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A significant pointlike component from the small-scale (or discrete) structure in the H2 interstellar gas
might be present in the Fermi-LAT data, but modeling this emission relies on observations of rare gas
tracers only available in limited regions of the sky. Identifying this contribution is important to discriminate
γ-ray point sources from interstellar gas, and to better characterize extended γ-ray sources. We design and
train convolutional neural networks to predict this emission where observations of these rare tracers do not
exist, and discuss the impact of this component on the analysis of the Fermi-LAT data. In particular, we
evaluate prospects to exploit this methodology in the characterization of the Fermi-LAT Galactic center
excess through accurate modeling of pointlike structures in the data to help distinguish between a pointlike
or smooth nature for the excess. We show that deep learning may be effectively employed to model the
γ-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions, supporting
prospects to employ these methods in yet unobserved regions.
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The Galactic γ-ray interstellar emission (IE) traces
interactions of cosmic rays with the interstellar gas and
radiation field. In a companion paper [1], we showed that
interstellar H2 gas is more structured and pointlike than
current IE models assume, and the related γ-ray emission
might be a statistically significant component of the Fermi-
LAT data. If this structure is not adequately captured by the
IE model, it can impact the identification of resolved
pointlike sources as well as the characterization of extended
components in the γ-ray sky. We demonstrated that
unidentified sources in the fourth Fermi-LAT catalog [2]
could indeed be originating from it. In addition, we have
argued that this component could artificially inflate the
unidentified and/or unresolved point source component in
the data and, depending on its morphology, contribute to
confounding the interpretation of the Galactic center (GC)
excess observed by Fermi-LAT [1,3–12] (see Ref. [13] for
a review). Improved modeling of small-scale gas related
emission in the Fermi-LAT data is therefore necessary to
robustly characterize γ-ray sources.

Interstellar H2 gas is traced indirectly via the emission
lines of other molecules that are found concurrently in gas
clouds. Carbon monoxide (12CO, or CO hereafter) is used
as a proxy; however, its line emission is typically optically
thick in the denser cores of molecular clouds, and therefore
it underestimates the H2 column density there. The line
emission of rarer isotopologues of CO also present in the
clouds, such as 13CO, remains optically thin to larger
column densities and are therefore more reliable to probe
dense H2 cloud cores, and therefore the H2 small-scale
structure. We briefly summarize the methodology we
developed in [1] to model this emission. We employ
observations of the J ¼ 1–0 transitions of CO and 13CO
from the Mopra Southern Galactic Plane CO Survey [14],
which cover a 50 square degree region, spanning Galactic
longitudes l ¼ 300–350° and latitudes jbj ≤ 0.5°. As
described in [1], the data reduction process by the
Mopra team yields data cubes of the brightness temperature
for each spectral line, as a function of Galactic coordinates
and local standard of rest velocity. As described in detail in
the rest of this paper, we employ these data to train machine
learning (ML) models to predict 13CO in regions of the sky
where observations are not available. To ensure the highest
quality data in the rare isotopologues, only pixels for which
the brightness temperature exceeds the 1σ noise provided
byMopra are used. The performance of MLmodels may by
biased by noise, and this conservative 1σ noise threshold
allows us to retain the majority of the data for training
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purposes while still rejecting very low quality data. We
calculate H2 column densities corresponding to Mopra’s
CO and 13CO, referred to as NðH2ÞCO and NðH2ÞCO13,
respectively. We integrate the column density to produce 17
velocity bins, corresponding to increasing radial distances
from the GC. The column density computation and
integration procedure is described in [1]. The final data
is stored as measurements in 1° × 1° × 17 tiles. With this as
input, we build a Modified Map by replacing NðH2ÞCO12
withNðH2ÞCO13 for pixels whereNðH2ÞCO13 > NðH2ÞCO12.
The “Modified Excess Template,” which corresponds to the
small-scale H2-related γ-ray emission traced by 13CO, is
determined from the difference between the Modified Map
and the baseline CO map.
The central idea of this paper is to harness ML, in

particular deep learning [15], to predict the distribution of
13CO based on the CO observation, and therefore infer the
H2 small-scale structure in regions where 13CO observa-
tions do not exist. Since a straightforward and robust
analytical mapping between the two distributions is not
available, ML would estimate this mapping from data. We
train a deep learning model to map between CO and 13CO
column densities in the Mopra region. To simplify this
regression problem and enlarge our effective dataset, we
subdivide the tiled Mopra data into small D1 ×D2 patches
of the sky to their respective center points (Fig. 1). The
validity of this simplification requires the gas column
density to be locally correlated. That is, we assume it is
unlikely that column densities outside of our chosen patch
will significantly change the 13CO estimate. This simpli-
fication greatly reduces the model size and provides us with
an effective data set of over 50 million patches when
D1 ¼ D2 ¼ 0.0581°, or 7 pixels at the Mopra resolution.
We find that larger patch sizes do not improve model
accuracy, justifying this locality assumption (see Ref. [16]).
We also apply smoothing techniques to eliminate noise
from the data (see Ref. [16]). The CO → 13CO modeling
problem may now be formally written as finding a para-
metrized function fθ mapping a source patch S ∈ RD1×D2

to an estimate target column density at the center of that

same patch T ∈ R. The source Si corresponds to Mopra CO
column densities and the targets Ti to the corresponding
13CO column densities at the center of the patch (Fig. 1).
We evaluate our estimates by splitting the Mopra region
into independent subregions which we designate for train-
ing and testing. We employ different splitting choices
(see Ref. [16]), but we report on one, the alternate tiled
split, throughout the remainder of this paper. This split
consists of alternating 1° × 1° tiles, training on longitudes
f301–302;…; 349––350g and testing on longitudes
f300–301;…; 348–349g. This allows us to evaluate the
model’s performance on neighboring data, reducing the
variance between training and testing data distributions.
We employ convolutional neural networks (CNNs) to

model and predict the 13CO column density in a translation-
invariant manner. CNNs use neurons with shared connec-
tion parameters in order to implement convolution
operations that provide the basis for building translation
invariant architectures [15]. Each convolution operation is
associated with a kernel, or filter, corresponding to a set of
connection weights that are shared by all the neurons in the
corresponding layer. For each of the 17 velocity bins, we
apply K learnable convolution filters of size D1 ×D2,
operating on an entire patch and independently for each
velocity bin, producing 17 K-dimensional latent vectors for
each patch. Afterwards, we apply parametric rectified linear
units [17–19] with a learnable slope, a batch normalization
layer [20], and a random dropout layer [21,22]. The latent
vectors are then processed by several fully-connected
layers, each with their own parametric rectified linear
units, batch-normalization, and dropout. Unlike the con-
volution layer, these hidden layers are shared between
velocity bins, learning identical weights for every bin. This
design allows spatial components (CNN) of the network to
be specialized for each velocity bin while allowing latent
higher level components to be shared between bins. The
resulting latent vectors are fed through a final fully
connected layer which produces the 13CO concentration
point estimates for each patch and velocity bin. A diagram
of the network architecture is presented in Fig. 2.
The Mopra dataset contains widely varying column

densities from bright to very dim. To effectively learn this
high-spread distribution, we model the incidence of pho-
tons on the Mopra detector as a Poisson process and use a
Poisson log-likelihood loss. We further reweight this loss
based on the 13CO density to elevate the importance of
bright pixels, prioritizing accuracy in hot spots over a slight
degradation in the background. This increases the impor-
tance of accurate measurement in the bright regions,
encouraging the network to focus on the accuracy of these
regions first. As the network trains, we anneal this
weighting back to uniform (with all target values having
equal weighting) in order to minimize any bias introduced
by this loss. The design of this loss is guided by the overall
goal of finding small angular scale features while limiting

=

=

FIG. 1. A graphical overview of our CO → 13CO modeling
process for a single velocity bin. A CO column density tile of size
1° × 1° ¼ 131 × 131 pixels (left) is split into overlapping smaller
patches (center) of size 0.053° ¼ 7 pixels. Patches are fed to a
CNNmodel to produce the corresponding predicted 13CO column
density tile (right) by estimating the 13CO column density at the
center of each CO patch.
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the amount of overestimation throughout the Mopra region.
A formal description of the loss function is available
in [16].
We tune the CNN’s hyperparameters using the Sherpa

hyperparameter optimization library [23], testing 2000
network variations, scoring each parametrization with
Poisson likelihood, and using Gaussian process optimiza-
tion to suggest parameters. Our final parametrization is
presented in [16], which is evaluated after training the
network for 200 iterations. We generate the predicted 13CO
density by stitching the network output for every patch in a
source image. When performed on a single Nvidia Titan XP
GPU, and batching 8192 patches at once, this inference
process requires approximately 11 seconds to cover the
entire Mopra region.
Following the same procedure as in [1], we employ the

cosmic ray propagation code GALPROP (v56) [24–34]
to calculate γ-ray sky maps in 17 galactocentric radial bins
for the H2-related emission, where the latter is traced by
CO and 13CO. The CO and 13CO related H2 column
densities, NðH2ÞCO13 and NðH2ÞCO, respectively, are used
to determine the H2 that is missed in dense regions when

only CO is used as a tracer. We follow the procedure
from [1] to determine the Modified Map and “Modified
Excess Template” (Fig. 3, top panel) to construct their ML
analogs. The “Smart Map” is determined similarly to the
Modified Map, but instead of using the true Mopra 13CO
data, we use the 13CO estimates from the CNN. We use this
to determine the “Smart Excess Template,” defined as the
difference between the Smart Map and the baseline CO
map. The Smart Excess Template, also integrated over all
annuli and energies, is shown in Fig. 3, bottom panel. The
map covers the full Mopra region, which includes alter-
nating training and testing tiles for the CNN.
To assess how closely the CNN predicts the γ-ray

emission inferred by Mopra observations, we compare
the excess templates with three different metrics. We
quantify the differences with the following three metrics
which are determined by using the predicted photon counts
per pixel for each of the templates and scaled to ∼12 years
of Fermi-LAT data (we assume the same Fermi-LAT
observation parameters and event selection as for the
simulations described in [1] and in this work): absolute
difference (Smart Modified), fractional difference
[ðSmart-ModifiedÞ=Modified], difference in units of the
standard deviation, σ, for the Modified counts
[ðSmart-ModifiedÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Modified
p

]. The latter metric allows
us to compare the magnitude of the differences due to the
CNN performance in light of the statistical power of the
data. All results are shown in Fig. 4 as a function of
longitude and latitude for the Mopra region (see [16] for
distributions of residuals integrated over the region). We
observe that for the vast majority of the region (83.6% of
the pixels), the predicted counts for the Smart Excess
Template are within �1σ of the Modified Excess Template
counts, and therefore the difference is generally within the
statistical uncertainty of the data. This result indicates that
the CNN performance is adequate for modeling the small-
scale structure in H2-related γ-ray emission traced by
Mopra, for the statistics achieved by Fermi-LAT.
The CNN performance varies with respect to longitude.

Most tiles display either an overall underprediction by the
CNN across the entire tile or an overprediction, rather than

FIG. 2. A diagram of the internal layers of the network. We
maintain independent weights for the 17 convolution layers, one
for each velocity bin. However, the hidden and output fully
connected layers share a single set of weights and the same layers
are applied to every velocity bin.

FIG. 3. Top: the Modified Excess Template (from Ref. [1]). Bottom: the Smart Excess Template. The color scale (logarithmic)
indicates the γ-ray intensity per 0.031252 degree pixel. The first tile to the left (closest to the GC, and covering longitudes 349–350) is
testing data, and the neighboring one is training data for the CNN. The interleaving pattern of testing and training tiles is adopted for the
entire Mopra region.
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a comparable mixture of under/over predictions across the
same tile. This may be explained by the design of the loss
function, placing increased importance towards brighter
pixels while also biasing the network to prefer under-
prediction via Poisson regression. Prominent examples
include the training tile 343° < l < 344° and testing tile
348° < l < 349°, the brightest in each dataset, where the
CNN underpredicts the gas column density, as shown in
Fig. 4. The dependence of the residuals as a function of
pixel brightness (in counts=pixel), is shown in Fig. 5 for the
full Mopra region, and for the training and testing sub-
regions separately. Generally, better agreement between
Mopra (Modified Excess Template) and the CNN predic-
tion (Smart Excess Template) is found for the brighter
pixels. There is a broad spread in the fractional residuals,
but it is confined to be between �50% for the vast majority
of the pixels. We overlay contours to indicate the �1σ
statistical fluctuations in the Modified Excess Template,
which encompasses 83.6% of the pixels. We also overlay

the median and median absolute deviation of the fractional
difference in bins of the Modified Excess Template counts
to guide the eye, but emphasize that the scatter of the points
within each interval cannot be simply characterized by
these quantities and does not always indicate a most
probable outcome. As expected, we find that the CNN
performs (somewhat) better in the training tiles.
Approximately 58% of pixels where the CNN prediction
is beyond the �1σ level are in the testing subregion. The
CNN is more likely to overpredict the emission for the
dimmer pixels (60.8% of pixels across the full region are
below the 25% flux percentile), consistently with the
design. The CNN overprediction in the dim pixels essen-
tially spreads out the brightness of hot spots over a larger
area. We also note that small statistics causes the fractional
difference to increase dramatically for the faintest pixels.
Above the 90% flux percentile, the distribution of the
fractional residuals bifurcates into two separate distributions.
The underpredicted pixels are in the 343° < l < 344° tile,

FIG. 4. The pixel-wise residuals for the full region between the predicted counts from the Smart Excess Template and the
predicted counts from the Modified Excess Template. Top: residual in counts (Smart Modified), Middle: fractional residuals
[ðSmart-ModifiedÞ=Modified], Bottom: residual in units of 1 standard deviation for the modified excess template
[ðSmart-ModifiedÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Modified
p

]. The color scale is per 0.082 degree pixel.

FIG. 5. The fractional residuals between the nominal Smart Excess Template (Smart) and Modified Excess Template (Modified)
predicted counts per pixel as a function of Modified Excess Template pixel counts for all tiles (left), testing tiles (center), and training
tiles (right). The points and error bars represent the median and median absolute deviation of the fractional difference for the pixels in 8
domain intervals (we note that the scatter of the points within each interval is not simply characterized by these quantities and does not
always indicate a most probable outcome.) We also plot the�1σ boundaries of the Poisson noise for the Modified Excess Template. We
overlay the 25%, 50%, 95% flux percentiles to indicate the flux fraction encompassed by pixels below that threshold.
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and the overpredicted pixels are in 333° < l < 334° tile,
both in the training subregion. This is likely caused by our
choice to combine independent convolution layers for each
velocity bin with a shared hidden layer. Since certain bins
have higher overall brightness than others, the shared
hidden layer will attempt to average the error between the
two extremes.
We determine the significance of the Smart Excess

Template in the Fermi-LAT data, similarly to [1] for the
Modified Excess Template. The simulations cover the same
observations and event selection (∼12 years, 1–100 GeV,
P8R3 CLEAN FRONTþ BACK). We only simulate the
H2-related γ-ray emission in the Mopra region, excluding
all other components, since our goal is to establish the
performance of the Smart Excess Template in the optimistic

scenario where all other components are known. The
simulated events trace the H2-related γ-ray emission
modeled with the Modified Map from Mopra. The simu-
lated data are fit based on a binned maximum likelihood
method to a model that includes the baseline CO map (as
observed by Mopra) and the Smart Excess Template. The
normalization of the Smart Excess Template is free to vary
in the fit. The energy spectrum, calculated by GALPROP,
is assumed, and held fixed during the likelihood fit. The
normalization and spectral index of the CO baseline
contribution is also free to vary. The 17 radial bins from
GALPROP are combined into 4 radial annuli, which we
refer to as A1, A2, A3, and A4, with the same partitioning
as in [1]. Also consistently to [1], the normalization of A4 is
held constant to a normalization of 1.0, contributing a flux
of 4.98 × 10−9 ph cm−2 s−1.
We simulate 1000 realizations and calculate the test

statistics (TS) for the nested models [−2 logðL0=LÞ�, where
L0 is the null hypothesis (CO baseline), and L is the
alternative hypothesis (CO baseline and Smart Excess
Template.) The statistical significance is approximated
by σ ≈

ffiffiffiffiffiffi

TS
p

. The distribution of the
ffiffiffiffiffiffi

TS
p

for the simu-
lations is shown in Fig. 6 for the full Mopra region (solid
line), and for the testing subregion only (dashed line). The
Smart Excess Template corresponds to

ffiffiffiffiffiffi

TS
p ¼ 27.5� 1.1

(mean and standard deviation) in the full Mopra region and
12.9� 1.0 in the testing subregion. The significance in the
testing subregion is lower, not only because of the smaller
statistics but also because the full region contains the
training tiles where the CNN more closely matches the
Mopra data. For comparison, the Modified Excess
Template has a

ffiffiffiffiffiffi

TS
p ¼48.3�1.0 and

ffiffiffiffiffiffi

TS
p ¼ 31.5� 1.0

for the full region and testing subregion, respectively. In
Fig. 7, we show the distributions for the best-fit flux of
the Smart Excess Template overlaid with those for the
Modified Excess Template, as well as the flux for the CO
baseline emission, separated into annuli. The integrated
flux for the Smart Excess Template is approximately 83.7%

FIG. 6. Statistical significance of the Smart Excess Template
for the full Mopra region (solid lines), and for the testing
subregion (dashed lines). Each contains 1000 realizations of
12 years of Fermi-LAT data. A fit with a Gaussian distribution is
overlaid to each distribution. These distributions are compared to
the results for the Modified Excess Template from [1].

FIG. 7. Distribution of fluxes for each component of the best-fit model using the Smart Excess Template maps over the full region for
1000 simulations of Fermi-LAT data. The results for the Modified Excess Template maps from [1] are overlaid. Note that one of the
annuli (A4), not shown, has negligible contribution and the normalization was fixed in the fitting process.
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of the flux of the Modified Excess Template, indicating an
overall underprediction by the CNN. The fractional count
residuals [(data-model)/model] as a function of energy for
the best fit model are shown in Fig. 8 for the fits that include
Smart Excess Template, in addition to the other CO
components. They are consistent with zero. The best fit
spectra of the CO components agree with the GALPROP
prediction. Finally, Fig. 9 shows the fractional count
residuals in latitude, longitude. The residuals, which
incorporate differences between the (best fit) Smart
Excess Template and the (simulated) Modified Excess
Template, are smaller than those shown in Fig. 4 (middle
panel), indicating that the other CO model components
partially compensate for the discrepancies between the
excess templates. We have performed this analysis also
using Gaussian processes and find that the performance is
worse compared to the CNN [16].
The ML methodology presented here must be refined to

be extended to other regions of the sky. The available all
sky CO J ¼ 1–0 observations have significantly poorer
spatial resolution (80 from [35]) compared to Mopra (0.60).
The CNN model will therefore require additional transfer
learning to operate on lower resolution maps. The reso-
lution of the Fermi-LAT data is worse (for most energies
and event types), suggesting that the impact of the poorer
CO resolution on the CNN predictions for the γ-rays might
ultimately be less pronounced. Another consideration is
that the available 13CO training data for the CNN (from

Mopra, and other observations [36–40] that could also be
included), are confined to the Galactic plane. The H2 scale
height is low, but its small-scale structure contribution at
higher latitudes might not be negligible because of the
contribution of more local H2. However, because of the
lack of adequate training data the CNN prediction for this
component could be more uncertain and this is relevant for
the characterization of the GC excess, which extends to
high latitudes. Finally, this analysis inherits the limitations
and uncertainties in modeling the H2 component with
traditional methods, including the loss of kinematic reso-
lution for the gas in the direction of the GC [41]. And it
adds another: the H2 column densities from CO and 13CO
have been treated independently in this work. Their
estimates can be related analytically, but rely on assump-
tions pertaining to the optical depth, beam filling factor,
spatial variation, etc. (e.g., [42,43]). More ambitiously, ML
may be used to constrain some of these uncertainties by
using the γ-ray data. Finally, small-scale structure in the
γ-ray data could also arise from other components of the IE,
e.g., related to HI, and shall be included in a more
comprehensive study.
We have presented a methodology that harnesses ML to

predict the small-scale component of the interstellar H2 gas
and its related γ-ray emission for the first time. Our work is
motivated by the fact that while CO is widely employed as
a tracer of H2, its emission alone does not reliably capture
the more highly structured component of H2. Incorporating
this small-scale component in γ-ray IE models is crucial
for determining γ-ray point sources and could affect the
characterization of extended γ-ray sources, e.g., the Fermi-
LAT GC excess. Here, we have improved H2 modeling by
employing observations from the Mopra survey which
includes isotopologues of CO such as 13CO that do not
suffer from the same limitations and can, therefore, more
reliably trace the H2 small-scale structure (the survey spans
Galactic longitudes l ¼ 300–350° and latitudes jbj ≤ 0.5°).
In particular, we designed and trained a CNN to predict the
concentration of 13CO in the Mopra region. We have tested
the performance of this methodology in predicting the
contribution of the H2 related γ-ray small-scale structure to
the Fermi-LAT data. We find that the accuracy of the
predicted γ-ray emission, which incorporates the CNN-
predicted contribution, is within the statistical uncertainty
of the Fermi-LAT data for the vast majority of the region.
Moreover, the predicted γ-ray contribution can have a large
statistical significance,

ffiffiffiffiffiffi

TS
p ¼ 28 if we assume other

components of the γ-ray IE are known. We designed a

FIG. 8. Fractional count residuals for the fit with the Smart
Excess Template. The green and yellow bands show the 68% and
95% confidence regions from 1000 simulations, respectively. We
also plot the results for a single simulation as an example, which
is shown with black data points.

FIG. 9. Fractional count residuals [(data-model)/model] in latitude and longitude for the fits with the Smart Excess Template, in
addition to the other CO components. The residuals are calculated using the mean over 1000 simulations.
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dynamically weighted loss function for the CNN’s training
to prioritize emission accuracy from brighter spots in the
Mopra data while avoiding overpredicting the 13CO con-
centration in these regions. This is a conservative choice
aimed at minimizing the injection of spurious γ-ray sources
in the IE model. As a consequence of this design, over-
prediction is more likely for the dimmer spots, which we
show to be less important. Based on these results, we
conclude that deep learning can improve the modeling of
γ-ray emissions in data-rich regions, supporting prospects to
extend this methodology to other regions of the sky. In this
work, we restrict our analysis to the Mopra observations of
CO and 13CO which are confined to the Galactic plane.

Extending this methodology to other regions will require the
CNN model to model 13CO from the poorer resolution CO
maps available for the majority of the sky, and will require
extrapolating predictions to higher latitudes.
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