opened the era of GW astronomy [7].
Unlike the traditional astronomy, GW astronomy

observes the Universe through gravitational waves rather
than electromagnetic waves. Compared with electromag-
netic wave, a gravitational wave is not easily scattered,
dispersed, and absorbed in the process of propagation [8].

If the gravitational wave signal is used to locate the source
first, then it can be used to guide the subsequent observa-
tion of the electromagnetic counterpart, thus it improves the
efficiency of electromagnetic wave detection. Researchers
can also cross verify the results of the above joint detec-
tion and obtain more astrophysical information to realize
multimessenger astronomy (such as the detection of
GW170817 [9,10]).
Since the GW signal is buried in strong noise, the signal

search is a challenging task. Matched filtering (MF) is the
optimal method for the task under the assumption of sta-
tionary Gaussian noise. However, the MF method is com-
putationally expensive and time intensive. The pioneering
works in 2018 show that theGWdetection based on the deep
learning (DL) method is more computationally efficient than
MF [11,12]. The DL method has achieved great success in
the field such as object detection [13–15], natural language
processing [16–18], and remote sensing [19–21]. Also,
many works investigated the DL method for the GW search
[22–28]. Ensemble complex models, such as WaveNet,
training with millions of data can achieve no misclassifica-
tions for one-month detection [24]. The coincident GW
searchof twodetectors is the effectivemethod for eliminating
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the false triggers [27,28]. The MLGWSC-1 [29] and Kaggle
challenges [30] accelerate the application of machine learn-
ing in GW search.
The MF-based and DL-based GW search methods each

have their own strengths and weaknesses. The results of the
MF method have a high degree of confidence and can
reflect some source parameters such as the arrival time of
the GW from binary black hole (BBH) coalescence, but the
calculation time increases when the number of templates
increases [31]. The DL method has a real-time capability,
but it is difficult to accurately estimate the coalescence
time. The information of the coalescence time can help the
subsequent GW data processing such as Bayesian inference
[32] and it is also important to determine the sky location of
the GW source. If the DL method can be used to achieve
high-accuracy coalescence time prediction, then the DL
method becomes more powerful for GW signal searching.
The envelope of the pure GW signal has the information

of the coalescence time. In this work, we propose an
envelope extraction network that takes the whitened strain
as input and the envelope of the GW signal as output. The
reason for using the envelope instead of the Fourier domain
is that the Fourier domain of a signal obtained via Fourier
transform or short-time Fourier transform can only exhibit
its amplitude and phase as a function of frequency over a
certain time period, not in an instant. Furthermore, neither
the Fourier transform nor the short-time Fourier transform
are capable of accurately reflecting the instantaneous
changes of amplitude-frequency and phase-frequency of
a signal. The results show that, in most cases, the statistical
error of the coalescence time estimated by the network is
less than 5 ms, which is much smaller than the sliding
window method used in [28]. The idea of the envelope
extraction network is motivated by the DL model for GW
denoising [33–35]. GW denoising can be achieved by an
end-to-end deep learning model, such as WaveNet [34] and
Autoencoders [33]. Here we analyze the feasibility of the
envelope extraction model. After denoising, the envelope
can be got via simple calculation. The envelope value of the
GW signal hðtÞ at time t can be estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 þ ðHðĥÞÞ2

q
; ð1Þ

where ĥ ¼ ĥðtÞ is the denoised signal and H denotes the
Hilbert transformation

HðxðtÞÞ ¼ 1

π
P
Z

∞

−∞

xðt0Þ
t − t0

dt0; ð2Þ

where P means the principal Cauchy value.
Signal searching methods may mistake the background

noise as a GW signal. Such mistakes are called false alarms.
In the MF-based method for GW signal searching, the sub-
sequent testing process such as a time-frequency test [36]
can greatly alleviate the false alarm problem. The DL-based

searching method cannot provide a template that the
time-frequency test process required. Two works have
recently used the strategy of comparing the results of
two separated DL detection models for Hanford and
Livingston detectors to further test the signal searching
result [27,28]. So far, to the best of our knowledge, there is
no means to quickly and effectively test the search results of
one model. We in the current paper propose a new strategy
that utilizes the information of coalescence time to test the
result of one model.
We design a GW signal search algorithm based on the DL

method together with the aforementioned strategy. The
algorithm consists of a GW detection network and two
envelope extraction networks, respectively, for Hanford and
Livingston detectors. The detection model produces a list of
GW triggers. Each GW trigger is tested by the envelope
extractionmodel.Weestimate thecoalescence timeof theGW
ateachdetector.When thedifferenceof thecoalescence timeis
less than 50 ms, the DL algorithm reports a GW trigger.
Almost all of the existing DL models for GW signal

searching use whitened data as the input. Differently, we
apply awavelet denoisingprocess afterwhitening.The results
show that under the same true alarm probability (TAP ¼
0.91), the false alarmprobability (FAP)of the detectionmodel
using wavelet packet denoising decreases about 97%.
The rest of the paper is organized as follows. In Sec. II,

we introduce the process of building data for training and
testing. After that, we describe our models in Sec. III. Then
we apply our models to the O1, O2, and O3 data of LIGO-
VIRGO-KAGRA collaboration in Sec. IV. The last section
is devoted to a summary.

II. DATA FOR TRAINING AND TESTING

Two datasets are generated by the open-source project
ggwd1 [22]. One contains only the background noise and
the other includes background noise and BBH coalescence
signals. A time-domain strain sðtÞ detected by a single
interferometer can be formulated as follows:

sðtÞ ¼ hðtÞ þ nðtÞ; ð3Þ

where nðtÞ is the background noise. Such noise is taken
from the O1 data collected by Hanford and Livingston
interferometers excluding the identified GW events. hðtÞ is
the BBH waveform generated by the effective one-body
numerical relativity waveform model [37]. All of the BBH
waveforms contain three phases of BBH coalescence:
inspiral, merger, and ringdown.
For each BBH signal, the distance between the Earth and

the source is determined by a given network SNR [38],
which is randomly sampled in (8, 20). The mass of the two
black holes of BBH is randomly sampled in (5M⊙; 80M⊙)

1https://github.com/timothygebhard/ggwd.
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and the dimensionless spin is randomly sampled in
(0, 0.998). The polarization angle and the coalescence
phase are sampled uniformly at random from the interval
(0, 2π). The inclination angle is sampled uniformly at
random from the interval (0, π). The right ascension and the
declination are sampled from a uniform distribution over a
sphere. The duration of each strain is 16 s and the sampling
rate is 4096 Hz. The coalescence time of every strain
locates at 8 s. Each strain is whitened and treated through a
high-pass filter with a cutoff frequency of 20 Hz.
Two data sets are constructed, which obey the same para-

meter distribution. The only difference is that the back-
ground noise of the two datasets comes from the Hanford
and Livingston interferometers, respectively. Every dataset
includes 256,000 samples, of which 96,000 contain GW
signals and 160,000 contain pure background noise. This
dataset is divided into three parts: the original training set
includes 160,000 samples (80,000 GW and 80,000 noise),
the original validation set includes 16,000 samples
(8000 GW and 8000 noise), and the original test set
includes 80,000 samples (8,000 GW and 72,000 noise).
Note that the ratio of GW samples to pure noise samples in
the test set is not 1 to 1, but 1 to 9. The purpose of this
division is to mimic the fact that the number of gravitational
wave samples is much lower than the number of noise
samples in the real detection process.

III. AI MODEL FOR GW SIGNAL RECOGNITION

In this section, the proposed artificial intelligence (AI)
model for GW signal recognition will be systematically
introduced. The workflow of MF-based GW detect pipe-
lines [39–41] can be roughly divided into two stages:
obtaining the triggers from interferometers and then veri-
fying them. For example in PyCBC, triggers are generated
by thresholding and clustering the SNR time series
obtained from interferometers then all the triggers need
to pass the coincidence and data quality tests. Motivated by
the MF based pipelines, we also adopt the multistage
scheme for the AI model.
The overall framework of the AI model as shown in

Fig. 1 is briefly divided into three stages: GW detection,
envelope extraction, and coalescence time testing. The raw
data is whitened and then denoised by the wavelet packet
(WP) denoising in the preprocessing stage. In the WP
denoising, the high frequency components of the whitened
strain is eliminated and only the low frequency components
will be used as input to the detection model. The detail
description about the WP denoising is given in Sec. III A 1.
The detection model analyzes the strains from Hanford and
Livingston simultaneously. The output of the detection
stage reflects the confidence of a GW signal candidate.
These continuous outputs form the preliminary detection
results. The detection model will issue an alarm when its
output exceeds a threshold and a GW trigger will be given if
five or more consecutive alarms are generated. When there

is a GW trigger in the preliminary detection result, the two
envelope extraction models analyze the 4 s whitened strain
from the Hanford and Livingston interferometers, respec-
tively, and output the normalized envelope predictions
corresponding to the GW signal. The input window size
of the detection model is 1 s while the input window size of
the envelope extraction model is 4 s. They are different, and
the end of the two input windows are aligned. After
obtaining the envelope predictions from Hanford and
Livingston, the GW trigger needs to pass the coalescence

FIG. 1. Schematic diagram of the proposed AI model for a
gravitational wave search based on waveform envelope. The
black dotted box represents the three main stages of the model.
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FIG. 2. Schematic diagram of the detection stage in our AI model (Fig. 1). LP and HP represent the low-pass filter and high-pass filter.
A and D represent the approximation and detail components of the strain, respectively. In the rectangular boxes, “Conv” represents the
convolutional layer and the numbers in the boxes represent the shape of the matrix output by this layer.
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time difference testing. Only the GW triggers that pass the
coalescence time difference test will be retained as the final
detection result.

A. Detection stage

The schematic diagram of the detection stage is shown in
Fig. 2. The whole detection stage is divided into two parts:
data preprocessing and DL model detection. In the follow-
ing, we will introduce data preprocessing, model structure,
and training strategy in detail.

1. Data preprocessing

Wavelet packet decomposition (WPD) is a commonly
used signal processing method and is widely used in the

fields of audio signal processing [42–44] and image
recognition [45–47]. In the field of GW data analysis,
some researchers use the WPD to convert one-dimensional
strain into multi-dimensional matrixes [48,49]. In our work,
the whitening strain is decomposed into two levels by
successively translating and convolving the Daubechies
wavelet with low-pass (LP) and high-pass (HP) filters. LP
and HP filters retain the approximation (A) and detail
(D) components that contain low frequency and high
frequency information of the strain. Suppose the whitened
strain of interferometer X (H for Hanford and L for
Livingston) is denoted as SX ∈ R4096 (1 s data with
4096 Hz sampling rate). After the process of WPD, SX

is decomposed to SP
X ∈ R1×1024 (P ∈ fAA;AD;DA;DDg).

AA, AD, DA, and DD represent four branches of the

FIG. 3. The effect of wavelet packet denoising on noise and signal, respectively. Here the simulated GW signal is for BBH with
parameters m1 ¼ 36M⊙, m2 ¼ 36M⊙. The four subplots admit the SNR 8, 12, 16, and 20, respectively. The noise is taken from the
whitened background noise of Hanford detector.
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decomposition tree. Different from [48,49], we discard the
SDA
X and SDD

X , which contain the high frequency message of
SX. The above strategy can be regarded as a special WP
denoise for the whitened strain. The frequency of GW
signal produced by the BBH is around hundreds Hertz and
the whitened noise admits frequency range from 20 to 2048
Hertz. So we only focus on the low frequency components
to sift out part of the noise while keep the GW signal intact.
In the next section, we will analyze the effect of the special
WP denoising. We will find that the denoising does
enhance the signal relative to the noise.

2. The effect of wavelet packet denoising

We do wavelet packet transformation first and then
reconstruct the time sequence through an inverse wavelet
packet transformation base on the low frequency compo-
nents SAAX and SADX . To illustrate the effect of WP denoising
on noise and signal respectively, we plot the noise and GW
waveform before and after WP denoising in Fig. 3. Here
both relative weak signal and strong signal are considered.
From Fig. 3, we can clearly observe that the background
noise is reduced by the WP denoising while the GW signal
changes little.
We use the ratio of energy SNR (RESNR) before and

after the denoising to quantitatively evaluate the effective-
ness of the wavelet packet denoising method. The RESNR
is defined as

RESNR ¼ AESNR
BESNR

; ð4Þ

where AESNR and BESNR are the energy signal to noise
ratio (ESNR) after and before the denoising, respectively.
The energy signal to noise ratio ESNR can be calculated as

ESNR ¼
R
T jhðtÞj2dtR
T jnðtÞj2dt

; ð5Þ

where hðtÞ is the buried signal, nðtÞ is the background
noise, and T is the time interval with 1 s duration. We have
set the coalescence time at 0.75 s in our tests. The RESNR is
higher than 1 means that the denoising preprocess is
effective. We construct 20,012 samples to test RESNR.
The mass of BBH is sampled in the range (5M⊙; 80M⊙)
and the sampling step is 1M⊙. The SNR of samples is in
f8; 10; 12; 14; 16; 18; 20g. Figure 4 shows the distribution
of RESNR of the samples. All of the RESNR values of the
experiment are higher than 1.6, with the majority of results
falling between 1.8 and 2.1. The data demonstrated in
Fig. 4 illustrate that the WP denoising method is effective.
The experimental results in Sec. III also show that this WP
preprocessing method can significantly improve the per-
formance of the model under low FAP range.

3. The formulation of the detection stage

Inspired by the design idea of detection model in [24],
our detection model contains two submodels that analyze
the data from Hanford and Livingston interferometers,
respectively. Since the branches of WP decomposition tree
include messages of different frequency bands, each branch
is analyzed by independent subnetworks.
In the following, we give a brief description of the

detection stage. First, we feed the decomposed strain of
interferometer X SP

X ∈ R1×1024 to a subnetwork NP
X with

three convolutional layers and one max pooling layer. The
subnetwork NP

X can be formulated as

MP
X ¼ NP

XðSP
X;W

P
XÞ; ð6Þ

where MP
X ∈ R228×64 is the output matrix of the subnet-

work that contains the features of different frequency bands
andWP

X represents the subnetwork’s trainable weights. P ∈
fAA; ADg represents different branches of the decompo-
sition tree.
Second, the features extracted from different fre-

quency bands are analyzed together. For each interferom-
eter X, all the MP

X are concatenated together and passed
through a second subnetwork SNX. The process can be
written as

MX ¼ SNXðMAA
X ⊕ MAD

X ;WSXÞ; ð7Þ

where ⊕ denotes the concatenate, MX ∈ R106×128 is the
output matrix of the second subnetwork for interferometer
X, and WSX is the trainable weights.
Finally, the features from two interferometers are

used to predict whether there is a GW signal. The MH
and ML will be concatenated and processed with a
network NO with one convolutional layer and three fully

FIG. 4. The ratio of energy SNR RESNR distribution for
wavelet packet denoising among the 20,012 tested samples.
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connected layers. The output of the detection stage is then
given by

O ¼ NOðMH ⊕ ML;WOÞ; ð8Þ

where O ∈ ½0; 1�2 is the output of the detection stage. That
is to say that the detection stage outputs two time
sequences. Each sequence takes value in [0,1].
Before the output layer, a dropout [50] layer is used. The

dropout layer can improve the generalization ability of the
model and the dropout proportion in this model is 0.5.

Except for the last dense layer, the nonlinear activation
functions of all hidden layers are Elu. The activation
function used in the last dense layer is Softmax, which
can be written as

SoftmaxðziÞ ¼
eziP
n
j¼0 ezj

; ð9Þ

where n is the number of categories of the classification
problem, i is a certain class, the final output of the function is
an n-dimensional vector, each element in the vector repre-
sents the confidence of a class, and the sum of all elements

FIG. 5. The network structure of the envelope extraction stage of the AI model in the current work. The solid rectangles represent
different layers in the model. The numbers in the rectangles represent the shape of the vector output by the corresponding layer. The
yellow, red, blue, and green convolutional layers represent convolutional layers of different receptive fields whose kernel size is 64, 32,
16, and 8, respectively.
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is 1. In this paper, n is 2, and the first element pscore in the
output vector represents the confidence of a GW candidate.

4. The training scheme of the detection network

Compared with the training scheme of the base learner in
our previous work [28], the training scheme used in this
work has three improvements: training by order of SNR
range (inspired by [51]), data balance, and data augmenta-
tion. First, the GW strain in the original training set is
equally divided into four parts according to the SNR range
[(8, 11) (11, 14), (14, 17), (17, 20)], and other parameters
follow the same distribution for the four SNR ranges.
Different from the Ref. [51], in our work, the SNR is
randomly distributed over the corresponding range of each
part. The detection model is gradually trained from the
samples in the low SNR part to the high SNR part. Second,
although the ratio of noise strain to GW strain is 1∶1 in the
training set, this ratio is random in each training batch.
Hence, we set the ratio of noise strain to GW strain to 1∶1
in each training batch. Third, we have improved the data
augment method compared to our previous work [28]. The
main difference between the improved data augment
method and the previous one is that the previous one is
used before training, while the improved one is used during
training. For the improved one, all the strain in each batch is
randomly cut to 1 s and ensures that the coalescence time in
every GW strain is within (1

8
s, 7

8
s), which means that the

coalescence time of GW strain is different in each epoch.
Assuming that the training epoch is n, theoretically, the
number of strain can be enhanced to n times.
The loss function is binary cross-entropy [52], which is

used to evaluate the deviation between the predicted values
and the actual values in the training set. The Adam
algorithm [53] is applied to optimize the model parameters
and the learning rate is about 1.5 × 10−5.

B. Test stage

1. Envelope extraction network

The ith whitened strain in the training set is si ∈ R16384

(4 s strain with 4096 Hz sampling rate). Each si contains a
simulated GW signal that can be denoted as hi ∈ R16384.
Suppose the envelope of each GW signal in the training set
is henv

i ∈ R16384. The goal of the extraction model is to find
a parametrized function fð·jWÞ to estimate the signal
envelope, where W is a trainable weight and can be
optimized as

W� ¼ arg min
w

1

N

XN

i¼1

kfðsijwÞ − henv
i k2; ð10Þ

the henv
i can be calculated via the modulus of the analytical

signal of hi as

henv
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
i þ ðHðhiÞÞ2

q
; ð11Þ

where Hð·Þ denotes the Hilbert transformation.
Envelope extraction can be considered as a special

denoising process of gravitational waves. We borrow the
design idea from the Unet [54] and the Inception module
[55] to build the envelope extraction network, which is
shown in Fig. 5. Thewhole network can be divided into two
parts: feature extracting part and up sampling part. The
length of the output strain and the input strain are both 4 s.
Since the task of the testing stage is to verify the detection
result, only the strain containing a GW signal is used to
train the network.
The core idea of inception is to concatenate multiple

convolutional layers of different kernel sizes. Such oper-
ation increases the width of the network on the one hand.
On the other hand, since the receptive fields [55] of
different branches are different, multiscale information
can be extracted. We use three types of inception modules
in the processing of feature extraction and up sampling. The
yellow, red, blue, and green convolutional layers in Fig. 5
represent different receptive fields whose kernel size is 64,
32, 16, and 8, respectively. The padding of all convolu-
tional layers is set to the same. Consequently the convolu-
tional layer during the convolution operation will pad the
input vector to ensure the size of the output vector of
different convolutional layers can be concatenated. During
the process of feature contracting, the model extracts the
gravitational wave features in the GW strain through three
different inception modules. These features will be used as
the input of the up sampling stage and guide the model to
restore the envelope of GW waveform in the up sampling
stage. Except the last convolutional layer, the activation
functions of all convolutional layers are Elu. The tanh
activation is added after the last convolutional layer. The
loss function is mean squared error which is a commonly
used loss function in deep learning regression problems. It
reflects the average error between the predicted value and
the true value, which can reflect the degree of extraction of
the GWwaveform by the model. During model training, we
only keep the model with the smallest validation loss.

2. The training scheme of the envelope extraction network

When training the envelope extraction network, only the
GW strain in the original training set is used. The SNR of
these strain is the same as the SNR distribution of the data
used to train the detection network. The envelope extraction
network is also gradually trained from samples in the low
SNR range part to the high SNR range part. The envelope
extractionmodel adopts the same data augmentationmethod
as the detection model. In order to achieve the purpose of
time-sensitive envelope extraction, the GW strain in the
training set is randomly cut into 4 s strain and the coalescence
time of the BBH waveform is randomly located in (2 s, 4 s).
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Meanwhile, the output label for the 4 s strain is its
corresponding normalized BBH waveform. The gradient
descent strategy used in this model is Adam, the learning rate
is 1 × 10−5. The code implementation of the abovemodels is
based on Keras framework [56]. All of the computations are
done on a NVIDIA 3060 GPU.

3. Coalescence time difference testing

Since the time difference of the detected BBH coales-
cence signals between the ground-based interferometers is
very close (several milliseconds), we use this difference to
further test the preliminary results of the detection model.
Suppose the outputs of the envelope extraction model for
Hanford and Livingston are ĥenvH ðnÞ and ĥenvL ðnÞ, respec-
tively, where n ∈ ½1; 16384�). The coalescence time testing
includes two steps: peak value test and coalescence time
difference test. If the peak value of ĥenvH ðnÞ or ĥenvL ðnÞ is
lower than 0.5, the corresponding GW triggers will be
discarded. After passing the peak value test, the coales-
cence time of Hanford and Livingston will be predicted via

tX ¼ △t × arg max
n

ĥenvX ðnÞ; ð12Þ

where △t represents the sampling period of the strain (the
time duration between two successive sample points), tX is
the predicted coalescence time for the corresponding
interferometer and X ∈ fH;Lg. If the difference between
the tH and tL is greater than 50 ms the GW trigger will also
be discarded.

IV. AI MODEL PERFORMANCE

To illustrate the advantages of the WP denoise and the
training strategy, another two comparative models were
constructed. Compare to the AI model proposed in the last
section (hereafter we call it model III for convenience),
model I does not discard the high frequency part (SDA

X and
SDD
X ) of the strain after WPD and contains four more

subnetworks (NDA
H , NDD

H , NDA
L , NDD

L ). Equation (7) for
model I becomes

MX ¼ SNXðMAA
X ⊕ MAD

X ⊕ MDA
X ⊕ MDD

X ;WSXÞ:
Model I adopts the same training strategy as model III.
Model II has the same structure as model III. But instead

of the training scheme introduced in Sec. III, the training
strategy of model II lets the SNR of input strain randomly
distributed and does not apply data augmentation method to
the coalescence time issue. The ratio of noise strain to GW
strain is random in each training batch. The characteristics
of the three models are listed in Table I.
In the following, we will compare the performance of

models I, II, and III and test the envelope extraction model’s
prediction effect on the coalescence time of GW. Then, we
test our AI model’s performance on real GW events
reported by LVK in O1, O2. And more we also analyze

the corresponding false alarm rate (FAR) of the AI model in
the one-month duration detection. Finally, we analyze the
detection results of the AI model in O3 events under the
threshold of FAR ¼ 2 per year. Since the sampling rate of
the datasets in MLGWSC-1 and Kaggle (2048 Hz) differs
from the rate used in our model (4096 Hz), our detection
model cannot be directly applied to the available datasets of
MLGWSC-1 and Kaggle.

A. Result based on the test dataset

1. Performance of the detection network

In the strain data recorded by LIGO, the proportion of
background noise is much larger than that of GW signal.
Even if the detection model has a relatively low FAP,
numerous false triggers may still be generated in the case of
long-duration detection. To realize a reliable and efficient
DL search pipeline, it is crucial to build a detection model
with high TAP in the case of very low FAP. Therefore, we
focus on the ROC curves in the low FAP range. We build a
test dataset from the original test dataset. The test data set
contains 80,000 samples (8000 GW signals and 72,000
pure noise) and the duration of every sample is 1s. The
coalescence time of all GW samples is randomly located in
(1
8
s, 7

8
s). The ROC curves of models I, II, and III are

drawn in the range FAR ∈ ½0; 0.005�, which are shown
in Fig. 6.

TABLE I. The characteristics of three models for the compari-
son of the WP denoise and the training strategy.

WP denoise Training strategy

Model I � � � p
Model II

p � � �
Model III

p p

FIG. 6. ROC curves for the test dataset. The TAP of the red
dashed line is 0.91. The blue, orange, and green lines represent
the ROC curves of models I, II, and III.
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Comparing models II and III, when the TAP is about
0.91, the FAP of models II and III are about 2.33 × 10−3

and 1.39 × 10−5, respectively. That is to say that, with the
same TAP, the FAP of model III improves more than two
orders than that of model II. It is an interesting finding that
using the training scheme described in Sec. III can
significantly improve the performance of the model at
low FAP. Comparing models I and III, when the TAP is
about 0.91, the FAP of model II is about 4.72 × 10−4. This
means that with the same TAP, the FAP of model III
improves more than one order than that of model I. Note
that model I has a more complex structure and more
parameters than model III with WP denoising. However,
under the same TAP, the FAP of model I is much higher.
This fact indicates that using WP denoise can make GW
signal identification more reliable than simply using WPD.
Next, we compare the detection performance of the three

models on samples randomly selected from the test data set.
For real GW detection, detection model needs to process
long-duration data. We input a data segment with duration
1 s into the detection model for GW signal recognition, then
move forward a time step Δt and use the following data
segments for the following works. Figure 7 shows the
model’s response of six GW samples with 4 s duration. We
let the GW event locates in the center of the corresponding
strain. After that, models I, II, and III are used to detect
these strain, and the Δt is set to 2 ms. The GW signal
recognition results of models I, II, and III are shown in
Fig. 7 and the physical parameters of the GW sample are
shown in the titles of the subplots.

Comparing the GW signal recognition results, we find
that the output of model III is stable and close to 1 in the
time period when GW exists and close to 0 in the time
period when there is only background noise, which means
that this model has stronger detection ability than models I
and II. Interestingly, the output of models I and III is close
to 0 when there is only background noise.

2. Performance of the envelope extraction network

In the following, we exemplify the results from the
envelope extraction network on the original test set that
was introduced in Sec. II. Note that the duration of samples in
the original test set is 16 s, sowe randomly cut the samples to
4 s and let the coalescence time locate in (3 s, 4 s). Figure 8
shows the output of the envelope extraction network for eight
samples randomly selected from the test dataset.We find that
the both outputs of Hanford and Livingston can efficiently
catch the information of the envelope of GW signal buried in
the background noise, especially near the coalescence time.
From the samples 1 and 2, we find that the envelope
extraction network is less effective for the early inspiral
phase, but behaves quite well for the merger phase.
We take the time of the envelope peak as the predicted

coalescence time. The envelope extraction network can be
used to predict the arrival time of the BBH merger signal to
the corresponding interferometers. There is a time differ-
ence in the coalescence time between two interferometers,
which is in the order of milliseconds. We can use such time
differences to test the preliminary result of the detection
model. Certainly, only the error of the coalescence time is

FIG. 7. The output values of models I, II, and III with six samples in testing data. The sliding time step is Δt ¼ 2 ms.
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small enough, and this information can be applied to the
subsequent test for GW detection. We test all the samples in
the test dataset and count the coalescence time by using the
envelope extraction network. More than 91% and 84%
samples on Hanford and Livingston pass the peak value
test, respectively. We analyze the samples that pass the
value test. The error distribution between predicted coa-
lescence time and true coalescence time is shown in Fig. 9,
and we find that more than 92% samples admit an error less
than 5 ms. Compared to the coalescence time prediction
accuracy in our previous work (about 0.25 s), which used
the sliding window method [28], the accuracy of this work
(about 5 ms) increased about one order.

B. Result based on the O1 and O2 data

Now we apply our AI model to the O1 and O2 data of
Hanford and Livingston interferometers. In the detection
stage, we use the time sliding method with a time step
Δt ¼ 1

8
s, which means that the detection model detects

every 1
8
s and the detection window is 1 s.

Many researchers use threshold 0.5 [23,26] for signal
detection. To compare the performance of models I, II, and
III under a same TAP, we set the threshold of the three

models by fixing the TAP to 0.91. The thresholds corre-
sponding to the three models are calculated through the
ROC shown in Fig. 6. The related thresholds are shown in
Table II. When the output value of the detection model

(a1)

(a4)

(a3)

(a2)

(d1)

(d4)

(d3)

(d2)

(c1)

(c4)

(c3)

(c2)

(b1)

(b4)

(b3)

(b2)

FIG. 8. The output of the envelope extraction network for data strains from Hanford (a), (b) and Livingston (c), (d). The four rows
correspond to four samples. Panels (a) and (c) show the whole 1 s time duration. Respectively, corresponding to (a) and (c), (b) and (d)
are the enlargement of the merger part including 0.2 s time duration.

FIG. 9. The distribution histogram of the prediction error of the
coalescence time obtained by the envelope extraction network.
Blue line and orange line are, respectively, for Hanford and
Livingston interferometer. Note that we choose the sample, which
passes the peak value test as the total samples.
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exceeds its corresponding threshold, an alarm will be given.
When the number of continuous alarms exceeds or equals
to five, a GW trigger will be generated [23].

1. GW events detection

In the following, we investigate the performance of
our AI model on all reported GW events of O1 and O2 by
LVK. For each event, we take 16s-long strain and let the
GW event locate at the center of the corresponding strain.

We compare the performance of models I, II, and III. The
detection results output by the three models are shown
in Fig. 10.
In Fig. 10, all the BBH events are successfully recog-

nized by models I and III. As we described before, although
the detection model is trained only by O1 data, it can work
well for O2 data. However, model II fails to recognize
GW151226 and GW170818. We find that the outputs
of models I and III are close to 0 during the period without
GW. This good performance on real data is similar to that
on simulated data as shown in Fig. 7. Since the binary
neutron star coalescence data do not exist in the training
set, none of the three models can recognize GW170817.
Although model I generates a GW trigger near GW170817,
the duration of the GW trigger matches the glitch near
GW170817 [9,10] detected by the Livingston interferom-
eter. Hence, we blame this trigger on the glitch. Comparing

TABLE II. The resulted thresholds of the three detection
models for a GW signal alarm. These thresholds correspond to
TAP 0.91.

Model I Model II Model III

Threshold 0.90934 0.71741 0.99995

FIG. 10. The GW signal recognition results for the eleven events of O1 and O2 reported by LVK. All GWevents happened at 0 s. The
results for three models listed in Table I are compared in the plots.
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the GW signal recognition results of models I, II, and III,
we find that model III not only successfully recognizes all
BBH events in O1 and O2 but also gives out a remarkable
subthreshold trigger for GW170817. In addition, model III
does not generate any false triggers. Even for the glitch near
GW170817, model III can distinguish it from a real GW
signal. These results indicate that model III has a better
detection capability than models I and II.
The corresponding envelope extraction results for

each event are shown in Fig. 11. Except GW170817 and
GW170818, the envelope extraction network outputs a very
good envelope of the GW signal. Regarding to the strong
glitch of GW170817, our envelope extraction network
can filter such glitch perfectly. The output envelope of
GW170817 is small. We understand this result as that our
model is trained only against BBH without a binary neutron
star. Regarding toGW170818, the envelope of GWsignal on
the strain of Hanford interferometer is very small. We blame
this result to the weakness of the signal. The matching SNR
of GW170818 in Hanford according to PyCBC is just 4.1.

2. Signal search in the whole August 2017 LIGO data

In the evaluation of a detection method performance, the
FAR is a significant indicator. FAR reflects the average
number of false triggers generated per unit time. Wei et al.

used two models with different sampling rates to achieve a
FAR of about 11.1 per month [25]. Marlin et al. used an
unbounded soft max replacement to solve the problem of
numerical rounding error and reduced the FAR to 1 per
month under the test dataset with Gaussian background
noise simulated from the aLIGOZeroDetHighPower power
spectral density [51]. To investigate the FARof ourAImodel,
we applyourAImodel to one-monthdurationdata onAugust
2017 of LIGO. The FAR can be calculated by [51]

FAR ¼ Nf

T
; ð13Þ

where T is the detection duration and Nf is the number of
false triggers generated in whole duration. During the one-
month detection, models I and II generate 453 and 1898 false
triggers. Surprisingly, model III only generates two false
triggers. The coworking time of Hanford and Livingston
interferometers is about 17.325 days, and the predicted FARs
of the three detectionmodels are shown inTable III. TheFAR
of model III is extremely lower than that of models I and II.
Above results indicate that WP denoise and the new training
scheme introduced in Sec. III can significantly improve the
performance of the detection model.
After testing by the extracted envelope, the false triggers

generated by models I, II, and III are, respectively,

FIG. 11. The envelope extraction results for the eleven events of O1 and O2 reported by LVK. The blue and orange lines correspond to
the envelopes for Hanford and Livingston interferometers, respectively.
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eliminated to 1, 4, and 0. This result indicates the ability of
the coalescence time testing scheme. Equation (13) can be
used to calculate the FARs of models I and II together with
the testing stage but cannot be used to estimate the FAR of
model III together with testing stage which has Nf ¼ 0.
Here we analyze the FAR of model III by Bayesian theory.
We use a random variable xFT ∈ f0; 1g to represent
whether the detection model generates a false trigger or
not, and use another random variable xSE ∈ f0; 1g to
represent whether a trigger passes the following envelope
test. Assume that the FAR of the detection model in the
background noise is FARD and the FAR of the total AI
model is FARDE. It is easy to get

FARDE ∝ PðxFT ¼ 1; xSE ¼ 1Þ: ð14Þ
Based on the product rule of probability, Eq. (14) can be
reduced to

FARDE ∝ PðxFT ¼ 1Þ × PðxSE ¼ 1jxFT ¼ 1Þ: ð15Þ
Because of

FARD ∝ PðxFT ¼ 1Þ; ð16Þ

we get

FARDE ¼ FARD × PðxSE ¼ 1jxFT ¼ 1Þ: ð17Þ

Based on the LIGO data of August 2017 our detection
network gets two false alarms within about 17.32 days that
can be used to calculate the FARD ¼ 2

17.32. Because the
models I, II, and III admit exactly the same envelope
network and testing stage operation, we suppose that the
probability PðxSE ¼ 1jxFT ¼ 1Þ is the same for all three
models. We can estimate such probability as

PðxSE ¼ 1jxFT ¼ 1Þ ¼ NAFT

NFT
; ð18Þ

whereNAFT represents the number of false triggers after the
testing, and NFT represents the number of false triggers
before the testing. From model I we have

PðxSE ¼ 1jxFT ¼ 1Þ ≈ 1

453
: ð19Þ

From model II we have

PðxSE ¼ 1jxFT ¼ 1Þ ≈ 4

1898
≈

1

474
: ð20Þ

So we averagely use 1
460

to estimate PðxSE ¼ 1jxFT ¼ 1Þ.
Consequently model III admits a FAR of about 0.046 per
year, or equivalently about once 21.83 years.
Above mentioned FAR for model III corresponds to the

threshold setting listed in Table II. Since different thresh-
olds correspond to different FARs and different TAPs, we
calculate the FAR of model III under different thresholds.
Combining these results with PðxSE ¼ 1jxFT ¼ 1Þ ≈ 1

460
we

can get the FAR for the whole AI model of model III. We
plot the relation between the FAR and the TAP for model III
in Fig. 12. When the threshold of model III is set to

TABLE III. The FARs of models I, II, and III in the one-month
detection corresponding to the whole August 2017 LIGO data.

Model I Model II Model III

FAR (per month) 784.4 3286.6 3.5

FIG. 12. The relation between FAR and TAP for model III when the pscore threshold is changing. Left panel is for detection model
only. The right panel is for the whole AI model including both detection stage and test stage.
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0.99995, the FARDE ≈ 0.0075 per month, which means
that our AI model III generates a false trigger in about
11.41 years. When the threshold of model III is set to near
1, our AI model III can still identify almost all of the BBH
events during August 2017 except GW170818. And the
corresponding FAR is FARDE ≈ 0.0038 per month, or
equivalently 0.046 per year.
The AI, LVK and OGC predictions of the coalescence

times for the three BBH events in August 2017 are shown
in Table IV. It can be observed from the table that the
coalescence times predicted by the AI model for the three

events in August 2017 are consistent with the posterior
distribution provided by GWTC-1 and 2-OGC.

C. Application of AI model to the O3 data

Next, we investigate the detection performance of our AI
model on the O3 data. Model III is chosen as the detection
model. There are 44 and 35 confident events reported by
LVK in O3a and O3b observing runs, respectively [5,6].
Among the confident events in O3a and O3b, there are,
respectively, 38 and 32 events for which the Hanford and
Livingston interferometers both working. Tables V and VI

TABLE IV. The predicted coalescence times for the three events in August 2017 reported by LVK. The listed LVK
predicted values correspond to the intermediate value of the posterior distribution given by GWTC-1. The listed
OGC predicted values correspond to the intermediate value of the posterior distribution given by 2-OGC. H and L
mean Hanford and Livingston. Δ means the time difference between H and L. Based on the posterior distribution
given by GWTC-1, the standard deviations for GW170809, GW170814, and GW170823 are, respectively,
0.003279303881529099, 0.0019400082824698507, and 0.017506253479340875.

Event AI prediction LVK prediction OGC prediction

GW170809 (H) 1186302519.7495117 1186302519.7524414 1186302519.756348
GW170809 (L) 1186302519.7382812 1186302519.7436523 1186302519.74707
GW170809 (Δ) 0.0112305 0.0087890625 0.0092778
GW170814 (H) 1186741861.5268555 1186741861.5371094 1186741861.538574
GW170814 (L) 1186741861.519287 1186741861.5292969 1186741861.530273
GW170814 (Δ) 0.007568359375 0.0078125 0.00830101
GW170823 (H) 1187529256.5114746 1187529256.5161133 1187529256.518555
GW170823 (L) 1187529256.5092773 1187529256.5170898 1187529256.519531
GW170823 (Δ) 0.002197265625 −0.0009765625 −0.000976

TABLE V. GW events reported by LVK in O3a [5]. Here only events for which both Hanford and Livingston interferometers work
well are listed. The notation

p
for pipelines cWB, MBTA GstLAL, PyCBC_broad, PyCBC_BBH means the corresponding event

passed the FAR threshold or the pastro threshold. The
p

for the detection of our AI model means the corresponding event results in
detection network output bigger than the threshold of 0.9. The

p
for the test of our AI model means that the event passed the coalescence

time difference testing. The
p

of D&T means the event passed the FAR ¼ 2 per year threshold. The detection rate means the ratio of
events number denoted by

p
and the total events number listed in the table.

cWB MBTA GstLAL PyCBC PyCBC_BBH AI model

Name FAR pastro FAR pastro FAR pastro FAR pastro FAR pastro Detection Test D&T

GW190403_051519 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW190408_181802

p p p p p p p p p p p p p
GW190412

p p p p p p p p p p p p p
GW190413_052954 � � � � � � � � � � � � � � � � � � � � � � � � p p � � � � � � � � �
GW190413_134308 � � � � � � p p � � � � � � � � � � � � p p � � � p � � �
GW190421_213856

p p p p p p � � � p p p p p p
GW190426_190642 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW190503_185404

p p p p p p p p p p p p p
GW190512_180714

p p p p p p p p p p p p p
GW190513_205428 � � � � � � p p p p � � � � � � p p p p p
GW190514_065416 � � � � � � � � � � � � � � � � � � � � � � � � � � � p p p p
GW190517_055101

p p p p p p p p p p p p p
GW190519_153544

p p p p p p p p p p p p p
GW190521

p p p p p p p p p p p p p
GW190521_074359

p p p p p p p p p p p p p

(Table continued)
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TABLE V. (Continued)

cWB MBTA GstLAL PyCBC PyCBC_BBH AI model

Name FAR pastro FAR pastro FAR pastro FAR pastro FAR pastro Detection Test D&T

GW190527_092055 � � � � � � � � � � � � p p � � � � � � � � � � � � � � � � � � � � �
GW190602_175927

p p p p p p p p p p p p p
GW190701_203306

p p � � � p p p p p p p p p p
GW190706_222641

p p p p p p p p p p p p p
GW190707_ 093326 � � � � � � p p p p p p p p p p p
GW190719_215514 � � � � � � � � � � � � � � � � � � � � � � � � p p p p p
GW190720_000836 � � � � � � p p p p p p p p � � � � � � � � �
GW190725_174728 � � � � � � � � � p � � � � � � p p p p � � � � � � � � �
GW190727_060333

p p p p p p p p p p p p p
GW190728_064510 � � � � � � p p p p p p p p p p p
GW190731_140936 � � � � � � � � � p p p � � � � � � p p � � � p � � �
GW190803_022701 � � � � � � � � � p p p � � � � � � p p � � � p � � �
GW190805_211137 � � � � � � � � � � � � � � � � � � � � � � � � p p p � � � � � �
GW190814 � � � � � � p p p p p p � � � � � � p p p
GW190828_063405

p p p p p p p p p p p p p
GW190828_065509 � � � � � � p p p p p p p p � � � � � � � � �
GW190915_235702

p p p p p p p p p p p p p
GW190916_200658 � � � � � � � � � p � � � � � � � � � � � � � � � p p � � � � � �
GW190917_114630 � � � � � � � � � � � � p p � � � � � � � � � � � � � � � � � � � � �
GW190924_021846 � � � � � � p p p p p p p p � � � � � � � � �
GW190926_050336 � � � � � � � � � � � � p p � � � � � � � � � � � � � � � p � � �
GW190929_012149 � � � � � � � � � p p p � � � � � � � � � � � � � � � p � � �
GW190930_133541 � � � � � � p p p p p p p p � � � � � � � � �
Detection_rate (%) 39.47 39.47 60.53 76.32 76.32 76.32 57.89 60.53 76.32 84.21 60.53 68.42 55.26

TABLE VI. Similar to Table V but for O3b [6]. The notation convention is the same as Table V.

cWB MBTA GstLAL PyCBC PyCBC_BBH AI model

Name FAR pastro FAR pastro FAR pastro FAR pastro FAR pastro Detection Test D&T

GW191103_012549 � � � � � � � � � � � � � � � � � � � � � p p p � � � � � � � � �
GW191105_143521 � � � � � � p p � � � � � � p p p p p � � � � � �
GW191109_010717

p p p p p p p p p p p p p
GW191113_071753 � � � � � � � � � p � � � � � � � � � � � � � � � � � � � � � � � � � � �
GW191126_115259 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW191127_050227 � � � � � � p p p � � � � � � � � � � � � p p p p
GW191129_134029 � � � � � � p p p p p p p p p � � � � � �
GW191204_110529 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW191204_171526

p p p p p p p p p p p p p
GW191215_223052

p p p p p p p p p p p p p
GW191219_163120 � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � � � � � � � �
GW191222_033537

p p p p p p p p p p p p p
GW191230_180458

p p � � � � � � p p � � � � � � p p p p p
GW200115_042309 � � � � � � p p p p p p � � � � � � � � � � � � � � �
GW200128_022011

p p � � � p p p p p p p p p p
GW200129_065458 � � � � � � � � � � � � p p p p p p p p p
GW200202_154313 � � � � � � � � � � � � p p � � � � � � p p � � � � � � � � �
GW200208_130117 � � � � � � p p p p p p p p � � � p � � �
GW200208_222617 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW200209_085452 � � � � � � � � � p p p � � � � � � p p p � � � � � �
GW200210_092254 � � � � � � � � � � � � p � � � � � � p � � � p � � � � � � � � �

(Table continued)
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show the detection results of five detection pipelines (cWB,
MBTA, GstLAL, PyCBC_broad, PyCBC_BBH) and our
AI model. Among the five pipelines, cWB searches for
transient signals without assuming a model template [6],
MBTA,GstLAL, PyCBC_broad, PyCBC_BBHarematched
filter pipelines.
In GWTC-2, LVK used a threshold of FAR< 2 per year

to screen the confident events from candidates. In the
GWTC-2.1, eight events with pastro > 0.5 were added to
the confident events. pastro represents the probability of
astrophysical origin, which uses both the signal rate in
addition to the noise rate in order to determine the signifi-
cance of events [5]. In the current work, we use the same
threshold of FAR and pastro to analyze the GW events. For
the five famous pipelines, we count the events that meet the
requirements of pastro > 0.5 and FAR< 2 per year, respec-
tively. For the AI model, the threshold of the detection
network is set to 0.9. Such a threshold matches the require-
ment of FAR< 2 per year. We count the confident events of
the AI model with FAR< 2 per year and the corresponding
detection rates of different pipelines are shown at the end of
the table (the events number denoted by

p
divided by the

total events number listed in the table).
In O3a, there are 23, 26, and 21 events are successfully

detected by the detection model, envelope extraction
model, and the whole AI model. In O3b, 16, 13, and 12
events are successfully detected by the detection model,
envelope extraction model, and the whole AI model. All the
events detected by cWB are successfully detected by the AI

model. In addition the AI model detects eight more events.
However, the AI model does not achieve the detection
effect of any matched filtering pipeline. Considering the
detection result of O1 and O2 events, we estimate that our
AI model can achieve about 80% efficiency of matched
filtering pipeline under the same threshold of FAR< 2 per
year. As the same as the leading machine learning search
algorithm in MLGWSC-1, the efficiency of our AI model
is also lower than the MF based algorithms under the
condition of very low FAR.

D. Evaluating the execution time
and the real-time performance

Based ononeNVIDIA3060GPU,weuse about 10days to
train the three DL models (one detection model and two
envelope extraction models). Even though the training time
of the threeDLmodels is time consuming, the execution time
is extremely fast once trained. For testing the real-time
performance of the AI model, the test set is used to evaluate
the execution time of each stage. The data preprocessing
(whitening and WP denoising) is run on CPU while the DL
models are run onGPU.The execution timeof every stage for
a sample is shown in Table VII. Although the data prepro-
cessing running on the CPU reduces the efficiency of AI
model, the whole running time (about 0.03 s) is still much
less than 1

8
s (sliding time step). In the future, the data

preprocessing operation is also expected to be accelerated by
the GPU to further improve the efficiency of the AI model.

V. CONCLUSION AND DISCUSSION

In this paper, we propose an AI model for GW signal
recognition. The AI model contains three stages: GW
detection, envelope extraction, and coalescence time test-
ing. Three AI models are trained by a new training scheme.
We find that this new training scheme can extremely
increase the distinguishing ability of GW signal and

TABLE VI. (Continued)

cWB MBTA GstLAL PyCBC PyCBC_BBH AI model

Name FAR pastro FAR pastro FAR pastro FAR pastro FAR pastro Detection Test D&T

GW200216_220804 � � � � � � � � � � � � p p � � � � � � � � � p � � � � � � � � �
GW200219_094415

p p p p p p p p p p p p p
GW200220_061928 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW200220_124850 � � � � � � � � � p � � � � � � � � � � � � � � � � � � p � � � � � �
GW200224_222234

p p p p p p p p p p p p p
GW200225_060421

p p p p p p p p p p p p p
GW200306_093714 � � � � � � � � � p � � � � � � � � � � � � � � � � � � � � � � � � � � �
GW200308_173609 � � � � � � � � � � � � � � � � � � � � � � � � � � � p � � � � � � � � �
GW200311_115853

p p p p p p p p p p p p p
GW200316_215756 � � � � � � � � � � � � p p p p p p � � � � � � � � �
GW200322_091133 � � � � � � � � � p � � � � � � � � � � � � � � � � � � � � � � � � � � �
Detection_rate (%) 31.25 31.25 40.63 59.38 62.5 56.25 46.88 53.13 53.13 78.125 50 40.63 37.5

TABLE VII. Execution time for each stage of the AI model.

Stage Evaluating time

Whitening <10 ms
WP denoise <0.2 ms
Detection <0.1 ms
Envelope extraction <2 × 12 ms
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background noise. Moreover, the envelope extraction can
be used to accurately estimate the coalescence time. For
about 80% of the samples in the test data set, the
coalescence time prediction error is less than 5 ms. This
AI model is applied to all reported events by LVK in the
first, second, and third observing runs (O1, O2, and O3).
We find that the AI model can clearly identify all binary
black hole merger events in O1 and O2 except GW170818.
We have also applied the AI model to one whole month
(August 2017) of data of O2. Although the AI model is
trained by only O1 data, no false trigger happens in the one
month detection. In the investigation of O3 events, we
compare the detection results of five famous detection
pipelines (cWB, MBTA, GstLAL, PyCBC_broad, and
PyCBC_BBH) to that of our AI model. We find that our
AI model identifies eight more GW events than cWB
besides all events that are successfully identified by cWB.
Our test results indicate that our AI model can be used in
real-time GW data analysis with good confidence.
Due to the improved performance of the detectors [57],

the sensitivity of aLIGO during the third observing run is
greatly improved. The power spectrum density of the O3
background noise is much different from that of O1. For
experimental purposes, we only use the O1 background
noise to train our AI model. Even so, our test results are
promising. This fact indicates the strong generalization
ability of the AI model. The performance of our AI model
may be better if the background noise of the O3 run is also
taken into consideration for training.
In the testing stage, we propose an envelope extraction

network. The test based on the output of the envelope
extraction network improves the efficiency of the GW signal
detection quite much. Beyond the GW testing stage of the
proposed AI model, the envelope extraction network has
many other potential usages. Here we introduce some
promising potential usages that can be investigated in future.

The data collected by Advanced LIGO interferometer are
dominated by pure noise and have less GW information.
However, so far the AI based detection method treats the
data segments at different time (with and without GW
information) equally. The information of the extracted
envelope can pick up the significant data segment. Ones
can afterwards focus rapidly on regions of interest to
perceive an image [58]. We can imitate the attention
mechanism in human vision and design AI detection
method that focuses on the important time segments.
Almost all the GW detection methods based on AI use a

time sliding method with a small sliding time step. The
coalescence time information can be used to align the
detection window. Then a new method without the small
sliding time step can be applied. An aligned calculation
window may also improve the effectiveness of the param-
eter estimation based on AI method. The coalescence time
information may also be used to improve the computational
efficiency of the matched filtering method.
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