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We describe a novel approach to the detection and parameter estimation of a non-Gaussian stochastic
background of gravitational waves. The method is based on the determination of relevant statistical
parameters using importance sampling. We show that it is possible to improve the Gaussian detection
statistics by simulating realizations of the expected signal for a given model. While computationally
expensive, our method improves the detection performance, leveraging the prior knowledge on the
expected signal, and can be used in a natural way to extract physical information about the background. We
present the basic principles of our approach, characterize the detection statistic performances in a simplified
context, and discuss possible applications to the detection of some astrophysical foregrounds. We argue that
the proposed approach, complementarily to the ones available in literature might be used to detect suitable
astrophysical foregrounds by currently operating and future gravitational wave detectors.
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I. INTRODUCTION

Over the past seven years, the Advanced Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) [1]
and Advanced Virgo [2] have collected data and released,
together with the KAGRA Collaboration [3], three incre-
mental catalogs of gravitational-wave (GW) detections,
amounting to a total of 90 confident events [4]. In addition,
the LIGO, Virgo, and KAGRA Collaborations (LVKC)
have performed a population study on a subset of 76 of
them [5]. Further upgraded second generation interferom-
eters [6] and third generation GW detectors, such as the
Einstein Telescope (ET) [7], will possibly become opera-
tional during the next decade: these experiments promise
to be sensitive enough to observe both the cosmological
and astrophysical stochastic gravitational wave background
(SGWB). In addition, when the Large Interferometer Space
Antenna (LISA) [8] becomes operational, our sensitivity to
astrophysical GW transients will broaden to lower frequen-
cies and new source categories.
The superposition from various unresolved astrophysical

and cosmological sources generates a SGWB. Searches for
such a stochastic background have been performed on
available data: no evidence for a SGWB has been found;

nonetheless upper limits on its cosmological energy density
have been placed [5,9]. Among the sources that may
contribute to the SGWB: core-collapse supernovae [10–12];
neutron stars [13–15]; compact binary coalescences [16–19];
binary white dwarfs [20]; cosmic strings [21–23]; and
gravitational waves produced during inflation [24–26] or
by primordial black holes [27]. A detection of the cosmo-
logical SGWB would give very important constraints on the
earliest epochs of the Universe, while the detection of an
astrophysical SGWB would provide key information about
the sources generating it, e.g., the merger rate of compact
binary systems, the star formation history [28,29], or the
occurrence of gravitational-wave lensing [30,31].
Searches for SGWBs typically assume that the back-

ground is Gaussian, based on the central limit theorem
(see, e.g., Refs. [32,33]). However, if the rate of events
generating the background is not sufficiently high com-
pared to their duration or frequency bandwidth, a non-
Gaussian background is expected, characterized by
discontinuous or intermittent signals. For instance, predic-
tions based on population modeling suggest that, for many
realistic astrophysical models, there may not be enough
overlapping sources, resulting in the formation of such a
non-Gaussian background (see, e.g., Refs. [34,35]).
Furthermore, it has been shown that the background from
cosmic strings could be dominated by a non-Gaussian
contribution arising from the closest sources [22].*riccardo.buscicchio@unimib.it
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In the past decades several methods to search for non-
Gaussian SGWB have been proposed. For instance, the
authors of Ref. [36] derived an algorithm suitable for
the detection of a non-Gaussian component in a SGWB
observed by two colocated and coaligned detectors with
white Gaussian noise. Later, the author of Ref. [37]
introduced a maximum likelihood estimator to be used
in a more realistic case of a network of spatially separated
interferometers with colored, non-Gaussian noise. Most
recently, the authors of Ref. [38] devised a Bayesian
search strategy for a background of unresolved binaries.
Other approaches have also been explored (see, e.g.,
Refs. [39–41]), constructing alternative parametrizations
for SGWB non-Gaussianities. In the context of LISA,
various pipelines for the detection and characterization of
an astrophysical SGWB have been developed [42–44],
parametrizing a certain level on non-Gaussianities in the
signal model. The expected level has also been assessed for
confusion noise arising from extreme mass ratio inspirals
(EMRIs) and galactic binary white dwarfs [45].
In this paper, we explore a novel approach for a detection

of non-Gaussian SGWBs–inherently complementary to the
ones available in literature [38]—using a detailed stochastic
model of the underlying signal population. The paper is
organized as follows: in Sec. II we discuss the basic princi-
ples for the detection of a SGWB, and we give examples of
application for the case of an isotropic background; after a
discussion of the Neyman-Pearson detection statistic (DS) in
a frequentist context (Sec. II A) we show how a Bayesian
analysis of a non-Gaussian stochastic background can be
implemented (Sec. II B); in Sec. III we discuss a simplified
model for a non-Gaussian stochastic background, with the
purpose of estimating the improvement in detection perfor-
mance of the proposed approach; in Sec. IV we give details
about the application to a more realistic case, namely an
isotropic stochastic background of astrophysical origin; we
show how this can be represented by a (generalized) point
process (Sec. IVA), and give details about the stochastic
sampling procedure required by the inference method
(Sec. IV B); finally, in Sec. V we draw some conclusions
pointing at possible future developments, in particular toward
applications to the nonisotropic case; in the Appendix we
provide detailed proofs of results shown in the main text.
Some are available in literature (see, e.g., Ref. [46] and
references therein); nonetheless we choose to reproduce them
to ensure consistency of notation across the text.

II. THE STATISTICAL PROBLEM

In this paper, observations are written as the sum of
signal and noise; however, in our case it is more convenient
to write the data collected by a network of detectors in a
slightly different form, namely

sAi ¼ gAi þ hAi þ nAi ; ð1Þ

where g is a Gaussian part of the stochastic signal and h a
non-Gaussian one, while n is the noise of the detectors. We
assume statistical independence among the three compo-
nents g, h, and n. We assume also that they have zero mean.
A nonzero average is observationally irrelevant and can be
removed in the time domain. In the frequency domain it
could model a spurious nonstochastic contamination that
should be removed before the analysis.
In this paper we always assume an additive and Gaussian

noise, although an extension is possible to account for
transient nonstationarities arising from the noise. Capital
indices label the detector while lowercase ones enumerate
generically the data series: we will specialize it if needed by
explicitly writing our expressions in time or frequency
domain. It is worth emphasizing that the decomposition in
Eq. (1) is not unique: one can always add and subtract an
arbitrary Gaussian contribution to g and from h. This is a
feature arising from the inherent modeling freedom for h in
Eq. (1), and it is not related to the noise properties.
Under our hypotheses the noise is described by a

multivariate Gaussian probability distribution that we can
write as

pn½nAi � ¼ N n exp

�
−
1

2
Wnðn; nÞ

�
; ð2Þ

where N n is a normalization constant and for future
convenience we defined the scalar product over detectors
and data indices

Wxðu; vÞ≡
X
A;B

X
i;j

½C−1
xx �AB

ij uAi v
B
j ; ð3Þ

½Cxy�AB
ij ≡ hxAi yBj i: ð4Þ

Hereafter, following Einstein’s convention on repeated
indices, we drop the summation symbols over data and
detectors indices. Cnn is the noise cross-correlation array,
soWn in Eq. (2) is the Wiener match between u and v with
respect to the noise n [47]. Explicitly we can write

N x ¼ exp

�
−
1

2
Tr ln 2πCx

�
; ð5Þ

½Cxy�AB
ij ≈ ½Čxy�AB

ij ¼ xAi y
B
j ; ð6Þ

where the trace is performed over detectors and data
indices. For simplicity, in autocorrelations Cxx we drop a
redundant index, therefore denoting them Cx.
In Eq. (6) and in what follows we often replace the true

cross-correlations Cxy—a theoretical expectation value
defined through the model and frequently unmeasurable
—with estimators obtained from the data. We label them
with an overhead check. Correspondingly, averaging over
the data indices is denoted with an overline,
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½Čxy�AB
ij ¼ xAi y

B
j : ð7Þ

Because of statistical fluctuations, the uncertainty on Čxy

can be improved by averaging over chunks of data: as we
show in Eq. (24), this comes at the cost of a reduced
probability of detection.
We model the stochastic signal described by g as

Gaussian with a probability distribution analogous to
Eq. (2), namely

pg½gAi � ¼ N g exp

�
−
1

2
Wgðg; gÞ

�
: ð8Þ

However, we make no statistical hypothesis about the
remainder h, which can be described by a generic prob-
ability distribution ph½hAi �. Then we can write the proba-
bility distribution for the observed signal as a convolution
between pn, pg, and ph, namely

ps½s� ¼
Z
h

Z
g
ps½sjh; g�ph½h�pg½g�

¼ N nN g

Z
h

Z
g
ph½h�e−1

2
Wnðs−h−g;s−h−gÞ−1

2
Wgðg;gÞ: ð9Þ

The Gaussian integral over g can be performed explicitly.
By virtue of Woodbury’s identity (see the Appendix for
details), we observe that

Wnþgðu; vÞ ¼ Wnðu; vÞ − Gðu; vÞ ð10Þ

or equivalently

C−1
n − C−1

n ðC−1
g þ C−1

n Þ−1C−1
n ¼ C−1

nþg; ð11Þ

where we have defined for future convenience

Gðu; vÞ≡ GAB
ij uAi v

B
j ; ð12Þ

G≡ C−1
n ðC−1

n þ C−1
g Þ−1C−1

n ; ð13Þ

which go to zero when g ¼ 0. Using Eq. (11) the integral
further simplifies to

ps½s� ¼ N nþg

Z
h
ph½h�e−1

2
Wnþgðs−h;s−hÞ: ð14Þ

The key point is that we can rewrite ps as

ps½s� ¼ N nþghe−1
2
Wnþgðs−h;s−hÞi; ð15Þ

where the expectation value h� � �i is evaluated over an
ensemble of realizations for the non-Gaussian part h of the
SGWB. Note that this expectation value is evaluated at

fixed data s, which is considered here an independent
variable.
While it is difficult to write an explicit expression for ph

in the non-Gaussian case, realizations of a stochastic
background h can be simulated. This opens up the possibility
of evaluating ps and connected quantities related to DS and
parameter estimation procedures.

A. The frequentist approach

As a first example we show an expression for the optimal
Neyman-Pearson DS [48], under the hypothesis of a known
background and a known noise. The two hypotheses to be
tested are

H1: presence of a known stochastic background, with a
given Gaussian part g and a given non-Gaussian one h.

H0: absence of the background, g ¼ h ¼ 0, which
means s ¼ n.

The DS is defined by the test statistic ŶðsÞ > λ where

ŶðsÞ≡ log
ps½sjH1�
ps½sjH0�

− log
N nþg

N n
ð16Þ

¼ 1

2
Gðs; sÞ þ log he−1

2
Wnþgðh;hÞeWnþgðs;hÞi: ð17Þ

We subtracted from the standard definition of ŶðsÞ a data
independent constant, whose effect can be compensated by
a redefinition of the relation between the threshold λ and the
false alarm probability [49]. Note that the average in
Eq. (17) is evaluated under the H1 hypothesis.

1. Gaussian case

We discuss shortly the particular case of a Gaussian
background, as this clarifies some aspects relevant in the
following sections. If the background is Gaussian, we can
assume, without loss of generality, that h ¼ 0 and the
optimal statistic is given by

ŶðsÞ ¼ 1

2
Gðs; sÞ

≃
1

2
½C−1

n CgC−1
n �AB

ij sAi s
B
j þOðkCgC−1

n k2Þ; ð18Þ

where we expanded Eq. (12) to lowest order, under the
hypothesis that the SGWB power spectrum is much smaller
than every detector’s noise spectrum. While the frequentist
approach makes direct use of such an assumption, the
corresponding Bayesian approach in Sec. II B does not
assume it, hence making it suitable in other contexts. As Ŷ
is an approximately Gaussian variable, we are comparing
two Gaussian distributions with given means and variances.
Having access to only estimators of noise and signal

spectra ensemble averages, we use them to replace corre-
lations in the test statistics. Consequently, the average of Ŷ
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(i.e., the optimal statistics using estimators for noise
correlations) under H0 is given by

μH0
¼ 1

2
½Č−1

n ČgČ
−1
n �AB

ij hnAi nBj i ð19Þ

¼ 1

2
TrðČ−1

n ČgČ
−1
n CnÞ; ð20Þ

where the trace is performed over detector and data indices.
In a similar way we find, under the hypothesis H1,

μH1
¼ μH0

þ 1

2
TrðČ−1

n ČgČ
−1
n CgÞ; ð21Þ

and the variances are given by

σ2H0
¼ 1

2
Tr½ðČ−1

n ČgČ
−1
n CnÞ2�; ð22Þ

σ2H1
≃ σ2H0

þ TrðČ−1
n ČgČ

−1
n CnČ

−1
n ČgČ

−1
n CgÞ; ð23Þ

where once again we included only the first correction for
σ2H1

in the small signal approximation. The receiver
operating characteristic (ROC) of the DS reads

PD ¼ 1

2
erfc

�
σH0

σH1

erfc−1ð2PFAÞ −
μH1

− μH0

σH1

ffiffiffi
2

p
�
; ð24Þ

where PD (PFA) is the detection (false-alarm) probability
and erfc is the complementary error function.
Note that, because of the two traces over the N data

points ðμH1
− μH0

Þ=σH1
∝

ffiffiffiffi
N

p
, so the detection probability

improves with the square root of the measurement time. On
the contrary, the first term affects only mildly the detector
performance as it remains constant while more data points
are accumulated. For this reason, Eq. (24) is often rewritten
with trivial definitions for the “offset” o and “deflection
coefficient” d as follows:

PD ¼ 1

2
erfc
�
o −

ffiffiffiffiffi
d2

p �
: ð25Þ

However, the approach just illustrated is not always
viable: to attain a detection we need to know μH0

with an
error of the order of the ratio between the signal’s and the
noise’s power spectra. This is because we need to know
μH1

− μH0
with the same precision. This cannot be done

experimentally (we cannot switch off the coupling of the
detectors to the SGWB), and it is not realistic to estimate
theoretically the noise budget of a detector with such
precision.
Usually this issue is solved by the additional assumption

that noises across different detectors are uncorrelated,
namely the matrix CAB

n is diagonal in detector’s indices.
Consequently, the noise dominated terms along the diagonal

A ¼ B can be eliminated by defining a “diagonal–free”
statistic ŶGðsÞ by removing in the sum of Eq. (18) all terms
dominated by the noise

ŶGðsÞ≡
X
A≠B

1

2
½Č−1

n ČgČ
−1
n �AB

ij sAi s
B
j : ð26Þ

We get a new average μH0;G
¼ 0, and the detector becomes

robust with respect to errors in the noise model. The new
means and variances are given by

μH0;G
¼ 0; ð27Þ

μH1;G
¼ 1

2
TrðČ−1

n ČgČ
−1
n CgÞ; ð28Þ

σ2H0;G
¼ 1

2
TrððČ−1

n ČgČ
−1
n CnÞ2Þ; ð29Þ

σ2H1;G
≃ σ2H0;G

þ TrðČ−1
n ČgČ

−1
n CnČ

−1
n ČgČ

−1
n CgÞ; ð30Þ

where we label diagonal-free correlation matrices (with no
implicit summation over detector indices)

½C�AB ¼ ½C�ABð1 − δABÞ: ð31Þ

Notably μH1;G
− μH0;G

< μH1
− μH0

based on Eq. (24):
the additional robustness introduced affects the deflection
coefficient, i.e., its asymptotic performances.

2. Non-Gaussian case

In the more general case of a non-Gaussian model, we
rewrite Eq. (16) as

ŶðsÞ ¼ 1

2
½Čg�AB

ij sAi s
B
j þ χh

X∞
n¼1

1

n!
Γ̌A1���An
i1���in sA1

i1
� � � sAn

in
ð32Þ

with

χh ¼ he−1
2
Wnþgðh;hÞi: ð33Þ

Here sAi ¼ ½Č−1
n �AB

ij sBj is a “double whitened” signal, and

Γ̌A1���An
i1���in are estimators of the connected moments for an h

distributed according to

p0
h½h� ¼ χ−1h e−

1
2
Wnþgðh;hÞph½h� ð34Þ

and are fully contracted over a suitable number of signals
sAi , which we denote with a subscript fA; ig.
Now we can evaluate the expectation value of ŶðsÞ under

the hypothesis H0. We find
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μH0
¼ 1

2
TrðČ−1

n ČgČ
−1
n CnÞ þ χh

X∞
n¼1

1

n!
Γ̌A1���An
i1���in NA1���An

i1���in ;

ð35Þ

where NA1���An
i1���in is the nth order moment of the double

whitened noise. As the noise is Gaussian, by virtue of the
Isserlis theorem [50] it can be written as a sum over all
pairings of products of second order moments, and using
the symmetry of the connected moments Γ we get

μH0
¼ 1

2
TrðČ−1

n ČgČ
−1
n CnÞ

þ χh
X∞
n¼1

1

ð2nÞ!! Γ̌
A1���A2n
i1���i2n

Yn
k¼1

½Č−1
n CnČ

−1
n �Að2k−1ÞA2k

ið2k−1Þi2k :

ð36Þ

As for the Gaussian case, μH0
depends on an estimate of

the real spectral covariance of the noise, which is not
sufficiently under control. We can set to zero the first term
in Eq. (36) by using the same approach discussed for the
Gaussian case, but this is not enough to eliminate the
second. To obtain a robust detector we define the new
statistic

Y̊ðsÞ≡ ŶðsÞ − Ŷðs̊Þ: ð37Þ

Here s̊ are the observed data, transformed in such a way that
s̊Ai satisfies the following:

hs°Ai s°
B
j i ¼ δAB½Cs�AB

ij ; ð38Þ

hs°Ai sAj i ¼ 0: ð39Þ

This can be done by introducing appropriate and
large enough shifts among detectors’ data in the time
domain [51], randomizing the phases in frequency domain,
or scrambling data chunks, such that the original series of
each detector and the new ones are statistically independent
[therefore implying Eq. (39)], and the cross-correlations
across detectors are removed [i.e., Eq. (38)]. Henceforth,
we will denote s̊ and Y̊ðsÞ—the latter not to be confused
with Ŷðs̊Þ, a statistics insensitive by construction to the GW
signal—as “scrambled data” and “scrambled detection
statistic,” respectively. We defer a detailed characterization
of the statistical subtleties of this procedure in a realistic
scenario to future study.
Under hypothesis H0 the correlations are computed on

noise-only data; therefore they are already diagonal in the
detector’s indices, so hŶðsÞi ¼ hŶðs̊Þi, and we get

μ̊H0
≡ hY̊ðsÞi ¼ 0: ð40Þ

Taking the expectation value under the hypothesisH1 we
find

μ̊H1
¼ 1

2
TrðČ−1

n ČgČ
−1
n CgÞ þ

1

2
TrðČ−1

n ČgČ
−1
n ChÞ

þ χh
X∞
n¼1

1

n!
Γ̌A1���An
i1���in ðSA1���An

i1���in − S̊A1���An
i1���in Þ; ð41Þ

where S are the momenta of the signal s and S̊ the
momenta of s̊.
When h ¼ 0 only the first term is non-null, reproducing

the Gaussian result (on scrambled data). From the sum we
see that additional contributions arise in the general case.
These are expected to improve the DS performances and
open up the possibility of a stricter characterization of the
SGWB statistical properties.

B. The Bayesian approach

The detection and parameter estimation proposed in
Sec. II A can be equivalently formulated in a Bayesian
context observing that Eq. (15) is the unnormalized
probability distribution of the observed data conditioned
on a given model, i.e., the likelihood. The probability
distribution of a model given some observed data (i.e., the
posterior) is obtained through Bayes theorem, as

pðMjsÞ ∝ N nþg

Z
h
e−

1
2
Wnþgðs−h;s−hÞph½hjM�πðMÞ; ð42Þ

where M and πðMÞ are the model and its prior distribu-
tion, up to a model independent normalization constant.
The posterior can be estimated with importance sam-

pling using a Monte Carlo Markov chain (MCMC), by
generating a sequence of M’s with the probability dis-
tribution defined by Eq. (42). In principle each MCMC step
would require a nontrivial integration to be performed,
and this can also be obtained with a nested importance
sampling. This is a nontrivial task, as the estimation of the
integral in Eq. (42) has statistical errors roughly propor-
tional to 1=

ffiffiffiffiffiffi
Ns

p
, where Ns is the number of the evaluation

steps. A trade-off between the amount of knowledge on the
probability distribution and the computational cost of the
procedure would be required.
A better procedure can be devised by focusing on the

integrand of Eq. (42), i.e., the joint posterior on model and
non-Gaussian realization h,

pðh;MjsÞ ∝ N nþge−
1
2
Wnþgðs−h;s−hÞph½hjM�πðMÞ; ð43Þ

and a single sequence of M’s and h’s can be generated at
the same time with MCMC techniques. This does not solve
the computational cost issue, but makes evident that in
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principle the model estimation can be improved at will with
a large enough number of MCMC steps. Each step can be
performed along the lines of the Metropolis-Hastings
algorithm as follows:

Step 1: Starting from a model Mk, a new one Mkþ1 is
generated with transition distribution TðMkþ1jMkÞ.

Step 2: A realization hkþ1 is generated accordingly
with the distribution ph½hkþ1jMkþ1�. In Sec. IV B
we provide a well-defined procedure for this purpose.

Step 3: The value of

Ikþ1 ¼ N nþge−
1
2
Wnþgðs−hkþ1;s−hkþ1Þ ð44Þ

is compared with the one evaluated at the previous
step, and the new model is accepted with probability

min

�
1;
Ikþ1

Ik

TðMkþ1jMkÞ
TðMkjMkþ1Þ

�
: ð45Þ

Otherwise, the process is repeated.
Using this approach the prior probability πðMÞ is not

considered and can be used later to obtain the posterior.
Depending on the framework chosen, the modelM can be
constructed to explore a fixed-dimension parametric family
of distributions, or it can be tailored to explore models with
different dimensions using reversible jump MCMC meth-
ods [52]. In addition, πðMÞ can be incorporated simply
with the redefinition

Ikþ1 ¼ N nþge−
1
2
Wnþgðs−hkþ1;s−hkþ1ÞπðMkþ1Þ: ð46Þ

This can be an advantage in some specific cases when the
prior is informative and optimization of the convergence
rate is required.
In a generalized approach, Steps 2 and 3 are modified as

follows:
Step 20: A set of Ns sequences hkþ1;i are generated
accordingly with the distribution ph½hkþ1;ijMkþ1�.

Step 30: The value of

Ikþ1 ≡ 1

Ns

X
i

N nþge−
1
2
Wnþgðs−hkþ1;i;s−hkþ1;iÞ ð47Þ

is compared with the one evaluated at the previous
step, and the new model is accepted or rejected with
the same rule described in Eq. (45).

The likelihood in Eq. (42) is obtained in the limit
Ns → ∞, and we can see Ns as a free parameter to tune.
The MCMC sampler favors models with a low value of

Wnþgðs − h; s − hÞ, and this can be interpreted as follows:
new models are accepted at each MCMC step when they
perform better at removing the non-Gaussian part of the
signal. When such a part is weak, we can expect that a
decision based on a single sequence h could be dominated
by statistical fluctuations, so averaging over a large value of
Ns provides additional robustness to the algorithm. Note

that the convergence of the sampler is guaranteed for each
value of Ns.
As we shall see in Sec. III (see Figs. 1, 3, and 4), the

natural parametrization of the non-Gaussian components
in terms of higher-order cumulants, along the lines of
the Edgeworth or Gram-Charlier A expansions [45,53],
appears to also fit in a Bayesian context as it provides
parameters inherently decorrelated upon inference. In
Sec. IVA we show how this is also a very convenient
parametrization for SGWBs characterized by the incoher-
ent superposition of multiple independent signals, with a
significant reduction of the computational cost to perform
importance sampling. This is a crucial need of our proposed
algorithm: Eq. (15) is a sort of “Wiener filter” with
stochastic templates. If their sample space is complicated
to explore, e.g., when the duty cycle [54] of the background
is low, a large number of evaluations might be needed to
ensure the algorithm convergence.

FIG. 1. Cumulant values for the mixture toy model introduced
in Sec. III over the full parameter space. Solid and dashed lines
denote mixtures with equal fourth- and sixth-order cumulants, k4
and k6, respectively. Dotted black lines denote models with equal
mixture weights γþ. The shaded gray region denotes models with
the brightest of the two components, γþ greater than the noise
level of a single detector σA. Any given two black lines intersect
only once, hence providing an alternative representation of the
full parameter space. Circles (squares, triangles) denote a discrete
set of models with various levels of non-Gaussianity. Their DS
is characterized in greater detail, with results and signal realiza-
tions shown in top (middle, bottom) panels of Fig. 2. The blue
star denotes an additional model, exhibiting significant correla-
tions between σþ and σ−. We use this model to characterize the
performance of a Bayesian parameter estimation, as described
in Sec. III B. As shown by the posterior in Fig. 4, parametri-
zing the mixture model through its cumulants helps naturally
decorrelate them.
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III. A TOY MODEL EXAMPLE

Let us consider the very simplified model

sAi ¼ hAi þ nAi : ð48Þ
The noise is modeled by uncorrelated Gaussian variables
nAi with

hnAi i ¼ 0; ð49Þ

hnAi nBj i ¼ σ2Aδ
ABδij: ð50Þ

We set hAi ¼ hi, where hi are independent variables with
probability distribution

pðhiÞ ¼ γþN ðhi; σþÞ þ γ−N ðhi; σ−Þ; ð51Þ

γþ ¼ σ2h − σ2−
σ2þ − σ2−

; γ− ¼ 1 − γþ ¼ σ2þ − σ2h
σ2þ − σ2−

: ð52Þ

Here N ðx; σiÞ is a Gaussian distribution for x with zero
mean and variance σ2i , and the parametrization of ordered
variances σ2þ > σ2h > σ2− is chosen such that for any values
of σþ, σ− the distribution variance is σ2h. The kurtosis is
given by

β≡
	
h4i
σ4h



¼ 3

�
σ2þ
σ2h

−
σ2þ
σ2h

σ2−
σ2h

þ σ2−
σ2h

�
; ð53Þ

which has a minimum of 3 when σþ ¼ σh or σ− ¼ σh
(Gaussian cases with γþ;− ¼ 1) and grows larger and larger
with σþ. The whole family of leptokurtic probabilities,
parametrized by σþ; σ−; σh can be equivalently explored by
three nontrivial cumulants kn, formally defined by the
power expansion of the cumulant generating function K
(see Appendix A 6 for more details)

KðtÞ ¼ loghetXi; ð54Þ

kn ¼
∂
nKðtÞ
∂tn

����
t¼0

; n ¼ 2; 4; 6: ð55Þ

For our toy model they are equal to

k2 ¼ σ2h; ð56Þ

k4 ¼ 3ðσ2−σ2h þ σ2þσ2h − σ2þσ2− − σ4hÞ; ð57Þ

k6 ¼ 15ðσ2þ − σ2hÞðσ2− − σ2hÞð2σ2h − σ2þ − σ2−Þ: ð58Þ

In Fig. 1 we plot contours of constant cumulants k4, k6 as
a function of the mixture parameters σþ; σ−, at a reference
value of σh, alongside the mixture component weights,
uniquely specified by γþ. It is apparent that the nonlinear
relation between ki and σ� could affect significantly the

stochastic sampling involved in the Bayesian analysis,
while for a frequentist DS it serves only as an alternative
parametrization.
Though very simple, this model is expected to capture

some features of a realistic non-Gaussian background. For
example, the particular case σ− ¼ 0 represent backgrounds
with burstlike events which are so short that their structure
cannot be resolved. One of them (and only one) can be
present or not at a given time with a specific probability
γþ, and their amplitude has a Gaussian distribution with
standard deviation σþ, somewhat in the spirit of the
analysis in [38]. As only a single event can contribute to
the signal at a given time, statistical independence holds:
Pðhðt1Þ;…; hðtkÞÞ ¼

Q
k PðhðtkÞÞ. In a realistic scenario

this is not true. Assuming the event waveform has a
given shape ui, the strain at a given time contains
contributions from several events. In some peculiar cases
it is possible to factorize the probability distribution
by using a different domain to describe the signal
(e.g., frequency for monochromatic waveforms) but this
will be impossible in a generic setup, and the full
machinery of point processes [55] described in
Sec. IVA should instead be adopted.

A. Frequentist detection

The DS in Eq. (16) can be evaluated analytically for the
chosen toy model. As the noise spectrum is white and the
signal values across different data points are independent
we have [see Eq. (A78) for a detailed proof]

ŶðsÞ ¼
X
i

log

	
exp

�
−
X
A

hiðhi − 2sAi Þ
2σ2A




: ð59Þ

The expectation value can be evaluated explicitly,
obtaining

ŶðsÞ ¼
X
i

ŷ ½uðsiÞ� ð60Þ

with ŷ a nontrivial function of a single data point

ŷðuÞ ¼ log

� X
α¼þ;−

γασffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2α

p exp

�
σ2αu2

2ðσ2 þ σ2αÞ
�


; ð61Þ

uðsiÞ ¼ σ
X
A

sAi
σ2A

; ð62Þ

1

σ2
≡X

A

1

σ2A
: ð63Þ

When the number of data points is large, Ŷ becomes a
Gaussian variable according to the central limit theorem,
so mean and variance suffice to characterize the detection
performances.

DETECTING NON-GAUSSIAN GRAVITATIONAL WAVE … PHYS. REV. D 107, 063027 (2023)

063027-7



Under the hypothesis H0 the variable u is by definition
normally distributed.

pðuÞ¼H0N ðu; 1Þ: ð64Þ

Under the hypothesis H1 the expectation value of u is
still zero, but the variance gets an additive contribution
from the signal. For unscrambled data, we get

pðuÞ¼H1γþN

 
u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2þ

σ2

s !
þ γ−N

 
u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2−

σ2

s !
ð65Þ

while the equivalent formula for scrambled data is dis-
cussed in Appendix A 4.

In both cases we rewrite Eq. (24),

PD ¼ 1

2
erfc

�
r1erfc−1ð2PFAÞ − d1

ffiffiffiffi
N
2

r �
; ð66Þ

where r1 ¼ σH0
=σH1

and d1 ¼ ðμH1
− μH0

Þ=σH1
can be

evaluated easily by numerical integration in the N ¼ 1
case.
In Fig. 2 we show the performance of our DS for a

discrete set of toy model parameters with various levels of
non-Gaussianity. Circles, squares, and triangles identify
sets of models with constant σþ and varying σ−. We
illustrate the detection probability PD as a function of
the numberN of data points, alongside the respective signal

FIG. 2. Performances comparison between DSs for a selection of models across the parameter space in Fig. 1. Black (red, blue) lines
denote the probability of detection PD as a function of the number of data points N for the Gaussian (“optimal,” non-Gaussian on
scrambled data) DS, i.e., YG (Y, Y̊). Solid (dashed, dotted) lines correspond to a probability of false alarm PFA ¼ 10−10 (10−15, 10−20).
The level σh ¼ 0.1 is kept constant for all models, resulting in an overall shift of the black curves. Values for σþ=σh and σ−=σh are
specified in each plot. Top (middle, bottom) row corresponds to models identified with circles (squares, triangles) in Fig. 1 where higher
order cumulant values can be recovered. Performances improve as the non-Gaussianity is enhanced, (top-left panel). The non-Gaussian
DS on unscrambled data (red lines) outperforms the Gaussian one everywhere in the parameter space, and it performs similarly to it only
for signals with small non-Gaussianity (bottom row, corresponding to triangles in Fig. 1). Data scrambling (blue lines) can suppress the
advantage of the optimal non-Gaussian DS (red lines) if non-Gaussianity is not high enough. Upper left insets in each subplot show short
signal realizations for the respective model in the absence of noise. For reference, detector noise levels �σA are shown as horizontal
dashed black lines.
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realizations. We do this for three reference false alarm
probabilities and for both original and scrambled data.
For comparison, we also show the performance of a

Gaussian diagonal-free DS, namely

ŶGðsÞ ¼
X
i

X
A≠B

sAi s
B
i

σ2Aσ
2
B

; ð67Þ

applied to the toy model data. The values of r1 and d1 for
this particular case are evaluated in Appendix A 4.
As expected, the non-Gaussian DS (without scrambled

data) outperforms the scrambled and Gaussian ones.
However, as discussed previously the optimal, nonscrambled
DS cannot be practically implemented. The relevant perfor-
mances to look at are those of the scrambled one. It performs
better than theGaussian one for large enoughvaluesofk4 and
k6 (see Fig. 1 where the set of parameters chosen for Fig. 2 is
shown). The Gaussian DS being better than the scrambled
one for small non-Gaussianity is not unexpected: when we
evaluate the scrambled statistics Y̊ we subtract two sets of
data [seeEq. (37)] in order to have zero average underH0.We
pay a price for this, introducing additional fluctuations: the
variance of the scrambled DS is the sum of the variances
evaluated on normal and scrambled data. For small enough
values of non-Gaussianity this price is larger than the gain
obtained.
Further insight is obtained by introducing a measure

of the improvement between Y̊ and ŶG. A simple possibil-
ity is to solve Eq. (66) for N, obtaining N ¼
NðPFA; PD; r1; d1Þ for a given DS. We evaluate the ratio
NG=N̊ for fixed values of PD and PFA in the space of toy
models’ parameters. This is a measure of how much more
data one needs to collect to achieve with the Gaussian DS
performances similar to those of the scrambled one. The
result is shown in Fig. 3. It is evident that a significant
advantage can be obtained in the large non-Gaussianity
regime. We plot our results for different numbers of
detectors in the network, and we observe that large ND
gives improved performance of the scrambled statistics:
this is expected because additional fluctuations introduced
by the scrambled data do not scale with ND.
It is clear that the scrambled data subtraction procedure is

not optimal, and it is worth exploring alternative options. For
example, the cumulant expansion inEq. (32) could be used to
define the generalization of a diagonal–free Gaussian DS, by
removing terms not enough under control order by order, i.e.,
with nonzero expectation values underH0. This approach is
useful especially in the mild non-Gaussian regime, where a
truncation in the cumulant expansion is accurate enough.We
leave this study to future investigation.

B. Bayesian parameter estimation

The study of the Bayesian procedure with the toy model
is simplified by the independence of noise and signal at

different times. Taking advantage of it we can write a
recursive procedure which, given the posterior distribution
for the model given k data, evaluates the posterior dis-
tribution when we add the kþ 1measurement. As we show
in Appendix A 5, the likelihood (and subsequently the
posterior) can be obtained analytically from Eq. (15) and
can be written as the product of likelihoods over individual
data points. Explicitly, it reads

LðsijMÞ ∝
X
α¼þ;−

γαffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2α

σ2

q e−
1
2
Qα

ABs
A
i s

B
i −
P

A
log

ffiffiffiffi
2π

p
σA; ð68Þ

where Qα
AB, proportional to the transverse projector in the

detector space, is

Qα
AB ¼ 1

σ2Aσ
2
B

�
δAB −

σ2α
σ2 þ σ2α

σ−1A σ−1B
σ−2

�
: ð69Þ

In Fig. 4 we show the results of an inference performed
on a representative model (identified by a blue star in
Fig. 1). We perform inference through stochastic nested
sampling [56], using the software package CPNEST [57].

FIG. 3. Performance comparison between the Gaussian DS and
the non-Gaussian one on scrambled data, shown across the toy
model parameter space. We show contour levels of NG=N̊, the
number of data points required to achieve the same PD at a fixed
PFA. Black, red, and blue solid lines denote contours for a
configuration with three, four, and five detectors, respectively. In
the high non-Gaussianity limit (top-left corner) the Gaussian DS
requires as many as 20 times more data to achieve comparable
performances to the non-Gaussian one on scrambled data. On the
contrary, for mild non-Gaussianities the two DSs perform
similarly. In comparison, increasing the number of detectors
improves the non-Gaussian DS performances moderately.
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We use uniform priors for σ−;þ and σh, and enforce their
mutual ordering through hypertriangulation [58]. The detec-
tor noise levels σA are fixed and assumed known. For ease of
comparison with Fig. 1 we show posteriors and confidence
intervals for thedimensionless parametersσþ=σh andσþ=σh.
Notably, the two-dimensional posterior for σ−;þ has most

of its support along regions of constant cumulants. This
suggests that the cumulant parametrization of non-
Gaussianities, beyond its naturalness in a statistical sense,
is efficient at reducing correlations upon stochastic sam-
pling of the parameter space.

IV. APPLICATION TO ASTROPHYSICAL
BACKGROUNDS

An important example of an SGWB exhibiting non-
Gaussianity is that of astrophysical origin [59]. The
stochastic signal can be modeled as the result of many

uncorrelated event superpositions, each event contributing
with a well-defined waveform (a function of the source
parameters, predictable only in a statistical sense). If there
is a strong overlap between these contributions, in a sense
that will be defined quantitatively below, the result is a
Gaussian background. If this is not the case, non-Gaussian
effects appear: the background is no more completely
described by its power spectrum, and some additional
modeling is required.

A. Point processes

We parametrize the incoherent superposition of multiple
signals as a stochastic process

hAi ¼
XN
σ¼1

uAi ðθσÞ; ð70Þ

where N is a discrete random variable, describing the
number of individual signals for a given realization of
h. uAi are effective descriptions of gravitational wave
signals, as observed by a given detector A. The random
dots fθ1;…; θNg describe the intrinsic and extrinsic wave-
form properties. Such formalism allows one to implement
dot distributions and correlations with a high degree of
complexity (see [60] for detailed derivations and [61] for a
broader introduction to the topic).
For the sake of exposition, we restrict to the time domain

and we isolate from θσ a parameter τσ associated with the
random arrangement of the individual signals with respect
to the i index (e.g., time of arrivals). The remaining
parameters will be referred to as θ̂σ . The statistical gen-
erative model reads as follows:

N ∼ p; ð71Þ
fτσg1;…;N jN ∼QN; ð72Þ

fθ̂σg1;…;N jN ∼ PN; ð73Þ

hAðtÞ ¼
XN
σ¼1

uAðt − τσ; θ̂σÞ; ð74Þ

θσ ¼ ðτσ; θ̂σÞ: ð75Þ
We will consider here a specific case of this model,

known in literature as marked Campbell process: indepen-
dent identically distributed dots, characterized by a con-
stant rate ρ for the time domain and a single distribution
for θ̂σ ∼ pθ.
For a realistic background, ρ will be the total rate of all

the events that contribute to the signal. The assumption of
independent dots means that the events are not correlated,
which is generally true for an astrophysical background on
the timescale of the experiment if we neglect very peculiar
scenarios, e.g., lensing effects. It should be noted that the

FIG. 4. Corner plot of the Bayesian posterior for the toy
model analysis. The noise level is set to σA ¼ ffiffiffi

3
p

with ND ¼ 3,
is assumed known upon inference, and is additive to the signal
in the data. The number of samples is set to N ¼ 4 × 105, which
grants the likelihood significant constraining power on the
model parameters within the chosen prior. The true signal
parameters are shown with solid blue lines and correspond to
the point in Fig. 1 labeled with a star symbol. Black dashed
lines denote posterior 90% confidence intervals. Priors are
uniform for all parameters, and relative ordering is enforced
through hypertriangulation [58]. The nonlinear correlation
observed in the bottom left subplot matches closely the levels
of constant cumulants shown in Fig. 1, which suggest that the
cumulant parametrization of the non-Gaussianities would be
suitable for an efficient exploration of the parameter space. No
predominance of a single cumulant can be identified in the
posterior, as expected from contributions in Eq. (32).
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formalism is flexible enough to be extended to such
scenarios of correlated dots, by replacing ρ with a more
complex set of QN , PN [61]. The parameters θ̂ describe the
event properties that we are interested in, e.g., their
luminosity distance, their sky position, and the intrinsic
source parameters. We will employ this machinery to
evaluate the hAi cumulants

ΓA1���Anðt1;…; tnÞ ¼ ⟪hA1ðt1Þ � � � hAnðtnÞ⟫; ð76Þ
and we can replace such an ensemble average, using
huAiθ̂ ¼ 0, with

ΓA1���Anðt1;…; tnÞ ¼ ρ

Z 	Yn
k¼1

uAkðt − tk; θ̂Þ



θ̂

dt: ð77Þ

The structure of this expression is quite straightforward to
understand: contributions to the cumulants come only from
the correlation of an event with itself, as seen by the chosen
set of detectors. In principle, the procedure let us obtain
a posterior probability distribution for the parameter’s
model, and upon suitable marginalization, for those of
astrophysical interest: e.g., studying a background gener-
ated by coalescence events, the mass distribution as a
function of redshift z. Remarkably, correlations are not
trivial as a consequence of the expectation value taken
over the parameters, which makes them nonfactorized.
Therefore each cumulant contains nontrivial and indepen-
dent information about the parameter distributions, and it
contributes directly to the inference in Eq. (32). Moreover,
it is worth highlighting an interesting scaling relation:
scaling simultaneously the rate of events ρ → ρ0 ¼ αρ and
their amplitude u → u0 ¼ α−1=2u, cumulants of order n
become proportional to α1−n=2, i.e., for n > 2 become
negligible in the large ρ limit while for n ¼ 2 they stay
constant. This is a simple manifestation of the central limit
theorem.
Finally, we stress that our approach uses a population-

based construction of relevant cumulants: as a consequence,
nonstationary noise contribution (i.e., glitches) can be
absorbed in Eq. (70) as an additional population of signals
[62]—with different coupling to the detectors—and inte-
grated over in Eq. (77). This is a subject of ongoing study.

B. Importance sampling

The basic ingredient of the proposed approach is an
efficient procedure to simulate a background with some
target features. As we discussed in Sec. II B the building
block is a procedure to generate a sample hwith the correct
probability ph½hkþ1jMkþ1� conditioned to a model Mkþ1.
A general parametrization of a given model can be

given in terms of the event rate in a given volume of the
parameter space, measured in the observer frame. This can
be written as

R0ðθ̂Þdθ̂1 � � � dθ̂P: ð78Þ

The total rate of events will be given by

ρ ¼
Z

dθ̂1 � � �
Z

dθ̂PR0ðθ̂Þ ð79Þ

and using it is possible to simulate dots in a given time
interval. Notably, this rate can be very large, and it would be
unfeasible to simulate in detail all the events. Instead, it is
possible to introduce a threshold on events with negligible
contribution to the background. Alternatively, one can
include it as a Gaussian contributions to the model. This
is, in fact, one of the two reasons for introducing gAi in
Eq. (1), the second being to include other Gaussian
components, e.g., of cosmological origin.
Once the dots are generated, we “decorate” them by

choosing a family of suitable individual waveforms and
associated parameters according to their distribution
ρ−1R0ðθ̂Þ. Finally the strain hij is generated, adding all
contributions once projected onto each detector.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a framework to construct
detection statistics and perform Bayesian inference for
non-Gaussian SGWBs.
The formalism is particularly suitable for stochastic

backgrounds arising from the superposition of multiple
overlapping sources. We discuss in detail superposition in
the time domain, but the approach can be generalized to the
frequency domain. We provide a recipe for computing the
fundamental quantities required to perform our search in
the realistic case of a SGWB of astrophysical origin. We
do so by making use of marked Campbell processes. We
provide detailed derivations for a number of quantities
related to the characterization of DSs performances, which
we explore on a subset of representative points on the
parameter space.
In the first application to a very simplified toy model,

comparative to the standard approach to detection of
Gaussian SGWBs, we observe significantly improved
performances, in terms of the number of samples (i.e.,
the observation time or the frequency band) required to
reach a target detection significance. As expected, this is
milder in the presence of smaller non-Gaussianities.
Our approach is inherently complementary to those

available in literature, since it rigorously models the
SGWB as a stochastic signal, whose properties arise
from the superposition of individual signals: we leverage
the knowledge about their distribution and make use of a
natural language suited to the purpose, i.e., marked
Campbell processes. We argue that the large flexibility
attained in the data model through importance sampling
motivates further studies on aspects crucial for a realistic
application: (i) backgrounds with nontrivial overlap struc-
ture: a feature absent in our toy model, subject of ongoing
study; (ii) superpositions of multiple backgrounds, as our
framework offers a natural way to disentangle them; and
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(iii) realistic noise models (nonstationary, correlated across
detectors, non-Gaussian), to assess our approach perfor-
mances compared to the ones in literature.
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APPENDIX: DETAILED PROOFS

We expand here on definitions, assumptions, and more detailed derivations for each expression in the paper, section by
section. We will omit trivial steps that can be performed easily with most symbolic computation software. Moreover, we
will omit full proofs, when a simplified version already contains the interesting concepts. This is frequently the case, e.g.,
for proofs given for single data point and/or single detector.

1. Definitions and assumptions

The signal is made of the superposition of

sAi ¼ gAi þ hAi þ nAi : ðA1Þ

The noise and the Gaussian background are distributed as

pn½nAi � ¼ N n exp

�
−
1

2
Wnðn; nÞ

�
; ðA2Þ

pg½gAi � ¼ N g exp

�
−
1

2
Wgðg; gÞ

�
; ðA3Þ

where the quadratic form W is defined by the sum of scalar products:

Wxðu; vÞ≡
X
A;B

WAB
x ðu; vÞ; m ðA4Þ

WAB
x ðu; vÞ ¼ ½C−1

xx �AB
ij uAi v

B
j : ðA5Þ

The cross-correlation array defines the normalization and the inner structure of the quadratic form:

N x ¼ exp

�
−
1

2
Tr ln 2πCx

�
; ðA6Þ

½Cxy�AB
ij ¼ hxAi yBj i; ðA7Þ

Cx ≡ Cxx: ðA8Þ

The trace is performed over detector and data indices, and implicit summation over repeated indices is assumed. We make
no assumptions on the distribution of h, ph½hAi �.

2. The statistical problem

We first prove Eq. (10):

Wnþgðu; vÞ ¼ Wnðu; vÞ − Gðu; vÞ: ðA9Þ
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This is a straightforward application of the Woodbury identity:

ðAþUBVÞ−1 ¼ A−1 − A−1UðB−1 þ VA−1UÞ−1VA−1; ðA10Þ

with U ¼ I, V ¼ I, and Aþ B ¼ Cnþg ¼ Cn þ Cg, A ¼ Cn. We therefore obtain

C−1
nþg ¼ C−1

n − C−1
n ðC−1

g þ C−1
n Þ−1C−1

n ; ðA11Þ

hence Eq. (10). Now we can prove Eq. (14)

ps½s� ¼ N nþg

Z
h
ph½h�e−1

2
Wnþgðs−h;s−hÞ: ðA12Þ

The probability distribution of the data s is specified by the knowledge of its components, and by the conditional
probability

ps½sjh; g� ¼ pn½s − h − g� ðA13Þ

through Eq. (A13) we express Eq. (9) as

ps½s� ¼
Z
h

Z
g
ps½sjh; g�ph½h�pg½g� ðA14Þ

¼ N nN g

Z
h

Z
g
ph½h�e−1

2
ðWnðs−h−g;s−h−gÞ−Wgðg;gÞÞ: ðA15Þ

The Gaussian integral on g can be performed explicitly:

ps½s� ¼
Z
h
ph½h�

Z
g
N nN g exp

�
−
1

2
ðs − hÞ⊤C−1

n ðs − hÞ − 1

2
g⊤C−1

n g −
1

2
g⊤C−1

g gþ ðs − hÞ⊤C−1
n g



ðA16Þ

¼
Z
h
ph½h�N nN g exp

�
−
1

2
ðs − hÞ⊤C−1

n ðs − hÞ

 Z

g
exp

�
−
1

2
g⊤½C−1

n þ C−1
g �gþ ðs − hÞ⊤C−1

n g



; ðA17Þ

where ⊤ denote transposing with respect to detectors and data indices. Defining

A≡ C−1
n þ C−1

g ; ðA18Þ

v≡ A−1C−1
n ðs − hÞ; ðA19Þ

one gets

Z
h
ph½h�N nN g exp

�
−
1

2
ðs − hÞ⊤C−1

n ðs − hÞ

 Z

g
exp

�
−
1

2
g⊤Agþ v⊤Ag



¼ ðA20Þ

Z
h
ph½h�N nN g exp

�
−
1

2
ðs − hÞ⊤C−1

n ðs − hÞ

 Z

g
exp

�
−
1

2
ðg − vÞ⊤Aðg − vÞ þ 1

2
v⊤Av



: ðA21Þ

Integrating over g’s with fixed correlation matrix Cg.Z
h
ph½h�N nN g exp

�
−
1

2
ðs − hÞ⊤½C−1

n − C−1
n ðC−1

n þ C−1
g Þ−1C−1

n �ðs − hÞ

 Z

g
exp

�
−
1

2
ðg − vÞ⊤Aðg − vÞ



¼ ðA22Þ
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Z
h
ph½h�

2π−
K
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC−1

n Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðC−1
g Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC−1

n þ C−1
g Þ

q exp

�
−
1

2
ðs − hÞ⊤½C−1

n − C−1
n ðC−1

n þ C−1
g Þ−1C−1

n �ðs − hÞ



ðA23Þ

with K equal to the product between the number of detectors and the number of data points. Using the Woodbury identity,
Eq. (A15) becomes

ps½s� ¼
2π−

K
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCgðC−1
n þ C−1

g ÞCnÞ
q Z

h
ph½h� exp

�
−
1

2
ðs − hÞ⊤C−1

nþgðs − hÞ
�

ðA24Þ

¼ 2π−
K
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detCnþg
p Z

h
ph½h� exp

�
−
1

2
ðs − hÞ⊤C−1

nþgðs − hÞ
�
: ðA25Þ

By interpreting the integral as an average over realizations of h distributed according to ph½·� we obtain Eq. (15).

3. The Neyman-Pearson detection statistic

We focus now on proving Eq. (17). From Eq. (16) we obtain using assumptions from respective hypotheses

log
ps½sjH1�
ps½sjH0�

¼ log
N nþg

N n
þ log he−1

2
Wnþgðs;sÞe−1

2
Wnþgðh;hÞeWnþgðs;hÞiH1

− loghe−1
2
Wnðs;sÞiH0

ðA26Þ

Averaging over h at fixed data s we obtain

log
ps½sjH1�
ps½sjH0�

¼ log
N nþg

N n
þ log he−1

2
Wnþgðh;hÞeWnþgðs;hÞiH1

−
1

2
ðWnþgðs; sÞ −Wnðs; sÞÞ ðA27Þ

¼ log
N nþg

N n
þ log he−1

2
Wnþgðh;hÞeWnþgðs;hÞiH1

þ 1

2
Gðs; sÞ; ðA28Þ

hence Eq. (17).

a. Gaussian case

The expansion of the DS reads as follows:

ŶðsÞ ¼ 1

2
C−1
n ðC−1

n þ C−1
g Þ−1C−1

n

¼ 1

2
C−1
n ðC−1

g ðCgC−1
n þ IÞÞ−1C−1

n ðA29Þ

¼ 1

2
C−1
n CgC−1

n þOðkCgC−1
n k2Þ: ðA30Þ

As in the main text, we start from the DS in Eq. (18):

ŶðsÞ ≃
�
1

2
Č−1
n ČgČ

−1
n



AB

ij
sAi s

B
j ¼ ǍAB

ij sAi s
B
j : ðA31Þ

We employ here estimates of Cn, Cg labeled with a ˇ symbol. They contain our prior knowledge about the
noise and the Gaussian signal. The mean of Ŷ under H0 reads

μH0
¼ 1

2
½Č−1

n ČgČ
−1
n �AB

ij hnAi nBj i ¼ Tr½ǍCn�: ðA32Þ

Similarly for the variance (we drop the detector indices because they follow the same contractions as the data indices)
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σ2H0
¼ ǍAB

ij ǍCD
kl hnAi nBj nCknDl i − ðTr½ǍCn�Þ2 ðA33Þ

¼ ǍijǍklð½Cn�ik½Cn�jk þ ½Cn�il½Cn�jkÞ ðA34Þ

¼ 1

2
Tr½Č−1

n ČgČ
−1
n CnČ

−1
n ČgČ

−1
n Cn�: ðA35Þ

Similarly under H1 (using in addition hnAi gBj i ¼ 0)

μH1
¼ 1

2
½Č−1

n ČgČ
−1
n �AB

ij hðnþ gÞAi ðnþ gÞBj i ðA36Þ

¼ Tr½ǍCn� þ Tr½ǍCg� ðA37Þ

¼ μH0
þ 1

2
Tr½Č−1

n ČgČ
−1
n Cg� ðA38Þ

and for the variance

σ2H1
¼ ǍAB

ij ǍCD
kl hðnþ gÞAi ðnþ gÞBj ðnþ gÞCkðnþ gÞDl i ðA39Þ

¼ ǍAB
ij ǍCD

kl ½hninjnknli þ hninjgkgli þ hnigjgknli þ hnigjnkgli þ ð“n” ↔ “g”Þ� − μ2H1
: ðA40Þ

All terms with an odd number of n’s cancel out after averaging (both g and n are multivariate Gaussians). The fourth order
averages simplify through Isserlis theorem to

σ2H1
¼ ǍijǍkl½hninjihnknli þ hninkihnjnli þ hninlihnknji�
þ ǍijǍkl½hninjihgkgli� þ ǍijǍkl½hninlihgkgji�
þ ǍijǍkl½hninkihgjgli� þ ð“n” ↔ “g”Þ − μ2H1

: ðA41Þ

Cancellations are again due to the uncorrelatedness and zero mean of the two series. Upon contraction the expression
simplifies to

σ2H1
¼ Tr½ǍCn�2 þ 2Tr½ǍCnǍCn� þ Tr½ǍCn�Tr½ǍCg� þ 2Tr½ǍCgǍCn� þ ð”n” ↔ ”g”Þ − μ2H1

ðA42Þ

¼ σ2H0
þ 4Tr½ǍCnǍCg� þOðkCgk2Þ ≃ σ2H0

þ Tr½Č−1
n ČgČ

−1
n CnČ

−1
n ČgČ

−1
n Cg�: ðA43Þ

Equations (A32), (A35), (A38), and (A43) prove results from the main text.

b. Gaussian diagonal-free case

Assuming uncorrelated noises across detectors (i.e., ČAB
n ∝ δAB), we subtract by hand the diagonal terms from the

statistics. We label the two “diagonal-free” hypotheses H0;G;H1;G, and we have

ŶðsÞ ¼ 1

2
½Č−1

n ČgČ
−1
n �AB

ij sAi s
B
j → ŶGðsÞ ¼

1

2
½Č−1

n �AC
ik ½Čg�CDkl ½Č−1

n �DB
lj sAi s

B
j ð1 − δABÞ: ðA44Þ

Therefore we obtain a robust cross-correlation statistic (although not necessarily optimal) with the following properties:

μH0;G
∝
1

2
½Č−1

n �AC
ik ½Čg�CDkl ½Č−1

n �DB
lj δABð1 − δABÞ ¼ 0; ðA45Þ

μH1;G
¼ 1

2
½Č−1

n �AC
ik ½Čg�CDkl ½Č−1

n �DB
lj CAB

g ð1 − δABÞ ðA46Þ

DETECTING NON-GAUSSIAN GRAVITATIONAL WAVE … PHYS. REV. D 107, 063027 (2023)

063027-15



¼ 1

2
Tr½Č−1

n ČgČ
−1
n Cg�; ðA47Þ

where CAB
g ¼ CAB

g ð1 − δABÞ defines a “diagonal-free” signal correlation. Since the noise is diagonal across detector
indices, and detectors can have heterogeneous spectra, we write

½Č−1
n �AC ¼

X
ϵ

cϵδAC
ϵ ðA48Þ

δAC
ϵ ≡

�
1 ϵ ¼ A ¼ C

0 otherwise
: ðA49Þ

Then the DS becomes

ŶGðsÞ ¼
1

2
cϵikδ

AC
ϵ ½Čg�CDkl cδljδDB

δ ð1 − δABÞsAi sBj : ðA50Þ

Diagonal terms of Čg equal zero because δAC
ϵ δDB

δ ð1 − δABÞ ¼ 0 for C ¼ D. Therefore we are free to subtract them,

ŶGðsÞ ¼
1

2
cϵikδ

AC
ϵ ½Čg�CDkl ð1 − δCDÞcδljδDB

δ ð1 − δABÞsAi sBj ; ðA51Þ

For the same reason we can add them back in the rightmost factor, i.e., neglecting ð1 − δABÞ, because its effect is now taken
care of by δCD. In conclusion,

ŶGðsÞ ¼
1

2
cϵikδ

AC
ϵ ½Čg�CDkl ð1 − δCDÞcδljδDB

δ sAi s
B
j ðA52Þ

¼ 1

2
½Č−1

n �AC
ik ½Čg�CDkl ½Č−1

n �DB
lj sAi s

B
j : ðA53Þ

Therefore we can equivalently neglect the diagonal in our modeled signal cross-correlation Čg or in the product of
realizations sAi s

B
j . Consequently, with obvious definition

ǍAB
ij ¼ 1

2
½Č−1

n ČgČ
−1
n �AB

ij ðA54Þ

we obtain

μH0;G
¼ 0; ðA55Þ

μH1;G
¼ Tr½ǍCg� ¼ Tr½ǍCg�: ðA56Þ

For the variances

σ2H0;G
¼ ǍAB

ij ǍCD
kl hnAi nBj nCknDl i − ðTr½ǍCn�Þ2 ðA57Þ

¼ 1

4
½Č−1

n ČgČ
−1
n �AB

ij ½Č−1
n ČgČ

−1
n �CDkl ð½Cn�AC

ik ½Cn�BDjl þ ½Cn�AD
il ½Cn�BCjk Þ ðA58Þ

¼ 2Tr½ǍCnǍCn�; ðA59Þ

σ2H1;G
¼ σ2H0;G

þ Tr½Č−1
n ČgČ

−1
n CnČ

−1
n ČgČ

−1
n Cg� þ

1

2
Tr½Č−1

n ČgČ
−1
n CnČ

−1
n ČgČ

−1
n Cg� ðA60Þ

¼ σ2H0;G
þ 4Tr½ǍCnǍCg� þOðkCgk2Þ; ðA61Þ
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and hence Eqs. (27), (28), (29), and (30). It is worth noting that σH0
, σH1

and σH0;G
, σH1;G

are, respectively, identical in
functional form, with the substitution of Cg with its diagonal–free version Cg.

c. Non-Gaussian case

We now turn our attention to the non-Gaussian case. By defining it as in the main text sAi ¼ ½Č−1
n �AB

ij sBj , direct
substitution in the general expression of Eq. (17) yields

ŶðsÞ ¼ 1

2
Gðs; sÞ þ log he−1

2
Wnþgðh;hÞeWnþgðs;hÞi ðA62Þ

¼ 1

2
½Čg�AB

ij sAi s
B
j þ log χh

Z
h
p0
h½h�eWnþgðs;hÞ; ðA63Þ

where we have defined a (normalized) probability distribution

p0
h½h�≡ χ−1h exp

�
−
1

2
Wnþgðh; hÞ



ph½h� ðA64Þ

χh ≡ he−1
2
Wnþgðh;hÞi: ðA65Þ

Now, focusing on

log χh

Z
h
p0
h½h�eWnþgðs;hÞ; ðA66Þ

we expand Wnþg

eWnðs;hÞ−Gðs;hÞ ¼ exp½sAi hAi − sAi ½Čg�AB
ij ½Č−1

n �BCjk hCk�: ðA67Þ

We stress here again an important point: the separation of the signal into a “Gaussian” and a “non-Gaussian” component is
somewhat arbitrary. If we choose to set g ¼ 0, the entirety of the gravitational wave signal is described by h. The double-
whitened data points s are not affected by this change, while Eq. (A63) becomes

ŶðsÞ ¼ log ½he−1
2
Wnðh;hÞi

Z
h
ph½h�e−1

2
Wnðh;hÞes

A
i h

A
i �: ðA68Þ

Therefore the rightmost term in Eq. (A63) is the generating function of of the non-Gaussian component “connected
moments” (or “cumulants”), with s acting as the auxiliary variable, and realizations h distributed according to
ph½h�e−1

2
Wnðh;hÞ,

ŶðsÞ ¼ loghesAi hAi i: ðA69Þ

Therefore by definition we can rewrite it as a power series in s,

ŶðsÞ ¼ 1

2
½Cg�AB

ij sAi s
B
j þ χh

X∞
n¼1

1

n!
Γ̌A1���An
i1���in sA1

i1
� � � sAn

in
: ðA70Þ

This proves the general expression for the non-Gaussian DS in Eq. (32). Evaluating the expectation values under both
hypotheses, we get Eqs. (35) for H0,

μH0
¼ Tr½ǍCn� þ χh

X∞
n¼1

1

n!
Γ̌A1���An
i1���in sA1

i1
� � � sAn

in
ðA71Þ
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¼ Tr½ǍCn� þ χh
X∞
n¼1

1

n!
Γ̌A1���An
i1���in NA1���An

i1���in : ðA72Þ

Using the Isserlis theorem we express the N’s as products of over all pairs of indices (i.e., over ½Č−1
n CnČ

−1
n �AB

ij ). Terms with
odd n cancel out to zero. Out of n ¼ 2m indices, we get ð2m − 1Þ!! contractions in couples (the number of complete graphs
with 2m vertices), which due to the symmetry of the Γ’s contribute identically after full contraction:

μH0
¼ Tr½ǍCn� þ χh

X∞
m¼1
n¼2m

ðn − 1Þ!!
n!

Γ̌A1���An
i1���in ½Č−1

n CnČ
−1
n �A1A2

i1j2
� � � ½Č−1

n CnČ
−1
n �An−1An

in−1jn
ðA73Þ

¼ Tr½ǍCn� þ χh
X∞
m¼1
n¼2m

1

n!!
Γ̌A1���An
i1���in ½Č−1

n CnČ
−1
n �A1A2

i1j2
� � � ½Č−1

n CnČ
−1
n �An−1An

in−1jn
; ðA74Þ

and hence Eq. (36). Results for the DS with “scrambled data” [Eqs. (40) and (41)] are proven directly in the main text.

4. Toy model derivations

We show here the detailed derivations of the quantities related to the DS ŶðsÞ for the toy model. We start from Eq. (16),
and we drop the Gaussian component. Moreover, we account for si, hi being independent and diagonal across detectors, so
we can factorize the h� � �i into the product of expectation values for each hi, obtaining

ŶðsÞ ¼ log

	
exp

�
−
1

2
Wnðh; hÞ þWnðs; hÞ




ðA75Þ

¼ log

	
exp

�
−
1

2
hAi h

B
j ½C−1

n �ijAB þ hCks
D
l ½C−1

n �klCD




ðA76Þ

¼ log

	Y
i

exp

�
−
1

2

hAi h
B
j

σ2A
δABδ

ij þ hCks
D
l

σ2A
δCDδ

kl




ðA77Þ

¼
X
i

log

	
exp

�X
A

−
hiðhi − 2sAi Þ

2σ2A




; ðA78Þ

where h� � �i in the last line is performed over a single data point hi, but over multiple detectors. By using standard results on
Gaussian integrals and defining

Aα ¼
1

2σ2α
þ
X
A

1

2σ2A
; ðA79Þ

Bi ¼
X
A

sAi
σ2A

; ðA80Þ

we obtain

ŶðsÞ ¼
X
i

log

� X
α¼þ;−

γαffiffiffiffiffiffiffiffiffiffi
2πσ2α

p Z
dhi exp ½−Aαh2i þ Bihi�



¼
X
i

ŷ

�
σ
X
A

sAi
σ2A

�
ðA81Þ

with

ŷðuÞ ¼ log

� X
α¼þ;−

γασffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2α þ σ2

p exp

�
σ2α

2ðσ2α þ σ2Þ u
2




ðA82Þ

1

σ2
¼
X
A

1

σ2A
; ðA83Þ
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and hence Eqs. (60) to (63). The basic building blocks for estimating the performances of the toy model Neyman-Pearson
DS are the means and variances of the ŷ statistic. It is a nontrivial function of a single scalar, combination of all the detector
signals, under both hypotheses. Evaluating them can be achieved numerically as follows.

a. Nonscrambled data

Under the H0 hypothesis we need

μ0 ¼ hŷðuðsÞÞi; ðA84Þ

σ20 ¼ hŷðuðsÞÞ2i − μ20; ðA85Þ

where

uðsÞ ¼ σ
X
A

nAi
σ2A

ðA86Þ

is a Gaussian variable with zero mean and unit variance. Under H1 the uðsÞ becomes

uðsÞ ¼ σ
X
A

nAi
σ2A

þ hi
σ
; ðA87Þ

the sum of a normal variable (the first term) and a (scaled) variable distributed according to the mixture model. So the
overall distribution is given by

p1ðuÞ ¼ γþN

 
u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2þ

σ2

s !
þ γ−N

 
u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2−

σ2

s !
: ðA88Þ

Therefore we get

μ0 ¼
Z

duŷðuÞN ðu; 1Þ; ðA89Þ

σ20 ¼
Z

duŷðuÞ2N ðu; 1Þ − μ20; ðA90Þ

μ1 ¼
Z

duŷðuÞp1ðuÞ; ðA91Þ

σ21 ¼
Z

duŷðuÞ2p1ðuÞ − μ21; ðA92Þ

which can easily be evaluated numerically.

b. Scrambled data

The DS is

Y̊ðsÞ ¼ ŶðsÞ − Ŷðs̊Þ ðA93Þ

¼
X
i

ŷðuðsiÞÞ − ŷðuðs̊iÞÞ ðA94Þ

¼
X
i

ŷðuðsiÞÞ −
X
i

ŷðuðs̊iÞÞ: ðA95Þ

We need to evaluate the mean and the variance of the DS. Under the hypothesis H0 we get
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uðs̊iÞjH0 ¼ σ
X
A

n̊Ai
σ2A

; ðA96Þ

and scrambling the noise realizations makes them uncorrelated across detectors; however, the nonscrambled ones
were already so. So uðs̊iÞ is a zero-mean unit variance variable, and therefore when evaluating the differences
in (A94), we have

μ̊0 ¼ hŷðuðsÞÞi − hŷðuðs̊ÞÞi: ðA97Þ

The two averages are identical, as s̊ and s are identically distributed. Therefore μ̊0 ¼ 0 as expected. Computing explicitly
the variance

σ̊20 ¼ hðŷðuðsÞÞ − ŷðuðs̊ÞÞÞ2i − μ̊20 ðA98Þ

¼ hŷðuðsÞÞ2i þ hŷðuðs̊ÞÞ2i − 2hŷðuðsÞÞihŷðuðs̊ÞÞi ðA99Þ

¼ σ20 þ μ20 þ σ20 þ μ20 − 2μ20 ðA100Þ

¼ 2σ20; ðA101Þ

where in Eq. (A101) we used the statistical independence by construction of the scrambled data s̊ upon the initial ones.
Under the hypothesis H1 we get

μ̊1 ¼ hŷðuðsÞÞi − hŷðuðs̊ÞÞi; ðA102Þ

where now

uðs̊Þ ¼ σ
X
A

n̊Ai
σ2A

þ σ
X
A

h̊Ai
σ2A

: ðA103Þ

The first term is a normal Gaussian variable, as before. In the second term, each x ¼ σh̊Ai =σ2A is a different realization,
distributed according to

pAðxÞ ¼ γþN
�
x;
σσþ
σ2A

�
þ γ−N

�
x;
σσ−
σ2A

�
; ðA104Þ

so the final distribution is given by the overall convolution

p̊ðuÞ ¼ N ðu; 1Þ⋆p1ðuÞ⋆ � � �⋆pND
ðuÞ; ðA105Þ

where ND is the number of detectors available. This can be expressed as a sum of Gaussian distributions, remembering that

N ðu; σ1Þ⋆N ðu; σ2Þ ¼ N
�
u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

q �
: ðA106Þ

In closed form, it reads

p̊ðuÞ ¼
XND

k¼0

γkþγND−k−

X
s∈Sk

N

0
B@u;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

XND

A¼1

sA

σ4A

vuut
1
CA; ðA107Þ

where Sk is the set of ordered sequences of σ2þ and σ2−, of length ND, containing exactly k σ2þs. For example, for ND ¼ 3,
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S0 ¼ fσ2−; σ2−; σ2−g; ðA108Þ

S1 ¼ fσ2þ; σ2−; σ2−g; fσ2−; σ2þ; σ2−g; fσ2−; σ2−; σ2þg; ðA109Þ

S2 ¼ fσ2þ; σ2þ; σ2−g; fσ2þ; σ2−; σ2þg; fσ2−; σ2þ; σ2þg; ðA110Þ

S3 ¼ fσ2þ; σ2þ; σ2þg: ðA111Þ

So the new mean is corrected by a term μD with respect to the statistics on the nonscrambled data

μ̊1 ¼ μ1 − μD; ðA112Þ

μD ¼
Z

ds̊ ŷðuÞp̊ðuÞ: ðA113Þ

And similarly for the variance, which gets a correction σ2D ¼ R duŷðuÞ2p̊ðuÞ − μ2D,

σ̊21 ¼ hðŷðuðsÞÞ − ŷðuðs̊ÞÞÞ2i − μ̊21 ðA114Þ

¼ hŷðuðsÞÞ2i þ hŷðuðs̊ÞÞ2i − 2hŷðuðsÞÞŷðuðs̊ÞÞi − μ̊21 ðA115Þ

¼ σ21 þ σ2D: ðA116Þ

In conclusion, with respect to Eqs. (A91) and (A92), Eqs. (A112) and (A116) constitute a correction to the DSs.

c. Gaussian search of a non-Gaussian background

If we ignore the non-Gaussianity of the toy model, and we model only its Gaussian part, we have

hsAi sBj i ¼ δABδijσ
2
A underH0; ðA117Þ

hsAi sBj i ¼ δijðδABσ2A þ γþσ2þ þ γ−σ
2
−Þ ¼ δijðδABσ2A þ σ2hÞ underH1: ðA118Þ

The standard Gaussian detector is

ŶGðsÞ ¼
X
i

X
A≠B

sAi s
B
i

σ2Aσ
2
B

: ðA119Þ

Without loss of generality, we focus on a single data point and omit the i index. UnderH0 we get mean and second order
moment

μ0;G ¼
X
A≠B

hsAsBi0
σ2Aσ

2
B

¼
X
A≠B

σ2AδAB

σ2Aσ
2
B

¼ 0 ðA120Þ

and

σ20;Gþμ20;G ¼
X
A≠B

X
C≠D

hsAsBsCsDi0
σ2Aσ

2
Bσ

2
Cσ

2
D

¼
X
A≠B

X
C≠D

δACδBDσ
2
Aσ

2
B

σ2Aσ
2
Bσ

2
Cσ

2
D

þ
X
A≠B

X
C≠D

δADδBCσ
2
Aσ

2
B

σ2Aσ
2
Bσ

2
Cσ

2
D

¼ 2
X
A≠B

1

σ2Aσ
2
B

: ðA121Þ
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Under H1 we get

μ1;G ¼
X
A≠B

hhAhBi1
σ2Aσ

2
B

¼ σ2h
X
A≠B

1

σ2Aσ
2
B

ðA122Þ

and

σ21;G þ μ21;G ¼
X
A≠B

X
C≠D

hnAnBnCnDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

þ
X
A≠B

X
C≠D

hhAhBhChDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

þ
X
A≠B

X
C≠D

hnAhBnChDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

þ hnAhBhCnDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

þ hhAnBnChDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

þ hhAnBhCnDi1
σ2Aσ

2
Bσ

2
Cσ

2
D

ðA123Þ

¼ 2
X
A≠B

1

σ2Aσ
2
B

þ 3ðγþσ4þ þ γ−σ
4
−Þ
�X

A≠B

1

σ2Aσ
2
B

�
4

þ 4σ2h
X
A≠B

X
A≠C

1

σ2Aσ
2
Bσ

2
C

: ðA124Þ

5. Bayesian analysis for the toy model

The Bayesian inference can be constructed by parametrizing the signal hypothesis H1 with the model parameters M.
Therefore the posterior reads

pðMjsÞ ¼ LðsjMÞπðMÞ ∝ N nþg

Z
h
e−

1
2
Wnþgðs−h;s−hÞph½hjM�πðMÞ: ðA125Þ

For the toy model in Sec. III,M is specified by ðσh; σþ; σ−Þ and, assuming stationary, uncorrelated noises across detectors
and g ¼ 0, the following simplifications occur:

N nþg ¼ N n ¼

0
B@YND

A¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2A

q
1
CA

Ns

; ðA126Þ

Wnþg ¼ Wnðs − h; s − hÞ ¼
X
i

X
A

ðsAi − hAi Þ2
σ2A

: ðA127Þ

Therefore the posterior reads

pðMjsÞ ∝
�YND

A¼1

1ffiffiffiffiffiffi
2π

p
σA

�Ns Z Y
i

dhi × exp

�
−
1

2

X
i

X
A

ðsAi − hiÞ2
σ2A



pðhijMÞπðMÞ; ðA128Þ

which, as expected, decomposes into the product of likelihoods for each data point

pðMjsÞ ¼ πðMÞ
Y
i

LðsijMÞ; ðA129Þ

LðsijMÞ ¼
�YND

A¼1

1ffiffiffiffiffiffi
2π

p
σA

�
×
Z

dh exp

�
−
1

2

X
A

ðsAi − hÞ2
σ2A



pðhjMÞ ðA130Þ

¼
X
α¼þ;−

γαffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2α

σ2

q × exp

�
−
1

2
Qα

ABs
A
i s

B
i −

X
A

log
ffiffiffiffiffiffi
2π

p
σA

�
; ðA131Þ

where the single data points collected across detectors are weighted by the quadratic form
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Qα
AB ¼ 1

σ2Aσ
2
B

�
δAB −

σ2α
σ2 þ σ2α

σ−1A σ−1B
σ−2

�
: ðA132Þ

6. Cumulants for the toy model

We provide here an explicit calculation for the cumulant generating function of the model presented in Sec. III. This
serves the reader with a mapping of previous approaches in literature into our formalism [41]. It is straightforward to
compute the cumulant generating function of a single h distributed according to Eq. (51):

KðzÞ ¼ log

�
γ− exp

�
z2σ2−
2

�
þ γþ exp

�
z2σ2þ
2

�

: ðA133Þ

With each hi independent (upon scrambling) and equally distributed across detectors, the cumulant generating function of a
set of N data points is simply a sum of K’s with independent auxiliary variables.

KðzA1

i1
;…; zAn

in
Þ ¼

Xn
j¼1

KðzAj

ij
Þ: ðA134Þ

Previous studies approximate pðhÞwith suitable asymptotic expansions (e.g., Gram-Charlier A or Edgeworth expansions),
and then make use of a subset of cumulants. Those approaches may be reproduced by using

ΓA1���An
i1���in ¼ ∂

A1

i1
� � � ∂An

in
KðzA1

i1
;…; zAn

in
Þj
z
Aj
ij

¼0
ðA135Þ

¼ 1A1���Anδi1���inn
�
∂
n

∂sn
KðsÞ



s¼0

ðA136Þ

≡ 1A1���Anδi1���innΓn: ðA137Þ

Differentiating kðsÞ yields the nth cumulant Γn of the single h. The value is, as a function of the parameter models
ðσþ; σ−; σhÞ (assuming without loss of generality γþ > γ−) [68],

Γ2r ¼ δ1rσ
2þ −

X2r
q¼1

X∞
k¼1

kq−1
�
−
γ−
γþ

�
k
B2r;qðσ2þ; σ2−Þ; ðA138Þ

Γ2rþ1 ¼ 0; ðA139Þ

with Bk;q the partial exponential Bell polynomials [69].
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