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We present a fit to observational data in an asymmetric self-interacting dark matter model using our
recently calculated cross sections that incorporate both t-channel and u-channel exchanges in the scattering
of identical particles. We find good fits to the data ranging from dwarf galaxies to galaxy clusters and
equivalent relative velocities from ∼20 km=s to≳103 km=s. We compare our results with previous fits that
used only t-channel exchange contributions to the scattering.
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I. INTRODUCTION

There is strong evidence for dark matter (DM), compris-
ing about 85% of the matter in the Universe. Cold dark
matter (CDM) can account for structures on length scales
larger than ∼10 Mpc [1–6] (reviews include [7–13]).
However, problems have been noted with fits to observa-
tional data on shorter length scales of ∼1–100 kpc using
early CDM simulations without baryon feedback [14–16].
These problems included the prediction of greater density
in the central region of galaxies than was observed (the
core-cusp problem), a greater number of dwarf satellite
galaxies than were seen (the missing satellite problem),
and the so-called “too big to fail” problem pertaining to
star formation in dwarf satellite galaxies. Models with
self-interacting dark matter (SIDM) have been shown to
avoid these problems (some reviews include [17–19]). The
extension of cold dark matter N-body simulations to
include baryon feedback can ameliorate these problems
with pure CDM simulations [20–33]. Nevertheless, cos-
mological models with SIDM are of considerable interest
in their own right and have been the subject of intensive
study [17–19,34–89].
In the framework of a particle theory of darkmatter, the rate

of DM-DM scatterings is given by Γ¼ðσ=mDMÞvrelρDM,
where σ,mDM, vrel, and ρDM are the DM-DM scattering cross
section, DM particle mass, relative velocity of two colliding

DM particles, and DM mass density, respectively. Fits to
observational data on the scale of∼1–10 kpc, with velocities
vrel ∼ 20–200 km=s, yield values σ=mDM ∼ 1 cm2=g, while
fits to observations of galaxy clusters on distance scales of
several Mpc and vrel ∼Oð103Þ km=s yield smaller values
of σ=mDM ∼ 0.1 cm2=g. This implies that viable SIDM
models should have cross sections that decrease as a
function of vrel. This property can be achieved in models
in which DM particles, denoted χ here, interact via exchange
of a light (Lorentz scalar or vector) mediator field, generically
denoted ξ.
In models with asymmetric dark matter (ADM), after the

number asymmetry is established in the early Universe, the
DM self-interaction occurs via the reaction

χ þ χ → χ þ χ: ð1:1Þ

Because of the identical particles in the final state, a proper
treatment necessarily includes both the t-channel and the
u-channel contributions to the scattering amplitude. In [89],
we presented differential and integrated cross sections for
the reaction (1.1) with both the t-channel and u-channel
terms included and discussed the differences with respect to
previous calculations that included only the t-channel term.
Identical-particle effects have also been noted in [58,88] in
a field-theoretic context and in [48,79] in the context of
solutions of the Schrödinger equation for potential scatter-
ing. An interesting question raised by our work in [89] is
the following: how do the fits to observational data change
when one uses the cross section with both t-channel and
u-channel contributions to the scattering, as contrasted with
previous fits that used only the t-channel contributions? In
the present paper we address this question using the same
observational dataset that was analyzed in [52].
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II. CROSS SECTIONS

First, we review the basic properties of the SIDM model
with asymmetric dark matter that we used in [89]. In this
model, the dark matter particle χ is a spin-1=2 Dirac
fermion, and the mediator, ξ, is a real scalar, ξ ¼ ϕ, or a
vector, ξ ¼ V. Both χ and ξ are singlets under the Standard
Model (SM). For the version of the model with a real
scalar mediator, we take the χ-ϕ interaction to be of
Yukawa form, as described by the interaction Lagrangian
LYuk ¼ yχ ½χ̄χ�ϕ. In the version with a vector mediator, the
DM fermion χ is assumed to be charged under a Uð1ÞV
gauge symmetry with gauge field V and gauge coupling g.
Since only the product of the Uð1ÞV charge of χ times g
occurs in the covariant derivative in this theory, we may,
without loss of generality, take this charge to be unity and
denote the product as gχ . The corresponding interaction
Lagrangian is Lχ̄χV ¼ gχ ½χ̄γμχ�Vμ. A Higgs-type mecha-
nism is assumed to break the Uð1ÞV symmetry and give
a mass mV to the gauge field V. For compact notation, we
use the same symbol, αχ , to denote y2χ=ð4πÞ for the case
of a scalar mediator and g2χ=ð4πÞ for the case of a vector
mediator. We assume that the kinetic mixing of V with the
SM hypercharge gauge boson is negligibly small. (For an
example of how this mixing can be suppressed in a DM
model with specified ultraviolet physics, see, e.g., [90].)
In [89] the illustrative set of values mχ ¼5GeV, mξ¼
5MeV, and αχ ¼ 3 × 10−4 was used. Below we will show
that this choice is consistent with the fit to astronomical
data that we perform here.
We restrict to the case where αχ is small enough so

that lowest-order perturbation theory provides a reliable
description of the physics. As was shown in [89], the
parameter choice used there satisfies this restriction while
simultaneously yielding sufficient depletion of the χ̄
number density in the early Universe to produce the
assumed number asymmetry in our ADM model. For
further details on our model, we refer the reader to [89].
The amplitude for the reaction (1.1) isM¼MðtÞ−MðuÞ,

where MðtÞ and MðuÞ are the t-channel and u-channel
contributions, respectively, and the minus sign embodies the
effect of interchange of identical fermions in the final state.
Let us define a prefactor σ0 and dimensionless ratio r as

σ0 ¼
α2χm2

χ

m4
ξ

; r ¼
�
βrelmχ

mξ

�
2

; ð2:1Þ

where βrel ¼ vrel=c. For all the relevant data, the values
of vrel are nonrelativistic (NR). In [89] we calculated
the differential cross section in the center-of-mass (c.m.),
dσc:m:=dΩ, for the reaction (1.1) with both scalar and vector
mediators in the regime where the Born approximation is
valid. In the NR limit relevant to fitting data, the results for
the scalar and vector mediators are equal and are [89]

�dσ
dΩ

�
c:m:;NR

¼ σ0

�
1

ð1þ r sin2ðθ=2ÞÞ2 þ
1

ð1þ rcos2ðθ=2ÞÞ2

−
1

ð1þ r sin2ðθ=2ÞÞð1þ r cos2ðθ=2ÞÞ
�
:

ð2:2Þ

The terms on the right-hand side of Eq. (2.2) are from
jMðtÞj2, jMðuÞj2, and ½MðtÞ�MðuÞ þMðuÞ�MðtÞ�, respec-
tively. The angular integrals of these terms are correspond-
ingly denoted as σðtÞ, σðuÞ, and σðtuÞ. Because of the
identical particles in the final state, a scattering event in
which a scattered χ particle emerges at angle θ is indis-
tinguishable from one in which a scattered χ emerges at
angle π − θ. The total cross section for the reaction (1.1)
thus involves a symmetry factor of 1=2 to compensate for
the double-counting involved in the integration over the
range θ ∈ ½0; π�:

σ ¼ 1

2

Z
dΩ

�
dσ
dΩ

�
c:m:

: ð2:3Þ

Owing to the symmetry ðdσdΩÞc:m:ðθÞ ¼ ðdσdΩÞc:m:ðπ − θÞ, this
is equivalent to a polar angle integration from 0 to π=2.
To describe the thermalization effects of DM-DM

scattering, cross sections that give greater weight to
large-angle scattering have also been used in fits to data.
These include the transfer (T) cross section dσT=dΩ ¼
ð1 − cos θÞðdσ=dΩÞc:m: and the viscosity (V) cross
section dσV=dΩ ¼ ð1 − cos2θÞðdσ=dΩÞc:m:. These have
the respective weighting factors wTðθÞ ¼ 1 − cos θ and
wVðθÞ ¼ 1 − cos2 θ, as indicated. Reference [46] suggested
the use of the viscosity cross section σV for studies of SIDM
thermalization effects, and recently, Ref. [88] finds that σV
provides a very good description of thermalization effect of
SIDM scattering. However, since σT has been used in a
number of past fits to observational data, we include results
for it here for completeness. We obtained the integrated
cross sections [given as Eqs. (4.30) and (4.38) in [89]]

σ ¼ σT ¼ 4πσ0

�
1

1þ r
−
lnð1þ rÞ
rð2þ rÞ

�
ð2:4Þ

and

σV ¼ 8πσ0
r2

�
−5þ 2ð5þ 5rþ r2Þ lnð1þ rÞ

ð2þ rÞr
�
: ð2:5Þ

For a given weighting factor, the integrals of the terms
ðdσ=dΩÞc:m: were denoted σðtÞ, σðuÞ, and σðtuÞ and analytic
expressions for these were given for σ ¼ σT and σV in our
previous work [89]. We note that (when one includes both
t-channel and u-channel contributions) since the weighting
factor wTðθÞ ¼ ð1 − cos θÞ has no net effect in suppressing

SUDHAKANTHA GIRMOHANTA and ROBERT SHROCK PHYS. REV. D 107, 063006 (2023)

063006-2



contributions from scattering events that do not produce
thermalization, it follows that σT could overestimate the
thermalization effect from SIDM self-scattering.
In the literature, in the same NR Born regime for

the reaction (1.1) a formula was used for the differential
cross section of reaction (1.1) that implicitly assumed that
the colliding particles were distinguishable [e.g., Eq. (5)
in [18]], namely (in our notation)

�
dσ
dΩ

�
c:m:;t

¼ σ0
ð1þ r sin2ðθ=2ÞÞ2 : ð2:6Þ

The integrals σ ¼ R
dΩwðθÞðdσ=dΩÞc:m: with the respec-

tive weighting factors [again assuming distinguishable
particles in reaction (1.1)] yielded results for σ, σT , and
σV , in particular, the following result for σT [Eq. (5) in [39],
denoted FKY, which is the same as Eq. (A1) in [45],
denoted TYZ and Eq. (6) in [46]]

σT;FKY;TYZ ¼ 8πσ0
r

�
−

1

1þ r
þ lnð1þ rÞ

r

�
: ð2:7Þ

In [89] we showed that

σT;FKY;TYZ ¼ 2σðtÞ; ð2:8Þ

where σðtÞ was given as Eq. (4.27) in [89], and the factor of
2 difference is due to the fact that the correct calculation
divides by 1=2 to take account of the identical particles
in the final state. For brevity, we denote σT;FKY;TYZ ≡
σT;litðlit ¼ cited literatureÞ.
Following the same procedure as for σT;lit, from

Eq. (2.6), one would get

σV;lit ¼
16πσ0
r2

�
−2þ ð2þ rÞ lnð1þ rÞ

r

�
: ð2:9Þ

This is twice as large as the term σðtÞV that entered into the full

viscosity cross section σV ¼ σðtÞV þ σðuÞV þ σðtuÞV that we
calculated in [89] [see Eqs. (4.36) and (4.38) in [89]].
The origin of the factor 2 difference is again that when one
takes account of the identical particles in the final state,
the angular integral (2.3) involves a factor of 1=2. In addition
to [89], more recent studies [58,79,88] have taken account of
the indistinguishability of the χ particles in the reaction (1.1).
However, we are not aware of published fits to observational
datasets used in [52,62] using the SIDM velocity-dependent
cross sections in the Born regime that compare fitted values
obtained from calculations using cross sections with
t-channel and u-channel terms included, as compared to
cross sections that only included the t-channel terms. We
thus proceed with these comparative fits.

III. FITS TO OBSERVATIONAL DATA

We now address the question of how the fit to data
changes when one uses the cross sections from [89]
with both t-channel and u-channel contributions to the
reaction (1.1). In our main comparison, for definiteness,
we use the same set of data from dwarfs, low surface
brightness (LSB) galaxies, and galaxy clusters as in [52].
This dataset includes (i) five dwarfs from THINGS (The H I
Nearby Galaxy Survey) [91], namely IC 2574, NGC 2366,
Holmberg II, M81 dwB, and DDO 154, indicated in red
in Figs. 1(a) and 1(b); (ii) seven LSB galaxies from [92],
namely UGC 4325, F563-V2, F563-1, F568-3, UGC 5750,
F583-4, and F583-1, indicated in blue in Figs. 1(a) and 1(b);
and (iii) six relaxed galaxy clusters from [93,94], namely

(a) (b)

FIG. 1. Fits (black curves) of our (a) σT=mχ and (b) σV=mχ to observational data, where σT and σV are given in Eqs. (2.4) and (2.5).
The data are from dwarfs (red), LSB galaxies (blue), and galaxy clusters (green) as in Ref. [52]. For comparison, fits to this dataset with
σT and σV from Eqs. (2.7) and (2.9), based on Eq. (2.6), are shown as the dashed orange curves. Note that Ref. [88] finds that σV provides
a better description of thermalization effects due to SIDM scattering than σT .
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MS2137, A611, A963, A2537, A2667, and A2390, indi-
cated in green in Figs. 1(a) and 1(b). Of these, the galaxy
clusters are at distances from us of several hundred Mpc, the
LSB galaxies are at distances ∼Oð10Þ Mpc, and the dwarfs
are at distances of approximately 3–5 Mpc. This choice of
dwarf galaxies considered in [52] has the merit that these are
“field” dwarfs located sufficiently far from the Milky Way
that they are less subject to the complication of environ-
mental effects, such as possible tidal stripping, than dwarfs
closer to the Milky Way, such as the so-called classical
dwarfs [62].
We carry out fits to σT=mχ and σV=mχ . For a given vrel,

these cross sections depend on two parameters, which are
thus determined by the fits to the data. Since the small-βrel
limit (which is also the r → 0 limit for a given ratiomχ=mξ)
of our σT in Eq. (2.4) is

lim
r→0

σT ¼ 2πσ0; ð3:1Þ

so that

lim
r→0

σT
mχ

¼ 2πα2χmχ

m4
ξ

; ð3:2Þ

we take one fitting parameter to be

σ̂

mχ
≡ 2πα2χmχ

m4
ξ

: ð3:3Þ

Here we use the symbol σ̂ to indicate that this is a fitting
parameter. Note also that in the same limit, our σV in
Eq. (2.5) has the value

lim
r→0

σV ¼ 2

3
lim
r→0

σT ¼ 4π

3
σ0: ð3:4Þ

The other fitting parameter is the ratio

ρχξ ≡mχ

mξ
; ð3:5Þ

which, for a given vrel, determines r. For this comparison
we utilize the same central values and estimated error bars
as in Fig. 1 of [52]. We use a χ2 fitting procedure in
the NonlinearModelFit routine in Mathematica, with our
formulas (2.4) and (2.5) for the transfer and viscosity
cross sections.
Our results are shown as the black curves in Figs. 3(a)

and 3(b). From the σT fit, we find

σ̂

mχ
¼ 1.1� 0.6 cm2=g; ρχϕ ¼ ð0.90� 0.41Þ × 103:

ð3:6Þ

From the σV fit, we find the values

σ̂

mχ
¼ 1.4� 0.7 cm2=g; ρχϕ ¼ ð0.57� 0.19Þ × 103:

ð3:7Þ

The confidence-level contours for these fits are shown in
Figs. 2(a) and 2(b). The values of χ2=d:o:f: are 1.40 and
1.35 for the transfer and viscosity cross-section fit, respec-
tively. Here, the number of degrees of freedom (d.o.f.) is
equal to the number of data points minus the number of free
parameters ¼ 18 − 2 ¼ 16. These χ2=d:o:f: values indicate

(a) (b)

FIG. 2. Plots showing 68%, 95%, and 99% confidence-level (C.L.) contours (the inner, middle, and outer curves, respectively) for the
fitting parameters ρχξ and (a) σ̂T=mχ and (b) σ̂V=mχ . In each figure, the blue point denotes the respective best-fit point. The curves show
the boundaries between the parameter regions where our Born calculation is applicable (light regions) and inapplicable (dark regions) for
the illustrative mass values mχ ¼ 1; 2; 4 GeV, with the larger excluded regions applying for largermχ. See text and caption to Fig. 1 for
further details.
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that the fits are reasonably good. As a check on this fitting
procedure, we also performed a orthogonal distance
regression (ODR) in PYTHON, utilizing the scipy.odr
module, where instead of the least square distances, the
ODR minimizes the sum of squared perpendicular dis-
tances of each data point from the fitted curve. Within the
uncertainties in the fitted parameters, we find good agree-
ment between these two fitting methods. We have checked
that these fitted values are consistent with our perturbative
calculation, i.e., that they are in the Born regime. As
discussed in Appendix A of [89], the condition for the
validity of the Born approximation is that the quantity
αχmχ=mξ ≡ αχρχξ should be small compared with unity.
This quantity can be expressed in terms of our fitting
parameters σ̂=mχ and ρχξ, together with mχ , as

αχρχξ ¼
��

σ̂=mχ

2πρ2χξ

�
m3

χ

�
1=2

: ð3:8Þ

We have plotted curves along which αχρχξ ¼ 1 for three
illustrative values, mχ ¼ 1; 2; 4 GeV in Figs. 2 and 4. The
dark regions are outside the Born regime. Thus, for values
of mχ of a few GeV, as is plausible in asymmetric DM
models, our fitted values are consistent with the Born
approximation that we use. A similar comment applies to
our other fits given in this paper. For mχ values outside this
range, our Born analysis would not apply. We emphasize
that our analysis only applies for model parameters that are
in the Born regime and that also lead to sufficient depletion
of the symmetric dark matter density. Our results do not
exclude mχ values larger than this range of a few GeV, and
the values of σ̂=mχ and ρχξ could be different in these cases.
For example, Ref. [79] obtained fits to observational data
in a light scalar mediator model with αχ ¼ 0.5, mχ ¼
190 GeV, and mϕ ¼ 3 MeV. Since the quantity αχρχξ ¼
3.2 × 104 in this case (far outside the Born regime), this
shows that it is possible to fit data in a light-mediator
SIDM model with quite different values of model
parameters.
To address the question posed in this paper, we have

carried out corresponding fits to these data using the cross
sections σT;lit and σV;lit obtained by including only the
t-channel contributions. These are shown as the dashed
orange curves in Figs. 1(a) and 1(b), respectively. The
small-βrel limits (i.e., r → 0 limits, for a fixed ratio mχ=mξ)
of σT;lit and σV;lit are given by

lim
r→0

σT;lit ¼ 4πσ0 ð3:9Þ

and

lim
r→0

σV;lit ¼
8π

3
σ0; ð3:10Þ

which are twice as large as the corresponding small-βrel
limits of our cross sections. We thus expect that the fitted
value of σ̂=mχ using the results (2.7) and (2.9) will be
roughly half the value obtained with the correct formula,
and this is borne out by our analysis. With the σT;lit in
Eq. (2.7), our fit to these data, shown in Fig. 1(a), yields

σ̂

mχ
¼ 0.45� 0.25 cm2=g; ρχϕ ¼ ð0.42� 0.12Þ × 103:

ð3:11Þ

With the σV;lit in Eq. (2.9), our fit to the data, as shown by
the dashed orange curve in Fig. 1(b), gives

σ̂

mχ
¼ 0.70� 0.35 cm2=g; ρχϕ ¼ ð0.51� 0.16Þ × 103:

ð3:12Þ

For both of these fits, the reduced χ2=d:o:f: ¼ 1.35. Again,
these χ2=d:o:f: values show that these are reasonably good
fits, albeit with the above-mentioned differences in the
values of the fitting parameters. Our curves are also
consistent with the results of [77], which used modeling
methods and simulation taking into account both baryon
effects and SIDM.
As we pointed out in [89], for values of vrel ≳ 2 ×

103 km=s typical of galaxy clusters, our σT is considerably
larger than the result (2.7), and this is evident in the
deviation between the black curve and orange dashed curve
in Fig. 1(a). However, with the current dataset, this
deviation does not have much effect on our fit, since the
galaxy clusters have vrel values between ∼1 × 103 km=s
and 2 × 103 km=s. It is also possible that σT overestimates
the effects of SIDM self-scattering when one includes both
t-channel and u-channel contributions.

In [89] we calculated that σV=σ
ðtÞ
V ¼ 1þ ð1=10Þr2 þ

Oðr3Þ for r ≪ 1 and σV=σ
ðtÞ
V ¼ 2 ¼ ð1=ln rÞ for r ≫ 1 [see

Eqs. (4.44) and (4.45) of [89]]. Thus, not only for small r,

but also for r≳ 1, σðtÞV and σV have rather similar functional
dependence on r and hence also on vrel. This similarity
property, shown in [89], is again evident in Fig. 1(b).

However, since σV;lit is twice as large as our σðtÞV from
[Eq. (4.36) of [89]], a fit of σV; lit is expected to yield a
value of the fitting parameter σ̂=mχ that is approximately
half as large as a value obtained from a fit using our σV, and
this expectation is again borne out by our results.
It is also of interest to compare the values of σT=mχ and

σV=mχ from our fit to data with the illustrative set of values
that we used in [89]. In that paper we utilized the input
values mχ ¼ 5 GeV, mξ ¼ 5 MeV, and αχ ¼ 3 × 10−4.
This set of parameters yielded the values 0.99, 0.89, and
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0.13 in units of cm2/g for σT=mχ and the values 0.66, 0.59,
and 0.030 in units of cm2/g for σV=mχ, for vrel ¼ 10, 102,
and 103 km=s, respectively (see Table 1 of [89]). Evidently,
these values from [89] are close to results of the actual fit to
observational data that we have carried out here. The value
of ρχξ from our fit to σT=mχ is in very good agreement, to
within the uncertainty, with the value ρχξ ¼ 103 for the
illustrative set in [89], while the value of ρχξ from our fit to
σV=mχ is slightly smaller than the above-mentioned illus-
trative value in [89] but is well within the Born regime
shown in Fig. 3 of [89].
It is also worthwhile to consider fits to a larger set of

astronomical data. For this purpose, we have carried out
the analogous fits of σT=mχ and σV=mχ to a dataset
consisting of the above objects (field dwarfs, LSB
galaxies, and galaxy clusters) considered in [52] aug-
mented by the classical Milky Way dwarf spheroidal
(dSph) galaxies, as analyzed in [62], namely Ursa Minor,
Draco, Sculptor, Sextans, Carina, Fornax, Leo I, and Leo
II), with distances ranging from 76 kpc (for Draco) to
254 kpc (for Leo I) [95]. Since these classical dSph
galaxies are closer to the disk of the Milky Way than the
field dwarfs that were fitted in [52], they are more
susceptible to environmental effects due to the
Milky Way, including tidal stripping, than these more
distant field dwarfs, as was cautioned in [62] and has been
studied further in [78,84].
With these caveats in mind, we show our results in

Figs. 3(a) and 3(b). The corresponding confidence-level
contour plots are presented in Figs. 4(a) and 4(b). As is
evident, there is considerable scatter in the data in this
larger dataset. The best fit parameters that we find for this
dataset are

σ̂

mχ
¼ 1.2� 0.7 cm2=g; ρχϕ ¼ ð0.96� 0.54Þ × 103

ð3:13Þ

and

σ̂

mχ
¼ 1.6� 0.9 cm2=g; ρχϕ ¼ ð0.61� 0.25Þ × 103:

ð3:14Þ

The corresponding values of χ2=d:o:f: for the fit to this
larger dataset are 2.92 and 2.76 for the transfer and
viscosity cross sections, respectively. The increase in
χ2=d:o:f:, i.e., reduction in the goodness of fit, is presum-
ably associated with the greater scatter (diversity) in the
Milky Way dSph dataset from [62]. This scatter may be
understood better as a result of improved modeling of these
Milky Way dwarfs [78,84] (and references therein).
With the σT;lit and σV;lit in Eqs. (2.7) and (2.9) used for

the theoretical model, the fit parameters are

σ̂

mχ
¼0.5�0.3 cm2=g; ρχϕ¼ð0.44�0.17Þ×103 ð3:15Þ

and

σ̂

mχ
¼0.8�0.4 cm2=g; ρχϕ¼ð0.54�0.21Þ×103: ð3:16Þ

The reduced χ2=d:o:f: values for these fits are 2.73
and 2.74, respectively. Note that for the larger dataset,
d:o:f: ¼ 26 − 2 ¼ 24. In future work, one could further

(a) (b)

FIG. 3. Fit (black curve) of our (a) σT=mχ and (b) σV=mχ to observational data augmented by inclusion of Milky Way dwarfs, where
σT and σV are given in Eqs. (2.4) and (2.5). The data are from field dwarfs (red), LSB galaxies (blue), galaxy clusters (green), and
classical Milky Way dwarfs (cyan), the latter from Ref. [62]. For comparison, fits to the σT=mχ and σV=mχ to this dataset, where σT and
σV are given in Eqs. (2.7) and (2.9) based on Eq. (2.6), are shown as the dashed orange curves. Note that Ref. [88] finds that σV provides
a better description of thermalization effects due to SIDM scattering than σT .
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enlarge the datasets for SIDM fits. Indeed, several dedi-
cated observational surveys have considerably expanded
the number of MilkyWay dwarf satellites in recent years, in
particular, with the detection of ultrafaint dwarfs [95,96].
It is useful to consider a rescaling of parameters for the

cross sections based on inclusion of only the t-channel
contribution for σT;lit, Eq. (2.7), and for σV;lit, Eq. (2.9), that
minimizes the respective deviations from the cross sections
calculated with inclusion of both t-channel and u-channel
contributions (and their interference), given by Eqs. (2.4)
for σT and by Eq. (2.5) for σV. For this purpose, we use our
fit to the observational data in [52]. We find that an overall
rescaling of σ0 → ð1=2Þσ0 and r → 0.75r for the fit with
σV;lit in Eq. (2.9) numerically minimizes its deviation from
the results obtained with σV in Eq. (2.5). Here the factor of
1=2 accounts for the identical final-state particles. Note that
this rescaling is consistent with the best fit obtained in
Eqs. (3.7) and (3.12). Furthermore, from Eq. (2.1), if one
fixes mχ , then the above rescaling implies a slight shift in
the underlying physical parameters, namely mξ → 1.15mξ

and αχ → 0.94αχ . In order to minimize the deviation
of cross sections in Eqs. (2.7) and (2.5), we can rescale
σ0 → σ0=3 and r → 0.45r. The rescaling σ0 → σ0=3 can be
understood as the combination of the factor 2=3 coming
from the different weights in the definition of transfer and
viscosity cross section and the factor 1=2 to account for the
identical final-state particles. Similarly, this implies a slight
rescaling of αχ → 1.28αχ and mξ → 1.49mξ. This agrees
with our best fits in Eqs. (3.7) and (3.11). These rescalings
can be useful to estimate the conversion of results in the
literature, based on inclusion of only t-channel contribu-
tions, to results from calculations of cross sections based on
inclusion of both the t-channel and u-channel terms in the
Born regime.

IV. CONCLUSIONS

In conclusion, self-interacting dark matter models provide
an appealing way to avoid problems encountered in pure cold
dark matter simulations lacking baryon feedback. In this
paper we have continued our study of an asymmetric dark
matter model with self-interactions, in the Born parameter
regime. In [89] we calculated differential and integrated cross
sections that take into account both t-channel and u-channel
contributions to the scattering of identical dark matter
fermions via exchange of a light mediator particle. Our work
in [89] was motivated in part by the previous use of cross-
section formulas that included only t-channel contributions in
fits to astronomical data.Herewe have investigated a question
that arose fromour analysis in [89], namely how the results of
these fits change when one uses cross sections that correctly
include both t-channel and u-channel contributions. Our
results for the fitting parameters σ̂=mχ and ρχξ are somewhat
different from the values that onewould get if onewere to use
only t-channel contributions. Nevertheless, our broad con-
clusions are in agreement with previous studies, namely that
this type of self-interacting dark matter model with a light
mediator can provide a reasonably good fit to a variety of
observational data ranging from dwarfs to galaxy clusters.
Further progress in modeling and comparison of SIDM
models with observational data should shed additional light
on this promising class of dark matter models.
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(a) (b)

FIG. 4. Plots showing 68%, 95%, and 99% C.L. contours for the fitting parameters ρχξ and (a) σ̂T=mχ and (b) σ̂V=mχ for the
observational data including MilkyWay dwarf galaxies from [62]. In each figure, the blue point denotes the respective best-fit point. The
curves show the boundaries between the parameter regions where our Born calculation is applicable (light regions) and inapplicable
(dark regions) for the illustrative mass values mχ ¼ 1; 2; 4 GeV, with the larger excluded regions applying for larger mχ. See text and
caption to Fig. 3 for further details.
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