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We present here results from the first-ever search for dark-photon dark matter that could have coupled to
baryons in LISA Pathfinder, the technology demonstrator for a space-based gravitational-wave antenna.
After analyzing approximately three months of data taken by LISA Pathfinder in the frequency range
½2 × 10−5; 5� Hz, corresponding to dark-photon masses of ½8 × 10−20; 2 × 10−14� eV=c2, we find no
evidence of a dark-matter signal and set upper limits on the strength of the dark-photon/baryon coupling. To
perform this search, we leveraged methods that search for quasimonochromatic gravitational-wave signals
in ground-based interferometers and are robust against non-Gaussianities and gaps in the data. Our work
therefore represents a proof-of-concept test of search methods in LISA to find persistent, quasimono-
chromatic signals and shows our ability to handle non-Gaussian artifacts and gaps while maintaining good
sensitivity compared to the optimal matched filter. The results also indicate that these methods can be
powerful tools in LISA to not only find dark matter, but also look for other persistent signals from, e.g.,
intermediate-mass black hole inspirals and galactic white dwarf binaries.
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I. INTRODUCTION

LISA Pathfinder [1–3] was a demonstrator of some of
the technologies to be used in LISA, the space-based
gravitational-wave antenna to be launched in the second
half of the next decade [4,5]. Its main goal, the demon-
stration that the noise in the separation of two test masses
≈ 40 cm apart could be kept at a suitably low level to allow
the detection of gravitational waves by LISA, was success-
fully achieved by LISA Pathfinder. In fact, LISA Pathfinder
(LPF) was a remarkable success and produced a noise
power spectral density that surpassed the LPF mission
requirement by more than an order of magnitude for some
frequency regions and by a factor of a few compared to the
LISA requirement [6,7].
Though designed for the purpose described above,

the data from LISA Pathfinder have been used in different
ways to probe other areas of physics, such as quantifying
possible noise correlations in future stochastic gravita-
tional-wave background searches [8], measuring the value
of Newton’s gravitational constant [9], testing the strong
equivalence principle when spacecrafts orbit Lagrange

points [10], and bounding collapse models [11]. Such
studies show that high-precision measurements of accel-
eration or displacement can be employed to tackle inter-
esting physics problems for which the experiment was
not primarily designed and motivate the need for further
analyses of LISA Pathfinder data [12] to see what other
kinds of questions that these data, and the future LISA
mission, can answer.
LISA Pathfinder data can be used to probe the existence

of ultralight dark matter directly via its interactions with the
test masses. Essentially, the instrument exists in a field or
“wind” of dark matter, and this dark matter would couple
to standard model particles in the test masses, causing
sinusoidal oscillations of their positions over time at a
frequency fixed by the dark matter mass. Scalar, dilaton
dark matter would cause oscillations in the electron mass or
other fundamental constants [13–15], resulting in a change
of the size of an object [16]; axions [17] would alter
the phase velocity of light [18,19], affecting the round-trip
time of laser light in LISA; dark photons could couple
to baryons or baryon-lepton number in the test masses,
leading to a sinusoidal force exerted on them [20]. These
types of dark matter could arise from the misalignment
mechanism [21–23], the tachyonic instability of a scalar
field [20,24–26], or cosmic string network decays [27].
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While the physics of each model is different, the observable
is the same: time-varying positions or accelerations of test
masses relative to one another.
The mass range to which space-based gravitational-wave

detectors are sensitive is a function of the frequency range:
Oð10−5 − 1Þ Hz corresponds to Oð10−19 − 10−14Þ eV=c2.
At such low masses—compared to those to which ground-
based gravitational-wave detectors such as LIGO [28],
Virgo [29], and KAGRA [30] could probe—the expected
signal is monochromatic, since the frequency shift canoni-
cally introduced by the motion of Earth through the dark
matter wind is very small compared to the frequency
resolution of a search. Therefore, we cannot differentiate
between a monochromatic and a “quasimonochromatic”
ultralight dark-matter signal at most frequencies to
which LISA Pathfinder and LISA are sensitive.1

There is a growing interest in using gravitational-wave
detectors to search for ultralight dark matter, since it has
been shown that interferometers are able to achieve better
sensitivity than existing experiments designed to search for
dark matter of particular masses. GEO600 data [31] was
recently analyzed using a logarithmic frequency axis power
spectral density method [32,33], yielding strong constraints
on scalar, dilaton dark matter coupling to the beam splitter
[34]. Furthermore, constraints on vector dark matter, i.e.
dark photons, were placed using data from the first [35] and
third [36] observing runs of advanced LIGO/Virgo/
KAGRA that surpassed upper limits from the Eöt-Wash
[37] and MICROSCOPE [38] experiments by a few orders
of magnitude at frequencies between ∼100 and 1000 Hz
(4 × 10−13–4 × 10−12 eV=c2). Finally, methods to search
for axions and dilatons in different interferometer channels
[18,39], for vector bosons with KAGRA [40] and tensor
bosons [41] in LIGO/Virgo/KAGRA and pulsar timing
arrays [42] have been developed for such kinds of searches.
What has not yet been done in this field of direct dark-

matter searches with gravitational-wave detectors is to
apply these methods to space-based instruments. While
projected sensitivities have been estimated for a variety of
dark-matter models [20,43,44], the development of algo-
rithms tuned toward monochromatic signals in LISA,
DECIGO [45], and TianQin [46] has not yet followed.
In this work, we take a first step in this direction by
performing a search of LISA Pathfinder data, a precursor to
the kind of data that we expect in LISA, for ultralight dark
matter, which requires that we develop methods to handle
specific problems that LISA Pathfinder faced and LISA
will face, such as non-Gaussianities, gaps, and sparse
sampling at low frequencies [47–49]. Specifically, we
adapt methods developed in the context of quasimono-
chromatic, persistent signals emitted by isolated neutron

stars [50], planetary- and asteroid-mass primordial black
hole binaries [51–53], depleting boson clouds around black
holes [54,55], and dark matter that couples to ground-based
gravitational-wave interferometers [20,56], to look for dark
matter in space with LISA Pathfinder.
The methods presented here are generically good at

finding quasimonochromatic signals in any dataset, regard-
less of the underlying physics [50,57]. They are also
(1) robust against noise disturbances such as powerful lines,
(2) able to efficiently deal with gaps in data collection, and
(3) computationally cheap compared to matched filtering,
the optimal method to find weak signals buried in noise. In
space-based detectors, gravitational waves from a variety of
astrophysical sources, such as galactic white dwarf binaries
or black hole inspirals [58,59], will also be quasimonochro-
matic and last for durations longer than the observing time
[56,60], or at least for greater lengths of time than in ground-
based detectors, of O(hours–days). Currently, proposals
for parameter estimation and matched-filtering searches
for gravitational waves with LISA struggle with each of
the three aforementioned points [61–63]; therefore, the work
presented here has much farther reaching implications than
just a search for dark matter; it represents a comprehensive
analysis scheme that can be applied to any quasimonochro-
matic signal embedded in imperfect, non-Gaussian, gapped
LISA data.
This paper is organized as follows: in Sec. II, we describe

the dark-matter signal expected at LISA Pathfinder when it
flew; in Sec. III, we explain which data segments from the
∼1.5 yr run we analyze. Section IV focuses on the methods
that we use to search for ultralight darkmatter, one that breaks
the data into smaller, Gaussian chunks and another that match
filters the data with a signal model coherently.We present our
results in Sec. V, which include rejecting strong outliers in
the data and upper limits on the strength of the coupling of
darkmatter to baryons. Finally, we draw some conclusions in
Sec. VI and discuss opportunities for future work.

II. DARK-MATTER SIGNAL

Dark matter could be composed of spin-1 particles,
which we denote as dark photons. The relic abundance of
dark matter can be explained entirely by dark photons,
which could arise from the misalignment mechanism
[21–23], parametric resonance or the tachyonic instability
of a scalar field [24–26,64], or from cosmic string network
decays [27]. Dark photons could couple directly to baryon
or baryon-lepton number in the two LISA Pathfinder test
masses and exert a “dark” force on them, causing quasi-
sinusoidal oscillations [20,56].
Similar to the ordinary photon, the vector potential for a

single dark-photon particle can be written as

A⃗ðt; x⃗Þ ¼
�
ℏ

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mc2

1ffiffiffiffiffi
ϵ0

p
�

sin ðωt − k⃗ · x⃗þ ϕÞ; ð1Þ
1This depends on the duration of data analyzed, as will be

explained in Sec. II, but is generally true for the expected lifetime
of LISA.
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where ω ¼ ðmc2Þ=ℏ is the angular Compton frequency,
k⃗ ¼ ðmv⃗obsÞ=ℏ is the wave vector, m is the mass of the
vector field, ρDM is the energy density of dark matter, ϵ0 is
the permittivity of free space, and ϕ is a random phase.
The Lagrangian L that characterizes the dark-photon

coupling to a number current density Jμ of baryons or
baryons minus leptons is

L ¼ −
1

4μ0
FμνFμν þ

1

2μ0

�
mc
ℏ

�
2

AμAμ − ϵeJμAμ; ð2Þ

where Fμν indicates the dark electromagnetic field tensor,
μ0 is the magnetic permeability in vacuum, Aμ is the four-
vector potential of the dark photon, e is the electric charge,
and ϵ is the strength of the particle/dark-photon coupling
normalized by the electromagnetic coupling constant.
Dark photons would cause small motions in each of the

test masses and lead to an observable effect because the test
masses are separated from each other and hence experience
slightly different dark-photon dark-matter phases. Such a
phase difference leads to a change of the arm length over
time. What is needed, therefore, is very precise measure-
ments of the positions of the two test masses, something
which LISA Pathfinder provides.
Each test mass experiences an almost identical accel-

eration, arising from the current term in Eq. (2),

a⃗ðt; x⃗Þ ≃ ϵe
q
M

ωA⃗ cosðωt − k⃗ · x⃗þ ϕÞ; ð3Þ

where q=M is the charge-to-mass ratio of the test masses.
This effect is in fact a residual one: if the test masses were
made of different materials, then the signal induced from
dark photons coupling to baryon-lepton number would be
enhanced [40]. A simple relation between dark-photon
parameters and the effective strain hD experienced by LISA
Pathfinder can be written as [20,36,44]

ffiffiffiffiffiffiffiffiffiffi
hh2Di

q
¼ CLPF

q
M

v0
2πc2

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
ϵ0

s
eϵ
fA

; ð4Þ

where fA ¼ ω=ð2πÞ is the frequency of the dark-matter
particle, and CLPF ¼ 1=3 is a geometrical factor obtained
by averaging the acceleration over all possible dark-photon
propagation and polarization directions for a single arm,
using the appendix in [20] to aid with this calculation. We
note CLPF is a factor of

ffiffiffi
2

p
smaller than the geometrical

factor in LIGO CLIGO ¼ ffiffiffi
2

p
=3, which indicates that an

L-shaped interferometer would observe a signal
ffiffiffi
2

p
∼ 1.4

times stronger than a single arm would.
As we can see from Eq. (3), the test masses will

experience a sinusoidal oscillation of their positions over
time, at a frequency set by the mass of the dark-matter
particle. However, if we observe for longer than the

dark-matter signal coherence time Tcoh, then we will
resolve stochastic frequency fluctuations Δf about the
dark-matter mass, induced by the motion of the spacecraft
relative to the dark-matter field. In other words, we wish
to contain these fluctuations to one frequency bin δf,
so we require [20,56,64]

Δf ¼ 1

2

�
v0
c

�
2

fA < δf ¼ 1

TFFT
; ð5Þ

which leads to

TFFT < 107 s
�
0.1 Hz
fA

�
∼ Tcoh; ð6Þ

where TFFT is the fast Fourier transform length, and
v0 ≃ 220 km=s is the velocity at which dark-matter orbits
the center of our Galaxy, i.e. the virial velocity [65]. Here,
we observe for a duration much less than Tcoh, which
implies that the signal will be fully contained within one
frequency bin, i.e. it is purely monochromatic for our
purposes.

III. DATA

We analyze eight periods of differential acceleration
time-series LISA Pathfinder data, whose details are given
in Table I, each of which lasts from ∼ 5 days to ∼ 2.5weeks
[12]. One segment, No. 6, that began on February 14, 2017
was obtained at a much lower temperature than the others,
which resulted in a different noise level [7]. We therefore
treat it as a separate dataset from the others, as will be
detailed in Sec. IV, and present all constraints based on this
dataset.
In Table I, we also report the TFFT such that the data

within that segment remain Gaussian at the 5% significance
level, based on the Kolmogorov-Smirnov test [66]. We
see here that some segments remain Gaussian for
longer compared to others, but in general, the duration
of Gaussian data is short compared to the segment duration.

TABLE I. Data segments considered in this search obtained
from [12]. Segment No. 6 is treated as a separate dataset here: we
perform coincidences of the other seven datasets with segment
No. 6 in order to reduce the number of outliers.

Number Date
Duration
(days) TFFT (s)

Temperature
(C)

1 03-21-2016 5.08 16384 22
2 04-04-2016 9.33 16384 22
3 07-24-2016 5.29 4096 22
4 11-16-2016 9.82 8192 22
5 12-26-2016 17.86 8192 22
6 02-14-2017 13.33 8192 11
7 05-29-2017 7.04 131072 22
8 06-08-2017 8.4 262144 22
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Therefore, for the semicoherent search, we consider TFFT ¼
8192 s for all segments, as explained in the next section.

IV. METHOD

A. Semicoherent method: Projection

Due to the non-Gaussian nature of the noise when
observing for longer than ∼ 8192 s, we break the dataset
into smaller chunks, of duration TFFT ¼ 8192 s, analyze
these chunks coherently, and then combine their power
incoherently, that is, without the phase information. To
perform this analysis, we leverage existing methods used in
continuous-wave data analysis for the search of depleting
boson clouds around black holes [54] and for dark matter
that could couple to ground-based gravitational-wave
detectors [56].

1. Creation of time/frequency peak maps

This semicoherent method [56] operates on data in the
time/frequency plane, so we take fast Fourier transforms
with TFFT ¼ 8192 s, divide the square modulus of the fast
Fourier transform by a running-median estimation of the
power spectral density to obtain “equalized power” (whose
mean value in noise should be 1), set a threshold θthr ¼ 2.5
to remove spurious noise peaks, and select local maxima
in the power spectra. Each of these choices is motivated
in [67] and is meant to be robust against the presence of
nonstationarities in the noise. This threshold in fact comes
from empirical studies in [67] showing that, while the ideal
threshold in Gaussian noise is 2, a threshold of 2.5 allows
for a higher value of the detection statistic and a reduction
in the number of outliers in the presence of disturbances
in real LIGO/Virgo data. The “local maxima” criteria is
applied because spectral disturbances in real data may not
be well localized to one frequency bin (i.e. they have finite
coherence times that do not match the TFFT chosen), or they
may turn on and off over the course of the run (or even
within one TFFT). Therefore, selecting local maxima helps
to minimize contamination of nearby bins from noise lines.

The thresholded time/frequency maps are called “peak
maps,” in which only powerful “peaks,” i.e. points in the
time/frequency plane, remain after the thresholding and
local maxima selection.
This procedure results in the left-hand panel of Fig. 1,

for segment No. 6. We employ the semicoherent method
at frequencies above ∼1 mHz, since below this value it
becomes difficult to estimate the power spectral density
using a simple running median, due to the lack of data
points at such low frequencies.

2. Projection and selection of candidates

After we have created the time/frequency peak maps, we
then attempt to recover some signal power that has been
lost due to dividing the data into chunks. To do this, we
integrate the peak map over time, i.e. we project it onto
the frequency axis, summing only whether or not a peak
appears at a given time and frequency, not the equalized
power that is given in the color bar of the left-hand panel of
Fig. 1. This is a choice that is, again, motivated by the
presence of noise artifacts: in pure Gaussian noise, sum-
ming signal power provides the best chances of detection.
However, there are powerful noise lines, e.g. the one at
1 Hz, that we do not want to blind us to possible signals.
In this way, we reduce the signal-to-noise ratio of the
instrumental lines, while preserving sensitivity toward
weak, monochromatic signals. We sum each peak map
from datasets 1–5; 7–8 together in this method, allowing us
to recover some signal-to-noise ratio that is lost by breaking
the data into chunks of length TFFT.
At this point, we obtain a “histogram” of the number of

peaks at a given frequency, in the right-hand panel of Fig. 1.
It is on this projected peak map that we select possible
significant candidates, i.e. particular frequencies, whose
number counts are high relative to other frequencies. Since
the frequency range spans 3 orders of magnitude, we select
candidates uniformly in the log of frequency. We decide on
a certain number of candidates Ncand to select such that
we would expect a certain number of coincidences Ncoin

FIG. 1. Left: example time/frequency peak map used in the semicoherent search. Right: projection of the peak map onto the frequency
axis, corresponding to an integration over time.
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between the combined dataset (segments Nos. 1–5; 7–8)
and segment No. 6 if the data were purely Gaussian in the
frequency band of width B,

Ncand ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcoinTFFTB

p
: ð7Þ

Here, we set Ncoin ¼ 1, B ¼ 5 Hz, and TFFT ¼ 8192 s, so
we select Ncand ≈ 200 candidates uniformly in logarithmic
frequency. We select the strongest candidate in each
subband.
Once we have these candidates, we compute our detec-

tion statistic, the critical ratio (CR),

CR ¼ n − μ

σ
; ð8Þ

where n is the number of peaks at a given frequency, and μ
and σ are the average number and standard deviation of
peaks across the subband, respectively. The CR is a random
variable with mean 0 and standard deviation of 1; therefore,
we set a threshold CRthr ¼ 5, corresponding to 5 standard
deviations from the mean, that indicates that a particular
candidate is “significant” and needs to be studied further.

B. Fully coherent method: Matched filter

For the frequencies considered in this analysis and for
the durations analyzed (see Table I), Eq. (6) indicates that
the signal will be purely monochromatic; hence, we also
perform a fully coherent search of each segment, by simply
taking a fast Fourier transform and computing the so-called
matched-filter signal-to-noise ratio (SNR) ρ,

ρ2 ¼ 4Re
�Z

∞

0

df
h̃ðfÞd̃ðfÞ
SnðfÞ

�
ð9Þ

¼ 4Re

�
d̃ðfÞ2
SnðfÞ

�
; ð10Þ

where the tilde denotes the Fourier transform of the
corresponding quantity, d̃ðfÞ is the Fourier transform of
the time-series Δg acceleration data dðtÞ, h̃ðfÞ is the
Fourier transform of the waveform for the dark-photon
signal hðtÞ, and Sn is the power spectral density (PSD) of
the noise. To pass from the first to the second line in the
above equation, we note that our desired signal is purely
monochromatic. Therefore, the best filter, at each fre-
quency, is simply a monochromatic signal at that frequency,
and the number of templates used is simply equal to
the number of frequencies analyzed, Nf ∼ 3.4 × 106. We
impose a threshold ρthr ¼ 8 to indicate significant events,
which corresponds to a false alarm probability, in pure
Gaussian noise accounting for the trials factor, of 1 per 109.

1. PSD estimation at low frequencies

The sparseness of LISA Pathfinder data at low frequen-
cies (defined here as less than 1 mHz) is problematic for a
running-median estimation of the PSD. Hence, we employ
a method developed in [68] in order to obtain a robust
low-frequency estimation of the PSD. The concept is to
average Black-Harris windowed, 50% interlaced power
spectra, obtained with a fixed TFFT at a given frequency,
and then subsequently decrease TFFT at higher frequen-
cies, resulting in more spectra to average. The frequencies
fj at which the PSD estimation are performed are given by
a recursive formula,

fj ¼
2

ð3=5Þj−1 f0; ð11Þ

f0 ¼
M

NmaxΔT
; ð12Þ

where M is the spacing between frequency bins needed to
avoid spectral leakage from the averaging window among
neighboring frequencies, Nmax is the maximum number
of samples to fast Fourier transform (for the starting
TFFT ¼ T0 ¼ 2 × 105 s), and ΔT ¼ 1=10 s is the sam-
pling time. Here, Nmax ¼ T0

ΔT ¼ 2 × 106 samples, and M is
set to four bins at f0, and eight bins for all others, obtained
by ensuring a lack of correlation between neighboring
bins [69]. The factor 3=5 is obtained by avoiding corre-
lations between two neighboring frequency bins,

M − α

M þ α
¼ 3

5
; ð13Þ

where α ¼ 2 ensures that no correlations in the PSD exist
between frequencies spaced by with a spacing δf ¼ 2α

TFFT
.

TFFT scales with the same relation as

TFFT;j ¼
�
3

5

�
j−1

NmaxΔT: ð14Þ

By windowing, Fourier transforming, and averaging the
data in chunks of length TFFT;j, we obtain the values of the
PSD at frequencies between 20 μHz and ∼1 mHz, shown
in Fig. 2 as black dots. For the rest of the parameter space,
a running-median estimation over 20 bins is employed
to estimate the PSD, as in many LIGO/Virgo/KAGRA
searches.

C. Coincidences

We have indicated in Table I eight segments that have
been analyzed in this work. However, we only have data
from one detector. Typically, in gravitational-wave data
analysis, we look for similar signals in a collection of
detectors to rule out the possibility of false alarms. In this
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case, though, we can look for coincidences between two
datasets if their noise distributions are sufficiently different,
such that they “function” as independent probes of dark
matter. Furthermore, the dark-matter signal should always
be present in the data; therefore, if a candidate is seen in one
segment but not in another, this would indicate that it is due
to something artificial, not astrophysical.
In the semicoherent case, we sum the peak maps from

segment Nos. 1–5; 7–8 and require that a candidate in one
detector appear within two frequency bins of a candidate in
another. This choice of two bins is in fact very generous:
the dark-matter signal should be exactly at the same
frequency in each segment. We then impose a threshold
on the critical ratio, requiring that a candidate’s CR is
greater than CRthr ¼ 5.
In the fully coherent searches, we do coincidences

between each segment and segment No. 6 and again
require that candidates be within two frequency bins of
each other. In this case, however, the size of the frequency
bins of each segment will be slightly different, since their
durations are not equal. We therefore use the larger of the
two frequency bins to determine whether a coincidence has
occurred. Then, we impose that the SNR must be greater
than ρthr ¼ 8. As a last stringent check, we will also require
that a candidate be present in each data segment for it to be
considered as an “outlier” worthy of further study.

V. RESULTS

We present here the results of our search for dark matter
interacting with the test masses in LISA Pathfinder.
In the semicoherent search in the high-frequency regime,

the only coincident outliers above CRthr were at ∼70 mHz,
1 Hz, and 3 Hz. These frequencies are contaminated with
very strong noise lines and can thus be discarded. At
70 mHz, there is a known noise disturbance due to the
thrusters [70]; at 1 and 3 Hz, these are harmonics arising
from electrical cross-couplings from the pulse-per-second
timing signal present on the spacecraft [71].
In the fully coherent search, across all frequencies, we

only obtained three coincident outliers in at least two of the
segments analyzed that were not due to a particular known
noise disturbance. They are given in Table II and are barely
above the SNR threshold set. We note, however, that these
outliers did not appear in each segment that we separately
analyzed, indicating that they are due to noise disturbances.
For the critical ratio and the matched-filter SNR, we

provide the statistical distributions obtained from the search
in Figs. 3 and 4, respectively. We can see here that these
distributions are not exactly Gaussian, due to the presence
of nonstationarities in the data.
After vetoing all candidates, we then set upper limits on

the coupling of dark matter to baryons in the test masses.
We provide these limits in Fig. 5 in the low- and high-
frequency regime. Specifically, in the high-frequency
regime, we calculate these limits with both the results of
the projection method and the matched filter for compari-
son. To obtain these limits, we employ the Feldman-
Cousins approach [72] to map values of the critical ratio
and SNR to “inferred” ones to ensure complete coverage at
the chosen confidence level (95% in this case) using
Table 10 of [72]. This procedure inherently assumes
that the critical ratio and SNR follow Gaussian distribu-
tions, but is robust against non-Gaussianities: it provides

FIG. 2. Estimation of the amplitude spectral density at low
and high frequencies, using the method described in [68] and a
running median, respectively.

TABLE II. Remaining candidates from the fully coherent, high-
frequency search that appeared in at least two of the datasets
analyzed. We note that these candidates did not appear in all
segments analyzed, as we would expect for a true dark-photon
signal; thus, we veto them.

Frequency (Hz) SNR

0.474766 8.57
1.213422 8.50
2.584182 8.26

FIG. 3. Distribution of the semicoherent detection statistic CR,
with a Gaussian curve overlayed for data segment No. 6 starting
on February 14, 2017.
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conservative results with respect to simulations of dark-
photon signals injected in real data (see Fig. 12 in [56]).
From these inferred values of our detection statistics, we
compute the constraint on the coupling strength using
Eq. (30) in [56] and Eq. (4) here. Equation (30) in [56]
arises from theoretically calculating the minimum detect-
able amplitude of a monochromatic signal that our search
could see in Gaussian noise.
We note that the upper limits for the semicoherent

method, which combine the peaks in each segment, are
shown for the “limiting” segment No. 6, since the duration
and noise spectral density of this segment impede the
sensitivity of the semicoherent search relative to the other
segments. If we were, instead, to use the critical ratios
arising from integrating over each of the other segments,

the limits would be lower by ∼2, representing the ratio
between the total observation time of segment Nos. 1–5;
7–8 and segment No. 6.
There is an additional effect that must be accounted for

when calculating these upper limits. Due to the fact that
Tobs ≪ Tcoh for the parameter space considered here, the
stochastic nature of the signal amplitude affects the strength
of the dark-matter coupling that we could observe. In other
words, it could be possible that we would observe the dark-
matter field amplitude at a near-zero value, something that
does not happen in the regime Tobs ≫ Tcoh, since we break
the data into chunks of length TFFT ∼ Tcoh, i.e. we observe
for a full coherence time. These effects have been calcu-
lated for both scalar, axion dark matter [73], and vector dark
matter (dark photons) [74]. This stochastic effect amounts
to an Oð1Þ loosening of the upper limits in amplitude, and
in our case, our limits on ϵ2 must be increased by a factor of
7.29. This correction has been applied in Fig. 5.

VI. CONCLUSIONS

We have performed the first search for dark photon dark
matter with LISA Pathfinder data and have set upper limits
on the coupling of dark photons to baryons in the test
masses used in this mission. While these limits are not
stringent compared to those from torsion-balance experi-
ments [37,38], the work here provides a proof-of-concept
pipeline to analyze future LISA data and perform dark-
matter searches. Interestingly, we had to consider prob-
lems such as PSD estimation at very low frequencies,
performing coincidences using one instrument, dealing
with non-Gaussian artifacts arising from a gravitational-
wave detector in space, and breaking the search into
semicoherent and fully coherent regimes. Even though
there were not many visible (by eye) non-Gaussian
disturbances, the Gaussianity of these data broke down
after O(hours–days) in each segment analyzed. Our work
therefore motivates the development of more advanced
PSD estimation algorithms that can handle future data in
LISA, the need for semicoherent, time/frequency-based
analyses of the data, and the power that search techniques
designed for quasimonochromatic signals in ground-based
gravitational-wave detectors have when applied to a LISA-
like mission.
Furthermore, in LISA, many astrophysical signals will be

almost monochromatic—light binary black hole inspirals,
inspiraling galactic white dwarf binaries, etc.; therefore,
our work shows how effective time/frequency analyses,
as opposed to pure, computationally expensive matched
filters, can be to look for different kinds of signals in future
LISA data. While there is of course a sacrifice in sensitivity,
evidenced by comparing the purple and magenta curves in
Fig. 5, the difference is, at most, an order of magnitude in ϵ2

at ∼1 mHz, meaning a factor of a few in strain, which is
consistent with the comparison of semicoherent methods to
matched filtering given in [75].

FIG. 4. Distribution of the matched-filter detection statistic ρ
across the whole frequency range, for data segment No. 6 starting
on February 14, 2017.

FIG. 5. Upper limits in both the fully coherent and semi-
coherent regimes, with the red indicating the regime in which the
low-frequency PSD estimation was used, for the period starting
February 14, 2017. The mass range shown on the x axis
corresponds to the frequency range ½2 × 10−5; 5� Hz.
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For dark-matter searches, LISA will provide access to
masses that ground-based gravitational-wave detectors
simply cannot probe, due to seismic activity and
Newtonian noise on Earth. The sensitivity achievable in
LISA is expected to surpass by several orders of magnitude
the existing constraints on ϵ2 from torsion-balance experi-
ments [20]. It is therefore worth investing in data-analysis
pipelines in LISA, such as the one employed here, to
perform searches to potentially directly detect dark matter
and also other astrophysical sources that would emit
quasimonochromatic signals.
Future work will include implementing a more robust

estimation of the background of our detection statistics as
described in [76], extending our analysis to the whole LISA
Pathfinder dataset, performing simulations of dark-matter
particles interacting with the detector, and applying this
analysis to other types of dark matter that could be detected,
e.g. the dark photon arising from kinetic mixing that
couples to the ordinary photon [77]. All of these avenues
of research will be relevant for when LISA eventually flies.
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