
Fueling the search for light dark matter-electron scattering
with spherical proportional counters

Louis Hamaide* and Christopher McCabe
Theoretical Particle Physics and Cosmology Group, Department of Physics,

King’s College London, Strand, London WC2R 2LS, United Kingdom

(Received 19 January 2022; accepted 14 February 2023; published 6 March 2023)

Dark matter (DM) detectors employing a spherical proportional counter (SPC) have demonstrated a
single-electron detection threshold and are projected to have small background rates. We explore the
sensitivity to DM-electron scattering with SPC detectors in the context of DarkSphere, a proposal for a
300 cm diameter fully electroformed SPC. SPCs can run with different gases, so we investigate the
sensitivity for five targets: helium, neon, xenon, methane, and isobutane. We use tools from quantum
chemistry to model the atomic and molecular systems and calculate the expected DM induced event rates.
We find that DarkSphere has the potential to improve current exclusion limits on DM masses above 4 MeV
by up to 5 orders of magnitude. Neon is the best all-round gas target and provides good sensitivity to
scenarios with both light and heavy mediators. Gas mixtures, where methane or isobutane is added to a
noble gas, can extend the sensitivity at lower masses. Our study highlights the currently untapped potential
of SPCs to search for DM-electron scattering in the MeV-to-GeV DM mass range.
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I. INTRODUCTION

Inferring more about the particle physics properties of
dark matter (DM) remains one of the most important open
challenges in astroparticle physics [1,2]. It is in this context
that the experimental program of DM direct detection
operates, since if a signal from DM is observed in a direct
detection experiment we will learn about the value of the
DM mass and DM interaction with normal matter [3–5].
Traditionally, direct detection experiments have focused on
the search for nuclear recoils induced by scattering from
DM particles with the canonical weakly interacting massive
particle mass range of around 5–1000 GeV (see, e.g.,
Refs. [6–8]). However, the lack of any conclusive DM
measurement has meant that during the past decade the
mass range of interest has broadened to encompass DM
particles with a mass below and above this narrow mass
window [9].
The shift to searching forDMin theMeV to few-GeVmass

range is challenging experimentally, and a number of differ-
ent avenues are being pursued. The search for nuclear recoils
induced by sub-5-GeV DM has continued by using detectors
with significantly smaller energy-detection thresholds, often

in combination with the utilization of lighter target nuclei
(see, e.g., Refs. [10–15]). Alternatively, observable signals
from sub-5-GeV DM can be generated from rare processes
that involve the emission of photons or “Migdal” electrons
from the recoiling atom (see, e.g., Refs. [16–29]) or from the
small flux ofboostedDMthat is nongalactic in origin or arises
from interactions between DM and cosmic rays, the Sun, or
mesons (see, e.g., Refs. [30–37]).
A complementary approach is to search for DM-electron

scattering processes that excite or ionize an electron from
an atom or molecule, excite rotovibrational states or break
chemical bonds in molecules, or excite an electron across
the band-gap in semiconductors or other quantum materials
(see, e.g., Refs. [38–51]). These searches have the advan-
tage that only a small amount of energy, of order the
ionization energy or band-gap energy, needs to be trans-
ferred to the electron to produce an observable signal.
There already exists an impressive range of existing
constraints on the DM-electron cross section in the
MeV-to-GeV mass range, ranging from detectors designed
specifically for this search channel to detectors that have
been designed first and foremost for nuclear recoil searches
but have been repurposed to search for DM-electron
scattering [52–60].
It is in the latter context that we come to the main topic

of this paper. The New Experiments With Spheres-
Gas (NEWS-G) detectors employ a spherical proportional
counter (SPC) [61,62] and can be filled with different
species of atomic or molecular gases. Limits on nuclear-
recoil signals from sub-GeV DM have already been placed
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with a 60 cm diameter SPC [63], while a 140 cm diameter
detector, “S140” (or sometimes SnoGlobe), which utilizes
ultraradiopure copper to reduce the background rate, is
being commissioned at SNOLAB [64,65]. Funding
has also been secured for ECuME, a planned follow-up
140 cm diameter detector that will benefit from a fully
electroformed vessel to lower the background rate, and a
feasibility study of hosting a 300 cm diameter fully
electroformed SPC dubbed DarkSphere at the Boulby
Underground Laboratory is underway [66].
In its simplest form, the operation of the SPC is

illustrated in Fig. 1. The detector consists of a grounded,
spherical, metallic vessel filled with a gas mixture, and a
spherical anode of radius ∼1 mm is placed at the center.
The anode produces an electric field that varies as r−2 in an
ideal SPC and allows the ionization electrons produced
through particle interactions in the gas volume to drift to the
anode. When the electron reaches the anode, an avalanche
occurs, providing signal amplification, which is read out by
a grounded metallic rod. Larger SPCs will employ a
multianode sensor (an “ACHINOS” [67,68]), which
improves detector stability by decoupling the drift field
from the avalanche field, but the basic principle of
operation is similar to the simple SPC shown in Fig. 1.1

Owing to the low capacitance of the central sensor and
the high amplification gain near the anode, it has been

demonstrated that this detector setup has a single ionization
electron threshold [70,71]. This threshold is key to the
Oð15Þ eV threshold envisaged for nuclear recoil searches
[66,71], where the recoiling nucleus produces electrons as
it moves through the gas volume. However, crucially, a
single ionization electron threshold also allows for the
possibility of searching for DM-electron interactions,
where the signal induced by the DM is a small number
of electrons that are produced when an atom or molecule in
the gas mixture is ionized.
In this paper, we quantify the range of DM masses and

DM-electron scattering cross sections that could be probed
by DarkSphere, which we assume gives the ultimate sensi-
tivity from a large-SPC experiment. The DarkSphere SPC
can easily be filled with different gases; therefore,
we study the response to five different gases: helium, neon,
and xenon, which are noble atoms commonly used for
DM experiments, and methane and isobutane (also known
as 2-methylpropane), which may be more commonly
known for their use as fuel. The chemical formulas are
He, Ne, Xe, CH4, and C4H10, respectively. Helium, neon,
and molecules with hydrogen and carbon atoms have been
proposed because the light nucleus of these atoms enhances
the sensitivity to light DM nuclear-recoil interactions.
Meanwhile, xenon has been proposed as a target for
supernova-neutrino detection and neutrinoless double beta
decay SPC searches [72,73]. For the noble gases, Oð10%Þ
of methane or isobutane will in general be added to the
mixture as a “quench gas.” Quench gases are used in
proportional counters to improve detector stability by
absorbing UV photons that can be produced following
the excitation of neutral atoms by collisions between
recoiling electrons or ions with the atoms in the gas.
Without the quench gas, the UV photons may lead to a loss
of proportionality and/or induce spurious signals (see, e.g.,
Ref. [74] for a more extended discussion). In contrast to the
noble gases, the detectors could operate stably with pure
methane or pure isobutane as these gases can act as both the
proportional and quench gas. In addition to studying pure
gas mixtures, which is advantageous to clearly assess the
advantages and disadvantages of each gas, we will also
study gas mixtures withOð10%Þ of methane and isobutane,
as this is the more likely gas mixture to be employed in an
operating detector.
Although the primary motivation for adding methane

and isobutane comes from the requirement of adding a
quench gas, there are several reasons to believe that these
molecular targets may improve the sensitivity to DM-
electron interactions compared to atomic targets. First,
the ionization energies in molecules are often lower than
the ionization energies in the atomic targets used in DM
searches. For example, considering neon and methane
which both have ten bound electrons, the ionization energy
of the outer six electrons in methane is 13.6 eV compared to
23.1 eV for the outer six electrons in neon. Isobutane has an

FIG. 1. A schematic of the detection principle of DarkSphere,
which can be filled with a variety of atomic and molecular gases:
we consider helium, neon, xenon, methane, and isobutane. The
outer sphere is a grounded, metallic shell, and an anode is placed
at the center. DM scattering can ionize an electron from an atom
or molecule. After ionization, the electron drifts to the anode
where an avalanche occurs, and the signal is read out. This setup
has a single-electron threshold, which is key to measuring the
DM-induced signal.

1The electric field induced by a 60-anode ACHINOS, as
envisaged for DarkSphere, varies from ∼0.1 V=cm at the outer
sphere to ∼10 V=cm near the anodes [69].
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even lower ionization energy at approximately 11.1 eV,
compared with xenon’s 12.7 eV. Second, for a gas at the
same pressure, volume, and temperature, so that the
number of moles is the same, a molecular gas can benefit
from a larger number of target electrons. For example,
counting the number of electrons with an ionization energy
less than 100 eV, we find that neon has eight electrons,
xenon has 18 electrons, while isobutane has 26 electrons
(although xenon has 54 atomic electrons in total, as we will
discuss, electrons with large ionization energies cannot be
ionized through DM scattering). In this case, this means
that the ratio of target electrons is 8∶18∶26 per mole of
neon, xenon, and isobutane, respectively.
To the best of our knowledge, there has been no attempt

to compare atomic and molecular targets to see whether
these apparent advantages are borne out. Therefore, we will
explore whether any improvements in the sensitivity to DM
masses and DM-electron scattering cross sections can be
improved through the use of methane and isobutane. While
DM-electron scattering from atomic xenon [41,75,76] has
previously been considered, no results exist for helium,
neon, methane, and isobutane.
The rest of this paper is structured as follows. In Sec. II,

we review the formalism of electron-DM scattering and
present our calculations of the bound- and continuum-
electron wave functions as well as the ionization form
factors for the atomic and molecular gases under consid-
eration. In Sec. III, we present the DM-electron scattering
rates and compare with the anticipated DarkSphere back-
ground rate. Section IV presents our sensitivity projections
for DarkSphere, and we discuss the possible advantages of gas
mixtures over single-species gases. We summarize our
results and give our conclusions in Sec. V. Appendixes
provide more details on the numerical implementation of
our calculations, provide alternative calculations of the
molecular ionization form factors, and compare our xenon
calculations with others in the literature.
Finally, many of our numerical results are available

online. This includes expressions for the bound-electron
wave functions in position and momentum space, inter-
polation tables for the ionization form factors, and code to
calculate the scattering rates [77].

II. DARK MATTER SCATTERING WITH ATOMIC
AND MOLECULAR ELECTRONS

We begin by presenting our calculation of the
DM-electron scattering event rate. In units of counts/
keV/kg/yr, the differential scattering event rate for a DM
particle of mass mDM to ionize an electron from an atom or
molecule is

dR
dEe

¼ 1

mA

ρDM
mDM

X
i

wi
dhσi→f

ion vDMi
dEe

; ð1Þ

where mA is the mass of a target atom or molecule, ρDM is
the local DM density, wi is the occupation number for
electrons in the atomic or molecular orbital labelled by the
quantum number(s) i, hσi→f

ion vDMi is the velocity-averaged
cross section for DM that scatters with an electron in the
state labeled by i to the state f, and finally Ee is the kinetic
energy of the continuum electron. For an atom, i would be
the familiar n; l; � � � quantum numbers, while for molecules,
the quantum numbers depend on the discrete symmetries
of the system.
We follow the convention established in Ref. [38] and

parametrize the differential cross section according to

dhσi→f
ion vi

d lnEe
¼ σ̄e

8μ2e

Z
qiþ

qi−

qdqjfi→f
ion j2jFDMj2gðviminÞ: ð2Þ

In this equation, σ̄e is a model-independent reference cross
section, μe is the DM-electron reduced mass, q is the
amplitude of the momentum transferred by the DM to the
electron with upper and lower limits qiþ and qi−, FDMðqÞ is
the dimensionless DM “form factor,” gðviminðqÞÞ is the DM
velocity integral, and fi→f

ion ðEe; qÞ is the dimensionless
ionization form factor. For gas atoms or molecules in the
DarkSphere SPC, the orientation of the atoms and molecules
will continuously change, so we will always use the
rotationally averaged ionization form factor in our calcu-
lations. Explicitly, the general form of fi→f

ion ðEe; qÞ that we
will use is

jfi→f
ion ðEe; qÞj2

¼
�Z

dΩke

2k3e
8π3

����
Z

d3xψ�
fðx;keÞeiq·xψ iðxÞ

����2
�
; ð3Þ

where ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEe

p
is the momentum of the unbound

electron described by ψfðxÞ, the initial bound wave
function is ψ iðxÞ, and the angled brackets indicate that
we are averaging uniformly over all orientations of the
atom or molecule. As described further in Appendix A, the
rotational averaging procedure means that jfi→f

ion j2 depends
on the scalar q ¼ jqj rather than the vector q. We use the
standard convention for the bound-state wave functions thatR
d3xψ�

i ðxÞψ iðxÞ ¼ 1, while the continuum wave func-
tions are normalized such that

R
d3xψ�

fðx;kÞψfðx;k0Þ ¼
ð2πÞ3δ3ðk − k0Þ. Many authors work in the spherical-wave
basis where the integral over the solid angle of ke does not
appear. However, we prefer to work in a basis where the
solid angle is explicit as it makes some of the manipulations
in Appendix A more transparent. The final results are of
course independent of the choice of basis. It is also worth
stating clearly that with our convention fi→f

ion ðEe; qÞ is the
form factor for a single electron (e.g., one electron in the
5p-shell of xenon). This may be different from other
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definitions in the literature that absorb the occupation
number wi into the definition of the form factor.
To provide the most straightforward comparison of the

DarkSphere sensitivity with other constraints, we use the
Standard Halo Model (SHM) for the DM velocity distri-
bution with v0 ¼ 235 km=s [78–81], vesc ¼ 544 km=s
(consistent with the latest estimates [82]), the Solar peculiar
velocity from Ref. [83], and the average Earth velocity
from Ref. [84]. The minimum speed parameter is

viminðqÞ ¼
Ee þ Ii

q
þ q
2mDM

; ð4Þ

where Ii is the ionization energy of an electron in the initial
state with quantum number(s) i and qi� are determined by
solving Eq. (4) for q with vimin ¼ vmax

DM , where vmax
DM is the

maximum DM speed in the detector frame of reference.
This leads to

qi� ¼ mDMvmax
DM

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ee þ Ii
1
2
mDMðvmax

DM Þ2
s �

: ð5Þ

For our choice of parameters, vmax
DM ¼ 794 km=s. We

note that the SHM is of course an idealized model, while
the real Milky Way DM halo contains much substructure
not included within the SHM (e.g., see the discussion in
Refs. [85–89]). Finally, we set ρDM ¼ 0.3 GeVcm−3 to
facilitate comparison with other experimental constraints.

A. Bound-state wave functions

As we have just discussed, determining the scattering
rate requires the ionization form factor fi→f

ion ðEe; qÞ, which
in turn depends on the bound and continuum wave
functions. We will begin by discussing our calculation of
the bound-state wave functions. There are many code
packages capable of computing bound-state wave functions
in atomic and molecular systems using self-consistent field
(SCF) methods. In this work, we make use of PySCF

[90,91], a versatile open-source python-based quantum
chemistry package to calculate the bound-state wave
functions for helium, neon, and xenon atoms and for
methane and isobutane molecules. Although PySCF allows
for various SCF techniques to obtain the wave functions,
we will stick to the approach most often used in the DM
literature: the nonrelativistic Hartree-Fock method.
It should be noted that the nonrelativistic Hartree-Fock

approach may have limitations. First, relativistic effects
have been shown to become important when the electron
recoil energy is OðkeVÞ, which requires that qhri ≫ 1,
where hri ∼ a0=Zeff is the average position of the bound
electron under consideration, a0 is the Bohr radius, and Zeff
is the effective charge felt by the electron. In this regime,
nonrelativistic calculations can underestimate the rate by an
order of magnitude or more [75,92]. Using the comparison

between relativistic and nonrelativistic calculations in
Ref. [93], we can estimate that relativistic effects begin
to become significant (meaning there is a factor 2 or more
difference) when q≳ 35Zeff keV. In this work, we will
consider electron recoil energies Oð10Þ eV, and our cal-
culations will be dominated by q values ∼20 keV (as we
will see in Fig. 3), so we do not expect any significant error
from not incorporating relativistic effects in our calcula-
tions. Second, the Hartree-Fock method is limited in its
accuracy because it does not fully account for electron
correlation. For instance, in photoionization cross section
calculations with full shell atoms, the absence of correlation
effects limits the accuracy of Hartree-Fock calculations to
around 30% [94]. We therefore expect there to be a similar
error in our calculations.

PySCF expresses the wave functions in terms of a finite-
dimensional Gaussian basis set. In general, it is important
to choose a large enough Gaussian basis set to obtain
accurate forms for the wave functions, particularly at small
and large values of r. For helium and neon, we therefore use
the rather large aug-cc-pV5Z basis set [95,96], while for
xenon, we use the Jorge-QZP basis set [97] as aug-cc-pV5Z
is not available for xenon. For methane and isobutane, we
use the 6-31G(d,p) set [98–100], which is sufficiently large
to capture the effects of the chemical bonds between the
atoms. We have used numerical coefficients from the Basis
Set Exchange database [101–103]. For the methane and
isobutane calculations, we also need to specify the structure
of the molecules. In our calculations, we use the geometric
data from the National Institute of Standards and
Technology Computational Chemistry Comparison and
Benchmark Database (NIST CCCBDB) database [104].
The main results of our PySCF calculations for helium,

neon, methane, isobutane, and xenon are summarized in
Table I.2 The atomic orbitals are labeled by the principal
and angular momentum n and l quantum numbers. The
labels for the methane and isobutane orbitals follow from
the discrete symmetry of the molecule. Methane orbitals are
eigenfunctions of irreducible representations of the discrete
tetrahedral group Td, while the isobutane orbitals are
eigenfunctions of irreducible representations of the C3v
point group.
For the atomic results, we can compare directly with the

tabulated computational results in Ref. [109], which use
Slater-type orbitals, and against output from the ATSP

atomic code [110]. We find that the total energy and the
individual orbital ionization energies from our PySCF

calculation, IHF, agree very well, at the level of 0.001%
or better for helium and neon and at the level 0.03% or
better for xenon. We find excellent agreement between the

2An even more detailed summary of the PySCF output is given
on the GitHub repository [77], which also includes the full
analytic forms of the wave functions in position and momentum
space.
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atomic wave functions when comparing them directly. We
also find very good agreement between the calculated
methane total energy and the computed ionization energies
in Ref. [111], agreeing at the level of 0.5% or better. A
similar level of agreement is found more generally between
our methane and isobutane total energy calculations and the
suite of calculations summarized in the NIST CCCBDB
database [104]. Finally, we also find good agreement
between our spherically averaged methane and isobutane
momentum-space wave functions and the various calcu-
lations presented in Refs. [107,112].
From Table I, we can also compare our calculated IHF

values with the experimental values Iexp. For atoms, we
take the values from Ref. [108] and quote experimental
values averaged over the fine-structure levels. The exper-
imental values for methane and isobutane are from
Refs. [105–107], respectively, where we have quoted the
vertical ionization energies. We do not have a reference for

the experimental values of the innermost core orbitals of
isobutane; however, these orbitals either do not contribute
at all or provide a subdominant contribution. The theoreti-
cal values are, however, consistent with the innermost
methane values, which is what we would expect given these
are all carbon 1s-like states.
We can take the analogy between methane and isobutane

further by following Ref. [107], which groups the isobutane
orbitals into three groups: the outer valence orbitals (6a1,
5e, 1a2, 4e, 3e, 5a1), the inner valence orbitals (4a1, 2e,
3a1), and the core orbitals (2a1, 1e, 1a1). After this
grouping, the average of the outer valence ionization
energies is similar to 1t2 in methane, the inner valence
average is somewhat similar to 2a1 in methane, and as
already noted the core orbital average is similar to 1a1.
In general, we see that the theoretical values and exper-

imental values do not match exactly. This is the normal
outcome of a nonrelativistic Hartree-Fock calculation since

TABLE I. A summary of the most pertinent details from our PySCF calculations. In the second and third rows, we give the basis set
used and the total converged energy in atomic units (au) for each atomic or molecule species. The values IHF and Iexp give the ionization
energy in eV from the PySCF Hartree-Fock calculation and the experimental value from Refs. [105–108], respectively. The superscript in
the orbital name gives the number of electrons in that orbital. For isobutane, we do not have a reference for the ionization energies of the
inner core orbitals (denoted by—). Following Ref. [107], we group the isobutane orbitals into three categories: the outer valence orbitals
(6a1, 5e, 1a2, 4e, 3e, 5a1), the inner valence orbitals (4a1, 2e, 3a1), and the core orbitals (2a1, 1e, 1a1). The large number of orbitals
(and therefore number of electrons) in isobutane with ionization energies less than 30 eV is much higher than in the other species.

Helium (He) Neon (Ne) Methane (CH4)

Basis: aug-cc-pV5Z Basis: aug-cc-pV5Z Basis: 6-31G(d,p)

Total energy (au)a: −2.8616 Total energy (au)a: −128.5467 Total energy (au)a: −40.2016

Orbital IHF (eV) Iexp (eV) Orbital IHF (eV) Iexp (eV) Orbital IHF (eV) Iexp (eV)

1s2 24.98 24.6 2p6 23.14 21.7 1t62 14.80 13.6
2s2 52.53 48.5 2a21 25.66 22.9
1s2 891.79 870.2 1a21 304.96 290.8

Isobutane (C4H10) Xenon (Xe)

Basis: 6-31G(d,p) Basis: Jorge-QZP

Total energy (au)a: −157.3123 Total energy (au)a: −7229.7195

Orbital IHF (eV) Iexp (eV) Orbital IHF (eV) Iexp (eV)

6a21 12.34 11.13 5p6 12.45 12.7
5e4 12.44 11.75 5s2 25.54 23.3
1a22 13.86 12.85 4d10 75.72 68.5
4e4 14.54 13.71 4p6 163.56 146.1
3e4 16.04 15.03 4s2 212.69 213.2
5a21 17.15 15.91 3d10 711.26 682.7
4a21 20.62 18.58 3p6 958.02 971.4
2e4 25.17 21.83 3s2 1087.7 1149
3a21 29.44 24.83 2p6 4839.8 4947
2a21 305.01 2s2 5132.0 5453
1e4 305.01 1s2 33321 34561
1a21 305.30
aTo provide for a more straightforward comparison of the total energy with other computational approaches, we quote the total energy

in atomic units, where 1 au ¼ 27.211 eV.
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this approach misses many of the effects due to electron
correlation, which are required to obtain more accurate
results. Electron correlation can be accounted for with
methods such as the multiconfigurational self-consistent
field, which can also incorporate relativistic effects (for a
detailed discussion, see, e.g., Ref. [113]). There are also
mature code packages such as the atomic code GRASP

[114,115] or the molecular code BERTHA [116] that can
calculate these effects. However, we leave the exploration of
multiconfigurational self-consistent field techniques to
future work. In our calculations, we use the PySCF wave
functions but, where available, use the experimental values
of the ionization energy from Table I.
Finally, as the molecular orbitals are not usually encoun-

tered in the DM literature, in Fig. 2, we show a visualization
of the outermost orbitals for helium, neon (and xenon),
methane, and isobutane. The blue and orange shaded
regions indicate the typical spatial extent of the wave
function, while the smaller spheres indicate the position of
the atomic nuclei. In the lower two panels, the bonds
between the hydrogen and carbon atoms are also shown.
Methane is a tetrahedron with four equivalent bonds
between carbon at the center and the four outer hydrogen
atoms. The tetrahedral geometry of the highest occupied
molecular orbital of methane is the result of sp3-hybridi-
zation between electrons originally associated to the carbon
(2p) and hydrogen (1s) states. The carbon atoms in
isobutane form a trigonal pyramid, where the carbon atom

at the center is bonded with three carbon atoms at the base
of the pyramid and one hydrogen atom at the top of the
pyramid. Each base carbon atom then has bonds with three
hydrogen atoms, forming tetrahedrons. The outermost
orbital in isobutane is again formed as a result of the
sharing of electrons between the carbon 2p and hydrogen
1s electrons.

B. Continuum-electron wave functions

We now have the bound-state wave functions that enter
Eq. (3). Next, we describe our calculations of the con-
tinuum-electron wave functions. For both atomic and
molecular systems, we look for outgoing states that have
been expanded into partial waves,

ψfðx;keÞ ¼
X
l;m

il
PkelðrÞ

r
Y�
lmðx̂ÞYlmðk̂eÞ; ð6Þ

where PkelðrÞ is the radial part of the wave function
and Ylm are the spherical harmonics. The normalization
condition

R
d3xψ�

fðx;kÞψfðx;k0Þ ¼ ð2πÞ3δ3ðk−k0Þ holds
if the radial wave functions satisfy

R
drPklðrÞPk0l0 ðrÞ ¼

ð2πÞ3δll0k−2δðk − k0Þ. We impose this by following the
standard procedure of ensuring that at large values of r our
solution PkelðrÞ asymptotes to a sine function with ampli-
tude 4π=ke [118].
We first discuss our numerical approach to finding

atomic states, where, owing to the spherical symmetry
of atoms, the expansion in Eq. (6) is exact. The continuum-
electron wave functions Pnl→keleðrÞ for an electron initially
in the state n, l that has been promoted to an continuum
state with quantum numbers ke, le are obtained by numeri-
cally solving an approximate form of the one-electron
Hartree-Fock equation in the mean field of the remaining
electrons. Explicitly, the equation that we solve, written in
atomic units, is

�
−
1

2

d2

dr2
þ leðle þ 1Þ

2r2
þ Vnl→keleðrÞ

	
Pnl→keleðrÞ

¼ EePnl→keleðrÞ þ
X
n0l0

δlel0λken0Pn0l0 ðrÞ; ð7Þ

where λken0 are Lagrange multipliers that are introduced to
ensure that radial wave functions with the same l quantum
numbers obey the correct orthogonality relations.
The potential energy in the full Hartree-Fock equations

contains both a local and nonlocal term [119]. For the
continuum electron, we employ Cowan’s Hartree-plus-
statistical-exchange (HX) method to approximate the non-
local exchange potential with a local potential, which
dramatically reduces the complexity of the problem while
producing results in good agreement with the full Hartree-
Fock method [120,121]. Cowan’s HX method is particu-
larly suited to ionization problems since the potential

FIG. 2. A visualization of the outermost orbitals for helium,
neon and xenon, methane, and isobutane. The blue and orange
regions indicate the spatial extent of the electron orbital. The
white and gray nodes represent the positions of the atomic nuclei,
and the connections between the nuclei in the lower panels
indicate the bonds. This visualization was generated by Math-
ematica [117] using the CubeGen output from PySCF.
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energy is guaranteed to have the expected −1=r relation for
an electron far from the atom.
In the HX method, the potential energy is approxi-

mated as

Vnl→keleðrÞ ¼ −
Z
r
þ VH

nl→kele
ðrÞ þ VHX

nl→kele
ðrÞ; ð8Þ

where the first term is the familiar Coulomb interaction of
the electron with a nucleus of charge Z, VHðrÞ is the
classical potential energy of an electron in the mean field
of the other atomic electrons, and VHXðrÞ is the local
approximation to the exchange potential.
The classical potential energy in the frozen core approxi-

mation is

VH
nl→kele

ðrÞ ¼
X
n0l0

ðwn0l0 − δnl;n0l0 Þ
Z

∞

0

dr0

r>
P2
n0l0 ðr0Þ; ð9Þ

where r> ¼ minðr; r0Þ and wnl is the electron occupation
number. The sum is over all bound electrons, PnlðrÞ are the
bound wave functions from PySCF (i.e., in the ionization
calculation, we “freeze” the wave functions of the bound
core electrons), and the Kronecker delta excludes the bound
electron that has been ionized from contributing to the
potential.
The HX exchange potential energy in the frozen core

approximation for continuum states is

VHX
nl→kele

ðrÞ ¼ −
kx
2

�
ρ0ðrÞ
ρðrÞ

��
24ρðrÞ

π

�
1=3

; ð10Þ

where kx is an Oð1Þ numerical factor, and

ρðrÞ ¼
X
n0l0

wn0l0
P2
n0l0 ðrÞ
4πr2

; ð11Þ

ρ0ðrÞ ¼
X
n0l0

½wn0l0 −minð2; wnlÞδnl;n0l0 �
P2
n0l0 ðrÞ
4πr2

: ð12Þ

Again, the sum is over all bound electrons, while the
minð2; wnlÞ term ensures that the exchange potential
vanishes for any two-electron configuration, e.g., as found
in helium, as exchange terms only arise between electrons
with parallel spin. As with the classical potential energy
calculation, PnlðrÞ are PySCF bound wave functions, and the
Kronecker delta excludes the self-interaction of the electron
that has been ionized. We fix kx ¼ 0.65 as this leads to the
most accurate results [120–122].
Next, we discuss our approach to calculating continuum

states from molecules. A rigorous calculation of the
continuum-electron states in a molecule is a much more
challenging calculation. First, the geometry of methane and
isobutane means that the potential energy is no longer

exactly spherically symmetric, and, second, the potential
contains multiple poles at the positions of the atomic nuclei.
In this work, we take a simplified approach and model the
outgoing electron with a single-centered Coulomb wave
function, which is an analytic solution to the Schroedinger
equation for a −Z=r potential. This simplified approach has
previously been used in the DM literature for atomic states
(see, e.g., Refs. [54,123]). In atomic units, the Coulomb
function takes the form

PklðrÞ ¼
4π

2k

jΓðlþ 1 − iZ
k Þje

πZ
2k

ð2lþ 1Þ! ð2krÞlþ1

× e−ikrM

�
lþ 1þ iZ

k
; 2lþ 2; 2ikr

�
; ð13Þ

where Mða; b; xÞ is Kummer’s confluent hypergeometric
function and ΓðzÞ is the Gamma function.
The charge Z remains a free parameter in the Coulomb

function. We again opt for a simple and transparent method
using the ionization energies to choose Z for the methane
and isobutane orbitals. Using the hydrogenlike scaling for
the ionization energy, I ¼ Z2=n2 × 13.6 eV with n ¼ 1 for
1a1 and 1t2 and n ¼ 2 for 2a1, leads to Z values of 4.7, 2.6,
and 1.0 for the 1a1, 2a1, and 1t2 states in methane,
respectively. For isobutane, we follow Ref. [107] and
use the grouping of orbitals into inner core states (1a1,
1e, 2a1), inner valence states (3a1, 2e, 4a1), and outer
valence states (all remaining orbitals). From the ionization
energies and using n ¼ 1 for the inner core and outer
valence states and n ¼ 2 for the inner valence states, we
find that Z ¼ 4.7 for the inner core orbitals, Z ¼ 2.7 for the
inner valence orbitals, and Z ¼ 1 for the outer valence
orbitals. We also have to specify the center of the Coulomb
wave functions. In our calculations, the center is defined by
the coordinate system from the NIST CCCBDB database
[104], which takes the center-of-nuclear-charge as the
origin. In methane, this corresponds to functions centered
on the carbon nucleus, while in isobutane, the center is in
the orange region directly below the central carbon nucleus
at the top of trigonal pyramid in the lower right panel
of Fig. 2.
The Coulomb wave functions have some obvious

limitations. First, the −Z=r Coulomb potential misses
the r-dependent contributions from VH and VHX in Eq. (8).
Second, the assignment of the Z value for molecules is less
robust than for atomic states. Third, the Coulomb functions
are not guaranteed to have the correct orthogonality
conditions for the bound-state functions, as imposed by
the Lagrange multipliers in Eq. (7). Fourth, the Coulomb
potential is spherically symmetric, while the methane and
isobutane potentials are nonspherical. And finally, the
Coulomb waves may not be centered at the center-of-
nuclear-charge but instead at one of the nuclei.
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Employing a spherically averaged potential is a com-
monly used approximation even in more advanced treat-
ments of scattering problems involving molecules (see,
e.g., Refs. [124–128]) and typically leads to results with an
accuracy of approximately 50% or better compared to more
rigorous methods. We explore the uncertainty induced by
changing the Z value and by moving the origin of the
Coulomb waves in Appendix B.

C. Ionization form factors

Having obtained the bound- and continuum-electron
wave functions, we are now able to calculate the rotation-
ally averaged ionization form factor jfi→f

ion ðEe; qÞj2. The
general expression was given in Eq. (3); however, to
generate the results in this section, we use the equivalent
forms derived in Appendix A as they are more amenable to
numerical calculations. We have made extensive use of the

GNU Scientific Library-2.7 [129], Cubature [130], and
GNU Parallel [131] in our numerical calculations.
In Fig. 3, we plot the results of our ionization form factor

calculation for atoms (left column) and molecules (right
column). For clarity, we show only a subset of the orbitals
for xenon and isobutane (bottom panels). In the xenon
panel, we show the outer three orbitals as these are the most
important for DM scattering. In the isobutane panel, we
show two of the outer valence orbitals (6a1 and 5e) to show
that they are almost identical, differing only slightly at
q≲ 5 keV. The other outer valence orbitals (not plotted)
are also very similar. Similarly, we plot one inner valence
orbital (2e) and one core orbital (2a1) as the other inner
valence and core orbitals are similar.3

FIG. 3. The dimensionless ionization form factor for helium (top left), neon (middle left), xenon (bottom left), methane (middle right),
and isobutane (bottom middle). In all cases, we show results when the continuum-electron kinetic energy Ee is 20 eV. For clarity in the
xenon panel, we only show the results for the three outermost shells, 4d, 5s, and 5p, as these usually give the dominant contribution. In
the isobutane panel, for clarity, we show two results from the outer valence orbitals (6a1 and 5e) to demonstrate that they are very
similar, one inner valence (2e) and one core orbital (2a1). The diamonds and triangles on some lines indicate the q− and qþ values,
respectively, for mDM ¼ 30 MeV. There are similarities in terms of the peak position and overall shape between the form factors for the
outermost orbitals in helium (1s), neon (2p), and xenon (5p) and between all three form factors in neon and methane. The shapes of the
methane and isobutane orbitals are also somewhat similar. Note, however, that the form factors for methane and isobutane drop off more
rapidly than for neon as q increases.

3Tabulated values of the ionization form factors for all of the
helium, neon, xenon, methane, and isobutane orbitals are avail-
able on the GitHub repository [77].
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In Fig. 3, we show results when the continuum electron’s
kinetic energy is Ee ¼ 20 eV. At smaller values of Ee, the
ionization form factors have a similar shape but with a
smaller amplitude and a small shift by ∼OðkeVÞ to smaller
values of q. This change in the amplitude occurs because of
the dependence of the electron kinetic energy in the
definition of the dimensionless ionization form factor,
Eq. (3) (recall that Ee enters through ke), while the shift
to smaller values of q occurs because a smaller continuum-
electron kinetic energy requires a smaller kick from the
momentum transfer. Conversely, for larger values of Ee, the
amplitude of the form factors is larger, and the peak shifts
toward larger values, e.g., when Ee ∼ 1 keV, the peak of
the outer orbitals shifts to the range q ∼ 30 to 50 keV.
Comparing the atomic form factors, we see that the

results of the outermost orbitals (1s, 2p, and 5p for helium,
neon, and xenon, respectively) share similarities in the
height and position of the peak values. This should not be
too surprising, given that outer-shell atomic electrons of
different atoms find themselves in a similar screened-
Coulomb potential. Comparing neon to methane and
isobutane, we also see similarities between all three form
factors. Finding some similarities between neon and meth-
ane may not be too surprising as both are systems with ten
electrons. Furthermore, after grouping the isobutane orbitals
into the outer valence, inner valence, and core orbitals, we
already observed similarities between the methane and
isobutane ionization energies, and here we see similarities
between the form factors. However, there are two important
differences particularly at small and large values of q that
deserve further comment.
The first important difference, at q≲ 10 keV, is that the

methane and isobutane form factors do not show the steady
increase with q observed with the atomic results. Instead, in
the molecular form factors there is a gradual flattening to a
finite value as q → 0. This is a result of using Coulomb
wave functions in the methane and isobutane calculations,
which only approximately obey the orthogonality condi-
tions expected between the bound and continuum wave
functions; it should be the case that when q ¼ 0 the overlap
integral in Eq. (3) is zero. Instead, when using Coulomb
functions for the continuum electron, the overlap integral
gives a constant nonzero value when q ¼ 0.
However, for the DM scattering rates, this anomalous

behavior at small q is not important. We can understand
why by considering the diamonds and triangles marked
on some of the lines in Fig. 3. The diamonds show the
q− value, while the triangles show the qþ values, which are
the limits of integration that appeared in Eq. (2), for
mDM ¼ 30 MeV. Orbitals that do not have a diamond or
triangle do not contribute to the differential cross section at
this value of mDM. For some orbitals (e.g., helium 1 s), the
triangle does not appear simply as a result of our plotting
scale for the form factor. For all targets, we see that the
typical q− value is approximately 10 to 20 keV and

therefore above the region where the Coulomb functions
could introduce an error in the molecular calculations from
the anomalous orthogonality conditions. Figure 3 shows
this explicitly formDM ¼ 30 MeV and a single value of Ee,
but we can use Eq. (5) to show that the smallest value of q−
is approximately 11 keV · ðEe þ IiÞ=ð30 eVÞ, from which
we conclude that the anomalous region q ≲ 5 keV does not
enter the integration over q in Eq. (2).
The second and more important difference between

neon, methane, and isobutane is at larger values of q,
where Fig. 3 shows that the form factors drop off more
rapidly as q increases. This is particularly evident when
comparing the outer-shell orbitals (2p, 1t2, and 6a1). This
effect can be understood as follows. Rewriting the form
factor [Eq. (3)] in momentum space, we would find that
jfi→f

ion j2 ∼ jψ̃ iðke − qÞj2, where ψ̃ is the momentum-space
wave function (see Appendix A 1 for an explicit realization
of this when the outgoing electron is modeled by a plane-
wave). This implies that large values of q correspond to a
probe of the large-momentum tail of the momentum-space
wave function. The outermost momentum-space wave
functions fall away more quickly for methane and
isobutane at large values of the momentum compared to
neon, helium, and xenon, so the molecular form factors fall
away more rapidly.

III. COMPARISON OF SCATTERING RATES

With the ionization form factors in hand, it is now
straightforward to calculate the differential cross section
using Eq. (2) and the differential scattering rate using
Eq. (1). In Fig. 4, we plot the scattering event rates as a
function of the ionized electron’s kinetic energy Ee for the
five different gases assuming σ̄e ¼ 10−41 cm2, FDM ¼ 1
and for three values of the DM mass: mDM ¼ 10 MeV
(top), mDM ¼ 30 MeV (middle), and mDM ¼ 300 MeV
(bottom). For all targets except helium, more than one
orbital contributes to the scattering rate. This is most
apparent in the xenon rate (dashed dark-blue line) in the
bottom panel, where the features at different energies arise
from the interplay of the 5p, 5s, and 4d orbitals, which
have been summed together.4

For mDM ¼ 30 and 300 MeV, we see that the largest rate
occurs for neon (solid blue line), except for the high-energy
tail above Ee ∼ 60 eV for mDM ¼ 300 MeV where xenon
takes over. Neon has a number of advantages compared to
the other gases. Compared to helium, there are three times
as many electrons available in the outer shell. Compared to
methane and isobutane, its form factor falls off more slowly
at large q, as discussed in the previous section. And
compared to xenon, the rate suffers less of a suppression
by the 1=mA factor in the scattering rate [cf. Eq. (1)].

4Appendix C provides a comparison of our xenon scattering
rate calculation with other xenon calculations in the literature.
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For DM masses between 300 MeV and 1 GeV, the
scattering rates have the same shape but scale with the
1=mDM factor in Eq. (1). At mDM ¼ 10 MeV (top panel),
the situation is different. Both the neon and helium rates
(solid blue and dot-dashed orange lines, respectively) are
more suppressed relative to the other gases. This follows as
a result of the larger outer-shell ionization energies in neon
and helium compared to the other targets (cf. Table I).
Comparing methane and isobutane (dashed green and dot-
dot-dashed pink lines, respectively), the relative scattering
rates again depend on the competition between more

electron targets in isobutane versus the larger suppression
from 1=mA.
In Fig. 5, we plot the scattering event rates for the five

gases, but this time for FDM ¼ ðαme=qÞ2, where α is the
fine-structure constant. This form forFDM is appropriate for
models that have a light-particle mediating the interaction
betweenDMand electrons. In Fig. 5, we also choose a larger
value of the reference cross section, σ̄e ¼ 10−39 cm2, but
this is still below current bounds for this form of FDM
(cf. Fig. 8). The top, middle, and bottom panels again show
the scattering rates for mDM ¼ 10, 30, and 300 MeV,
respectively.
Comparing Figs. 4 and 5, there are several obvious

differences. First, the rates in Fig. 5 all drop off more
quickly as Ee increases. This is especially noticeable at
mDM ¼ 300 MeV. The rapid falloff occurs because an
increase in Ee leads to an increase in q−, and when the
ionization form factors are multiplied by the additional

FIG. 4. The differential event rates for DM-induced ionization
for DM with mass 10 MeV (top), 30 MeV (middle), and
300 MeV (bottom). Rates are shown for helium (dot-dashed
orange), neon (light blue), xenon (dashed dark-blue), methane
(dotted green), and isobutane (dot-dot-dashed pink). In all three
cases, we show results for σ̄e ¼ 10−41 cm2 and FDM ¼ 1. Neon
tends to have the largest rate, except at the lowest mass (top
panel), where both neon and helium suffer a suppression from the
relatively high ionization energy of the outer shell. The features in
the xenon curve arise from the interplay of the 5p, 5s, and 4d
orbitals. The gray shaded region is an estimate of the background
rate for DarkSphere assuming that it is situated in the Large
Experimental Cavern at the Boulby Underground Laboratory.

FIG. 5. Similar to Fig. 4 but with FDM ¼ ðαme=qÞ2 and
σ̄e ¼ 10−39 cm2. For this form factor, the rates fall off much
more rapidly as Ee increases compared to FDM ¼ 1. Methane and
isobutane tend to dominate at low energies (below ∼10 eV),
while above this energy, the rate for neon or xenon is larger.
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1=q4 factor, the cross section integrands drop off even more
quickly with q, so the scattering rates are even more
sensitive to q−. Second, in Fig. 5 the largest rates at small
values of Ee occur for methane and isobutane at all three
values of the mass shown, while for FDM ¼ 1, methane and
isobutane were the largest only for mDM ¼ 10 GeV. This is
again directly related to the sensitive dependence on q−. As
neon and helium have larger values of the ionization
energy, this in turn means that the q− values are larger
[cf. Eq. (5)]. Although xenon also has a low ionization
energy, the larger 1=mA suppression means that its rate is
below methane and isobutane.
The sensitivity to DM-electron scattering will ultimately

be limited by the background rate. The S140 and ECuME

SPC experiments are projected to achieve background rates
of Oð1Þ cts=keV=kg=day and Oð10−1Þ cts=keV=kg=day,
respectively, in the energy range below 1 keV [65].
DarkSphere aims to achieve a background rate of
Oð10−2Þ cts=keV=kg=day below 1 keV. The gray line and
shaded region in Figs. 4 and 5 show an energy-independent
background rate of 10−2 cts=keV=kg=day below 1 keV,
which we will use in our sensitivity calculations for all gas
mixtures.
A preliminary study [66] shows that a background rate of

10−2 cts=keV=kg=day could be achieved with a fully
electroformed-underground copper shell and by shielding
the 3 m diameter of DarkSphere with a 2.5 m thick water tank
in the Large Experimental Cavern (LEC) at the Boulby
Underground Laboratory. After fully electroforming the
copper shell underground, it is expected that contaminants
from 210Pb and progeny decays would contribute a back-
ground rate ∼2 × 10−5 cts=keV=kg=day below 1 keV [66],
which is significantly smaller than the targeted rate.
Instead, the dominant background is expected to arise
from environmental backgrounds, specifically from neu-
trons, photons, and muons that scatter in the SPC. Muons
are present in cosmic rays, while the neutrons and photons
are generated in the cavern rock, either from radioactivity
or from cosmic-ray interactions (see Refs. [132–135] for
related studies). A GEANT4 [136] simulation assuming a
2.5 m thick water tank in the LEC at Boulby surrounding
the DarkSphere SPC, and assuming a 90%–10% He-C4H10

gas mixture, predicts a photon, neutron, and muon-induced
environmental background rate below 1 keV of ∼5 ×
10−3 cts=keV=kg=day [66]. The dominant contribution
arises from 2-to-3 MeV photons, which produce an
almost-flat spectrum below 1 keV.
Although both the contaminants in the copper shell and

the environmental backgrounds are below the targeted rate,
there are two further sources of background that could
increase the background rate above 10−2 cts=keV=kg=day
below 1 keV. The first is from potential radioactive
contaminants in the gas mixture, with 14C and 3H being
of particular concern (see, e.g., Ref. [137]). Tritium can be
produced in neon when exposed to cosmic rays, and

estimates in Ref. [135] show that the gas should remain
on the surface for less than one month to ensure that the
background from 3H remains subdominant. Methane or
isobutane could provide more of a challenge since they are
composed solely of C and H isotopes and either gas will
generally be present in their role as a quench gas. Both
methane and isobutane are produced from underground
natural gas deposits, which will have been underground for
geological timescales, so the intrinsic contamination from
14C and 3H should only be introduced when extracted,
manipulated on the surface, or transported. The NEWS-G
Collaboration will need to work with gas-manufacturing
companies to ensure that sufficiently pure gas is procured
and that time on the surface is minimized.
The second background source that could increase the

rate beyond 10−2 cts=keV=kg=day is the excess low-
energy background below Oð100Þ eV that has been
observed in many DM experiments [138]. Indeed, a test
run of the S140 detector with methane gas found a large
excess of events in the single-electron channel (correspond-
ing to an energy below ∼28 eV), with an event rate orders
of magnitude larger than in the two-electron channel. The
single-electron events cannot currently be removed by cuts,
so physics searches may be limited to the two-electron
channel (corresponding to an energy ≳28 eV) [138].
With these caveats in mind, we will proceed

assuming the energy-independent background rate of
10−2 cts=keV=kg=day below 1 keV as shown in Figs. 4
and 5. The smallest value of the cross section that can be
constrained will be approximately determined by the
point at which the signal rate is the same magnitude as
the background rate (we will use a more rigorous like-
lihood-based method in the next section to more carefully
quantify the sensitivity). The reference cross section σ̄e ¼
10−41 cm2 used in Fig. 4 is below current constraints for the
three values of the mass shown (cf. Fig. 7), so since all of
the rates in Fig. 4 are above the background rate for some
values of Ee, this indicates that DarkSphere has the potential
to probe new regions of parameter space. Similarly, we see
that the signal rates in Fig. 5 are above the background rate
for a cross section below current bounds, so we anticipate
that DarkSphere has the potential to probe new regions of
parameter space for the FDM ¼ ðαme=qÞ2 form factor.

IV. SENSITIVITY PROJECTIONS

In this section, we will present projections for DarkSphere
in the DM mass-cross section parameter space. Before
showing the results, we should clarify the expected
behavior inside the DarkSphere detector after ionization from
the atom or molecule has occurred (see Ref. [74] for a more
in-depth discussion). After ionization, the electric field will
cause the ionized electron to drift to the anode, where a
Townsend avalanche is triggered when the electron is
within a few millimeters of the anode. This avalanche
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produces a large number of secondary electron-ion pairs
that are detected as a charge pulse. However, there are two
additional processes that may induce additional primary
electrons, which if produced, will also drift toward the
anode and increase the size of the pulse. First, if the kinetic
energy of the ionized electron is larger than the energy
required to create a new electron-ion pair in the gas,
additional primary electrons can be produced. Second, if
an electron is ionized from an inner orbital of the atom or
molecule, a higher-energy bound electron will transition to
the hole, and additional energy will be released, e.g., in the
form of a photon or Auger electron. An Auger electron is
obviously an additional electron, while more primary
electrons can be produced if the photon or Auger-electron
energy is larger than the electron-ion pair threshold energy.
Ideally, we would show scattering rates in terms of the

experimentally measurable parameters such as the number
of primary electrons created or the number of photo-
electrons detected. However, this requires a precise char-
acterization of the detector response at very low energies,

which is not yet available for all of the gases and
gas mixtures that we will consider (although important
steps in this direction have been taken in Refs. [71,135]).
Therefore, we will instead adopt a simpler approach and
discuss the experimental sensitivity only in terms of the
kinetic energy of the ionized electron (Ee). This means that
our treatment is somewhat conservative as it ignores the
contribution from any additional primary electrons that
could be produced, e.g., in the case that an inner orbital is
ionized. This is likely to lead to an underestimate of the
sensitivity, particularly for xenon where the difference
between the orbital ionization energies can be relatively
large (≳100 eV).
Characterizing the sensitivity estimates in terms of Ee

also means that we should define the analysis threshold in
terms of Ee. To investigate the dependence of the number of
signal events on the threshold energy, in Fig. 6, we have
plotted the number of events above a given threshold
energy as a function of the threshold energy (Eth). The
left panels are for FDM ¼ 1 and σ̄e ¼ 10−40 cm2, while the

FIG. 6. The total (integrated) number of events above a given threshold energy as a function of the threshold energy for DM with mass
10 (top), 30 (middle), and 300 MeV (bottom). The number of events is shown for FDM ¼ 1 in the left panel and σ̄e ¼ 10−40 cm2 and for
FDM ¼ ðαme=qÞ2 and σ̄e ¼ 10−38 cm2 in the right panel. We have assumed the baseline DarkSphere parameters: an SPC with a 3 m
diameter filled with the target gas at a pressure of 5 bar, temperature of 20 °C, and taking data for 300 days. Over most of the parameter
space, xenon gives the largest number of events as it has the largest target mass (380.8 kg), while helium gives the smallest number of
events as it has the smallest target mass (11.6 kg). The lines in the right panel drop off more rapidly as Eth increases compared to the left
panel, indicating that a smaller threshold energy is required to observe events when FDM ¼ ðαme=qÞ2.
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right panels are for FDM ¼ ðαme=qÞ2 and σ̄e ¼ 10−38 cm2.
The top, middle, and lower panels are for mDM ¼ 10, 30,
and 300 MeV, respectively. To calculate the total number of
events, we have assumed the baseline detector and operat-
ing parameters for DarkSphere from Ref. [66]; this assumes an
SPC with a 3 m diameter (=o) filled with the target gas at a
pressure of 5 bar, temperature of 20 °C, and taking data for
300 days. The same pressure for the different gases implies
that the total mass inside the detector is different for each
gas. We find that there should be approximately 2900 mol
for each gas, corresponding to 11.6, 58.5, 380.8, 46.5, and
168.6 kg for helium, neon, xenon, methane, and isobutane,
respectively.
From Fig. 6 we observe the general pattern that xenon

gives the largest number of events and helium gives the
smallest number. This follows primarily from the large
difference in the target mass of the two targets. We also see
that for the chosen cross sections, which lie below current
exclusion bounds, the total number of events can be rather
large (≳1000 events). When mDM ¼ 10 MeV (top panels),
we see for both choices of FDM that the number of events
falls off rapidly as the threshold energy increases and falls
to zero completely for Eth ≳ 20 eV. For higher masses and
when FDM ¼ 1, the left-middle and left-lower panels show
that the dropoff in the number of events as the threshold
increases is much shallower, such that the number if events
is still above 1 (and still significantly above 1 for neon and
xenon gases) at Eth ≃ 30 eV. Conversely, the right panels
show that when FDM ¼ ðαme=qÞ2 the dropoff in the
number of events remains significant, even at larger masses.
This is a reflection of the behavior observed previously in
the discussion of Fig. 5.

A. Single-species projections

We show in Fig. 7 our projections for the 90% confidence
limit (C.L.) exclusion limits for pure gas mixtures assuming
FDM ¼ 1 for the baseline detector and operating parameters
for DarkSphere from Ref. [66]. As a reminder, this assumes a
SPC with a 3 m diameter filled with the target gas at a
pressure of 5 bar, temperature of 20°C, and taking data for
300 days with the background rate shown in Figs. 4 and 5.
The two panels in Fig. 7 show projections under two

assumptions for the detection threshold. The upper panel in
Fig. 7 assumes a threshold energy Eth ¼ 1 eV. This means
that essentially all electrons that have been ionized will be
pulled by the electric field in the DarkSphere drift region
toward the anode, where the signal will be read out. This
threshold is chosen to mimic a single-electron search
threshold since electrons with a kinetic energy around
10 eVor smaller will not have sufficient energy to generate
additional electrons in the gas. This is an idealized scenario,
as in a real detector there will be an imperfect efficiency to
detect single electrons. For instance, the test run of the
NEWS-G S140 detector achieved a 50% detection effi-
ciency for single electrons [138]. This calculation also

assumes that the GEANT4 background model is sufficiently
accurate all the way to 1 eV and includes all sources that
contribute to the single-electron background. As discussed
in Sec. III, this is also an idealized scenario, and therefore
the results in the upper panel of Fig. 7 should be understood
as an indication of the absolute best-case sensitivity given
the DarkSphere detector and operating parameters.
Arguably a more realistic scenario is shown in the

lower panel in Fig. 7, which assumes a threshold energy
Eth ¼ 28 eV. This energy is chosen to mimic a detection
threshold of at least two electrons. As discussed in Sec. III,

FIG. 7. Projected 90% C.L. exclusion limits for FDM ¼ 1 when
pure mixtures of only helium, neon, xenon, methane, or isobutane
are used. We have assumed the background rate shown in Fig. 4
together with the baseline DarkSphere parameters: a SPC with a
3 m diameter filled with the target gas at a pressure of 5 bar,
temperature of 20 °C, and taking data for 300 days. The upper
panel assumes a threshold energy Eth ¼ 1 eV, chosen to mimic a
single-electron threshold, while the bottom panel assumes
Eth ¼ 28 eV, to mimic a two-electron threshold. Neon performs
well at higher DM masses but is worse at lower DM masses
where xenon, methane, and isobutane benefit from lower ioniza-
tion energies. Gray bands show current exclusion limits, so we
see that DarkSphere has the potential to exclude unexplored
parameter space with any of the five gas targets shown.
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the test run of the S140 experiment found a large excess of
events in the single-electron channel, with an event rate
orders of magnitude larger than in the two-electron channel,
so the two-electron channel may be preferable for physics
searches [138]. The justification for 28 eV as a proxy for a
two-electron threshold follows from a consideration of the
W-values. Recall that the W-value is the mean energy to
create a new electron-ion pair and its value depends on the
gas under consideration.5 The asymptotic value for xenon is
W ∼ 22 eV [139], for methane and isobutane isW ∼ 28 eV
[139], and for neon isW ∼ 37 eV [140], while for helium, it
is slightly higher at W ∼ 48 eV [141].6 Although in Fig. 7
we show results for a single-species gas, in reality, the
noble gases would always be mixed with a small compo-
nent of methane or isobutane to act as quench gases. For
gas mixtures, theW-value for the mixture is much closer to
the lowest W-value of the gases in the mixture [140,143].
For example, W ≈ 28 eV for a Neþ CH4ð2%Þ mixture
[71]. Therefore, we expect that at or above approximately
28 eV for all gases the ionized electron has enough energy
to be above the mean energy to create a new electron-ion
pair. In the lower panel, we again assume the idealized
scenario where the efficiency factor is 100% above the
threshold energy.
In the calculation of the 90% C.L. limits, we use a

binned-likelihood approach and employ the exclusion-limit
test-statistic and “Asimov” data approach from Ref. [144].
We bin the data into equally sized bins of width 14 eV from
the threshold energy up to 99 (98) eV for Eth ¼ 1ð28Þ eV.
We use an energy resolution of the form σðEeV

e Þ=EeV
e ¼

αþ β=
ffiffiffiffiffiffiffiffi
EeV
e

p
, where σðEeV

e Þ and EeV
e have units of eV, and

α ¼ 4.4 × 10−3 and β ¼ 5.28 are estimated by fitting to the
270 and 2822 eV lines in Ref. [71]. In the case of
Eth ¼ 28 eV, since σðEeV

e ¼ 28 eVÞ ≃ 28 eV, to prevent
upward fluctuations biasing the limits, we multiply the rate
by the rapidly falling error function, 1

2
ð1þerf½ðEeV

e −28eVÞ=
ð ffiffiffi

2
p

·3eVÞ�Þ, which only allows upward fluctuations from a
small energy range below the threshold. Finally, we also
include a 10% uncertainty in the overall normalization of the
background rate.
At DM masses above 100 MeV in both panels of Fig. 7,

we see that neon and xenon constrain smaller values of the
cross section compared to helium, methane, and isobutane.
At smaller masses, gases that have the lowest ionization
energies perform best, so around 10 MeV, isobutane and
methane perform better than neon. Comparing the upper
and lower panels, we see that the effect of the higher

threshold is an overall shift to higher cross sections by a
factor ∼3 for xenon, ∼7 for neon, ∼18 for helium, ∼27 for
methane, and ∼49 for isobutane, accompanied by a more
severe weakening in the limits for DM masses below
around 20 MeV. The gray regions in Fig. 7 show the
current constraints from PandaX-II [145], SENSEI [60],
XENON10 [53], and XENON1T [56], so we see that, even
for the higher threshold scenario, the projected limits from
all gases exclude regions of unexplored parameter space.
In Fig. 8, we show the analogous 90% C.L. limits for

FDM ¼ ðαme=qÞ2. Again, we show projections for Eth ¼
1 eV (top panel) and Eth ¼ 28 eV (bottom panel) to mimic
a single-electron and multielectron search. The same
assumptions about the background and resolution and
the same binned-likelihood method as used in the FDM ¼
1 calculation are used to generate these limits. In the upper
panel of Fig. 8, we see that neon, xenon, methane, and

FIG. 8. Similar to Fig. 7 but with FDM ¼ ðαme=qÞ2. When
Eth ¼ 1 eV, we see that methane and isobutane can outperform
the noble atom targets but suffer a larger suppression factor when
moving to Eth ¼ 28 eV. Gray bands show current exclusion
limits, so we again see that DarkSphere has the potential to exclude
regions of unexplored parameter space with any of the five gas
targets shown.

5The W-value is the mean energy and not the minimum
energy to create a new electron-ion pair. The minimum energy
is lower than W [139] and is around the value of the ionization
energies in Table I.

6The difference between the W-value at approximately 30 eV
and the asymptotic value is ≲10% for a wide range of gases
(including methane) [142].
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isobutane all have a similar performance for DM masses
above 100 MeV, while helium is higher by a factor ∼10.
Comparing the upper and lower panels, we find a more
dramatic reduction in the sensitivity relative to theFDM ¼ 1
scenario. Here, the shift to higher cross sections is a factor
∼100 for xenon, neon, and helium and a factor ∼1000 for
methane and isobutane. The larger reduction in sensitivity
follows from the more rapid dropoff in the scattering rate
with energy when FDM ¼ ðαme=qÞ2, as was highlighted
previously in the discussion surrounding Figs. 5 and 6. The
gray-shaded regions show the current constraints from
SENSEI [60] and XENON10 [53] on this parameter space,
and we again observe that the projected limits from all
gases exclude regions of unexplored parameter space.

B. Mixed-species projections

In this final section, we show projections involving
mixtures of gases. As we have stated previously, this is
the most likely mode of operation in a real experiment as
the noble gases need to run with some amount of methane
or isobutane, since they act as quenchers within the
proportional counter [74]. Although it is in principle
possible to run with a pure mixture of methane or isobutane
as they can act as both the “fill” and quench gas, as both
methane and isobutane are flammable, in reality a pure
mixture of either is unlikely to pass the safety constraints in
an underground laboratory.
In Fig. 9, we show the projected 90% C.L. exclusion

limits for helium and neon (solid orange and blue lines)
as well as for two gas mixtures: 90% helium and 10%
isobutane (“Heþ 10%C4H10”) as dashed orange and 90%
neon and 10% methane (“Neþ 10%CH4”) as dashed blue.
A smaller percentage of methane or isobutane in the
mixture will lie in the shaded regions between the dashed
and solid lines. We have chosen these mixtures as it is
anticipated that this neon-methane mixture will be used in
S140 and ECuME, while the initial DarkSphere studies have
assumed this helium-isobutane mixture. These mixtures
imply a total mass of 57.3 kg for neon-methane and 27.3 kg
for helium-isobutane in the DarkSphere spherical chamber.
The upper panel in Fig. 9 shows the projected limits for

FDM ¼ 1, while the lower panel shows FDM ¼ ðαme=qÞ2.
For FDM ¼ 1, the benefit of adding isobutane to helium
starts to become apparent for DM masses below about
30 MeV. Above this mass, the pure-helium and helium-
isobutane mixture lines are almost indistinguishable. The
benefit of adding methane to neon is much smaller, with
only a noticeable change in a relatively narrow window of
DM masses between approximately 4 and 8 MeV. At
higher DM masses, the difference between neon and a
neon-methane mixture is almost indistinguishable. The
situation changes for FDM ¼ ðαme=qÞ2. In this case, the
sizeable increase in sensitivity of the helium-isobutane
mixture compared to pure helium is apparent over the full
range of DM masses. Even for neon, we see in the lower

panel that there is more of an advantage of running with a
neon-methane mixture for DM masses below approxi-
mately 20 MeV.
The limits in Fig. 9 both assume Eth ¼ 1 eV, however, a

similar pattern is also observed for gas mixtures with Eth ¼
28 eV (not shown): we again find there is an advantage to
the helium-isobutane mixture over a pure-helium gas, while
for neon, the benefit of adding methane is smaller.
For clarity, we have only shown two gas mixtures.

However, a helium-methane mixture will be similar to a
helium-isobutane mixture, while a neon-methane mixture
will be similar to a neon-isobutane mixture. This is for two

FIG. 9. Projected 90% C.L. exclusion limits for gases consist-
ing of pure-helium (solid orange) and pure-neon (solid blue), as
well as the more realistic scenario of gas mixtures: 90% helium
and 10% isobutane in dashed orange and 90% neon and 10%
methane in dashed blue. The colored shading indicates the
exclusions limits for a fraction of the molecular gases between
0% and 10%. In both panels, we assume the baseline DarkSphere
parameters and Eth ¼ 1 eV. The upper panel has FDM ¼ 1, while
the lower panel has FDM ¼ ðαme=qÞ2. Adding a 10% component
of isobutane to helium significantly improves the sensitivity over
helium alone, especially in the lower panel. Adding a 10%
component of methane to neon has a smaller impact, although
still leads to a small improvement at low DM masses.
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reasons. First, the benefits of methane and isobutane arise
largely because of their lower ionization energies relative to
helium and neon, and importantly, the smallest ionization
energies for both methane and isobutane are relatively
similar (cf. Table I). Second, we have demonstrated
explicitly that methane and isobutane have a similar level
of sensitivity in the analysis of pure gas targets (cf. Figs. 7
and 8).
With these considerations in mind, we can also deter-

mine that the benefit of adding methane or isobutane
to xenon will be even smaller than for neon. At higher
DM masses, neon and xenon behave similarly (cf. Figs. 7
and 8), so, as was the case with neon, we find little increase
in sensitivity to a xenon mixture compared to pure xenon at
higher DM masses. Meanwhile, at lower DM masses,
xenon already benefits from a relatively low ionization
energy that is comparable to the methane and isobutane
ionization energies. These considerations are borne out by
explicit calculations (not shown) in which the 90% xenon
and 10% methane or isobutane projected limits are almost
indistinguishable from the pure-xenon projected limit.
Therefore, for constraining DM-electron scattering, there
is no meaningful increase in sensitivity when adding
methane or isobutane to xenon (although they are still
useful experimentally to act as quenchers in the propor-
tional counter).

V. SUMMARY AND OUTLOOK

The NEWS-G Collaboration employs a large spherical
proportional counter filled with atomic or molecular gases
to search for dark matter. It has been demonstrated that
this detector technology has a single-ionization electron
threshold, which allows it to set competitive constraints on
DM-nucleon interactions in the few-GeV mass range.
However, a single ionization electron threshold should
allow for the possibility of constraining DM-electron
interactions (cf. Fig. 1). In this paper, we investigated
this possibility in the context of DarkSphere, a proposal for a
300 cm diameter SPC with a fully electroformed-under-
ground copper shell located in the Boulby Underground
Laboratory. Proportional counters are most commonly
operated with a mixture of gases. Therefore, we consid-
ered a few noble gases—helium, neon and xenon—plus
methane and isobutane, all of which have been proposed
as the fill and quench gases for operation in the SPC.
While several independent DM-electron event rate cal-

culations involving xenon atoms have been presented in the
literature, new calculations for helium, neon, methane, and
isobutane were required. The crucial quantity for calculat-
ing the event rate is the dimensionless ionization form
factor, which is calculated from the bound- and continuum-
electron wave functions. We made use of the PySCF

quantum chemistry package to calculate the bound-state
wave functions, and the output was summarized in Table I
and Fig. 2. To find the continuum-electron wave functions,

we used the HX method for the noble atoms, while for
methane and isobutane, we employed the simpler and less
accurate (analytic) approximation of a Coulomb wave with
effective charges determined using a hydrogenic scaling of
the ionization energies. The resulting dimensionless ion-
ization form factors were shown in Fig. 3, and the DM-
electron scattering rates were given in Figs. 4 and 5.
Projected exclusion limits for the DarkSphere proposal,

presented in Figs. 7–9, show that this detector technology
has the potential to constrain large swathes of new
parameter space. Existing constraints on the DM-electron
cross section for DMmasses above 4MeV can be improved
by up to 5 orders of magnitude in the case of a low-
background, single-electron search.
We found that neon is the best all-around gas target

although it suffers somewhat at low DM mass relative to
xenon because of the comparatively large outer-shell
ionization energy. In this context, adding a 10% component
of methane or isobutane to neon helps somewhat, as the
lower ionization energies of methane and isobutane allow
the gas mixture to match xenon’s sensitivity at low DM
mass. In contrast, we find that adding methane or isobutane
to helium can result in an increase in sensitivity. Helium has
the largest ionization energy of any atom, and with only
two electrons, it has the lowest sensitivity of the five gases
that we considered. Adding a 10% component of methane
or isobutane to helium can potentially lead to a significant
improvements in the sensitivity, especially for the FDM ¼
ðαme=qÞ2 scenario (cf. Fig. 9).
Given their ability to aid in the search for DM-electron

interactions, further refinements of the methane and
isobutane calculations are warranted. Our approach of
treating the continuum electron as a single-centered
Coulomb wave could be refined, for instance, by solving
the Schroedinger equation in the spherically averaged
potential of the molecule, along the lines of the method
discussed in Ref. [128] or by rewriting the single-
particle states and electron density with an auxiliary
single-center basis set that could also incorporate non-
spherical contributions.
Our discussion has been centered around DarkSphere, the

largest of the proposed SPC experiments. We end by
speculating on the sensitivity to DM-electron scattering
that may be achievable with S140, an experiment that uses
a smaller diameter SPC and where the background rate is
higher. The S140 detector is currently being commis-
sioned at SNOLAB, and the background rate is expected
to be Oð1Þ cts=kg=keV=day [135]. Using Figs. 4 and 5,
we can estimate the sensitivity by finding the cross section
when the background and signal rates are comparable.
For FDM ¼ 1, we therefore anticipate that S140 could
achieve sensitivity to σ̄e ∼ 10−40 or 10−41 cm2, while for
FDM ¼ ðαme=qÞ2, σ̄e ∼ 10−36 or 10−37 cm2 may be pos-
sible, depending on the precise value of the detection
efficiency that can be achieved. For both forms of FDM,
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this would be an improvement on current exclusion
limits for DM heavier than approximately 10 MeV.
This underlines the currently untapped potential of
SPCs to search for DM-electron scattering by sub-GeV
DM, and we advocate that this potential should be
explored in greater depth.

Data Access Statement: The data supporting the find-
ings reported in this paper are openly available from the
GitHub repository in Ref. [77].
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APPENDIX A: EXPRESSIONS FOR THE
IONIZATION FORM FACTOR

In Sec. II, we gave the general form for the rotationally
averaged ionization form factor for a single electron. To
recapitulate, the general expression for the form factor is

jfi→f
ion ðEe;qÞj2 ¼

Z
dΩke

2k3e
8π3

×

����
Z

d3xψ�
fðx;keÞeiq·xψ iðxÞ

����2; ðA1Þ

where ke ¼ jkej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEe

p
is the momentum of the

continuum electron and dΩke is the integration over the
direction of the outgoing electron. Note that this expression
depends on q. However, it does not take into account that
the atoms or molecules in a gas will be found at an arbitrary
and constantly changing orientation. In our results, we
therefore average over all possible orientations of the atom
of molecule. By averaging uniformly over all orientations
encoded by the Euler angles α, β, and γ,

jfi→f
ion ðEe; qÞj2 ¼ hjfi→f

ion ðEe;qÞj2i ðA2Þ

¼ 1

8π2

Z
1

−1
d cos α

Z
2π

0

dβ
Z

2π

0

dγ

× jfi→f
ion ðEe;q; α; β; γÞj2: ðA3Þ

As a result of this averaging procedure, the ionization form
factor now only depends on q, the magnitude of q.
Although Eqs. (A1) and (A2) are the most general

expressions, in practice there are more convenient expres-
sions that can be used in calculations. In this appendix, we
provide derivations of the more convenient expressions.

1. Ionization form factor with a plane wave

Although we only consider scattering rates where the
outgoing electron is a plane wave in Appendix B, it is a
useful starting point as the expressions are the most
straightforward to derive. We begin with the function

ψfðx;keÞ ¼ eike·x; ðA4Þ

which trivially satisfies our normalization convention
for continuum wave functions:

R
d3xψ�

fðx;kÞψfðx;k0Þ ¼
ð2πÞ3δ3ðk − k0Þ. Substituting this into Eq. (A1), we rec-
ognize that we can express the form factor in terms of the
momentum-space wave function of the initial state,

jfi→f
ion ðEe;qÞj2 ¼

Z
dΩke

2k3e
8π3

jψ̃ iðke − qÞj2; ðA5Þ

where, to be explicit about our convention,

ψ̃ðpÞ ¼
Z

d3xe−ip·xψ iðxÞ: ðA6Þ

In practice, it more convenient to rewrite this by first noting
that

jψ̃ iðke − qÞj2 ¼
Z

d3pδ3ðp − ðke − qÞÞjψ̃ iðpÞj2 ðA7Þ

and then integrating the delta-function over dΩke and
d cos θp to obtain

jfi→f
ion ðEe;qÞj2 ¼

1

4π3
k2e
q

Z
2π

0

dϕp

Z
pþ

p−
pdpjψ̃ iðp;ϕpÞj2:

ðA8Þ

In this expression, we have aligned q in the z-direction,
and cos θp is the angle between p and q. The integration
over the delta-function enforces the relation cos θp ¼
ðk2e − p2 − q2Þ=ð2pqÞ and sets the limits of integration,
p� ¼ jke � qj. For the rotationally averaged molecular
plane wave form factors shown in Appendix B, we
calculate
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jfi→f
ion ðEe; qÞj2 ¼

1

8π2

Z
1

−1
d cos α

Z
2π

0

dβ
Z

2π

0

dγ

×
1

4π3
k2e
q

Z
2π

0

dϕp

Z
pþ

p−
pdp

× jψ̃ iðp;ϕp; α; β; γÞj2; ðA9Þ

where the integration over the Euler angles is carried out
using Monte Carlo techniques. As a result of this averaging
procedure, the ionization form factor now only depends on
q, the magnitude of q.
For full shell atoms, averaging over the m quantum

number is equivalent to rotational averaging. Therefore,
before proceeding, we pause to check that we recover the
result in Ref. [38] for a spherically symmetric atom with
full shells. Writing ψ̃nlmðpÞ ¼ χnlðpÞYlmðθp;ϕpÞ, where
χnl is the radial part of the momentum wave function and
Ylmðθp;ϕpÞ is the spherical harmonic, we find, after
summing over the spin and magnetic quantum numbers,

X
ms

jfi→f
ion ðEe;qÞj2 ¼

2

4π3
k2e
q

Z
pþ

p−
pdpjχnlðpÞj2

×
Z

2π

0

dϕp

X
m

jYlmðθp;ϕpÞj2 ðA10Þ

¼ 2lþ 1

4π3
k2e
q

Z
pþ

p−
pdpjχnlðpÞj2; ðA11Þ

which is the formula quoted in Ref. [38].

2. Ionization form factor with a Coulomb wave

For the Coulomb wave result, we start by writing the
partial wave expansion in the form

ψfðx;keÞ ¼
X
l

Xl

m¼−l
ψkelmðxÞYlmðk̂eÞ: ðA12Þ

Substituting this form into Eq. (A1) and using the key result

Z
dΩkeY

�
lmðk̂eÞYl0m0 ðk̂eÞ ¼ δll0δmm0 ðA13Þ

allows us to move the sum over l and m outside the
modulus squared, and we obtain

jfi→f
ion ðEe;qÞj2 ¼

2k3e
8π3

X
lm

����
Z

d3xψ�
kelm

ðxÞeiq·xψ iðxÞ
����2:
ðA14Þ

Concretely then, for the Coulomb wave, we use the
expression

ψkelmðxÞ ¼
PklðrÞ

r
Y�
lmðx̂Þ; ðA15Þ

where PklðrÞ is given in Eq. (13). Any phase factors
(including the il term) are removed by the absolute
magnitude squared in Eq. (A14). In our calculations, we
sum over l andm until the result converges to a few percent
accuracy. Typically, this occurs for l≲ 5; however, in some
cases, we need to sum up to l ∼ 15. The rotationally
averaged result is again obtained by averaging over the
Euler angles, which we do using Monte Carlo integration.
In passing, we note that Eq. (A14) can also be used to

calculate the form factor for plane waves and this approach
bypasses the need to calculate the momentum-space wave
function. From the plane wave expansion, we have that

ψkelmðxÞ ¼ 4πjlðkerÞY�
lmðx̂Þ; ðA16Þ

where jlðkrÞ is the spherical Bessel function. In our
calculations, however, we found it easier to use the
expressions in Appendix A 1, especially at large values
of q.

3. Ionization form factor for atoms

The expressions in Eqs. (A8) and (A14) make no
assumption about the symmetry of the bound-state wave
function. For atomic systems, we can exploit the spherical
symmetry of the atom to arrive at another compact
expression that is in use in the literature. We start by
substituting the expressions

ψ iðxÞ ¼
PnlðrÞ

r
Ylmðx̂Þ ðA17Þ

ψ�
kel0m0 ðxÞ ¼ Pkel0 ðrÞ

r
Yl0m0 ðx̂Þ ðA18Þ

eiq·x ¼
X
LM

4πiLjLðqrÞYLMðx̂ÞY�
LMðq̂Þ ðA19Þ

into Eq. (A14). Note that here we have assumed that
Pkel0 ðrÞ is real. We can simplify the resulting expression by
using various identities of the spherical harmonics,Z

dΩxYlmðx̂ÞYl0m0 ðx̂ÞYLMðx̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r

×

�
l l0 L

0 0 0

��
l l0 L

m m0 M

�
; ðA20Þ

X
M

YLMðq̂ÞY�
LMðq̂Þ ¼

2Lþ 1

4π
; ðA21Þ
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where the term in brackets is the Wigner 3-j symbol, which
satisfies

X
mm0

�
l l0 L

m m0 M

��
l l0 L0

m m0 M0

�
¼ δLL0δMM0

2Lþ 1
: ðA22Þ

Pulling all of these results together, we find that the form
factor averaged over the initial-state m quantum number is

jfnl→f
ion ðEe; qÞj2 ¼

1

2lþ 1

Xl

m¼−l
jfnl→f

ion ðEe;qÞj2 ðA23Þ

¼ k3e
4π3

X
l0L

��
l l0 L

0 0 0

�	
2

ð2l0 þ 1Þð2Lþ 1Þ

×

����
Z

drPkel0 ðrÞPnlðrÞjLðqrÞ
����2: ðA24Þ

This matches the result in Ref. [52] after multiplying by the
occupation number wnl ¼ 2ð2lþ 1Þ since Ref. [52]
includes wnl in their definition of the form factor. In our
atomic physics calculations, we use this result and sum
both l0 and L in Eq. (A24) up to 20, which gives a result that
converges to better than 2% accuracy for helium and neon
and better than 3% for xenon. As the Pkel0 ðrÞ and jLðqrÞ
terms can oscillate very rapidly for large values of ke and q,
we are careful to determine all of the real roots and supply
these to our integration algorithm to ensure accurate
numerical results.

APPENDIX B: METHANE AND ISOBUTANE
RATES: ALTERNATIVE APPROACHES

In Sec. II, we calculated the methane and isobutane rates
with the assumption that the continuum-electron wave
functions were Coulomb waves centered on the center-
of-nuclear-charge of the molecule. We also made a sim-
plifying assumption for the charge Z, which is a free
parameter in the Coulomb function. In this appendix, we
investigate three alternative approximations used in the
continuum-electron wave functions and consider their
impact on the scattering rate. First, we consider a more
basic approximation where we treat the continuum electron
as a plane wave. Second, as isobutane is a large molecule,
we consider the impact of centering the Coulomb waves at
one of the carbon atoms at the base of the trigonal pyramid
rather than on the center-of-nuclear-charge of the molecule.
Finally, we consider the impact of changing the values of
the charge Z in the Coulomb function.

1. Plane wave approximation

In atomic calculations at low electron energies, the plane
wave approximation gives results that are less accurate than
calculations with a Coulomb wave or that solve the
Schrödinger equation in the potential generated by the

bound-state electrons (see, e.g., Ref. [93]). Nonetheless, a
comparison of the plane wave results with the Coulomb
wave results can give a crude estimate of the accuracy of the
calculations.
In atomic calculations, the plane wave calculations are

improved somewhat by including the Fermi function as a
prefactor in Eq. (2). The Fermi function is defined as

FðkeÞ ¼
�
ψCoulomb
f ðx → 0;keÞ
ψPlane
f ðx → 0;keÞ

�2

ðB1Þ

¼ 2πηðkeÞ
1 − exp½−2πηðkeÞ�

; ðB2Þ

which is the square of the ratio of the Coulomb wave to the
plane wave at the origin [146] and where

ηðkeÞ ¼ Zeff
αme

ke
ðB3Þ

is the Sommerfeld parameter [here given in natural units,
while we gave the Coulomb function in Eq. (13) in
atomic units].
As with the Coulomb wave calculation presented in

Sec. II, we center the plane wave on the center-of-nuclear-
charge of the molecule, and we must supply a value of Zeff
that enters Eq. (B3). We follow the same procedure used in
Sec. II, which leads to Zeff values of 4.7, 2.6, and 1.0 for the
1a1, 2a1, and 1t2 states in methane, respectively, and Zeff ¼
4.7 for 1a1, 1e, 2a1, Zeff ¼ 2.7 for 3a1, 2e, 4a1, and Zeff ¼
1 for the remaining outer valence orbitals in isobutane.
In Fig. 10, we plot the methane (left panels) and

isobutane (right panels) scattering event rates in the
Coulomb wave and plane wave approximations (with
and without the Fermi function). The results are shown
for FDM ¼ 1 (top panels) and FDM ¼ ðαme=qÞ2 (bottom
panels) with mDM ¼ 30 MeV. Similar relative differences
are found between the rates for DMmasses in the range 5 to
1000 MeV.
In all cases, the Fermi function improves the agreement

between the plane wave and the Coulomb wave. For
methane, the agreement over most of the energy range
between the Coulomb rate and plane wave rate with the
Fermi function is at about the level of 30%. Without the
Fermi function, the Coulomb and plane wave rates differ by
more than an order of magnitude. The differences are larger
for isobutane, where there is a factor of approximately 2-to-
3 difference between the Coulomb and plane wave rate with
the Fermi function. As the plane wave with Fermi function
rates are all larger than the Coulomb rates, the correspond-
ing projected exclusion limits that would be obtained using
the plane wave with Fermi function would be a factor of
approximately 2 to 3 lower than the limits shown in Sec. IV.
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2. Alternative center for the Coulomb waves

In Sec. II, the Coulomb waves were centered at the
center-of-nuclear-charge. While in methane the center-of-
nuclear charge corresponds to the position of the carbon
atom, in isobutane, the center-of-nuclear charge is a point in
space between the carbon atoms. In the case of isobutane, it
is therefore possible that after ionization the positive charge
could be localized on a specific carbon atom rather than the
center-of-nuclear charge. To investigate the impact of this
possibility on the scattering rate prediction, we have
recalculated the ionization form factors when the con-
tinuum-electron Coulomb waves are centered on a carbon
atom at the base of the trigonal pyramid. Specifically, we
center the Coulomb waves on the carbon nucleus at
ð2.38;−1.37;−0.19Þ Bohr in our Cartesian coordinate
system, as defined by the NIST CCCBDB database [104].
In Fig. 11, we show the differential scattering rate for two

DM masses, 30 and 1000 MeV, and for FDM ¼ 1 (top) and
FDM ¼ ðαme=qÞ2 (bottom). The solid lines show the result
of the calculation in Sec. II, while the dashed lines show the
rates when the center is the carbon atom at the base of the
trigonal pyramid. The difference between the two calcu-
lations is 40% or smaller for both masses and both choices
of FDM. Similar results are found for all other DM masses
considered in this work.

3. Alternative values of the effective charge

The charge Z remains a free parameter in the Coulomb
function. We used the values Z ¼ 4.7, Z ¼ 2.6, and

Z ¼ 1.0 for the 1a1, 2a1, and 1t2 states in methane, which
were obtained using the formula for the hydrogenlike
scaling for the ionization energy. For isobutane, we made

FIG. 10. Differential event rates for DM-induced ionization from methane (left panels) and isobutane (right panels) for various
continuum-state approximations: Coulomb wave (solid blue), plane wave (dot-dashed teal), and plane wave with the Fermi function
using the same Zeff values that enter the Coulomb calculation (pink dashed). The DM mass is fixed to 30 MeV. The top panels show
FDM ¼ 1, while the bottom panels show FDM ¼ ðαme=qÞ2. Note the change in the scattering rate scale between the top and bottom
panels.

FIG. 11. Comparison of the differential event rates for DM-
induced ionization from isobutane when the continuum-electron
Coulomb waves are centered at the center-of-nuclear-charge
(solid dark-blue lines) and at a carbon atom at the base of the
trigonal pyramid (dashed pink lines). The comparison is made for
a DM mass of 30 and 1000 MeV. The top panel shows FDM ¼ 1,
while the bottom panel shows FDM ¼ ðαme=qÞ2. Note the change
in the scattering rate scale between the top and bottom panels.
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a further simplifying approximation, which was to assign
Z ¼ 4.7 for the inner core orbitals (1a1, 1e, 2a1), Z ¼ 2.7
for the inner valence orbitals (3a1, 2e, 4a1), and Z ¼ 1 for
the outer valence states (all remaining orbitals).
Here, we investigate two alternative choices for the Z

values that enter the isobutane calculation. First, we assign
different Z values to each orbital, calculated using
I ¼ Z2=n2 × 13.6 eV, where I is the experimental ioniza-
tion energy (when available or theoretical value otherwise)
and n ¼ 1 for the inner core and outer valence states and
n ¼ 2 for the inner valence states. The resulting scattering
rates for two DM masses, 30 and 1000 MeV, are shown as
the dashed pink lines in Fig. 12. These are compared with
the rates from Sec. II shown in solid blue, where common
Z values were assigned to the groups of inner core, inner
valence, and outer valence orbitals. The rates differ by
25% or less for both DM masses shown and for both
choices of FDM. Second, we consider the (possibly
unphysical) scenario where the value of Z is arbitrarily
doubled, such that Z ¼ 2 × n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=13.6 eV

p
, in order to

obtain intuition for how the rates scale with Z. The
resulting rates are shown as the dot-dashed teal lines in
Fig. 12. Comparing with the dashed pink lines, we find
that the scattering rates where Z has been doubled are
between a factor of 1.5 and 2 larger.

APPENDIX C: COMPARISON WITH OTHER
CALCULATIONS

The literature contains several calculations of the DM-
electron scattering rate for xenon. In this appendix, we
provide a comparison with the results from QEDark (spe-
cifically, Xe_v2.0) [147], a commonly used package in
limit-setting calculations (see, e.g., Ref. [56]), and with
Pandey et al. [76], which provides both a relativistic and
nonrelativistic calculation and reports some deviations
from the QEDark results.
In making the comparisons, we use the same astro-

physical parameters employed in those papers: ρDM ¼
0.4GeV=cm3, v0 ¼ 220 km=s, and vesc ¼ 544 km=s. We
also follow the same prescription used in those works to
calculate the expected number of electrons ne from a given
dR=dEe recoil spectrum, namely, we use the xenon binding
energies and the input parameters W ¼ 13.8 eV,
fe ¼ 0.83, and fR ¼ 0 from Ref. [53].
The solid blue lines in Fig. 13 show the spectrum of the

expected number of events from our nonrelativistic calcu-
lations for FDM ¼ 1 (top-left panel) and FDM ¼ ðαme=qÞ2
(bottom-left panel). We have assumed a DM mass of
500 MeV and a total exposure of 1000 kg − yr. In the
same panels, we show the nonrelativistic result from QEDark

(Xe_v2.0), together with the nonrelativistic and relativistic
calculations from Pandey et al.
Comparing first with QEDark (pink dashed lines), we find

good agreement for a small number of electrons (n≲ 4)
but a deviation at larger values. This is most obvious
when FDM ¼ 1 where the difference reaches a factor of
approximately 3 for n ¼ 14. The difference at larger ne is
less pronounced when FDM ¼ ðαme=qÞ2. To better under-
stand the difference in the FDM ¼ 1 case, in the right
panel of Fig. 13, we have plotted the contributions
from the individual orbitals for our results and for
QEDark. This clearly shows that the difference arises from
the 4p shell. While our calculation shows that 4d and 4p
both contribute at a similar level at ne ∼ 14, the QEDark

result for 4p is approximately an order of magnitude
smaller. There is also a substantial difference with 4s, but
this orbital gives a subdominant contribution to the
total rate.
Turning next to a comparison with Pandey et al. (green

dashed and orange dot-dashed lines), we find agreement
with the nonrelativistic calculation at the level of 30% or
better for ne ≳ 3. Both our result and the Pandey et al.
nonrelativistic calculation deviate from QEDark at larger
values of ne. The relativistic calculation shows an enhance-
ment over all nonrelativistic calculations at larger ne, which
is understood as arising from the more accurate charac-
terization of the electron wave function at very small
distances in the relativistic calculation (see, e.g.,
Ref. [92]). Comparing the results at small electron number
(ne < 3), we find that our result and that of QEDark are about
a factor of 2 higher than that of Pandey et al. The ne ¼ 1

FIG. 12. Comparison of the differential event rates for DM-
induced ionization from isobutane for different values of Z,
which is a free parameter in the Coulomb function. Solid blue
shows the rates when common Z values are assigned to the
groups of inner core, inner valence, and outer valence orbitals;
dashed pink shows the rates when Z ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=13.6 eV

p
, where I is

the ionization energy; and dot-dashed teal is when
Z ¼ 2 × n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=13.6 eV

p
. The comparison is made for a DM mass

of 30 and 1000 MeV. The top panel shows FDM ¼ 1, while the
bottom panel shows FDM ¼ ðαme=qÞ2. Note the change in the
scattering rate scale between the top and bottom panels.
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and ne ¼ 2 results (equivalent to low electron kinetic
energy) are most sensitive to the effective potential used
in the calculation. The Pandey et al. calculation only
includes the classical potential energy in their calculation
of the continuum wave function. In contrast, our result
includes the potential energy and an effective exchange
potential. Rerunning our calculations with kx ¼ 0 in

Eq. (10) (so that only the classical potential energy
contributes), we find that the scattering rate falls just below
the Pandey et al. result for ne < 3. This confirms that the
ne ¼ 1 and ne ¼ 2 rates are sensitive to the effective
potential, so differences between our result and that of
Pandey et al. should be expected since we use different
models of the effective potential.
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