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One of the most crucial areas of gravity research, after the direct observation of gravitational waves, is
the possible modification of general relativity at ultraviolet and infrared scales. In particular, the possibility
of parity violation should be considered in strong field regime. The Chern-Simons gravity takes into
account parity violation in strong gravity regime. For all conformally flat spacetimes and spacetimes with a
maximally symmetric two-dimensional subspace, Chern-Simons gravity is identical to general relativity.
Specifically, the (anti–)de Sitter [(A)dS]-Kerr/Kerr black hole is not a solution for Chern-Simons gravity.
Slow-rotating black holes up to the quadratic order in spin are some of the known solutions in the
framework of dynamical Chern-Simons gravity. In the present study, for the (A)dS slow-rotating situation
(correct to the first order in spin), we derive the linear perturbation equations controlling the metric and the
dynamical Chern-Simons field equation corrected to the linear order in spin and to the second order in the
Chern-Simons coupling parameter. We show that the black hole of the (A)dS-Kerr solution is stronger (i.e.,
more compact and energetic) than the Kerr black hole solution and the reason for this feature comes form
contributions at Planck scales. Moreover, we calculate the thermodynamical quantities related to this black
hole. Finally, we calculate the geodesic equation and derive the effective potential of the black hole. We
show that as the numerical value of the rotation parameter increases, there is a peak, and as the rotation
parameter increases further, the peak becomes positive, preventing the photons from outside to fall into the
black hole.
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I. INTRODUCTION

Experiments and observations over the last few decades
revealed several phenomena that cannot be explained by
general relativity (GR) at ultraviolet and infrared scales.
Most of these issues demonstrate GR incompatibilities at
cosmological and astrophysical scales. On the one hand,
GR fixes observations at Solar System scales perfectly. It is,
however, incapable of providing an exhaustive and self-
consistent picture of phenomena such as late-time Universe
acceleration, which has previously been attributed to the
nebulous concept of dark energy. Similarly, inconsistencies
in galaxy rotation curves are attributed to dark matter,
which has never been detected under the standard of a new
fundamental particle out of the Standard Model. These are
just two examples, but the issues that arise when the theory
is applied to large-scale structure observations are numer-
ous [1–3]. In the frame of these concerns, modified theories

of GR have been constructed to describe the gravitational
interaction by incorporating extra terms or alternatives into
the Einstein-Hilbert action. The fðRÞ gravity, for example,
is a straightforward extension where the starting action is a
general function of the Ricci scalar curvature [4–10].
Usually, functions of higher-order curvature invariants
can serve the role of the Ricci scalar in the action, assuming
extensive interpolation at the small-scale regime, i.e.,
ultraviolet scales [11–16]. Several outstanding issues,
concerning the early and late-time acceleration of the
Universe, can be addressed by coupling geometry to a
scalar field ϕ, as discussed, for example, in Refs. [17–20].
Modified actions produce effective energy-momentum
tensors of the gravitational field, similar to the phenom-
enology adopted for dark matter and dark energy [21–26].
GR cannot be considered at small scales using the same

criteria as the other field theories. Indeed, this theory results
in several flaws in view of a self-consistent theory of
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quantum gravity. Specifically, to equip GR with the
formalism of other Standard Model interactions, the former
must be recast as a Yang-Mills theory. Furthermore, even
the two-loop expansion of gravitational action demon-
strates that incurable divergences occur in GR: This means
that it cannot be renormalized using the standard regulari-
zation procedure. Despite numerous attempts to integrate
GR and quantum field theory, a complete theory of
quantum gravity remains elusive at the moment. For
example, the “Arnowitt-Deser-Misner” (ADM) formalism,
which deals with an infinite dimensional superspace, leads
to a Schrödinger-like equation known as the Wheeler-De-
Witt equation [27–29]. The ADM formulation fails to
account for a complete quantum theory of gravity and
has several flaws that cannot be overcome if its use in
quantum cosmology gives interesting results.
Because gauge theories are currently the only candidates

capable of selecting renormalizable quantum field theories,
a forthcoming theory that aims to address high-energy
issues must cope with gravitational interaction as a gauge
theory. The so-called teleparallel gravity is an example of
gauge theory of gravity dealing with a flat tangent
spacetime, which is invariant under the local translation
group and whose action differs from Einstein-Hilbert by a
total divergence. It describes gravity as a torsional space-
time, including the antisymmetric contribution of connec-
tions. The gravitational field is represented by vielbiens
(tetrads in four dimensions), and the affinities associated
with them are represented by the Weitzenböck connection.
For a discussion on teleparallel gravity and its applications,
see e.g. Refs. [30–34].
In 1971, Lovelock proposed an additional generalization

of GR [35]. The Lovelock-Zumino Lagrangian (or simply
the Lovelock Lagrangian) is the most general torsionless
Lagrangian in such a theory, leading to second-order field
equations. In four dimensions, the Gauss-Bonnet term
appears, but it does not contribute to the equations of
motion. In fact, in four dimensions, the Gauss-Bonnet term
becomes a topological surface term, while, in five dimen-
sions, it becomes nontrivial. By construction, any Lovelock
Lagrangian, regardless of dimension, is always invariant, at
least under the local Lorentz group. Certain combinations
of the coupling constants, however, make the theory
invariant for other gauge groups. The Lovelock three-
dimensional Lagrangian is an exception, as it is invariant
under the local Poincare group for any coupling parameter.
Furthermore, it proves that there is a subclass of Lovelock
Lagrangians where the coupling constants are coupled in
some way such that the Lagrangian external derivative
offers a topological invariant. Such Lagrangians are known
as “Chern-Simons Lagrangians,” and they contribute sig-
nificantly to dynamics only in odd dimensions.
Chern-Simons (CS) improved gravity is a well-known

four-dimensional scalar-tensor theory that was first pro-
posed in Ref. [36]. It is inspired by anomaly cancellation in

curved spacetimes, particle physics, and string theory low-
energy limit (for a review, see [37]). The theory has a
nonminimal coupling between a scalar field and the Chern-
Pontryagin density. This interaction, in particular, encap-
sulates parity-violating characteristics in the strong gravity
regime. Furthermore, its equations of motion effectively
reduce to those of topologically massive gravity under
certain conditions [38,39], that is, a three-dimensional
gravity built from CS theory. Because the CS coupling
generates higher-order field equations, this theory does not
belong to the Horndeski family of theories [40]. In order to
avoid the drawbacks associated with the Cauchy initial-
value problem, it should be regarded as an effective theory
derived from the ultraviolet completion of GR [41].
In the Einstein-Hilbert action plus a new parity-violating

term, four-dimensional correction identifies the action for
CS-modified gravity. When it was discovered that string
theory requires just such a correction to remain mathemati-
cally consistent, interest in the model skyrocketed. The
Green-Schwarz anomaly canceling mechanism in the
perturbative string sector requires such a correction upon
four-dimensional compactification. In general, due to
duality symmetries, such a correction arises in the presence
of Ramond-Ramond scalars.
In particular, a slowing rotating black hole (BH) can be

adorned with (secondary) scalar hair in this parity-violating
axion field. An axion field hair that dresses a slowly
rotating BH, as the result of axion field coupling to a
Lorentz CS term, is reported in the papers [43,44]. This
finding suggests that nonminimal gravitational couplings
could lead to novel effects in BH backgrounds. This
solution was extended in [42], where it was discovered
that the charges presented by the axion hair are defined by
the background rotating BH mass, angular momentum and
gauge charges. In the small coupling slow rotation limit, a
solution describing a rotating BH was found by allowing
the axion field to be dynamical [45]. In dynamical CS
modified gravity, static and rotating black string solutions
were investigated [46,47]. In the framework of dynamical
CS and Einstein-dilaton-Gauss-Bonnet theory, BH solu-
tions, different from the Kerr solution, have been derived
in [48]. Furthermore, using the so-called extremal limit,
rotating BH solutions based on dynamical CS gravity are
reported in [49]. The aim of the present research is to
generalized the previous studies and try to derive an
(anti–)de Sitter [(A)dS]-Kerr BH solution in the framework
of dynamical CS gravity.
The outline of the present paper is the following. In

Sec. II, we review the basics of CS modified gravity.
Section III is devoted to dynamics of an (A)dS-slowly
rotating BH with small CS coupling constants. In Sec. IV,
we study physical properties of the (A)dS-Kerr BH solution
by calculating its thermodynamical quantities in view of
possible astrophysical applications. In Sec. V, we calculate
the geodesic equation of this BH and derive its effective
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potential showing that the increasing of rotation parameter
makes the peak positive, and thus prevents the photon
coming from outside to fall into the BH. In Sec. VI,
we summarize the results and discuss possible future
researches.
The following notation is adopted: In four-dimensional

spacetime, the signature is ð−;þ;þ;þÞ [50], where latin
symbols ða; b;…; hÞ refer to spacetime indices. Square
and round brackets denote antisymmetrization and sym-
metrization, respectively, i.e., T ½ab� ¼ 1

2
ðTab − TbaÞ and

TðabÞ ¼ 1
2
ðTab þ TbaÞ. Commas are used for partial deriv-

atives (e.g. ∂φ=∂r ¼ ∂rφ ¼ φ;r). We adopt the Einstein
summation and geometrized units with G ¼ c ¼ 1.

II. THE CHERN-SIMONS MODIFIED GRAVITY

Let us give now some basic notions of CS modified
gravity [37]. It is well known that CS gravity can be divided
into two main classes: nondynamical and dynamical
models. Nondynamical cases are not interesting because
they give no new physics. In particular, they do not give
solutions different from the Schwarzschild one; therefore
we will not discuss them anymore. On the other hand, we
will discuss dynamical cases below.

A. Basics

Let us start with the following action:

S ¼ SEH þ SCS þ Sφ þ Smat; ð1Þ

where

SEH ¼ κ

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ;

SCS ¼
α

4

Z
V
d4x

ffiffiffiffiffiffi
−g

p
φ �RR;

Sφ ¼ −
β

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ½gαβð∇αφÞð∇βφÞ þ 2VðφÞ�;

Smat ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p
Lmat:

The first term in Eq. (1) is the Einstein-Hilbert with Λ is the
cosmological constant that can bewritten asΛ ¼ − 3

l2 where
l is the Planck scale. The second one is the CS term while
the third contribution is due to the scalar field. The last term
is an additional matter sources where Lmat is the matter
Lagrangian density. Here we use the following notation:
κ−1 ¼ 16πG. The symbols α and β are dimensional
coupling constants, ∇α is the covariant derivative with
respect to the metric tensor gαβ, g is the determinant of the
metric, and R is the Ricci scalar. The expression �RR is the
Pontryagin density, figured as

�RR ¼ RR̃ ¼ �Rα
β
γδRβ

αγδ: ð2Þ

The dual Riemann tensor is

�Rα
β
γδ ¼ 1

2
ϵγδρρ1Rα

βρρ1 ; ð3Þ

where ϵγδρρ1 is the four-dimensional Levi-Civita tensor.
The spacetime function φ is the CS coupling field. It

parametrizes deformations from GR. The Pontryagin den-
sity is equal to the total divergence of the CS topological
current Ka therefore, if φ ¼ constant, then the CS modified
gravity reduces to GR. It is

∇αKα ¼ 1

2
�RR; ð4Þ

where

Kα ¼ ϵαβγδΓρ
βρ1

�
∂γΓ

ρ1
δρ þ

2

3
Γρ1
γρ2Γ

ρ2
δρ

�
; ð5Þ

and Γ is the Christoffel connection. Equation (5) can be
used to rewrite SCS in the form

SCS ¼ αðφKαÞj
∂V −

α

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ð∇αφÞKα: ð6Þ

The first term, corresponding to the CS correction, is
typically ignored since it is calculated on the spacetime
boundary [51]. The variation of action (1) with respect to
the metric and the CS field gives the following field
equations:

Rαβ − 2gαβΛþ α

κ
Cαβ ¼

1

2κ

�
Tαβ −

1

2
gαβ½T − 4Λ�

�
;

β□φ ¼ β
dV
dφ

−
α

4
�RR; ð7Þ

with Rαβ being the Ricci second order tensor and □ ¼
∇a∇a is the d’Alembert operator. Here the expression Cαβ

is the C tensor defined as

Cαβ ¼ wρϵ
ργδðα∇δRβÞ

γ þ wγδ
�RγðαβÞδ; ð8Þ

where

wα ¼ ∇αφ; wαβ ¼ ∇α∇βφ: ð9Þ

The total stress-energy tensor is

Tαβ ¼ Tmat
αβ þ Tφ

αβ; ð10Þ

where Tmat
αβ is given by standard matter sources, and Tφ

αβ is
the scalar field contribution defined as
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Tφ
αβ ¼ β

�
ð∇αφÞð∇βφÞ −

1

2
gαβð∇αφÞð∇αφÞ − gαβVðφÞ

�
:

ð11Þ

If the equation of motion of scalar field φ holds then the
strong equivalence principle (∇αT

αβ
mat ¼ 0) is verified in CS

modified gravity. This is due to the fact that when one
considers the divergence of Eq. (7), the first and second
terms on the lhs vanishes by the Bianchi identities.
However, the third term is proportional to the Pontryagin
density by

∇αCαβ ¼ −
1

8
wβ �RR: ð12Þ

III. (A)dS-ROTATING BLACK HOLES
IN DYNAMICAL CHERN-SIMONS

MODIFIED GRAVITY

In this section, we are going to study (A)dS-rotating BHs
in dynamical Chern-Simons modified gravity. Without
using any approximation, it is difficult to analyze the
stationary and axisymmetric line element in dynamical
CS gravity. Therefore, we adopt a couple of approximations
and solve the field equations up to second order in the
perturbative expansion.

A. The approximation structure

Let us use small-coupling and slow-rotation approxi-
mations for our considerations. More details on this
approach can be found in Ref. [45]. In the first structure,
we use the CS modification as a small distortion of GR. It
permits us to adopt the following metric decomposition (up
to second order):

gαβ ¼ gð0Þαβ þ ζgð1Þαβ ðφÞ þ ζ2gð2Þαβ ðφÞ: ð13Þ

Here gð0Þαβ is the background metric which satisfies the

Einstein field equations, like Kerr metric, whilst gð1Þαβ ðϑÞ and
gð2Þαβ ðϑÞ are the first and the second-order CS perturbations
which depend on φ. The parameter ζ refers to the order of
small-coupling approximation.
On the other hand, by slow-rotation procedure, we are

able to reexpand the background and the ζ perturbations
in powers of the Kerr rotation parameter a. Consequently,
the background metric and the metric perturbation
become

gð0Þαβ ¼ ηð0;0Þαβ þ ϵ hð1;0Þαβ þ ϵ2hð2;0Þαβ ;

ζgð1Þαβ ¼ ζhð0;1Þαβ þ ζϵ hð1;1Þαβ þ ζϵ2hð2;1Þαβ ;

ζ2gð2Þαβ ¼ ζ2hð0;2Þαβ þ ζ2ϵhð1;2Þαβ þ ζ2ϵ2hð2;2Þαβ ; ð14Þ

where ϵ refers to the order of the slow-rotation expansion.

We emphasize that the notation hða;bÞαβ refers to terms of
Oða; bÞ, which refers to OðϵaÞ and OðζbÞ. As an example,

in Eq. (14), ηð0;0Þαβ is consider as the background metric when

a → 0, whilst hð1;0Þαβ and hð2;0Þαβ refer to the background
metric of the first and second-order expansions in the spin
parameter.
By combining the two approximate methods, we are able

to create a bivariate expansion with two independent
parameters ζ and ϵ, which is provided, at second order, as

gαβ ¼ ηð0;0Þαβ þ ϵhð1;0Þαβ þζhð0;1Þαβ þ ϵζhð1;1Þαβ þ ϵ2hð2;0Þαβ þ ζ2hð0;2Þαβ :

ð15Þ

When we deal with first-order terms, we mean those that
areOð1; 0Þ orOð0; 1Þ, but when we deal with second-order
terms, we mean those that are Oð2; 0Þ, or Oð0; 2Þ
or Oð1; 1Þ.
The parameters ϵ and ζ have a key role into this

discussion. Because the slow-rotation technique expands
the Kerr parameter, thus its dimensionless expansion
parameter must be α=M. Consequently, a term in the
equations multiplied by ϵn is of the form Oððα=MÞnÞ.
The small-coupling expansion should depend on the ratio
of CS coupling to the GR coupling, i.e., α=κ, since this
combination multiplies the C tensor in Eq. (7).
The small-coupling strategy creates a clear iteration or

boot-strapping scheme by combining with the structure of
the modified field equations. One can observe that the
source of the φ-evolution equation is always of a lower
order than the CS correction to the Einstein equations from
Eq. (7). According to this observation, one can independ-
ently solve the evolution equation for φ first. In order to
determine the CS correction to the metric, the solution of φ
can then be applied to the modified field equations. This
method can then theoretically be repeated in order to solve
higher order expansion parameters.
Let us provide an example of a boot-strapping scheme. To

make this easier, let us choose, for themoment, units so thatφ
is dimensionless and β ¼ κ. Then α controls the small-
coupling expansion parameter only via ζ ¼ O½α2=ðκ2M4Þ�.
The rhs of Eq. (7), in these units, is proportional to ζ1=2, but
the second term inEq. (7) is proportional to ζ, which suggests
that φ is a Frobenius series with a fractional structure, that is

φ ¼ ζ1=2
X∞
n¼0

ζnφðnÞ; ð16Þ

while, as required by Eq. (13), the metric perturbation is a
regular series in natural powers of ζ.
Alternatively, various φ units might be used which could

slightly alter the order of counting. As an example, let us
choose units, which, by a dimensional analysis yields
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½α� ¼ L4 and ½φ� ¼ L−2. It gives ζ ¼ Oðα=M4Þ, but the rhs
of Eq. (7) is proportional to ζ0 up to the leading order.
Using these units make ϑ and gαβ to have expansions in
natural powers of ζ, while the leading-order expansion of
the former is 1=ζ much larger than the latter.
The φ-evolution equation is then seen to always be of

lower order in comparison to the modified field equation,
leading to a clear boot-strapping strategy regardless of the
units. A term of the form Oð1; 1Þ or Oð1; 1=2Þ leads to
ðα=MÞðα=βÞ depending on the choice of β. We shall
assume that β ∝ α, for the sake of order counting, but
we will leave all factors of β explicit. By using this choice,
the parameter ratio is of order unity and both φ and gαβ have
expansions ζ in natural powers.
This boot-strapping procedure is similar to the one called

semirelativistic approximation [52], where one models
extreme-mass ratio inspirals by resolving the geodesic
equations and ignoring the self-force of the particle.
Even through this approximation, one cannot solve the
field equations if the background is too complicated (like,
the Kerr metric). Therefore, the small-rotation procedure,
introduced above, gives independent equations obtained
from the boots trapping procedure in the small-coupling
approximation. This combined procedure allows to solve
the equations in exact way.
The following remark should be taken into account

when we use the bivariate expansions: Both ϵ and ζ are
independently small. The only constraint we have to
consider is that ϵ is not proportional to an inverse power
of ζ, because this could violate the above requirement.
Also, we have to stress that, as it is well known in
perturbation theory, ζ and ϵ are only parameters and are
not equal to α=M or ξ=M4, instead they multiply terms in
the output equations of the same order. Here ξ is a distortion
of the (A)dS-Kerr metric which will be defined below.
Because the parameters ϵ and ζ do not have any physical
meaning, thus we can set them to unity at the end of the
calculation at a given order of perturbation, as we will
show below.

B. (A)dS-slowly rotating black hole solutions

The expansion of slow rotation, using background
metric, can be constructed through the Hartle-Thorne
approximation [53,54], where the line element is written
in Boyer-Lindquist coordinates, ðt; r; θ;ϕÞ, as

ds2 ¼ −k½1þ sðr; θÞ� dt2 þ 1

k
½1þ pðr; θÞ� dr2

þ r2½1þ qðr; θÞ� dθ2
þ r2 sin2 θ½1þ nðr; θÞ�½dϕ − ωðr; θÞdt�2; ð17Þ

where k ¼ r2

l2 þ 1 − 2m
r is the (A)dS-Schwarzschild space-

time with M being the BH mass and l is a length related to

the cosmological constant. Here sðr; θÞ, pðr; θÞ, qðr; θÞ,
nðr; θÞ and ωðr; θÞ are the perturbations.
We have written the metric of Eq. (17) as given

in [53,54], however, the metric perturbations should be
expanded like a series using ζ and ϵ. The metric perturba-
tions up to the second order yield the following:

sðr; θÞ ¼ ϵ sð1;0Þ þ ϵ ζsð1;1Þ þ ϵ2 sð2;0Þ;

pðr; θÞ ¼ ϵpð1;0Þ þ ϵ ζpð1;1Þ þ ϵ2 pð2;0Þ;

qðr; θÞ ¼ ϵ qð1;0Þ þ ϵ ζqð1;1Þ þ ϵ2 qð2;0Þ;

nðr; θÞ ¼ ϵ nð1;0Þ þ ϵ ζnð1;1Þ þ ϵ2 nð2;0Þ:

ωðr; θÞ ¼ ϵ ωð1;0Þ þ ϵ ζωð1;1Þ þ ϵ2 ωð2;0Þ: ð18Þ

In Eq. (17), we have not taken into account terms ofOð0; 0Þ
since they are involved in the (A)dS-Schwarzschild space-
time. Moreover, we assume that, when the Kerr spin
parameter is a → 0, we recover (A)dS-Schwarzschild as
a trivial solution, involving that all terms of order Oð0; nÞ
are vanishing. Therefore, the CS correction term should be
linear in the Kerr spin parameter a. We can read off the
metric perturbations, proportional to ζ0, from the slow-
rotation limit of the Kerr metric in GR up to the first order:

sð1;0Þ ¼ pð1;0Þ ¼ qð1;0Þ ¼ nð1;0Þ ¼ 0;

ωð1;0Þ ¼
�
r2

l2
−
2m
r

�
a ð19Þ

and to the second order:

sð2;0Þ ¼−
ðr2l2 sin2 θþ 2m

r cos2 θÞa2
kr2

pð2;0Þ ¼
a2½rð1þ r2

l2Þsin2 θþ 2m
r cos2 θ�

r2

l2 k
;

qð2;0Þ ¼
a2

r2

�
1þ r2

l2

�
cos2 θ;

nð2;0Þ ¼−
a2

r2

�
1þ r2

l2
þ2m

r
sin2 θ

�
; ωð2;0Þ ¼ 0: ð20Þ

All fields are expanded in small-coupling and slow-rotation
approximation, inclusive of the CS coupling field. Using
the evolution equation, given by the second term of Eq. (7),
we can examine the leading-order behavior of φ. From the
second term of Eq. (7), we get that ∂2φ ∼ ðα=βÞ�RR, since
the Pontryagin density has a zero value up to order a=m.
Therefore, the CS scalar field leading order must be
φ ∼ ðα=βÞða=mÞ, which is proportional to ϵ. Moreover,
since the (A)dS-Schwarzschild metric is the only solution
up to zero-angular momentum limit, therefore, we should
have φð0;nÞ ¼ 0 for all n. Therefore, the CS scalar field
expansion takes the following form:
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φ ¼ ϵφð1;0Þðr; θÞ þ ϵζφð1;1Þðr; θÞ þ ϵ2φð2;0Þðr; θÞ: ð21Þ

Now we are ready to apply the procedure we prescribed
above to solve the amended field equations, concentrating,
first, on the evolution equation of the CS scalar field. Up to
Oð1; 0Þ, the evolution equation yields

kφð1;0Þ
;rr þ 2

r
φð1;0Þ
;r

�
1 −

m
r
þ 2r2

l2

�
þ 1

r2
φð1;0Þ
;θθ þ cot θ

r2
φð1;0Þ
;θ

¼ −
144M3

r7
α

β

a
m

cos θ: ð22Þ

In Eq. (22), we have not taken into account the potential
VðϑÞ. Solution of the partial differential Eq. (22) consists of
two parts, the homogenous one, where the rhs of Eq (22) is
zero, and the particular solution, where the rhs of Eq. (22) is
not vanishing. Therefore, the general solution is a super-
position of the homogeneous and a particular solution, i.e.,

φð1;0Þ ¼ φð1;0Þ
H þ φð1;0Þ

P . Now we are going to discuss the
homogeneous equation which is a separable one and yields

φð1;0Þ
H ðr; θÞ ¼ ΦðrÞΦðθÞ: ð23Þ

The partial differential equation then becomes a set of
ordinary differential equations for φ̃ and φ̂, that have the
form:

ΦðrÞ ¼ φ̃00ðrÞ þ 2φ̃0ðrÞðr2l2 þ 1 − m
rÞ

rk
þ c1φ̃ðrÞ

r2l2k
¼ 0;

ΦðθÞ ¼ φ̂θθðθÞ þ φ̂θðθÞ cot θ −
φ̂ðθÞc1

l2
¼ 0; ð24Þ

where φ̂θðθÞ ¼ dφ̂ðθÞ
dθ and c1 is an integration constant

coming from the separation of variables. The solution of
φ̂ðθÞ gives

φ̂ðθÞ ¼ c2LP

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c1

l2

q
− 1

2
; cos θ

!

þ c3LQ

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c1

l2

q
− 1

2
; cos θ

!
: ð25Þ

Here LPðv; xÞ and LQðv; xÞ are the Legendre and asso-
ciated Legendre functions of first kind and both of them
satisfy the differential equation:

ð1 − xÞ2y00ðxÞ − 2xy0ðxÞ þ vðvþ 1ÞyðxÞ ¼ 0: ð26Þ

The solution φ̂ðrÞ is not so easy to get in an exact form, so
we are going to derive an approximation form of the first of
Eqs. (24), which yields

φ̃00ðrÞ þ φ̃0ðrÞ
�
1

r
−

1

2m
−

r
4m2

�

−
�

c1
2ml2r

þ c1
4m2l2

�
φ̃ðrÞ ¼ 0: ð27Þ

The solution of Eq. (27) takes the form

φðrÞ ¼ c4HB

�
0;

ffiffiffi
2

p
;
2l2 − 2c1

l2
;−

ðl2 − 2c1Þ
ffiffiffi
2

p

l2
;

ffiffiffi
2

p
r

4m

�

þ c5HB

�
0;

ffiffiffi
2

p
;
2l2 − 2c1

l2
;−

ðl2 − 2c1Þ
ffiffiffi
2

p

l2
;

ffiffiffi
2

p
r

4m

�

×
Z

e
rð4mþrÞ
8m2

r½HBð0; ffiffiffi
2

p
; 2l

2−2c1
l2 ;− ð−2c1þl2Þ ffiffi2p

l2 ;1=4
ffiffi
2

p
r

m Þ�2
dr;

ð28Þ

where HBðα; β; γ; δ; zÞ is the Heun B function which is a
solution of the differential equation [55]

y00ðzÞ − ðzβ − αþ 2z2 − 1Þ
z

y0ðzÞ

−
ð2α − 2γ þ 4Þzþ δþ β þ αβ

2z
y0ðzÞ; yð0Þ ¼ 1;

y0ðzÞ ¼ δþ β þ αβ

2ð1þ αÞ : ð29Þ

Equation (28) gives no physical solution because it has
no well-defined behavior as r → ∞, therefore we put
c4 ¼ c5 ¼ 0. Moreover, for finite energy φ̂ðθÞ has a zero
value which means c2 ¼ c3 ¼ 0. The above discussion

means that φð1;0Þ
H ðr; θÞ ¼ constant.

Since we derived the homogeneous solution, we can
proceed with the particular solution. In this case, Eq. (22)
can be rewritten as

φ̃00ðrÞ þ 2φ̃0ðrÞðr2l2 þ 1 − m
r Þ

rk
−

2φ̃ðrÞ
r2ð1þ r2

l2 −
2m
r Þ

þ 144αam2

βr7ð1þ r2

l2 −
2m
r Þ

¼ 0: ð30Þ

In order to be capable of solving the above nonhomogenous
differential equation, we can write it in the asymptotic
form as

φ̃00ðrÞ þ 2φ̃0ðrÞ
�
2

r
−
l2

r3
þ 3ml2

r4

�
−
2l2φ̃ðrÞ

r4

þ 144αam2

βr7ð1þ r2

l2 −
2m
r Þ

¼ 0; ð31Þ
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where we have put φð1;0Þðr; θÞ ¼ cos θφð1;0ÞðrÞ. The solution of the above differential equation takes the following form:

φð1;0Þ
P ¼ −144 cos θ α a l2m2

βeð1−
2m
r Þl

2

r2

�Z
dr

l2r3ðr2l2 þ 1 − 2m
r Þ

Z
eð1−

2m
r Þl

2

r2

r4
dr −

Z �Z
eð1−

2m
r Þl

2

r2

r4

�
dr

1

l2r3ðr2l2 þ 1 − 2m
r Þ

dr

�

≈ −
6αa
5m3β

r2

l2

�
1þ 15m

8r
þ 44M2

15r2
þ 7m3

r3

�
−

αa
50m3β

�
1þ 150m

r
þ 439m2

r2
þ 232m3

r3

�
: ð32Þ

In the above solution, we have set the additional integration
constant to zero since it does not give any contribute to the
modified Einstein equations.
Since we derived the CS coupling scalar field, we can

now search for the CS corrections to the metric perturba-
tions. It is worth noticing that the stress-energy tensor of the
CS scalar, derived here, enters the modified field equations
at Oð2; 1Þ; therefore, it has no impact on the metric
perturbations. The modified Einstein equations can be
separated into two categories: the first one forms a closed
system of partial differential equations for sð1;1Þ, pð1;1Þ,
qð1;1Þ and nð1;1Þ, which constitute ðt; tÞ, ðr; rÞ, ðr; θÞ, ðθ; θÞ
and ðϕ;ϕÞ components of the amended Einstein equations.
The second one consists of a differential equation for ωð1;1Þ,
more precisely the ðt;ϕÞ component of the amended
Einstein equations.
The first category does not depend on the CS coupling

field φ because it is exclusively derived from the Ricci
tensor. We have that, using Eq. (32), the output components
of theC tensor of the first category is equal to zero. Because
the metric perturbations do not form a CS distortion (i.e.
they are not depend on ζ), therefore, we can put them
equal to zero, that is, sð1;1Þ ¼ 0, pð1;1Þ ¼ 0, qð1;1Þ ¼ 0 and
nð1;1Þ ¼ 0.
Therefore, the only nonvanishing equation is the one

from the second group, which is

12k1ðrÞr2mαφ̃rθðr; θÞ þ k1ðrÞr7 sin θ ωrrðr; θÞ
− r5 sin θ ωθθðr; θÞ − 12k1ðrÞrmαφ̃θðr; θÞ

þ r5
�
4k1ðrÞr sin θωrðr; θÞ − 3ωθðr; θÞ cos θ

− 6

�
r2

l2
ωðr; θÞ þ

�
2m
r

−
r2

l2

�
a

�
sin θ

�
¼ 0; ð33Þ

where k1ðrÞ ¼ ½ð2mr − 1Þ − r2

l2 �. Equation (33) coincides with
what is derived in [45] when Λ ¼ 0 or l ¼ ∞. Using
Eq. (32) in (33), we get the most general solution which is
a linear combination of a homogeneous solution and a
particular one. With the same discussion of the CS coupling
scalar field on the homogenous equation, we can show that
the homogenous solution of Eq. (33) is not a physical one,
and therefore we will not discuss it. The particular solution
of Eq. (33) is given by

ωð1;1Þ ¼ −
5

8

α2

βκ

a
r6

�
1þ 12

7

m
r
þ 27

10

m2

r2

�

þ 528

125

α2

βl2κ
a
r4

�
1þ 525

176

m
r

�
: ð34Þ

We stress here that this perturbation is proportional to ζ and
it possesses the correct units ½ω� ¼ L−1 because ½ξ� ¼ L4.
Thus the full gravitomagnetic metric perturbation up to

the linear order in ζ and ϵ is

ω ≈ −
a
l2
þ 2ma

r3
þ 528

125

α2

βl2κ
a
r4

�
1þ 525

176

m
r

�

−
5

8

α2

βκ

a
r6

�
1þ 12

7

m
r
þ 27

10

m2

r2

�
: ð35Þ

Equation (34) is useful to construct the first slow-rotating
(A)dS BH solution in the dynamical CS amended gravity.
We stress that the perturbation is slightly suppressed in the
asymptotic field, which is decaying as r−4, that supposes
that its effect can be felt in the strong field region. The
above result shows that the contribution of the (A)dS
spacetime makes the BH stronger when compared with a
BH without (A)dS spacetime.
As expected, the correction of the metric is a small ξ

distortion of the (A)dS-Kerr metric. This result is consistent
with the small-coupling approximation. We can show that
this approximation is consistent by evaluating the next
leading order correction to φ. This correction consists of
φð2;0Þ and φð1;1Þ, which can be calculated by solving the
evolution equation to the next order. We get

φð2;0Þ ¼ 0;

φð1;1Þ ≈ −
3

2

α

β

ξa
m2

cos θ
r

�
1þ 4m

3r
þ 2m2

r2
þ 42m3

15r3

�

−
3

2

α

β

ξa
l2

cos θ
r

: ð36Þ

If we use this improved φ solution in the CS modified field
equations, then we get a correction proportional to ζ2ϵ,
which we are neglecting.
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IV. PROPERTIES OF THE
(A)dS-ROTATING SOLUTION

We are going to study now some geometric properties of
the slowly (A)dS-rotating solution. The nonvanishing
metric components are

gtt¼−k−
ðr2l2 sin2θþ2m

r cos2θÞa2
r2

;

gtϕ¼
�
r2

l2
−
2m
r

�
asin2θþ5

8

α2

βκ

a
r4

�
1þ12

7

m
r
þ27

10

m2

r2

�
sin2θ

−
528

125

α2

βl2κ
a
r2

�
1þ525

176

m
r

�
sin2θ;

grr¼
1

k
þa2½rð1þ r2

l2Þsin2θþ2m
r cos2θ�

r2

l2 k
;

gθθ¼r2þa2

r2

�
1þr2

l2

�
cos2θ;

gϕϕ¼r2 sin2θ−a2 sin2θ

�
1þr2

l2
þ2m

r
sin2θ

�
; ð37Þ

which are correct up to ordersOð2; 0Þ,Oð1; 1Þ andOð0; 2Þ.
A question could be if the CS corrections can be gauged
away using a coordinate transformation. This situation is
not possible for the following reasons. The curvature
invariants indicate that the CS corrected solution is of
the order reported here. From the most evident of these
invariants, the Pontryagin density �RR, we see that it is
proportional to □ϑ, and thus the shift from the (A)dS-Kerr
solution can be easily calculated from (36). Furthermore, as
we will see soon, the location of the innermost stable
circular orbit is CS corrected. This fact points out that the
CS amended is a nontrivial geometric perturbation of
(A)dS-Kerr. In the Appendix, we report the thermodynam-
ical properties of the BH solution of this study.

V. GEODESICS OF THE (A)dS-SLOWLY
ROTATING BLACK HOLE

In this section, we are going to consider the geodesics of
a test particle in the (A)dS-slowly rotating BH background
assuming the orbits of the particle in the equatorial plane
with θ ¼ π

2
. In the case of equatorial plane, the metric

reduces to the following form:

ds2 ¼ −kdt2 þ k1dr2 þ r2dϕ2 − 2ωr2 sin2 θdtdϕ; ð38Þ

where k ¼ r2

l2 þ 1 − 2M
r , k1 ¼ 1

k, and ω is given by Eq. (35).
This (A)dS-slowly rotating BH background has two

Killing fields ∂t and ∂ϕ. Therefore, there are two constants
L and E that are the orbital angular momentum and energy
conserved quantities per unit mass. Using the momentum
pμ ¼ gμν _xν, we get

L ¼ pφ ¼ −ω_tþ r2 _ϕ; ð39Þ

−E ¼ pt ¼ −k_t − ω _ϕ: ð40Þ

From Eqs. (39) and (40), we obtain the ϕ motion and t
motion as

_φ ¼ Eωþ Lk
ω2 þ r2k

; _t ¼ Er2 − Lω
ω2 þ r2k

: ð41Þ

The normalizing condition, gμν _xμ _xν ¼ −δ2, gives the r
motion as

_r2 ¼ r2E2 − Lð2ωEþ kLÞ
k1ðω2 þ r2kÞ −

δ2

k1
; ð42Þ

where δ2 ¼ 1 and 0 for timelike and null geodesics,
respectively. Thus, the r motion can be rewritten as

_r2 þ Veff ¼ 0; ð43Þ

where the effective potential Veff is given by

Veff ¼
Lð2ωEþ kLÞ − r2E2

k1ðω2 þ r2kÞ þ δ2

k1
: ð44Þ

In Fig. 1, we plot the behavior of the effective potential for a
photon using different values of the parameters. Because
kinetic energy is always positive, i.e., _r2 > 0, therefore, the
ranges of negative effective potential are allowed for the
photon traveling. For fixedM¼1, l¼1, L¼1, ξ ¼ 1, κ ¼ 1
and β ¼ 1, we can find that there exists a peak. In the GR
case, with the increase of rotation a, the peak increases and
approaches to zero at certain radius r. Then further increasing
a, the peak is positive, and thus it prevents the photons from
outside to fall into the BH. The same analysis can be applied
for the CS case with the increase of the rotation a: The peak
increases and approaches to zero at certain radius r. Then
with further increasing a, the peak is positive, and thus it
prevents the photons from outside to fall into the BH.
However for the CS case and for increasing the dimensional
parameter α, the peak is positive, and thus it prevents the
photons from outside to fall into the BH.
Interesting phenomena occur when the peak has a zero

value. In this situation, the photon acquires a vanishing
radial velocity with a nonvanishing transverse velocity.
Thus, the photon circles the BH one loop by one loop. Such
an unstable circular photon orbit is determined by

Veffðro; LoÞ ¼ 0; ∂rVeffðrco; LoÞ ¼ 0: ð45Þ

Solving these conditions, we can obtain the radius rco and
the angular momentum Lco for the circular orbit. Plugging
the effective potential into the above two conditions,
we have
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Lo ¼
−ωðroÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2okðroÞ þ ωðroÞ2

p
kðroÞ

; ð46Þ

2Lo½kðroÞω0ðroÞ−k0ðroÞωðroÞ�− ro½2kðroÞ− rok0ðroÞ� ¼ 0:

ð47Þ

The prime indicates the derivative with respect to r. Clearly,
this analysis can be extended in detail to obtain the so-
called BH shadow [63,64].

VI. DISCUSSION AND CONCLUSIONS

In this work, we discussed the (A)dS-slowly rotating BH
in the dynamical CS modified gravity, up to the leading
order in the coupling constant. Due to the fact that the
nondynamical case of CS modified gravity does not
provide any new solution different from GR, we considered
only the dynamical case of CS modified gravity.
Specifically, we considered physically reasonable condi-
tions that make the CS scalar field φ obey the symmetries
of the spacetime, and has finite, positive energy exterior to
the BH event horizon. The resulting BH solution describes
an inherently strong-field perturbation of (A)dS-Kerr,
where deformation of the background geometry decays
as ð1=rÞ2, compared with the slowly rotating BH solution
where it decays as ð1=rÞ4. As a result, the deformation is
coherent with weak-field bounds, while very different
phenomena can emerge in strong-field scenarios involving
spinning BHs. In particular, they could be investigated
considering compact object mergers, inner edges of accre-
tion disks, gravitational collapse and so on.
Concerning the structure of the BH solution, we revealed

that, up to the leading order of perturbation, the ergosphere
locations and horizon are unchanged if compared to the
(A)dS-Kerr BH solution. Additionally also the ADM mass

and the angular momentum of the (A)dS-Kerr spacetime
result unaltered. In particular, the CS scalar field φ consists
of two terms: The first depends on the (A)dS Planck scale,
the second depends on the rotation parameter a. The scalar
field cannot reduce to the one derived in [45] due to the
contribution of the Planck scale. Up to the leading order, we
have show that all the thermodynamical quantities do not
feel the CS effect.
Furthermore, for fixed values of the parameters charac-

terizing the model, we have shown that there exists a peak
in the effective potential Veff . For the case of GR, it is
possible to show that, with increasing value of the rotation
a, the peak increases and approaches to zero at certain
radius r, then, further increasing the rotation, the peak
becomes positive, and thus prevent the photons from
outside to fall into the BH. On the other hand, for the
CS case, we show that, by increasing the value of the
rotation, the peak increases and it approaches to zero at
certain radius r. Then, further increasing the rotation
parameter, the peak becomes positive, and thus it prevents
the photons from outside to fall into the BH. The same
behavior emerges for the CS case. In this case, increasing
the dimensional parameter α, the peak becomes positive,
and thus, again, it prevents photons from outside to fall into
the BH.
The study of CS case has a special importance for the fast

growing field of gravitational wave of astronomy. On one
hand gravitational wave detectors, like the space-based
detector Laser Interferometer Space Antenna [65] or the
Laser Interferometer Gravitational Observatory [66–68]
could be useful to put constraints on the CS modifications
with respect to GR. As expected, such modifications could
emerge in strong field regime so that gravitational waves
could be a formidable tool to discriminate among possible
BH solutions and then concurring theories of gravity.

FIG. 1. Schematic plots of the effective potential Veff . Panel (a) represents the effective potential of GR using different numerical
values of the rotation parameter a, while (b) represents the effective potential of CS using different numerical values of the rotation
parameter, and (c) represents the effective potential of CS using different numerical values of the dimensional parameter α. All the above
figures are plotted for M ¼ 1, l ¼ 1, L ¼ 1, ξ ¼ 1, κ ¼ 1 and β ¼ 1.
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On the other hand, a detailed geodesic analysis can give
contributions in discriminating BH solution by a careful
reconstruction of the BH shadow. In a forthcoming paper,
we will consider this approach taking into account available
observational data.
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APPENDIX: THERMODYNAMICS OF
(A)dS-SLOW ROTATING BLACK HOLE

It is well known that thermodynamics can be extremely
useful to fix global features of BHs. In particular when
exotic fluids or perturbations are considered. See for
example [56].
Here, the event horizon radius rh of the (A)dS-slowly

rotating BH is fixed by the equation

1þ r2

l2
−
2m
r

¼ 0

⇒ rh¼
ð27ml2þ3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27m2þ l2Þ

p
Þ2=3−3l2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ml2þ3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27m2þ l2Þ

p
3

q : ðA1Þ

The angular velocity of the observer, moving on the orbits
of constant r and θ, turns out to be

Ω ¼ −
gtϕ
gϕϕ

¼ −
a
l2
þ 2ma

r3
þ 528

125

α2

βl2κ
a
r4

�
1þ 525

176

m
r

�

−
5

8

α2

βκ

a
r6

�
1þ 12

7

m
r
þ 27

10

m2

r2

�
: ðA2Þ

In the case of rotating regular (A)dS BH, the angular
velocity (A2) does not vanish at asymptotic infinity and it
gives the finite quantity:

Ω∞ ¼ −
a
l2
: ðA3Þ

The (A)dS-slowly rotating BH metric describes a rotating
spacetime with the following angular velocity at the event
horizon

Ωh ¼ −
a
l2
þ 2ma

rh3
þ 528

125

α2

βl2κ
a
rh4

�
1þ 525

176

m
rh

�

−
5

8

α2

βκ

a
rh6

�
1þ 12

7

m
rh

þ 27

10

m2

rh2

�
: ðA4Þ

Throughout the extended phase space, the mass of the BH
is explained as enthalpy instead of internal energy [57,58].
The BH mass and angular momentum have been first
calculated using the Hamiltonian procedure derived from
the generators of SOð3; 2Þ [59–61]:

M ¼ m; J ¼ ma: ðA5Þ

The above expressions are linked to the mass parameter m
and angular parameter a. The Hawking temperature of the
(A)dS-slowly rotating BH is given by

T ¼ 3r2h þ l2

4πrhl2
; ðA6Þ

and the entropy takes the form

S ¼ πr2h: ðA7Þ

In the extended phase space, the negative cosmological
constant can be interpreted as a pressure [57]

P ¼ 3

8π

1

l2
; ðA8Þ

and the conjugate thermodynamic variable is

V ¼ 4πr3h
3

; ðA9Þ

with the specific volume

v ¼ 2rh: ðA10Þ

Using the above thermodynamic variables, we can easily
satisfy the first law of (A)dS-slowly rotating BH thermo-
dynamics and the Smarr relation as

dM ¼ TdSþ VdP; ðA11Þ

M ¼ 2TS − 2PV: ðA12Þ

The Gibbs free energy of (A)dS-slowly rotating BH is
given by

G ¼ M − TS ðA13Þ

¼ rhðl2 − r2hÞ
4l2

: ðA14Þ
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The Gibbs free energy G and temperature T can be
expressed in terms of pressure P, entropy S and angular
momentum J as [62]

G ¼
ffiffiffi
S

p ð3 − 8PSÞ
12

ffiffiffi
π

p ; ðA15Þ

T ¼ ð8PSþ 1Þ
4
ffiffiffiffiffiffi
πS

p : ðA16Þ

We plot the Gibbs free energy as a function of the BH
temperature T with fixed angular momentum J and various

thermodynamic pressure P in Fig. 2. As Fig. 2 shows, when
the pressure decreases, the value of the Gibbs free energy
increases.
Another test to check the thermodynamic stability of a

BH is given by its heat capacity content. When the BH has
a positive heat capacity, it is locally thermodynamically
stable; whereas a negative heat capacity shows thermody-
namic instability. The heat capacity is defined as

C ¼ ∂M
∂rh

�
∂T
∂rh

�
−1
: ðA17Þ

Using Eqs. (A5) and (A6) into Eq. (A17) we get

C ¼ 2

9

�
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27Ml2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27M2 þ l2Þ

q
3

r
Ml2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27Ml2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27M2 þ l2Þ

q
3

r ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27M2 þ l2Þ

q

− l2
�
27Ml2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27M2 þ l2Þ

q �
2=3

þ 3l4
�
π

��
27Ml2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ð27M2 þ l2Þ

q �
2=3

− 3l2
�

2

×

��
27Ml2 þ 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here we define the degenerate horizon as

rd ¼
∂M
∂rh

: ðA19Þ

Using Eq. (A5) in Eq. (A19) we get

FIG. 2. The Gibbs free energy for the Kerr-AdS BH for various
values of the pressure P. The horizon radius increases from left to
right along the curve, and a sudden change of the horizon radius
occurs in the small-large BH phase transition point.

FIG. 3. The heat capacity of (A)dS-slowly rotating BH.
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The behavior of Eq. (A18) is shown in Fig. 3. As Fig. 3 shows, the heat capacity depends on rd in which, for l < rd, we have
a negative heat capacity and vice versa.
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