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Soliton in the hostile turbulent wave dark matter (ΨDM) halo of a galaxy agitates with various kinds of
excitation, and the soliton even breathes heavily under great stress. A theory of collective excitation for a
ΨDM soliton is presented. The collective excitation has different degrees of coupling to negative energy
modes, where lower-order excitation generally necessitates more negative energy coupling. A constrained
variational principle is developed to assess the frequencies and mode structures of small-amplitude
perturbations. The predicted frequencies are in good agreement with those found in simulations. Soliton
breathing at amplitudes on the verge of breakup is also a highlight of this work. Even in this extreme
nonlinear regime, the wave function perturbation amplitudes are moderate. The simulation data show a
stable oscillation with frequency weakly dependent on the oscillation amplitude and hint at a self-consistent
quasilinear model for the wave function that accounts for modifications in the ground-state wave function
and the equilibrium density. The mock solution, constructed from the simulation data, can shed light on the
dynamics of the large-amplitude breathing soliton and support the quasilinear model, as evidenced by its
ability to predict well the nonlinear eigenfrequency shifts and large-amplitude breathing frequency
observed in simulations.
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I. INTRODUCTION

Collective excitations or quasiparticles are common
phenomena in many-body physics [1,2]. These emerging
phenomena are pertinent to perturbations about the ground
state and mediated by interactions with many particles in
the system. Interactions with surrounding particles can
yield excitations consisting of a mixture of positive and
negative energy modes, such as electrons and holes [3]. The
collective excitation normally creates density perturbation,
which produces force perturbation, which then gives rise to
velocity perturbation that finally affects density perturba-
tion. The feedback loop proceeds in a self-consistent way
governed by coupled equations. A well-known example is
the longitudinal plasmon in an electrical conductor. Other
collective excitations, such as the transverse plasmon,
involve current perturbations, and the feedback loop can
make a bare photon acquire mass in an electron plasma [2].
These elemental excitations are often regarded as individual
quanta, where different quanta have almost uncorrelated
wave functions.
On the other hand, the Bose-Einstein condensate (BEC)

system can be described by a classical field, where
individual wave functions of many particles are coherently

summed together, i.e., high occupation numbers [4].
Collective excitations in BEC are likewise coherent super-
positions of excited eigenstates of individual quanta and
may exhibit macroscopic interference patterns [5,6]. With
attractive interactions, the Bose-Einstein ground state can
be nontrivial, i.e., nonuniform [7,8], and collective excita-
tions are mediated not only by interactions among itself but
also with the ground state.
In the astrophysics setting, the simplest version of wave

dark matter (ΨDM) is composed of extremely light spin-0
particles ofmass 10−22 eV [9] and is aBEC system [10]. The
extremely light ΨDM in the early Universe was in a false
ground state (a spatially uniform state) with a very low level
of collective excitations. Gravitational self-interactions can
give rise to a negative effectivemass to collective excitations
immediately before matter dominates the Universe, where
long wave excitations are unstable to the Jeans instability
and short waves excitations are suppressed below the
redshifted Compton length [11–13].
As the gravitational instability progresses in the matter-

dominated era, the long wave perturbations are unstable,
much like the particle dark matter, while short waves
remain suppressed [14–20]. Meanwhile, when the insta-
bility enters the highly nonlinear regime, the true ground
state can be spatially separated from a cloud of excited
states [21]. The phase separated ground state is a soliton
located in the galactic core, and the cloud of excitations is
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identified to be the galactic dark matter halo [22], within
which baryons can be gravitationally compressed and build
stars. Since the soliton is physically surrounded by the
cloud of random excitations, it is constantly perturbed.
When the soliton collective excitation modes resonate with
these halo perturbations, these soliton collective modes are
greatly excited. The l ¼ 0 soliton breathing mode is the
most commonly noticeable self-excitation when the soliton
resides in a halo, with a sizable (∼50%) amplitude at a
stable breathing frequency [23–25].
The soliton in simulations has also been observed

to wander around chaotically kicked by the turbulent
halo [26]. Specifically, the interests have been placed on
the survivability of a compact star cluster supposedly
collocated with the invisible soliton of the dwarf galaxy
Eridanus II. While a wandering soliton is able to disinte-
grate the star cluster in a fraction of Hubble time, there is
still room for explanation as to why the central star cluster
can still survive in the presence of the large-amplitude
soliton breathing. If the soliton breathing frequency is in
resonance with orbits of the star cluster or a supermassive
black hole (SMBH) inside the soliton, the star cluster may
be disrupted, and the SMBH may be kicked away in a short
period [27]. Simulations have empirically found that the
soliton breathes at a stable frequency a few times lower than
possible for such resonant interactions to occur, thereby
avoiding the catastrophic destruction of star clusters [24].
The above results have been derived from empirical or
model calculations; they, however, do not offer useful
insights as to why the soliton should breathe at such a
low frequency.
A few works have already discussed the soliton breathing

frequency in the literature [28–30]. The only work of rel-
evance addressing the Schroedinger-Poisson equation [30]
has provided a quantitative result using the standard quan-
tum mechanics perturbation treatment. This treatment,
however, has a different starting point for the perturbed
wave function of the collective excitation, and the results are
the best very approximate. The present work therefore aims
to provide a rigorous theoretical treatment for soliton
collective excitation, which is found to be composed of a
mixture of positive and negative energymodes,missed in the
standard quantum mechanics treatment.
Despite the fact that this work will primarily focus on the

l ¼ 0 soliton breathing mode, we will also make substantial
effort to address the unusual l ¼ 1 dipole excitation. Because
of momentum conservation, the dipole mode can only
undergo peculiar internal counter displacements. Since the
gravitational potential has no dipole in the far field, the dipole
force is entirely confined within the soliton and becomes a
short-range force. On one hand, this creates a substantial
negative energy component. On the other hand, the oscillat-
ing short-range force may have profound but underexplored
effects on stellar heating or tidal disruption inside the soliton.

This prospect provides a considerable incentive for us to look
into the dipole excitation.
We will also consider the large-amplitude soliton breath-

ing mode. In particular, we will propose a model, with
which the simulation data can provide us a mock solution
that sheds lights on what the data tell us. We will also lay
out a framework for the self-consistent quasilinear theory,
which leads to second-order modifications to the equilib-
rium wave function, including nonlinear shifts in eigen-
frequency and changes in the mode profile. The mock
solution appears to be consistent with the quasilinear theory
in reproducing the measured nonlinear frequency shift and
large-amplitude breathing frequency.
Below is a short note of our analytical approach to small-

amplitude perturbations. Because of the long-range nature
of gravitational interactions, eigenmodes of the soliton
collective excitation are governed by two coupled second-
order integral-differential equations. Instead of solving the
eigenmode numerically, we will adopt a more comprehen-
sive variational principle approach in this work. By con-
structing a Hermitian energy integral, we are able to
identify relevant physical effects, allowing us to grasp
what are at work for the collective excitation.
The plan of this paper is as follows. In Sec. II, we

formulate the equations for the self-consistent collective
excitation. Madelung transformation is used to relate
perturbed wave functions to perturbed fluid variables.
The orthogonality condition and the Hermitian nature for
perturbed wave functions and fluid variables are shown. In
Sec. III, variational integrals are derived for evaluation of
the eigenfrequency of collective excitation. Mass and
momentum constraints are considered to impose conditions
for the trial functions in Sec. IV. In Sec. V, the results of
energy integral minimization are presented. We then
perform simulations of the soliton subject to small-ampli-
tude perturbations to verify our predictions presented in
Sec. VI. In Sec. VII, we extend the simulation investiga-
tions to the large-amplitude soliton breathing mode. The
simulation results suggest a quasilinear simple harmonic
oscillator model in the presence of large-amplitude oscil-
lations, a model that incorporates nonlinear modifications
to the equilibrium quantities. We further discuss possible
implications of the results and extensions of the framework
developed in this work in Sec. VIII. We conclude the work
in Sec. IX.
In this work, we let ℏ=mB ¼ 1, where mB is the boson

mass. We also let 4πG ¼ 4π, and so whenever 4π appears,
it is understood that it means 4πG. In some occasions when
confusion may occur, we will spell outG explicitly, with an
understanding that G ¼ 1. In this unit, the peak height of
the soliton mass density profile, ρsðr ¼ 0Þ is set to 1, the
soliton half-height radius is rc ¼ 0.69, and the soliton total
mass is Ms ¼ 3.9. The above information is useful to
interpret figures in this work.

TZIHONG CHIUEH and YI-HSIUNG HSU PHYS. REV. D 107, 063011 (2023)

063011-2



II. FLUID VARIABLES, NEGATIVE ENERGY
COUPLING, AND HERMITIAN PROPERTY

FOR COLLECTIVE EXCITATIONS

The excited state eigenfunctions satisfy

H0ψ
l
n ¼ Ωl

nψ
l
n;

where H0 is the Hamiltonian containing the background
potential V0, i.e., H0 ¼ −∇2=2þ V0. (In the present case
V0 is the soliton gravitational potential.) We call these ψ l

n
the background excitation to be distinguished from the
collective excitation.
On the other hand, the collective excitation describes

perturbations around the soliton ground state Ψ0, and the
perturbed wave function is

δΨ ¼ Ψ −Ψ0;

which satisfies the perturbed Schroedinger equation

−i
∂δΨ
∂t

¼ H0δΨþ δVΨ0 þ δVδΨ: ð1Þ

The last terms on the right is a nonlinear term, and we will
drop this term for the following small-amplitude perturba-
tion treatment.
While the nonlinear ground state takes the form

Ψ0 ¼ f0ðrÞ expðiΩ0tÞ where f0ðrÞ is taken to be real
and positive without loss of generality and Ω0 < 0 when
the attractive potential V0 vanishes at infinity, the total
wave function under perturbation can be expressed as

Ψ ¼ Ψ0 þ δΨ

¼ eiΩ0t½f0 þ F cosðωt −mϕÞ þ iG sinðωt −mϕÞ�

¼ eiΩ0t

�
f0 þ

Gþ F
2

eiðωt−mϕÞ þG − F
2

e−iðωt−mϕÞ
�
; ð2Þ

where Gðr; θÞ and Fðr; θÞ are space-dependent single-
valued real functions when ω is real. Here, ω is the density
oscillation frequency, and mϕ is the phase, where ϕ is the
azimuthal space angle with an integer m. The important
coupling variable G − F is manifestly shown here but
absent in standard quantum mechanics perturbation calcu-
lations. This new variable G − F pertains to the negative
energy (relative to the ground state) mode amplitude and is
present when the self-consistent coupling δV is turned on.
From Eq. (2), it is apparent that the collective excitation is
different from simply beating of the background excita-
tions. In addition, since δV also oscillates with the same
frequency as δΨ, treating δV as in the traditional first-order
perturbation theory in quantum mechanics is dubious.
It is easy to see that the δV ¼ vðr; θÞ cosðωt −mϕÞ with

a real v is consistent with Eq. (1). Following Eq. (1), the
perturbed F and G obey

ωF ¼ ðH0 −Ω0ÞG; ð3Þ

ωG ¼ ðH0 − Ω0ÞF þ vf0: ð4Þ

In the present case and what follows, the Laplacian
in the Hamiltonian should be understood as ∇2 ¼
∇2⊥ −m2ðr sinðθÞÞ−2, where ∇2⊥ ¼ r−2ð∂=∂rÞðr2∂=∂rÞ −
r−2ð∂=∂ cosðθÞÞðsinðθÞ∂=∂θÞ in the spherical coordinate.
For practicality, we may shift the value of the potential at

infinity V0ðr → ∞Þ in such a way as to make Ω0 ¼ 0,
which we shall call the proper frame of reference. The
background excitation now satisfies

H0ψn ¼ ðΩn −Ω0Þψn ≡ ωnψn: ð5Þ

Note that the eigenvalue ωn is now a measurable physical
quantity, the energy level differenceΩn −Ω0. Meanwhile in
the proper reference frame, the collective excitation satisfies

ωF ¼ H0G ð6Þ

ωG ¼ H0F þ vf0: ð7Þ

The frequency ω is instead unaffected by the frequency
shift Ω → 0 and also a measurable physical quantity
describing the oscillation frequency of the perturbed
density. In the following analysis, we will adopt the proper
reference frame unless otherwise explicitly mentioned.
The representation of thewave functionΨ ¼ RΨþ iIΨ

can be regarded as the “Cartesian-coordinate” field repre-
sentation in analogy to the complex coordinate z ¼ xþ iy.
A “polar-coordinate” field representation analogous to z ¼
reiθ has the form Ψ ¼ f expðiSÞ, where f ≥ 0 is the
amplitude and S the phase. This representation lays the
foundation for the Madelung transformation for the fluid
description of wave mechanics. The fluid density is ρ ¼ f2,
and the fluid velocity u ¼ ∇S satisfies the density equation

∂ρ

∂t
þ∇ · ðρuÞ ¼ 0 ð8Þ

and the velocity equation

∂u
∂t

¼ −∇
�
u2

2
−
∇2 ffiffiffi

ρ
p

2
ffiffiffi
ρ

p þ V

�
: ð9Þ

The fluid description will be crucial in bringing out the
physical meaning of the variational integrals to follow.
The perturbed wave function in the polar-coordinate

field representation can be expressed as

δΨ ¼ f expðiSÞ − f0 expðiS0Þ ¼ ðδf þ if0δSÞ expðiS0Þ;

where Ψ0 ≡ f0 expðiS0Þ and we may choose the constant
phase S0 ¼ 0. We thus identify the perturbed x field
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component F cosðωt − αÞ to be the perturbed field
“radius” δf and the y field component G sinðωt − αÞ to
be the perturbed field displacement normal to the radial
direction, f0δS. The perturbed density δρ ¼ 2f0δf ¼
2f0F cosðωt − αÞ, and the perturbed velocity δu ¼ ∇δS ¼
∇ðG sinðωt − αÞ=f0Þ.
With the identification of variables and the equation for

the ground-state wave function H0f0 ¼ 0, it is straightfor-
ward to show that Eq. (6) is equivalent to a disguised
version of the perturbed density equation in the fluid
description,

∂δρ

∂t
¼ −∇ · ðρ0δuÞ; ð10Þ

and Eq. (7) is the linearized version of the perturbed
quantum Bernoulli’s equation

∂δS
∂t

¼ −
1

2
δð∇2 ffiffiffi

ρ
p

=
ffiffiffi
ρ

p Þ þ δV: ð11Þ

Wewill use Eqs. (10) and (11) to shed lights on the proof of
the Hermitian property for collective excitation given by
Eqs. (6) and (7).
Equations (6) and (7) can combine in favor of F or G to

form an integral-differential equation, and solving this
equation poses an eigenvalue problem for ω2. However,
we will not proceed on this route for reasons given in the
Introduction. Instead, we will adopt a variational approach,
which requires the system to be Hermitian. The Hermitian
property of this quantum system turns out to be subtle. A
less thoughtful approach to construction of variational
energy integrals can be incorrect, as demonstrated in
Appendix B of Ref. [24].
As noted earlier, when a self-consistent potential v is

present, it will result in a finite F −G. Second, the variable
F −G is a new degree of freedom [cf. Eq. (2)], consisting
of a negative energy state. We are so motivated to consider
the cross correlation I½δψ �R½δψ �, instead of the self-
correlation R½δψ �R½δψ � or I½δψ �I½δψ � for the system
of equations (6) and (7), for exploring the effect of self-
interactions. We also generalize G and F from real to
complex functions for the proof.
However, I½δψ � ¼ G sinðωt −mϕÞ and R½δψ � ¼

F cosðωt −mϕÞ have opposite time parity, thus yielding a
zero correlation. To handle this problem, we define
Qcosðωt−mϕÞ≡−

R
Gsinðωt−mϕÞdt¼ðG=ωÞcosðωt−

mϕÞ so that Qð¼ G=ωÞ has the correct time parity,
cosðωt −mϕÞ. The variables Q and F will be regarded as
the primary variables for the proof. In the following presen-
tation, we will not consider the factor cosðωt −mϕÞ for the
sake of conciseness since all terms in the following integrals
will contain this same factor, and cosðωt −mϕÞ2 can be
factored out.
Multiply Eq. (7) by F0� of the same quantum number m,

and integrate over the entire volume; we have

ω2

Z
dx3F0�Q ¼

Z
dx3½F0�H0F þ F0�f0v�: ð12Þ

Exchange primed and unprimed variables, and take a
complex conjugate of the product to form another equation.
Subtraction of one equation from the other results in

Z
dx3ðω2F0�Q−ω0�2FQ0�Þ

¼
Z

dx3½ðF0�H0F−FH0F0�ÞþðF0�f0v−Ff0v0�Þ�: ð13Þ

We now want to show
R
dx3F0�Q ¼ R

dx3FQ0�.
Multiply Eq. (6) by Q0�, and we find the integral

Z
dx3Q0�F ¼

Z
dx3Q0�H0Q

¼
Z

dx3
�
−
1

2
∇⊥ · ðQ0�∇⊥QÞ

þ 1

2
∇⊥Q0� · ∇⊥Q

þ
�

m2

2r2 sinðθÞ2 þ V0

�
Q0�Q

�
: ð14Þ

The first term on the right is a total divergence which can be
integrated out. The symmetry of exchanging primed and
unprimed variables and taking complex conjugation yieldsR
dx3Q0�F ¼ R

dx3QF0�.
Next, the right-hand side of Eq. (13) will be shown

to vanish. Replacing Q by F and with the same symmetry
as above, the first set of brackets on the right of Eq. (13) is
seen to vanish. The second set of brackets of Eq. (13)
needs the help from Poisson’s equation ∇2v ¼ 4πð2Ff0Þ,
where 8πðv0�Ff0Þ ¼ ∇⊥ · ðv0�∇⊥vÞ −∇⊥v0� · ∇⊥v−
ðm2=r2 sinðθÞ2Þv0�v. Again, the total divergence is inte-
grated out, and the symmetry makes the second set of
brackets also vanish. We thus arrive at

ðω2 − ω0�2Þ
Z

dx3QF0� ¼ 0: ð15Þ

Either the integral
R
dx3QF0� ¼ 0 when ω2 − ω0�2 ≠ 0 or

the integral is nonzero when ω2 − ω0�2 ¼ 0. The former
shows the orthogonality of G and F0� for G and F0� having
different eigenvalues, and the latter shows that ω2 is real.
This proves Eqs. (6) and (7) are Hermitian.
When we let δuð¼ ∇ðG sinðω −mϕÞ=f0ÞÞ ¼

w⊥ sinðωt −mϕÞ þ wϕ cosðω −mϕÞ, Eq. (14) can be
expressed as

1

2

�
ω

ω0� −
ω0�

ω

�Z
dx3f20w · w0� ¼ 0: ð16Þ

To show Eq. (16), we note the density perturbation is related
to the momentum density perturbation [cf., Eq. (10)] via
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2ωFf0 ¼ −∇⊥ · ðρ0w⊥Þ − ρ0ðmwϕ=r sinðθÞÞ. Given this
relation, we now have

QF0� ¼ −
�

1

2ωω0�

��
G
f0

��
∇⊥ · ðf20w�⊥0 Þ þ

mw�
ϕ0f20

r sinðθÞ
�

¼
�

1

2ωω0�

��
f20w

�⊥0 ·∇⊥
�
G
f0

�
−∇⊥ · ðGf0w�⊥0 Þ

−f20
w�
ϕ0 ðmG=f0Þ
r sinðθÞÞ

�
; ð17Þ

where the total derivativewill be integrated out. Recognizing
w⊥ ¼ ∇⊥ðG=f0Þ and wϕ ¼ −mG=ðf0r sinðθÞÞ and apply-
ing the divergence theorem, we find

Z
dx3QF0� ¼ 1

2ωω0�

Z
dx3f20w

0� · w; ð18Þ

which1 yields Eq. (16) from Eq. (15). Equation (18) can also
be obtained by multiplying the complex conjugate of Eq. (6)
by Q and then performing a volume integral, a straightfor-
ward calculation that we will skip here.
When the primed is removed in Eq. (18), we may

identify the physical meaning of jωj2 R dx3QF� to be
the fluid flow energy, a positive definite quantity, andR
dx3QF� to be ð1=2Þ R dx3ρ0jξj2, where ξð¼ w=ωÞ is the

displacement field of the fluid element.
It can be verified that neither

R
dx3FF0� nor

R
dx3GG0�

is to vanish when the primed differs from the unprimed, due
to the presence of the interaction term in Eq. (8). As a
result, we cannot stress enough the importance of the self-
gravitational interaction that changes the symmetry struc-
ture of equations.

III. VARIATIONAL PRINCIPLE

Given Eq. (18) and identifying the primed with the
unprimed, Eq. (12) gives

ω2

2jωj2
Z

dx3ρ0jwj2 ¼
Z

dx3½F�H0Fþvf0F��

¼
Z

dx3
�j∇⊥Fj2

2
þV0jFj2

−
j∇⊥vj2
8π

þm2ðjFj2− jvj2=4πÞ
2r2 sinðθÞ2

�
: ð19Þ

It represents the energy of the hydrodynamic collective
excitation. When ω2 > 0, the variables G, F, w, and v are

real functions, but when ω2 < 0, all variables become
complex. The last equality of Eq. (19) demonstrates the
familiar form of energy, consisting of the quantum energy,
the background potential energy, and the negative self-
interaction gravitational energy, respectively. The left-hand
side, on the other hand, is the flow energy (ω2 > 0) or the
negative flow energy (ω2 < 0), originally absent in the
soliton ground state. Equation (18) implies that generation
of the flow kinetic energy comes from competitions of
positive work done from the energy supply of quantum
excitation and negative work from the energy sink of self-
consistent interactions; no matter whether the energy
supply or the energy sink is to dominate, the flow energy
will be generated.
Mathematically, for a system to be Hermitian, it means

that the eigenvalue ω2 is real and bounded from below, for
which a minimum eigenvalue ω2

min exists; on the other
hand, for a system to be variational, it demands that this
minimum-energy eigenfunction can be approached by
appropriate trial functions. If the negative potential energy
overwhelms the positive background energy, the system
can be unstable where ω2 < 0, and the minimum-energy
state is the most unstable state. If we were to remove
the negative self-induced potential energy in Eq. (18), the
solution to the variational principle should recover the
background eigenfunction defined by H0ψn ¼ ωnψn, and
the minimum of ω2 is ω2

1 of the lowest-energy background
excited state. (The ground state is excluded due to the mass
conservation to be shown in the next section.) In this
situation, the perturbed wave function δΨ becomes the
standard bound-state eigenmodes of the Schroedinger
equation FðrÞ expðiωtÞ and F − G ¼ 0. On the other hand,
for collective excitations, we additionally have a negative
energy component G − F from the negative gravitational
self-interaction energy, yielding ω2

min < ω2
1. Note that,

though the eigenmode of collective excitation may be
expressed as a mixture of background excitations,
there are exceptions, as will be demonstrated for the
l ¼ 1 mode.
Equation (19) can be recast into an operationally

convenient form for variational principle. We multiply
all terms in Eq. (19) by jωj2 and use Eq. (6) to convert
ωF to H0G. The variational principle then becomes

ω2 ¼ B
A
≥ ω2

min; ð20Þ

where

B ¼
Z

dx3½ðH0G�ÞðH2
0GÞ þ 8πðf0H0G�Þ∇−2ðf0H0GÞ�

ð21Þ

and

1The fluid approach using the velocity perturbation w is valid
as long as the background density f20 has no null; if it does, the
fluid approach may fail, Eq. (18) may not hold, and the integralR
dx3QF� may no longer be positive definite since there may be a

surface term at the background density null.
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A ¼ 1

2

Z
dx3f20jwj2 ¼

Z
dx3G�ωF ¼

Z
dx3G�ðH0GÞ;

ð22Þ

where ∇−2 is the inversion of the Laplacian operator
∇2 ¼ ∇2⊥ −m2=ðr sin θÞ2. The inequality of Eq. (20)
becomes an equality when the trial function is a true
lowest-energy collective excitation; any mixture with other
functions will raise the value of ω2 above ω2

min.
In the discussions to follow this section, we will resume

the reality of G, F, and ω. This is because ω2 > 0 for the
soliton system.

IV. CONSTRAINTS

In an isolated soliton, conservation of mass and momen-
tum must be strictly obeyed. Below, we show how the
conservation laws can be reinforced. There is, however, a
caveat to the mass and momentum constraints. For a
nonisolated soliton embedded in a halo that can potentially
exchange mass and momentum, these constraints may no
longer hold. Despite the caveat, the nonviolation of mass
and momentum conservation should hold on the dynamical
timescale, Oð1=ωÞ. It is inconceivable that the mass can
exchange with the halo at this rapid rate. For momentum
conservation to violate, the external force must be locally
strong, comparable to the self-binding force of the soliton,
for it to take effects on this timescale. The ψDM halo itself
does not provide a force of this magnitude, but a massive
star cluster or a supermassive black hole collocated with the
soliton may offer such a possibility.

A. Mass constraint (l = 0, m= 0)

We impose the constraint δM ¼ R
d3xδρ ¼ 0 as the

integration is over the entire volume, representing that
perturbations respect the mass conservation. We thus want

Z
dx3f0F ¼ 0: ð23Þ

Only the l ¼ 0 eigenfunction may violate the mass con-
straint. For l > 0 excitations, the mass conservation is
guaranteed by the angular integral.
The constraint for F, Eq. (23), is precisely the orthogon-

ality condition for the background eigenfunctions ψ0
n

satisfying Eq. (5). When F is represented by a mixed
modes of ψ0

n [excluding f0ð¼ Ψ0Þ], the mass conservation,
Eq. (23), is guaranteed. Here, the superscript 0 stands for
l ¼ 0 modes. We therefore express the trial function F as a
linear combination of ψ0

n with n ≠ 0.
On the other hand, G can contain the ground state mode.

The H0 operator, however, projects away the ground-state
contribution from H0G in Eqs. (21) and (22). As a result,
the energy integrals A and B contain no n ¼ 0 ground-state
contribution.

B. Momentum constraint (l = 1, m = 0)

This constraint demands that the dipole mode must be
such that the mass center position of the soliton remains
fixed during the sloshing oscillation. Using two concentric
mass shells to represent the soliton mass distribution, when
the two shells oscillate back and forth and the inner shell
moves to the right, the outer shell must move to the left to
keep a zero mass center movement.
The dipole excitations forG and F assume the functional

forms—ðx; y; zÞKðrÞ for some radial function KðrÞ. Those
associated with x and y are m ¼ �1 modes, and those
associated with z are them ¼ 0mode. Because of the space
isotropy, we shall only address the z direction displacement
without loss of generality.
The mass center position in the z direction for a

perturbation is
R
dx3zð2f0FÞ cosðωtÞ. We let F ¼ zKðrÞ

with some radial function K. The angle can be first
integrated, 2π

R
1
−1 cosðθÞ2d cosðθÞ ¼ 4π=3, and the volume

integral becomes cosðωtÞð8π=3Þ R r4f0Kdr. The mass
center position must remain at zero for momentum con-
servation, and hence the radial integral must be zero. From
the construction of mass conservation, where ψ0

n is
orthogonal to f0, we need KðrÞ ¼ ψ0

n=r2, or

F ¼ ðψ0
n=rÞ cosðθÞ: ð24Þ

On the other hand, the momentum conservation demands
that the momentum density in the z direction sinðωtÞ×R
dx3f20∂ðG=f0Þ=∂z¼−2sinðωtÞR dx3Gðdf0ðrÞ=drÞðz=rÞ

must be zero, where an integration by part has been used.
We let G ¼ zKðrÞ. The resulting radial integral becomesR
r3Kðdf0=drÞdr¼−

R
f0ðdðr3KÞ=drÞdr. We thus require

r−2dðr3KÞ=dr ¼ ψ0
n for the radial integral to vanish.

Hence,

G ¼ r−2
�Z

r2ψ0
ndr

�
cosðθÞ: ð25Þ

Equations (24) and (25) are incompatible. Since
ψ0
nðr ¼ 0Þ is finite, the former is a singular solution at

small r, and the latter is a regular solution linear in r.
Therefore, we choose the latter. This choice results in a
regular F [cf. Eq. (6) and Sec. V B],

F ¼ H1
0G
ω

¼ cosðθÞ
ω

�
−1
2

dψ0
n

dr
þ V0

r2

Z
r2ψ0

ndr

�
: ð26Þ

This F can also produce a zero mass center displacement as
shown in Appendix A.
The reason we are able to construct regular F=r cosðθÞ

beyond the standard procedure like for the singular F [cf.,
Eq. (24)] and meanwhile make it orthogonal to f0 is that
the regular F=r cosðθÞ lies outside the functional space
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spanned by the complete set of bound states ψ0
n’s, which

diminish exponentially at large r, as F= cosðθÞ vanishes at
r → ∞ as r−3. In fact, G= cosðθÞ also vanishes at large r
as r−2.
Unlike the l ¼ 0 perturbation, terms in the series

expansion of G ¼ cosðθÞPn a
1
nr−2

R
r2ψ0

ndr are not
orthogonal to each other; neither are the corresponding
terms in regular F. But this nonorthogonality property does
not hamper the construction of trial functions as long as
different eigenmodes of collective excitation Gi and Fj are
orthogonal when i ≠ j [cf., Eq. (15)].

C. Angular momentum constraint (l = 1;m = �1)

Weturnour attention to the total angularmomentum,which
also needs to be conserved, dhLzi=dt ¼ 0. Here, hLzi stands
for the volume average of the angular momentum density
fluctuation. The total angular momentum of the excitation isR
dx3f20ẑ · r × δu ¼ R

dx3f20r sin θwϕ cosðωtþ ϕÞ, where
wϕcosðωtþϕÞ¼ð1=rsinðθÞÞð∂=∂ϕÞ½Gðr;θÞsinðωtþϕÞ=f0�,
and is the ϕ component of δu. Here,Gðr; θÞ ¼ KðrÞr sinðθÞ
with KðrÞ being a radial wave function. It follows that
wϕ ¼ KðrÞ.
Because of the factor cosðωtþ ϕÞ in the volume integral

of hLzi, the ϕ integration for the total angular momentum
yields a zero volume integral. It implies that no net angular
momentum is to be excited, and no constraint is to be
imposed on perturbations from the angular momentum
conservation.

V. TRIAL FUNCTIONS AND RESULTS

To determine precise values of the collective excitation
frequencies, the soliton solution must be constructed with
high accuracy. The soliton solution we build satisfies the
virial condition as in Sec. B, to a high accuracy with
errors < 10−4%.

A. l = 0 radial mode

As G ¼ P
n a

0
nψ

0
n, we have H0

0G ¼ P
n a

0
nωnψ

0
n

and ðH0
0Þ2G ¼ P

n a
0
nω

2
nψ

0
n for terms of n ≠ 0 in the

variational integrals. The gravitational self-interaction,
in fact, has a convenient form for l ¼ 0 modes. The
enclosed perturbed mass δMðrÞ within a radius r can
be derived from Eq. (10), δMðrÞ¼ 4π

R
r2drð2f0FÞ¼

ð4π=ωÞR r2dr½ð1=r2Þdðr2f20wÞ=dr� ¼ ð4πr2=ωÞf20w,

yielding the perturbed gravitational force −dv=dr ¼
−δMðrÞ=r2 ¼ ð4π=ωÞf20w. The negative self-interaction
energy density in Eq. (19) thus becomes

−ð1=8πÞ
�
dv
dr

�
2

¼ −
�
4πf20ðrÞ

ω2

��
1

2
f20ðrÞw2

�
: ð27Þ

The quantity 4πf20ðrÞ is, in fact, ωJðrÞ2, with ωJðrÞ being
the local Jeans frequency, illustrating the relation between
the Jeans frequency and self-gravitational interactions.
We find G ¼ P

5
n¼0 a

0
nψ

0
nðrÞ can model the spherical

symmetric breathing mode well. We adopt the Markov-
chain Monte Carlo (MCMC) method for optimization. The
square-normalized minimum-energy trial function G is
found to have the optimal coefficients shown in Table I.
The monopole G has a contribution of the ground state

ψ0
0, despite that this contribution has no effect on the

variational evaluation of ω. This peculiar feature is only
limited to the monopole mode due to the fact that
∇ðG=f0Þ¼∇½ðG=f0Þ−S0�¼v, and G¼f0ðS0þ

R
r
0 drvrÞ,

where v is the fluid velocity and the constant phase S0 is an
integration constant that can render a nonvanishing ψ0

0

component in G of l ¼ 0. The coefficient a00 of the ψ0
0

component can be determined by projecting ωG in Eq. (7)
to ψ0

0. It follows that a00 ¼ ω−1
R
dx3vf0ψ0

0=
R
dx3ðψ0

0Þ2,
taking advantage of the relation

R
dx3ψ0

0H0F ¼ 0. In the
integral, the asymptotic perturbed potential vðr → ∞Þmust
be set to 0.
The trial function G and F are presented in Fig. 1, in

which the relative coupling strength of negative-to-positive
energy jF −G=F þGj is very large, about 600%, at the
soliton peak. The frequency so evaluated converges to
ωl¼0 ¼ 1.11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsðr ¼ 0Þp

, consistent with the breathing
frequency ωl¼0 ¼ 1.05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
found in the soliton

simulation to be presented in the next section. The con-
vergence with respect to the number of terms in the normal-
mode expansion is relatively slow, but the agreement
is good.
Perhaps unexpectedly, the velocity perturbation

(¼∇ðG=f0Þ), in fact, diverges exponentially at large r.
The diverging velocity nevertheless yields a finite flow
energy ð1=2Þf20w2 as f20 decreases with distance much more
rapidly to offset the divergence.

TABLE I. Linear predictions and simulations.

l-mode Simulation ωa Predicted ωa (a0; a1; a2; a3; a4; a5)
b

0 1.05 1.11 (−0.90, 0.424, 0.07, 0.033, 0.021, 0.016)
1 1.69 1.718 (X, 0.841, 0.525, 0.12,0.044,0.012)
2 1.614 1.615 (X, 0.999, 0.04, 0.02, 0.015, 0.005)

aAll ω’s are normalized to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsðr ¼ 0Þp

.
bAll sets of coefficients are squared normalized.
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B. l = 1 mode

Because of the constraint of momentum conservation,
the l ¼ 1modes are the most complicated modes among all
to evaluate. Since all m ¼ 0;�1 modes share the same
radial function. We focus on the m ¼ 0 mode.
We demand G ¼ Y1

0r
−2P

n

R
r2ψ0

ndr for m ¼ 0, where
Y1
0 ¼ cosðθÞ is the spherical harmonic function of l ¼ 1,

m ¼ 0. This expression of G makes it difficult to evaluate
when the l ¼ 1Hamiltonian acts onG, and it requires some
preparatory work.
To begin, we first define H1

0 and H1r
0 to be the l ¼ 1

background Hamiltonian and the radial part of this
Hamiltonian, respectively, and H0

0 to be the l ¼ 0

Hamiltonian. For an arbitrary radial function qðrÞ, we have

H1
0ðcosðθÞqðrÞÞ ¼ cosðθÞH1r

0 qðrÞ

≡ cosðθÞ
�
H0

0 þ
1

r2

�
qðrÞ

¼ cosðθÞ
��

−1
2r2

ðr2qðrÞÞ0
�0

þV0ðrÞqðrÞ
�
:

ð28Þ

Here, the prime denotes the radial derivative in this section.

Inserting G from Eq. (25), we find

ωF ¼ H1
0G ¼ cosðθÞH1r

0

�
1

r2
X
n

Z
r2ψ0

ndr

�

¼ cosðθÞ
X
n

�
−1
2

dψ0
n

dr
þ V0

r2

Z
r2ψ0

ndr

�
: ð29Þ

Using the identity

Z
r2qðrÞH1r

0 qðrÞdr ¼
Z

dr

�
1

2r2

�
dðr2qÞ
dr

�
2

þ V0r2q2
�
;

ð30Þ

we obtain

Z
dx3GH1

0G ¼ 4π

3

X
n

Z
∞

0

�
r2

2
ðψ0

nÞ2

þV0

r2
X
k

�Z
r2ψ0

ndr

��Z
r2ψ0

kdr

��
dr;

ð31Þ

and

Z
dx3ðH1

0GÞH1
0ðH1

0GÞ ¼
4π

3

X
n;k

Z
dr

�
1

2r2

�
r2

2

dψ0
n

dr
− V0

Z
r2ψ0

ndr

�0�r2
2

dψ0
k

dr
− V0

Z
r2ψ0

kdr

�0

þV0r2
�
1

2

dψ0
n

dr
−
V0

r2

Z
r2ψ0

ndr

��
1

2

dψ0
k

dr
−
V0

r2

Z
r2ψ0

kdr

��

¼ 4π

3

X
n;k

Z
dr

�
1

2r2

�
ωnr2ψ0

n þ
dV0

dr

Z
r2ψ0

ndr

��
ωkr2ψ0

k þ
dV0

dr

Z
r2ψ0

kdr

�

þV0r2
�
1

2

dψ0
n

dr
−
V0

r2

Z
r2ψ0

ndr

��
1

2

dψ0
k

dr
−
V0

r2

Z
r2ψ0

kdr

��
: ð32Þ

The Poisson equation can be treated similarly by
recognizing ∇2ðR½Y1

m�qðrÞÞ ¼ R½Y1
m�ðr−2ðr2qðrÞÞ0Þ0. For

the dipole perturbation (l ¼ 1, m ¼ 0), the potential
perturbation v ¼ pðrÞ cosðθÞ, and we have the Poisson
equation ðr−2ðr2pðrÞÞ0Þ0 ¼ 8πðf0=ωÞ

P
n½ð−1=2Þðψ0

nÞ0þ
r−2V0

R
r2ψ0

ndr�. Integrate once, and one has

ω
d
dr

ðr2pÞ ¼ 4πr2
X
n

�
−
Z

f0ðψ0
nÞ0dr

þ2

Z
f0V0

r2

�Z
r2ψ0

ndr

�
drþ Cn

�
; ð33Þ

where Cn is the integration constant. Integrate one more
time, and pðrÞ is identified. Finally, we arrive at the

corresponding term in Eq. (21) for the self-gravitational
energy,

8π

Z
dx3ðf0H1

0G
�Þ∇−2ðf0H1

0GÞ

¼ ω2

Z
dx3

v∇2v
8π

¼ −ω2

Z
dx3

ð∇vÞ2
8π

¼ −
ω2

6

Z
dr

�
r2
�
dp
dr

�
2

þ 2p2

�

¼ −
ω2

6

Z
dr

��
1

r
dðr2pÞ
dr

− 2p

�
2

þ 2p2

�
; ð34Þ
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where Eq. (33) can be substituted into the last equality and
the left-hand side of this equation is independent of ω when
expressed in ψ0

n.
Note that p0 is the perturbed gravitational dipole force

and is ≤ Oðr−3Þ. Hence, ðr2pÞ0 ≤ Oðr−1Þ, and this fixes the
integration constant

P
n Cn in Eq. (33). Moreover, we also

need the boundary condition p → 0 for large r.
Equations (30)–(34) are ones we have used to calculate

the trial function. With five-mode series expansion with ψ0
n,

the MCMC method finds the optimal trial function
Gð¼ cosðθÞr−2 R r2

P
5
n¼1 a

1
nψ

0
ndr) that has square-normal-

ized coefficients given in Table I. The optimal trial function
gives the eigenfrequency ωl¼1 ¼ 1.718

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
. As a

comparison, the soliton simulation yields an l ¼ 1 sloshing
frequency 1.69

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
. The agreement is good. We

display the l ¼ 1 optimal radial trial functions, G and F,
in Fig. 1. The relative coupling strength of negative-to-
positive energy jF −G=F þGj is high reaching, 33%, near
the soliton waist.

C. l = 2 mode

Higher multipole (l ≥ 2) modes have no constraint from
conservation laws. The trial functions can be evaluated
straightforwardly from the linear combination of eigenfunc-
tions of the background Hamiltonian Hl

0, i.e.,
G ¼ ½P5

n¼1 a
l¼2
n ψ l¼2

n ðrÞ� cosð2θÞ, which is similar to the
monopole (l ¼ 0) case. The optimal normalized coefficients

forG are presented inTable I, and they are entirely dominated
by the first background excitation. Also shown in Fig. 1 are
the optimized l ¼ 2 radial functions of G and F. The
predicted l ¼ 2 frequency ωl¼2 ¼ 1.614

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
, while

the simulation yields ωl¼2 ¼ 1.615
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
. The conver-

gence of the series expansion is excellent. So is the agree-
ment. However, the relative coupling strength of negative-to-
positive energy is essentially zero since F − G=F þ G ≈ 0.

D. Low-l collective excitation and trend
of high-l, n modes

Mode structures in Fig. 1 reveal that the relevant variable
F −G for collective excitation is most prominent for l ¼ 0,
1 modes. The relative coupling strength of negative-to-
positive energy jF −G=F þGj can be as high as 600% and
30% for l ¼ 0 and l ¼ 1 modes, but the negative energy
coupling quickly diminishes for the l ¼ 2 mode. The
negative energy coupling strength is ultimately related to
the importance of self-gravitational interactions, indicating
that the l ¼ 0 mode has the strongest self-gravity effect.
On the other hand, from the mode expansion for

determining the optimal trial functions, we see the trend
for high-l modes. The MCMC convergence increasingly
becomes faster as l gets higher. The l ¼ 2 is already almost
entirely dominated by the self-gravity-free background
state. We therefore anticipate that the background state
becomes indistinguishable from even higher-l collective
excitation for which a single state dominates. The trend also
applies to those high n modes, for example, the l ¼ 0,
n ¼ 1 mode shown to be prominent in Fig. 2 and discussed
in the next section.
This indicates that high collective excitation modes

become decoupled from the self-gravity. In that situation,
the profiles of G and F will be increasingly similar, i.e.,
Gn

l ðrÞ → bnl F
n
l ðrÞwith b ¼ ω=ωn

l < 1 but→ 1. Here,ωn
l is

the eigenfrequency of the background n, l state. The fact
that bnl < 1 is because the frequency of collective excitation
ω is partially contributed by the negative gravitational self-
interaction but ωn

l has no such contribution. The reason
why bnl → 1 for higher l, n can be because higher n means
shorter wavelengths, and the self-gravity disfavors short
wavelengths, emptying the effect of self-gravity; moreover,
higher l modes are located too far away from the soliton,
and with a low-density background, self-gravity never
prevails.
In fact, it does not take high values of n and l to make

collective excitation and background excitation indistin-
guishable. For example, the soliton ground state is quan-
tized at about half of the potential depth from the bottom of
the potential well; the soliton l ¼ 0, n ¼ 1 excitation is
quantized at about 3=5 higher than the ground-state level,
but l ¼ 1, n ¼ 0 and l ¼ 2, n ¼ 0 excitations are quantized
at 3=4 and 8=9 higher than the ground state, where 100%
higher corresponds to the continuum. As a result, the rest of

10-1 100 101
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10-4

10-3

10-2

10-1

100

|
|

F
0

-G
0

F
1

G
1

F
2

G
2

FIG. 1. Radial mode profiles of small-amplitude F and G for
l ¼ 0, 1, 2 collective excitation. (The absolute mode amplitudes
are arbitrary.) The monopole mode profiles have the greatest
overlapswith the soliton (r < 1), and themode has strong coupling
jG − F=Gþ Fj ∼ 600% to the negative energy component. The
dipole profiles have moderate overlaps with the soliton, and it has
moderate negative-energy coupling jG − F=Gþ Fj ∼ 30%. The
quadrapole radial profiles have the least overlaps with the soliton,
and it has very small negative-energy coupling as jG − F=Gþ Fj
is almost zero.
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the higher excitations are like the Rydberg atom approach-
ing the continuum, and the self-gravity has no role to play.
For this reason, only l ¼ 0 and l ¼ 1 modes have mode
structures of sufficiently long wavelengths and are located
well within the soliton to couple to the self-gravity.

VI. SIMULATIONS AND VERIFICATION
OF LINEAR ANALYSES

We conduct a series of simulations to verify the predicted
frequencies of l ¼ 0, l ¼ 1, and l ¼ 2 modes. The simu-
lation code is a part of the GAMER package [31,32], and it
runs in a periodic box of 5123 grids. Details of our
simulation code are largely described in Ref. [14]. This
is a spectral code evolving kinetic energy and potential
energy (gravity) separately, where the propagator of the
former acts in the Fourier space and that of the latter acts in
the configuration space. As these simulations aim to check
against analytical results to a high precision, we choose not
to adopt grid refinement so as to avoid any numerical error
possibly arising from coarse-fine grid interpolations. The
soliton half-height radius rc is chosen to be 1=64 of the box
size to permit ample space for the gravity to work properly.
The force balance of the initial unperturbed soliton state

has been checked by running a long simulation to ensure
the soliton remains static. Subsequently, we excite one
particular l perturbation in each simulation run, and the
excitation amplitude is sufficiently small ð<10%ρsð0ÞÞ to
guarantee the perturbation is in the linear regime. Here,
ρsð0Þ is the equilibrium soliton density evaluated at the
peak r ¼ 0. All initial density perturbations are constructed
via the mass conservation equation, Eq. (8), with a
displacement field ξ, which can be tailored to excite a
particular mode. But in this work, we choose a rather
arbitrary radial profile of the displacement field, with the
constraints that ξ smoothly approaches 0 as r → 0 and∞ so
that ξ peaks near the waist of the soliton. In addition, each
simulation is run for 200 oscillation cycles to keep the
frequency resolution to <1%.
We have adopted different methods for analyzing the

oscillations of different l modes. For the monopole (l ¼ 0)
perturbation, we take the instantaneous peak density ρpeak
of the soliton as the measure of oscillation. For the dipole
mode (l ¼ 1), the perturbation is along the z direction, and
we adopt the volume integral

R
dx3r cosðθÞρðx; tÞðr−1Þ as

the measure of oscillations, where cosðθÞ is the angle
between the radial direction and the z direction. Note
that the momentum conservation demands the integralR
dx3r cosðθÞρðx; tÞ to be constant. The weighting r−1 in

our diagnostic integral favors sampling the inner part of the
soliton, for the reason that the dipole perturbation changes
signs near the soliton waist and this weighting avoids
cancellation of opposite signs. As for the quadrapole mode
(l ¼ 2), one principle axis of the l ¼ 2 perturbation is also
along the z direction, and we take the same volume integral

of l ¼ 1, except for replacing cosðθÞ by cosð2θÞ, as the
measure of oscillations.
Spectra of these three sets of time series data are shown

in Fig. 2 for l ¼ 0, 1, 2 modes. The observed (predicted)
ω normalized to ðGρsðr ¼ 0ÞÞ1=2 are, respectively, 1.05
(1.11), 1.69 (1.72), and 1.614 (1.615). The consistent
simulation results verify linear perturbation predictions
via the variational principle.
The l ¼ 0 second excitation mode has a sizable peak at

1.83ðGρsðr ¼ 0ÞÞ1=2. This is in agreement with the pre-
dicted value 1.836ðGρsðr ¼ 0ÞÞ1=2 determined by using the
variational principle, where the first excitation mode is
projected away from the parameter space of search. Here,
the convergence of the MCMC search is quite rapid as only
the three lowest background excitation eigenfunctions are
adequate to construct this mode. The second excited modes
for l ¼ 1 and l ¼ 2 are also visible near 2ðGρsðr ¼ 0ÞÞ1=2
in Fig. 2.
We also present in Fig. 2 eigenfrequencies of the soliton

wave function perturbed by a small l ¼ 0 mode and
evaluated at r ¼ 0. Both the real and imaginary parts of
the wave function have identical frequency peaks, and we
present the frequency response of the real part j½RΨð0Þ�ωj.
The main frequency peak at Ω0 ¼ −2.465ðGρsð0ÞÞ1=2 is
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FIG. 2. Frequency power spectra for small-amplitude l ¼
ð0; 1; 2Þ collective excitation with the primary peaks at around
ð1.05; 1.69; 1.61Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gρsðr ¼ 0Þp
, as well as the wave function

eigenfrequency response j½RΨð0Þ�ωj of the l ¼ 0mode peaked at
around −2.47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsðr ¼ 0Þp

. (The absolute scale of vertical axis
is arbitrary, but the relative strengths of peaks of the same modes
are accurate.) All three frequency power spectra of perturbations
have distinct secondary peaks near 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsðr ¼ 0Þp

, which are the
second or higher excitation of l ¼ 0, 1, 2. The weak secondary
peak of j½RΨð0Þ�ωj at −3.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρsð0Þ

p
comes from the l ¼ 0

negative energy mode that has frequency Ω0 − ω; cf, Eq. (2).
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the negative eigenfrequency of the soliton ground
state [cf. Eq. (2)].2 A weak secondary peak is near
−3.5ðGρsð0ÞÞ1=2, and it corresponds to the negative-energy
response of collective excitation ðF −GÞ=2 at frequency
Ω0 − ω, according to Eq. (2). There should have been
another much weaker peak at Ωþ ω pertinent to the
positive energy contribution of ðF þ GÞ=2, but it is too
weak to be visible in Fig. 2.

VII. LARGE-AMPLITUDE BREATHING
MODE (l = 0)

A. Spectrum analysis

In most soliton simulations regardless of whether the
soliton is in isolation or surrounded by a halo, the soliton
was seen to stably breathe with a substantial amplitude,
which can be as large as 50% about the equilibrium value.
Unexpectedly, the large-amplitude soliton oscillation
appears to be nonchaotic with a well-defined frequency.
Motivated by this observation, we set out to conduct a
systematic investigation to explore this unique property of
the soliton.
We begin by conducting a series of simulation runs to

examine soliton breathing at different amplitudes. The
simulation setup is identical to the one for small-amplitude
l ¼ 0 perturbation. To control oscillation amplitudes
while keeping the soliton mass conserved, we initiate a
radial displacement field ξðrÞ, which yields an initial
density distortion δρðrÞ ¼ −ð1=r2Þdðr2ξðrÞρsðrÞÞ=dr.
This ensures the volume integration of δρ to be zero,
thereby conserving the mass. The choice of ξðrÞ is rather
arbitrary, as long as ξðrÞ does not cross zero, ξ ∝ r for small
r and ξ vanishes sufficiently fast at a large distance.
Three runs are conducted with 30%, 75%, and

100% density variations [2ðρmaxðr ¼ 0Þ − ρminðr ¼ 0Þ=
ðρmaxðr ¼ 0Þ þ ρminðr ¼ 0ÞÞ]. For the case of 100% den-
sity variation, we in fact initialize a displacement field that
highly compresses the soliton, yielding an initial density a
factor of two higher than the maximum density of the
subsequent stable oscillation, but only to find that 10% of
the soliton original mass is expelled away to the vast empty
space of the simulation box in the first half oscillation
cycle, and this amount of mass never returns to the soliton.
It suggests that 100% density variation is likely the
maximum for the soliton to support stable oscillation.
The fact that very large l ¼ 0 disturbances lead to mass
loss may have an implication of a stable soliton mass for a
soliton in a turbulent halo. We will come back to this issue
on the subject of the soliton mass in Sec. VIII.
The spectrum analysis of three time series of ρðr ¼ 0; tÞ

surprisingly shows that the soliton breathing modes of
different amplitudes all have primary frequency peaks in

the narrow range of 1; 05 − 1.07 ðGρAðr ¼ 0ÞÞ1=2 as shown
in Fig. 3, in which ρAð0Þ is the averaged soliton peak
density over the whole run. As the amplitude increases, the
spectral lines are only broadened to a very little extent,
indicative of phase stability. These evidences provide an
important clue for our modeling of nonlinear soliton
breathing.
The oscillation of ρðr ¼ 0; tÞ, however, shows various

degrees of amplitude modulation for all cases; the
amplitude modulation can be as large as 20% for the
largest-amplitude case. This amplitude modulation can be
caused by the appearance of second harmonics, visible at
2.1ðGρAð0ÞÞ1=2. The second excitation at 1.83ðGρAð0ÞÞ1=2
becomes less prominent as the breathing amplitude gets
larger. This observation suggests that we may focus on a
single nonlinear mode in modeling the soliton breathing.
Finally, we show eigenfrequencies of the wave function

j½RΨð0Þ�ωj for the 100% amplitude l ¼ 0 perturbation case
in Fig. 3. Aside from the dominant negative energy mode
pertaining to G − F near frequency −3.6ðGρAð0ÞÞ1=2 also
seen in Fig. 2, we now see the positive energy mode
associated with Gþ F near frequency −1.5ðGρAð0ÞÞ1=2.
Upon closely examining the main eigenfrequency, we
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FIG. 3. Frequency power spectra of ρðr ¼ 0; tÞ for nonlinear
monopole modes of different perturbation strengths and the wave
function frequency response j½RΨð0Þ�ωj for the largest-amplitude
l ¼ 0 case. (The scale of the vertical axis is arbitrary.) While the
primary frequency peaks of the density oscillations show little
changes with the amplitudes, all peaking at around 1.06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
,

j½RΨð0Þ�ωj clearly reveals a frequency shift to −2.57
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
compared to the same peak at −2.465

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
in Fig. 2. The

second excitation is heavily suppressed for large-amplitude
modes; however, the second harmonics of the primary peaks
appear at 2.1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
. The secondary peaks of thewave function

at Ω� ω ≈ −2.57� 1.07
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
now become clear due to the

large oscillation amplitude.

2The simulations are not run in the proper reference frame, and
Ω0 is finite and negative.
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discover a nonlinear eigenfrequency shift ΔΩ of the main
peak. Comparing Figs. 2 and 3, the main peak in Fig. 3
shifts to a higher frequency Ω0 þ ΔΩ from Ω0 in Fig. 2,
with ΔΩ ¼ 0.105ðGρAð0ÞÞ1=2. Since the frequency peak
can be identified with high precision, by examining
simulation data of lower oscillation amplitudes, we find
the magnitude of the frequency shift appears to be
progressively higher when the oscillation amplitude gets
larger. This confirms that the nonlinear frequency shift
is real.

B. Linear modeling of nonlinear simulation data

We examine the time series data ρðtÞ in detail for the
most nonlinear (100% density variation) case. We show-
case the density oscillation for a brief time in Fig. 4.
Unexpectedly, we find that the instantaneous density
profile at halfway between the maximum and minimum
phases (for example, at t ¼ 10.7 and 14) of the density
remarkably resembles the averaged density profile
ρAðrÞ ¼ ðρmaxðrÞ þ ρminðrÞÞ=2 (cf., right plot of Fig. 4).
At this intermediate phase, the oscillating flow energy
(ð1=4Þ R dx3ðΨ�∇Ψ − Ψ∇Ψ�Þ2=jΨj2Þ reaches the maxi-
mum; on the other hand, at the instant the density reaches
either the maximum or the minimum, the flow energy is at
its minimum.3 The finding hints at a picture reminiscent of
a particle rolling back and forth in a symmetric potential
well; the potential minimum at which the velocity reaches

maximum is at the equilibrium position. That is, the
averaged density profile ρAðrÞ seems to be the equilibrium
density profile, a property that strictly holds for small-
amplitude oscillations. In addition, we further find that the
average profile ρAðrÞ closely resembles the soliton profile
ρsðrÞ before the perturbation. Furthermore, a third piece of
finding is that the soliton breathing frequency is almost
independent of amplitudes.
This evidence strongly suggests that the large-amplitude

oscillation can be treated in a way similar to the small-
amplitude oscillation and motivates us to propose a quasi-
linear simple harmonic oscillator model for large-amplitude
soliton breathing. The quasilinear model proposes that only
the equilibrium density and ground-state wave function get
modified by large-amplitude perturbations, but the dynam-
ics of large-amplitude perturbations remain to be linear.
However, how can a linear model generate the second

harmonic observed in Fig. 3? The answer is simple in that
the density is a quadratic quantity of the wave function,
thereby giving rise to the second harmonic, but the
perturbed wave function remains linear.
Taking into account the frequency shift, the wave

function is modified to be

Ψ ¼ eiΔΩ0t½f0 þ FðrÞ cosðωtÞ þ iGðrÞ sinðωtÞ� ð35Þ
in the proper reference frame where Ω0 ¼ 0. The density
and momentum density are therefore, respectively,

ρ ¼ f20 þ
1

2
ðF2 þ G2Þ þ 2f0F cosðωtÞ

þ 1

2
ðF2 −G2Þ cosð2ωtÞ; ð36Þ
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FIG. 4. Left: Time series data of the soliton peak density ρðr ¼ 0; tÞ oscillation and the integrated flow energy oscillation. The density
and the flow oscillations are offset roughly by π=2. The integrated flow energy appears much more chaotic than the density. This is a
result of the inclusion of chaotic flows present outside the soliton near the simulation boundary. The horizonal axis has an arbitrary unit,
and the vertical scale represents the amplitude of the soliton peak density ρðr ¼ 0Þ. Right: data of instantaneous density profiles at the
two marked points on the left panel of the flow energy maxima. They are compared with the average soliton density profile
ρAðrÞð≡ðρmaxðrÞ þ ρminðrÞÞ=2), showing remarkable resemblance. This is strongly suggestive of the existence of a stable equilibrium
density profile, around which the oscillation proceeds, albeit the nearly 100% large-amplitude oscillation.

3The flow energy oscillation appears to be more random than
the density oscillation because the flow energy integral is to a
large extent contributed by random flows at great distances.
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ρv · r̂ ¼
�
f0

dG
dr

−G
df0
dr

�
sinðωtÞ

þ 1

2

�
F
dG
dr

−G
dF
dr

�
sinð2ωtÞ: ð37Þ

Both density and momentum density have second harmonic
components that increase with the oscillation amplitudes.
Below, we will explore what the simulation data reveal

about the new equilibrium wave function f0, finite-ampli-
tude perturbations F and G, and new equilibrium density
ρeqð≡f20 þ ð1=2ÞðF2 þG2ÞÞ according to the model equa-
tions, Eqs. (36) and (37). In Fig. 5, we plot ρmax and ρmin
next to the marked maximum flow energy phases in Fig. 4.
The two sets of data ρmaxðrÞ and ρminðrÞ allow us to solve
for f0ðrÞ and FðrÞ according to Eq. (35) at the phases
ωt ¼ 0; π. We also denote ρπ=2ðrÞ to be the density at ωt ¼
�π=2 to solve for G2. With these data, the solutions are

f20ðrÞ ¼
1

2
ðρAðrÞ þ ρGðrÞÞ;

G2 ¼ ρπ=2ðrÞ − f20ðrÞ;

F ¼ ΔρðrÞ
½2ðρA þ ρGÞ�1=2

; ð38Þ

where ρA and ρG are the algebraic and geometric means of
ρmax and ρmin, respectively, and Δρ ¼ ðρmax − ρminÞ=2.
In Fig. 6, we plot the perturbation amplitude FðrÞ in

comparison with the new ground state f0ðrÞ. This is an
illuminating figure, as it demonstrates that the amplitude of
F is only 24% of f0, at best a weakly nonlinear amplitude;
yet, it gives an false impression of a very large density
variation ρmax=ρmin ≈ 2.8. We also plot the linear eigen-
function F for comparison. The nonlinear F has the generic
feature of the linear F, i.e., sign reversal at about the soliton
waist. The 15% narrower nonlinear mode structure sug-
gests a more concentrated density perturbation is capable of
driving large-amplitude oscillations at r ¼ 0.
Also plotted in Fig. 6 are the new ground-state wave

function f0ðrÞ in comparison with the unperturbed soliton
wave function ρ1=2s . It reveals that the new ground-state
wave function f0 is overall smaller than ρs at the % level.
This is expected because of the mass conservation:R
dx3ρs ¼

R
dx3ρeq.

However, there is a problem for GðrÞ in Eq. (38) since it
can give rise to an unphysical G2 < 0 at the soliton tail
r > 2. Unlike datasets ρmax and ρmin, which are at sta-
tionary phases, the density profile ρπ=2ðrÞ not only varies
rapidly but also appears unsteady at the soliton tail. This
behavior was noticed earlier for the density fits in the right
panel of Fig. 4.
Therefore, we seek a different approach to determine G.

We adopt the momentum density data at ωt ¼ π=2 from the
simulation to determine G, where
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FIG. 5. Data of instantaneous maximum and minimum density
profiles, ρmaxðrÞ and ρminðrÞ, and the unperturbed soliton density
profile ρsðrÞ. With the quasilinear model, the new equilibrium
density ρeq is constructed, whose potential V is to be compared
with the unperturbed soliton potential V0. The offset averaged
density ρA þ 1 is also shown here. The three densities,
ρsðrÞ; ρeqðrÞ, and ρAðrÞ, differ from each other by second-order
quasilinear effects of several % levels.
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FIG. 6. Nonlinear F and G constructed from simulation data
and consistent with the quasilinear model in comparison with the
linear F and G. Also shown is the new ground-state wave
function f0 in comparison with the unperturbed ground-state
wave function ρ1=2s . The nonlinear amplitude is merely
F=f0 ∼ 24%, despite ρmax=ρmin ∼ 2.8. The coupling to the
negative energy jF − G=F þ Gj is comparable to the linear case
and can reach 300%. As a convergence check, we also construct
F of 30% oscillation amplitude (yellow dotted line) and find that
its node lies between Flinear and F of 100% amplitude, indicative
of progressively greater modifications of F as amplitudes
increase.
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ρeqvr ¼ ½f20dðG=f0Þ=dr� sinðπ=2Þ; ð39Þ

according to Eq. (37). The relatively stationary momentum
density data at this phase allows us to determine the left-
hand side reliably. Performing the radial integration
SðrÞ≡ R

r
0 drðρeqvr=f20Þ, we can solve for G=f0. The

solution is G ¼ ðSþ S0Þf0, where S0 is a integration
constant. (The velocity data are presented in Fig. 7 and
will be discussed in more detail later in this section.)
To fix the magnitude of S0, we resort to G2ðr ¼ 0Þ given

in Eq. (38) with the substitution ρπ=2ðr ¼ 0Þ ¼ ρAðr ¼ 0Þ
(cf., the right panel of Fig. 4). This determines
jS0jð¼jGðr ¼ 0ÞÞjÞ. The sign of S0 is fixed as follows.
To be consistent with the profile of GðrÞ in the linear
theory, SðrÞ [also the radial velocity vrðrÞ for this matter] in
the main body of the soliton should have an opposite sign to
S0 in order for GðrÞ to possess one node outside the soliton
waist. Inside the soliton, the sign of GðrÞ is therefore
opposite to the sign of FðrÞ, which has the same sign as the
radial velocity vrðrÞ. The nonlinearGðrÞ is shown in Fig. 6.
The relative strength of negative-to-positive energy cou-
pling is large, with jF − G=F þ Gj > 300%.
Having f0, F, and G constructed, we now can plot the

new equilibrium density ρeqð¼ f20 þ ð1=2ÞðF2 þG2ÞÞ, cf.,
Eq. (36), and its potential V in Fig. 5 to show the
modifications to the original equilibrium density ρs and
potential V0. The new equilibrium density ρeq has a slightly

higher peak but narrower density structure than the original
equilibrium density ρs. In the next two subsections, we will
address how to test these mock solutions derived from the
simulation data.

C. Self-consistent quasilinear modifications
of equilibrium

Only in this subsection will we denote F,G, and v as Fω,
Gω, and vω to avoid confusion. In the face of Eqs. (36) and
(37) for large-amplitude Fω and Gω, the original back-
ground wave function ρ1=2s should be modified to a new f0
and the original Hamiltonian H0 replaced by a new H,
which satisfy a background wave equation,

ðH − ΔΩÞf0 ¼ 0; ð40Þ

where ΔΩ is a frequency shift, already seen in Sec. VII B,
due to a change in background potential V ¼ V0 þ ΔV in
H. Here, the background potential V is generated via the
Poisson equation with the new equilibrium density ρeq
given in Eq. (36). The large-amplitude oscillation makes
the fundamental harmonic mode satisfy

ωFω ¼ ðH − ΔΩÞGω; ð41Þ

replacing Eq. (6). Likewise, Eq. (7) becomes

ωGω ¼ ðH − ΔΩÞFω þ vωf0: ð42Þ

Contained in Eqs. (36) and (37) are also the second-
harmonic perturbations Fð2Þ cosð2ωtÞ and Gð2Þ sinð2ωÞ.
The second-harmonic equations describing the second-
order perturbation can be straightforwardly derived to be

2ωFð2Þ
2ω ¼ ðH − ΔΩÞGð2Þ

2ω þ 1

2
ðvGÞ2ω ð43Þ

and

2ωGð2Þ
2ω ¼ ðH − ΔΩÞFð2Þ

2ω þ vð2Þ2ωf0 þ
1

2
ðvFÞ2ω: ð44Þ

Other than the beating of fundamental modes, the nonlinear
terms vG and vF in Eqs. (43) and (44) should also include
the contributions of high-order harmonic modes, where the
beat frequency is 2ω. We show the second harmonic
equations not because we intend to address the nonlinear
theory but because Eqs. (43) and (44) at zero frequency can
lead to the quasilinear equation describing how the static
background changes as a result of large-amplitude density
oscillation.
Taking ω ¼ 0, we find Eq. (43) can produce a static

Gð2Þ
ω¼0 so that the equilibrium wave function changes from

real f0 to f0 þ iGð2Þ
ω¼0, a phase rotation. Since the phase

rotation is small and difficult to verify from the simulation
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FIG. 7. Nonlinear flow velocity profiles vðrÞ at their maxima
constructed from the simulation data at two adjacent instants (see
Fig. 4). They are to be compared with the flow profile of small-
amplitude (linear) perturbation. From the nonlinear velocity
profiles, one can construct two ðH − ΔΩÞG to be compared
with nonlinear F of Fig. 6. The ratio of the former to the latter is
the nonlinear oscillation frequency ω according to Eq. (41). The
best-fit value for the two ω is 1.08ðGρAð0ÞÞ1=2, which agrees well
with the measured value, 1.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
, from the simulation

(cf., Fig. 3).
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data, we will not discuss it. On the other hand, the ω ¼ 0
limit of Eq. (44) is crucial for the quasilinear theory, which
accounts for the modification of the ground-state wave
function from ρ1=2s to a new f0, and therefore the equilib-
rium density from ρs to ρeqð¼ f0 þ ðG2

ω þ F2
ωÞ=2Þwith the

new f0.
The zero-ω limit of Eq. (44) gives

ðH − ΔΩÞFð2Þ
ω¼0 þ vð2Þω¼0f0 þ

1

2
vωFω ¼ 0; ð45Þ

where Fð2Þ
ω¼0¼f0−ρ1=2s , and ∇2vð2Þω¼0¼8πf0F

ð2Þ
ω¼0. Keeping

all terms in Eq. (45) of second order, we simplify this
equation as

H0F
ð2Þ
ω¼0 þ vð2Þω¼0ρ

1=2
s ¼ −

1

2
vωFω; ð46Þ

where vð2Þω¼0 ¼ 8π∇−2ðρ1=2s Fð2Þ
ω¼0Þ. This is an integral-

differential equation for Fð2Þ
ω¼0. The right-hand side serves

as the source to drive the modification Fð2Þ
ω¼0 that changes

the ground-state wave function from ρ1=2s to f0.
How do we know this quasilinear modification of the

ground-state wave function is correct? One self-consistent
check is the conservation of the soliton mass,

Z
dx3ρs ¼

Z
dx3ρeq

≡
Z

dx3
�
ðρ1=2s þ Fð2Þ

ω¼0Þ2 þ
1

2
ðG2 þ F2Þ

�
; ð47Þ

accurate up to the second order in oscillation amplitudes.
Now, we may count the unknowns and equations. Given

a ΔV, we can solve from Eq. (40) for the profile of the
eigenfunction f0, up to an unknown overall amplitude, and
the eigenvalue ΔΩ. When f0 is given, we can solve the
linear equations, Eqs. (41) and (42), for Fω and Gω, where
the amplitude of f0 sets the scale of ω. The solutions Fω

and Gω and f0, in turn, will provide an equation for ΔV
since its gravitational source f20 þ ð1=2ÞðG2

ω þ F2
ωÞ − ρs is

now known. Lastly, Eq. (46) or Eq. (47) is the equation that
closes the loop to fix the unknown amplitude of f0. The
whole program involves iteration processes. We will leave
the pursuit of this program as a future endeavor.

D. Eigenfrequency shift ΔΩ and soliton nonlinear
breathing frequency ω

We will end this section by demonstrating the agreement
of the simulation data obained from Sec. VII B with the
quasilinear solutions given in Sec.VII C. The demonstration
focuses on the well-measured nonlinear eigenfrequency
shift of the wave function ΔΩ and the large-amplitude

soliton breathing frequencyω.We shall from nowon resume
the notation F and G from Fω and Gω.
Using Eq. (40), whereH ¼ H0 þ ΔV; treatingΔV as the

potential perturbation; and employing the quantum
mechanics first-order perturbation theory, we have

Z
dx3ρ1=2s ðH0 þ ΔVÞf0 ¼ ΔΩ

Z
dx3ρs ¼ ΔΩMs; ð48Þ

valid up to second order in oscillation amplitudes, where
Ms is the soliton mass The first term on the left is zero,
and ΔVð¼ V − V0Þ is given in Fig. 5. We thus evaluate
ΔΩ ¼ −0.11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρeqð0Þ

p
from the quasilinear theory. This

value is compared with the measured simulation frequency
shift obtained from the difference of eigenfrequencies
for the l ¼ 0 modes in Figs. 2 and 3, and the measured
ΔΩ ¼ −0.105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
. The agreement is very good in

view of the tiny shift.
As for the ω determination, we shall explore Eq. (41),

equivalent to the density evolution equation, to illustrate the
mode structures as well as the best-fit value of ω. We first
check two velocity data from the simulation at the instant
near t ¼ 10.7 in Fig. 4, in which the inward velocities are
near their maximum phases, to verify that the nonlinear
velocity profiles are largely consistent and also consistent
with the linear velocity profile, as shown in Fig. 7. We then
construct the profile of ð1=2f0Þ∇ · ðρeqvrr̂Þ ¼ ðH − ΔΩÞG,
the right-hand side of Eq. (41) The profile is also shown in
Fig. 7,which is to be comparedwith the nonlinearF data, the
left-hand side divided byω. Themode structure of nonlinear
ðH − ΔΩÞG is close to that of the nonlinear F in the main
body of the soliton, and the ratio of ðH − ΔΩÞG andF gives
the value of ω.
The best fit ω ¼ 1.08

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρeqð0Þ

p
after averaging the two

velocity profiles. This quasilinear value of ω is in good
agreement with the measured soliton breathing frequency
ω ¼ 1.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
from the simulation.

Alternatively, we can evaluate ω using the energy
integral [cf., Eq. (19)]. With quasilinear f0, ρeq, and

H − ΔΩ in place of ρ1=2s , ρs, and H0 of the linear theory,
we find that the best-fit value of ω ¼ 1.04

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gρeqð0Þ

p
by

averaging the two ω’s constructed from the two velocity
profiles in Fig. 7. This value of ω is also consistent with the
measured ω ¼ 1.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GρAð0Þ

p
from the simulation. We

conclude that the mock solutions, F,G, and f0, constructed
from the simulation data are remarkably consistent with the
quasilinear theory described by Eqs. (40)–(46).

VIII. DISCUSSIONS AND EXTENSIONS

The soliton is a nonlinear ground state of a Bose-Einstein
system with negative energy. When sitting in an environ-
ment where the surrounding mass is plentifully available,
the soliton is expected to grow in mass in time. However, in
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a halo, the soliton mass is found to be stable, determined by
the velocity dispersion or granule sizes of the halo. In
Sec. VII, we have found that a soliton can expel mass when
subject to a large disturbance. Therefore, the soliton can
lose mass when finding itself living in a hostile environ-
ment subject to incessant harassment. Putting all together,
we come to a suggestion that the soliton should constantly
exchange energy and mass with the halo in such a way that
it can reach a stable equilibrium, sharing an equal amount
of specific energy with the halo (Appendix B) and
establishing an appropriate amount of its mass. The mass
and energy exchange is through the monopole (l ¼ 0)
deformation and radiation, and this may explain why the
soliton in a halo is always observed to breathe at a sizable
amplitude so as to keep itself in balance.
We now, in turn, address how hostile the soliton can be

for stars residing in the soliton. The star orbiting frequency
around the soliton is ωorðrÞ ¼ ð4πGhρsðrÞi=3Þ1=2, where
the angular bracket stands for the volume average. At the
soliton center, at which the breathing amplitude is highest,
the orbiting frequency is about twice the soliton breathing
frequency, ωor ≈ 2ωl¼0 ≈ 2ðGρsð0ÞÞ1=2. There is no effi-
cient energy transfer mechanism when the donor’s fre-
quency is substantially lower than the receiver’s frequency.
The particle orbiting frequency can be lower to resonate
with the soliton breathing for particle orbits substantially
away from the soliton main body. At the soliton tail, the
particle practically only sees a stationary mass at the orbital
center in spite of the large-amplitude density oscillation,
and no efficient energy transfer is possible either.
On the other hand, the soliton l ¼ 1 internally

sloshing mode is different. The mode has a frequency
ωl¼1 ≈ 1.7ðGρAð0ÞÞ1=2. The frequency is close to the
orbiting frequency at the soliton’s waist and can approx-
imately resonate with the particle orbit for a range of radius
within the soliton. Therefore, the l ¼ 1 mode is capable of
pumping energy into stars residing in the soliton. In
addition, for a massive orbiting star cluster, the soliton
rotating l ¼ 1 mode can be excited. When the rotating
mode and the star cluster orbit are corotating, some
Lagrangian points can be established. The star cluster
may be located near an unstable Lagrangian point, and
loosely bound stars on the outskirts of the cluster are to be
striped away by tidal forces. This is a subject requiring in-
depth further studies. What has been said above may also
apply to the soliton l ¼ 2 mode, which has a similar
frequency as the l ¼ 1 mode. But the l ¼ 2 mode structure
is such that it has too little amplitude interior of the soliton,
and hence coupling of the l ¼ 2mode and orbiting particles
has limited efficiency.
Aside from the specific soliton problem discussed thus

far, our main analytical tool, the variational analysis,
developed in this paper also works in the context of
stability and oscillation of other nonlinear ground states
Ψ0. An obvious example is one with local nonlinearity in

the potential VðjΨj2Þ. The perturbed potential is δV ¼
ðΨ�

0δΨþ δΨ�Ψ0ÞðdVðf20Þ=df20Þ ¼ 2δΨrf0ðdVðf20Þ=df20Þ.
The second equality holds after we adjust the potential level
so that the ground-state eigenfrequency is zero and Ψ0 is
chosen to be real.
Another category of examples is the coupled ψDM with

a gravitational potential given by massive baryons or a
central massive black hole. The time-independent ground
state Ψ0ðrÞ may even be allowed to possess a lesser degree
of spatial symmetry, such as oval or disk shapes in the
presence of an inner stellar bar or disk. Despite the extra
complications that may arise, the same Eqs. (6) and (7) still
hold for the perturbation analysis, where the collective
excitation is manifestly Hermitian and the variational
principle ensues.
How about the stability of the turbulent ψDM halo itself?

In the presence of fluctuating granules and turbulence
interior of the halo, the halo is varying on small spatial-
temporal scales but smooth and stationary on large scale.
Therefore, the quantum equilibrium resembles an ergodic
equilibrium of classical many-particle systems in many
ways. The statistical description of a turbulent quantum
system compared to that of a classical particle system may
be understood as follows. The distribution function fðE; lÞ
of a particle halo can be interpreted as the spectrum of
halo granules at energy level E and polar quantum wave
number l of the ψDM halo [33]. The equilibrium halo wave
function is given byΨhalo ¼

P
E;l aðE; lÞψE;l, where ψE;l is

the normalized eigenfunction, and aðE; lÞ is the complex
random variable of E and l with the squared variance
hjaðE; lÞj2i ¼ fðE; lÞ. The stability problem of large-scale
perturbations would resemble the problem employing
Antosov’s variational principle for collisionless particle
halos [34,35]. We will leave this subject to a future work.

IX. CONCLUSION

To conclude, we find frequencies of linear collective
excitation determined by the variational principle agree
well with the small-amplitude perturbed soliton frequencies
from simulations for all three modes, l ¼ 0, 1, 2, under
investigation. Only the l ¼ 0, 1 collective excitations are
found to possess a substantial component contributed by
the negative-energy component resulting from attractive
self-interactions. While the mass conservation can be
straightforwardly satisfied for all perturbations, the addi-
tional constraint of momentum conservation imposed on
the dipole mode gives rise to a more extended dipole mode
structure. This dipole mode is expected to have an
appropriate sloshing frequency and spatial distribution to
efficiently interact with stars inside the soliton.
On the other hand, the simulations of large-amplitude

soliton breathing reveal that (1) the maximum breathing
amplitude to support a stable soliton is close to 100%
density variation relative to the equilibrium density;
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(2) even though the density variation reaches 100%, the
perturbed wave function is at best weakly nonlinear with
amplitude only 25% of the equilibrium wave function;
(3) the frequency of large-amplitude soliton breathing is
almost identical to that of small-amplitude oscillation, and
only higher by less than 2%; (4) the nonlinearity pertaining
to very large-amplitude breathing can modify the ground-
state wave function with an eigenfrequency shift, but both
on a level of a few %.
We propose a quasilinear model to capture the dynamics

of nonlinear soliton breathing and derive a system of self-
consistent equation. Despite the fact that we have no formal
solution to these self-consistent equations, a mock solution
constructed from the simulation data and consistent with
the quasilinear model reproduces the measured frequency
shift and the breathing frequency to high accuracy. This
provides a strong support to the quasilinear model for large-
amplitude soliton breathing.
The nonlinear eigenfrequency shift and the phase rota-

tion of the ground state will never appear in the Madelung
fluid variables and equations, and in this regard, they are
like a gauge degree of freedom. However, in this soliton
breathing problem, the fluid variables appear highly non-
linear, but the wave function variables are only weakly
nonlinear. The situation is in great contrast with the
cosmological structure formation problem where the back-
ground state is uniform. The wave function variables
quickly enter the nonlinear regime beyond the description
of the linear perturbation theory, but the fluid variables can
remain in agreement with the linear perturbation theory
before the density contrast reaches >20% [14,36]. The
cosmological significance of this subject lies in the
Gaussianity of perturbations [37,38]. The density pertur-
bation can remain Gaussian random for a long time, but the
wave function has already become non-Gaussian early on
in the evolution and becomes highly entangled. The duality
nature of fluid and wave function descriptions seems to be
related to the relative importance of gravity for the back-
ground state. It seems to suggest that strong gravity favors
the wave function description, and weak gravity favors the
fluid description. The root of this duality may be profound.
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APPENDIX A: ZERO DIPOLE MOMENT

We show in Sec. IV B that the integrated momentum
perturbation must be zero for an isolated soliton. It requires

the imaginary part of the perturbed wave function to be in a
particular form, G ¼ cosðθÞðR r2ψ0

ndrÞr−2. To be consis-
tent with Eq. (7), the real part becomes F ¼
ω−1 cosðθÞ½ð−1=2Þðdψ0

n=drÞ þ ðV0=r2Þ
R
r2ψ0

ndr�. Such
an F should also yield a zero mass center displacement,
i.e.,

R ð2f0FÞzr2dr ¼ 0. We now show that this condition
can be satisfied. Removing the polar angle dependence, the
time derivative of the mass center displacement, or the
dipole moment, is

ω

cos2ðθÞ
Z

f0Fzr2dr

¼ −
1

2

Z
f0r3

dψ0
n

dr
drþ

Z
drf0V0r

�Z
r2ψ0

ndr

�

¼ X þ Y; ðA1Þ

where X and Y represents the first and second integrals,
respectively. From now on, we denote primes to be the
radial derivatives, and we will employ integrations by part
repetitively. The integral

X ¼ 1

2

Z
drðr3f0Þ0ψ0

n

¼ −
1

2

Z
dr½ðr3f0Þ0r−2�0

�Z
r2ψ0

ndr

�

¼ −
Z

dr

�
1

2r
ðr2f00Þ0 þ f00

��Z
r2ψ0

ndr

�
; ðA2Þ

and on the other hand

Y ¼
Z

drðf0V0rÞ
�Z

r2ψ0
ndr

�

¼
Z

dr

�
1

2r
ðr2f00Þ0

�Z
r2ψ0

ndr

��
; ðA3Þ

as a result of H0
0f0 ¼ 0. Therefore,

XþY¼−
Z

drf00

�Z
r2ψ0

ndr

�
¼
Z

r2drf0ψ0
n¼0; ðA4Þ

the orthogonality condition of ψ0
n to the ground state.

APPENDIX B: VIRIAL THEOREM

Here, we show the virial theorem for a quantum
gravitational bound object. The conservation of momentum
reads

∂

∂t
ðρvÞ þ∇ ·

�
ρvv þ∇ρ∇ρ

4ρ
−
1

4
∇2ρI

�
¼ −ρ∇V; ðB1Þ

where I is the identity tensor; we next convert the right-
hand side −ρ∇V¼−ð1=4πGÞ½∇ ·ð∇V∇VÞþI∇ð∇VÞ2=2�
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with the Poisson equation. Take the inner product both
sides of the equation by r, a position vector, and then
integrate over the whole volume. We thus arrive at

∂

∂t

Z
dx3ρv · r

¼ −
Z

dx3∇ ·

�
ρvv þ∇ρ∇ρ

4ρ
−
∇V∇V
4πG

−
�
1

4
∇2ρ −

1

8πG
ð∇VÞ2

�
I

�
· r: ðB2Þ

Performing integration by parts
R
dx3∇ · ½…� · r ¼R

dx3∇ · ð½…� · rÞ − R
dx3½…� · ð∂r=∂rÞ, we then remove

the total divergence via the divergence theorem. Note that
the quantity ∂r=∂r ¼ I. Hence, we have

∂

∂t

Z
dx3ρv · r ¼ −

Z
dx3

�
ρv · v þ∇ρ ·∇ρ

4ρ
−
∇V ·∇V
4πG

−
�
1

4
∇2ρ −

1

8πG
ð∇VÞ2

��
: ðB3Þ

The ∇2ρ term can again be integrated out. The virial
theorem follows when the left-hand side is zero:

Z
dx3

�
ðρv2 þ ð∇fÞ2Þ − ð∇VÞ2

8πG

�
¼ 0;

or

Z
dx3

�
ðρv2 þ ð∇fÞ2Þ þ ρV

2

�
¼ 0; ðB4Þ

i.e.,

2KEþ PE ¼ 0;

where f2 ¼ ρ.
For the soliton, we have no flow velocity v ¼ 0, and

ð∇fÞ2=2 alone is solely responsible for the kinetic energy.
On the other hand, for a turbulent halo, the flow energy
ρv2=2 and the quantum energy both contribute to the
kinetic energy. If the flow energy and the quantum energy
are in equipartition, each component contributes half of the
kinetic energy. If furthermore the solition and the halo are
in “thermal” equilibrium, where the specific energies (total
kinetic energy density/density) of the soliton and the halo
share the same value, the soliton specific quantum energy
will be twice as large as the halo specific quantum energy.
This means that the soliton size ought to be 1=

ffiffiffi
2

p
of the

granule size. Thermal equilibrium with the soliton should
hold for inner halo that surrounds the soliton. Similarly, the
mass of the soliton is in balance with its surrounding halo,
which is a subject addressed in Sec. VIII.
Moreover, the fluid turbulent velocity is given by the

gradient of the phase δS and the quantum velocity
dispersion from the gradient of the amplitude δ ln f. If
the two scalar S and ln f are uncorrelated in a turbulent
ψDM halo, such a halo contains two thermal degrees of
freedom, in contrast to 3 degrees of freedom in classical
collisionless particles. Hence a “thermalized” halo has a
stiffer equation of state than a thermailized collisionless
particle halo, and the most likely value of the adiabatic
index Γ is expected to be 2.
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