
Detecting and diagnosing terrestrial gravitational-wave mimics
through feature learning

Robert E. Colgan ,1,2 Zsuzsa Márka ,5 Jingkai Yan,2,3 Imre Bartos,4 John N. Wright,2,3 and Szabolcs Márka6
1Department of Computer Science, Columbia University in the City of New York,

500 W. 120th Street, New York, New York 10027, USA
2Data Science Institute, Columbia University in the City of New York,

550 W. 120th Street, New York, New York 10027, USA
3Department of Electrical Engineering, Columbia University in the City of New York,

500 W. 120th Street, New York, New York 10027, USA
4Department of Physics, University of Florida, PO Box 118440, Gainesville, Florida 32611-8440, USA

5Columbia Astrophysics Laboratory, Columbia University in the City of New York,
538 W. 120th Street, New York, New York 10027, USA

6Department of Physics, Columbia University in the City of New York,
538 W. 120th Street, New York, New York 10027, USA

(Received 6 July 2022; accepted 15 February 2023; published 20 March 2023)

As engineered systems grow in complexity, there is an increasing need for automatic methods that
can detect, diagnose, and even correct transient anomalies that inevitably arise and can be difficult
or impossible to diagnose and fix manually. Among the most sensitive and complex systems of our
civilization are the detectors that search for incredibly small variations in distance caused by gravitational
waves—phenomena originally predicted by Albert Einstein to emerge and propagate through the universe
as the result of collisions between black holes and other massive objects in deep space. The extreme
complexity and precision of such detectors causes them to be subject to transient noise issues that can
significantly limit their sensitivity and effectiveness. They are also subject to nearly constant development,
improvement, commissioning and other invasive actions that change the nature of the data and its artifact
contamination. In this work, we present a demonstration of a method that can detect and characterize
emergent transient anomalies of such massively complex systems. We illustrate the performance, precision,
and adaptability of the automated solution via one of the prevalent issues limiting gravitational-wave
discoveries: noise artifacts of terrestrial origin that contaminate gravitational wave observatories’ highly
sensitive measurements and can obscure or even mimic the faint astrophysical signals for which they are
listening. Specifically, we demonstrate how a highly interpretable convolutional classifier can automati-
cally learn to detect transient anomalies from auxiliary detector data without needing to observe the
anomalies themselves. We also illustrate several other useful features of the model, including how it
performs automatic variable selection to reduce tens of thousands of auxiliary data channels to only a few
relevant ones; how it identifies behavioral signatures predictive of anomalies in those channels; and how it
can be used to investigate individual anomalies and the channels associated with them. The solution
outlined is broadly applicable, enabling automated anomaly discovery and characterization and human-in-
the-loop anomaly elimination.
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I. INTRODUCTION

Gravitational-wave detectors such as KAGRA, Virgo,
GEO600, and Laser Interferometer Gravitational-wave
Observatory (LIGO) use highly sensitive interferometers
[1–4] to measure the extraordinarily tiny variations gravi-
tational waves cause as they pass through the detectors.
Discoveries [5–7] of gravitational-wave detectors are
documented in extensive catalogs, such as GWTC-1 [8],
GWTC-2 [9], GWTC-2.1 [10], GWTC-3 [11], 1-OGC
[12], 2-OGC [13], 3-OGC [14], IAS-Princeton [15–17],

and eccentric localizations [18]. Due to the detectors’
precision, they are also subject to various forms of noise
that can appear in the gravitational-wave measurement data
and interfere with their ability to detect and characterize
gravitational waves. Among the most troublesome forms of
noise are short, loud anomalies known within LIGO as
“glitches,” which can obscure or even mimic real gravita-
tional waves. Unlike ever-present background noise
[19,20], glitches cannot simply be subtracted from the
desired signal. They have a wide variety of causes, some of
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which are well understood and many of which are not.
Attempts to mitigate various types of glitches have been a
significant focus of LIGO’s engineering efforts for more
than a decade, and have included multiple machine learn-
ing–based approaches [20–48]. In addition to the main
interferometer data channel sensitive to gravitational
waves, known as the “strain,” each LIGO detector con-
tinuously records hundreds of thousands of channels of
“auxiliary” data describing various aspects of the detector’s
state and internal and external environment. Although the
vast majority of these channels do not record useful
information for identifying the source of specific glitches,
some have been found to measure behavior predictive of or
associated with certain types of glitches. Understanding
which channels may be associated with glitches and how is
therefore an important avenue for diagnosing the root
causes of glitches and in some cases reducing or eliminat-
ing them.
Recent machine learning–based approaches to glitch

understanding and mitigation include works that investigate
the association between glitches and LIGO’s auxiliary data
channels by casting glitch detection as a classification
problem using only nonastrophysically sensitive auxiliary
channel data as input [21,22,27]. Generally, glitch detection
methods, including those referenced above, may identify
times likely to contain glitches using auxiliary channels
that have previously been observed to correlate with
noise transients in the strain data, and also often directly
analyze the gravitational-wave strain, sometimes in combi-
nation with auxiliary data [24–26,29,33,34,36–47,49–54].
However, machine learning–based methods that use strain
data only indirectly (as a labeled dataset) during training to
learn correlations between glitches and auxiliary channels
can provide a model that produces a strain-independent
corroboration for glitch probability [21,22,27]. Because
such models base their predictions only on astrophysically
insensitive auxiliary data, they present a lower risk of
inadvertently labeling an astrophysical event as a glitch.
Notably, achieving a sufficient level of accuracy with a
strictly auxiliary channel–based model necessarily implies
that it has recognized and learned to be sensitive to
behavior observed in only the auxiliary channels that is
predictive of glitches in the gravitational-wave strain data
stream. These automatically identified associations can
then be analyzed by detector domain experts for potentially
unexplored insights into the origins and causes of glitches.
This pursuit could ultimately lead to mitigations that reduce
glitch frequency, increase the sensitivity of the detector, and
enable sufficiently confident detections of astrophysical
events that would otherwise have been rejected as too
uncertain [22].
In this work, we demonstrate and apply one such model

to a real dataset of a certain type of glitch that was
particularly prevalent at LIGO Livingston Observatory
(LLO) at various times during LIGO’s Observing Run

3b (O3b). We demonstrate the model’s ability to identify
such glitches with a remarkable accuracy greater than 97%.
We also illustrate clearly how it arrives at its predictions and
highlight several other useful aspects of the model, includ-
ing its high degree of interpretability and the insights it can
provide into the glitches and channels analyzed. The results
provide a demonstration of the capabilities of the models
described. We hope they will stimulate further exploration
and application to additional glitch types and datasets,
eventually leading to breakthroughs that allow glitches
to be reduced or eliminated and the detectors’ sensitivity to
be increased—which could enable sufficiently confident
detections of more gravitational waves and further our
understanding of our universe.

II. FEATURE LEARNING FOR TRANSIENT
ANOMALIES

Machine learning models have been demonstrated in
recent works to be able to learn to predict the presence or
absence of glitches in high-dimensional gravitational-wave
astronomy data by considering only auxiliary channel
information, without looking at the gravitational-wave
strain data stream in which the glitches themselves appear
[21,22,27]. In this section, we describe one such model
initially proposed in [21], which we refer to as LF. The
model is highly interpretable and well-suited to efficient
strain-independent glitch detection, offering several useful
features including:

(i) Strain-independent glitch prediction. It is extremely
important for potential gravitational-wave detections
to be rigorously vetted to ensure they are in fact true
astrophysical events. Terrestrial-origin glitches can
obscure or mimic gravitational waves, so it is also
important to identify and distinguish them from
astrophysical signals with high confidence. Unlike
existing glitch-detection methods such as Omicron
[55] and GravitySpy [34] that directly analyze the
gravitational-wave strain data stream to search for
high-power transient noise events, the methods
discussed here consider only the detector’s auxiliary
data channels. As such, they provide independent
corroboration from an entirely different data source;
for example, because auxiliary channels are gener-
ally not astrophysically sensitive (and we take pains
to remove any that might be from consideration—
see Sec. III B), it is unlikely that these methods
would inadvertently identify a true gravitational
wave as a glitch. [Sec. IVA].

(ii) Channel selection. The models are trained on tens of
thousands of auxiliary channels. Certain channels
are known to detector experts to monitor aspects of
the detector’s behavior associated with glitches, but
it would be impossible to comprehensively analyze
all channels manually. Absent such domain expert
knowledge and time, machine learning models can
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discover connections between auxiliary channels
and glitches that might otherwise have gone un-
detected. Notably, the models discussed here are
explicitly tuned to learn to ignore input channels that
are not useful for making its predictions—the vast
majority of them, in this setting. Such a practice has
previously been demonstrated (e.g., in [21,22]) to
improve both interpretability and accuracy. These
methods achieve excellent performance while ignor-
ing all but a few dozen to few hundred channels,
which can then be further investigated manually by
detector domain experts. [Sec. IV B].

(iii) Learned features. In addition to simply telling us
which channels to look at, the models discussed here
also learn behavioral signatures that correspond to
patterns of behavior associated with glitches (or the
lack thereof) in individual channels. For example, if
a certain type of glitch is frequently preceded by a
level change in a particular channel, we can expect
the feature corresponding to that channel to learn to
be sensitive to such a pattern. A few of these learned
features are illustrated in Figs. 1 and 11. [Sec. IV C].

(iv) Channel contributions to individual glitches. For any
individual glitch (or set of glitches) of interest, we
can feed the model the auxiliary channel data for
those glitches and examine the contributions of each
channel to the classifier’s result for those glitches.
This could be useful if, for example, there are
multiple potential causes of a given glitch and we
need to determine which one is most likely at play.
[Sec. IV D].

Other algorithms including Omicron [55], iDQ [27], and
hveto [43] also analyze auxiliary channels for glitch source
identification; thus the qualities specified above may not be
necessary unique to the LF model of [21].
For the experiments presented here, we employ a slightly

modified version of the LF model introduced in [21]. The
model is a flat convolutional binary classifier parametrized
by a learned filter fp ∈ RT of desired length T1 for each of
the P input time series (auxiliary channels) as well as a
single learned bias term bsp for all channels of each sample
rate sp.

2

To make a prediction at time t, the model takes as input
the normalized data (centered at t) for all channels xp½t� ∈
RT of each sample rate sp; cross-correlates the data with the
corresponding filter fp; sums the results for each sample
rate sp and adds the corresponding bias term bsp ; and sums
the results across all sample rates. The result is then
translated into a probability estimate between 0 and 1
(where 0 indicates the model is certain no glitch is present
and 1 indicates it is certain there is a glitch) by passing it
through a sigmoid function. Mathematically,

ŷt ¼ σ

�X
sp

�X
p

fp ⋆ xp½t�
�
þ bsp

�
; ð1Þ

where σ denotes the logistic function σðxÞ ¼ ð1þ
expð−xÞÞ−1 and ⋆ denotes discrete correlation.
As in [21], we employ a sparsifying regularizer—the

elastic net [56]—during training to encourage most of the
filters to be 0, i.e., k fpk ¼ 0 for most p, because sparsity
was found to be essential to good performance as well as
beneficial to interpretability [21,22].
After training, the remaining nonzero filters correspond

to the channels the model finds useful in making its
predictions, indicating channels with behavior that was
associated with the appearance of glitches or lack thereof
during the training period. The magnitude of the filters
also provides an indication of the relative importance of
each channel to the model’s predictions (intuitively, when
correlated with a higher-magnitude filter, an input data
segment will contribute more heavily to the sum and
resulting probability estimate than the same segment
correlated with a lower-magnitude filter) [21].
In Figs. 1 and 2, we illustrate visually how the model

arrives at its predictions given a potential glitch time t.
Figure 1 shows two examples of learned filters fp. Figure 2
illustrates two channels’ data xp½t� (blue) during several
glitches around GPS time t ¼ 1, 259, 253, 345 (the center
of the x-axis) as well as the cross-correlation (orange)
between the channel data centered at each point on the
x-axis and the corresponding filter illustrated in Fig. 1.
To arrive at an estimate that there is a glitch present at that
time, the model would sum the cross-correlations at that
time over all channels considered. In Fig. 2, the cross-
correlation values for both channels at that time are
positive, so both channels are contributing to the model
predicting the presence of a glitch. The left channel’s cross-
correlation is significantly greater, however, so it makes a
larger contribution to the model’s confidence that a glitch is
present.

III. APPLICATION TO SCATTERED
LIGHT GLITCHES

To illustrate how this method can be employed to
interrogate a particular variety of recurring glitch, in this

1We set the filter length T to 96 samples for all channels based
on the finding of [21] that six seconds of data for 16-Hz channels
performed well. As discussed in Sec. A, for computational
efficiency we used the same number of samples for channels
regardless of sample rate, so the model sees six seconds of data
for a 16-Hz channel but only 0.375 seconds of data for a 256-Hz
channel, for example.

2The minor modification we make to the LF model of [21] is
the introduction of a separate bias term bsp for each sample rate
sp rather than a single bias term for all channels, as we found this
slightly improved performance. ([21] used only 16-Hz channels
in its experiments.)
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section we demonstrate its application to a particularly
troublesome glitch type known as “scattered light” [57–64]
during a period when the LLO detector was experiencing
an elevated frequency of this type of glitch. We chose this
particular class of glitch to validate our machine learning
and auxiliary channel–based approach because it represents
a well-characterized area that has been studied with
multiple different approaches [34,57].

A. Scattered light glitches

On December 1, 2019, the LLO detector experienced a
high level of scattered light glitches, one of which is
illustrated in a time-frequency plot in Fig. 3. Scattering is
observed as wide “arches” on the Omegagram, a time-
frequency representation of the gravitational-wave channel.
These glitches pollute the low-frequency regime (<100 Hz)
of the strain data. This lowest frequency part of the LIGO

sensitivity region is observationally important, as the
highest-mass binary black holes observed by LIGO merge
in this regime. As a result, LIGO observed an increased
trigger rate in the output of compact binary coalescence
pipelines, especially for short duration templates [65].
Recognizing, characterizing, and mitigating scattered light
glitches thus can significantly increase the confidence in
LIGO gravitational-wave detections.
Increased scattered light glitch rates have been

observed to correlate with increased microseismic activity
at the LIGO detector sites [57,65]. Such an increase
occurred at LLO on December 1, 2019, as illustrated in
Fig. 4. The “microseism” band refers to the 0.03–0.5 Hz
region in the amplitude spectral density curve of the
observed ground motion produced by ocean waves. LLO
generally experiences increased microseismic activity due
to its close proximity to the Gulf of Mexico. The micro-
seismic noise at LLO usually peaks approximately

FIG. 2. Blue: normalized channel data from the two channels whose corresponding filters are illustrated in Fig. 1 over time during
several scattered light glitches, including a 19.75-second-long one centered at GPS time 1,259,253,341.438 (approximately 35.4 seconds
on the x-axis), a 9.5-second-long one centered at 1,259,253,318.188 (12.2 seconds), and several shorter ones from 1,259,253,370.438 to
1,259,253,382.719 (64.4 to 76.7 seconds). The y-axis corresponds to standard deviations above or below the mean (computed over all
samples during the training period). Orange: the result of the cross-correlation between the filters shown in Fig. 1 and the raw channel
data over time. At each point along the x-axis, the filter is cross-correlated with the corresponding number of samples of raw data
centered at that point; the result is plotted on the y-axis. Note that the filter for the channel on the right is negative, so when the raw value
drops below 0 the cross-correlation is positive. Figure 7 shows a visualization of the strain data during the same time period illustrated
above—in which the glitches are clearly visible—as well as the model’s final glitch probability estimate over that period.

FIG. 1. An example of two learned filters in a trained LF model corresponding to two of the channels found by the model to contain
behavior associated with scattered light glitches. See Sec. IV for more details about what the channels in question measure and what
behaviors the model has learned to be sensitive to.

ROBERT E. COLGAN et al. PHYS. REV. D 107, 062006 (2023)

062006-4



between 0.1–0.3 Hz. This frequency is below the dom-
inant pendulum frequency of the quadruple suspension
(0.45 Hz [57]); therefore, any force applied below this
frequency will move the end test mass suspension chain
together and allow spurious optical noise to be fed back to
the interferometer’s output, giving rise to scattering
arches.

B. Data for glitch analysis

We obtained raw auxiliary channel data from the 70,000-
second (17 hour, 40 minute) period from GPS times
1,259,197,952 to 1,259,267,952 (December 1, 2019,
1∶12∶14 to 20∶38∶54 UTC). During that period, the
Omicron glitch detector [55], which monitors the gravita-
tional-wave strain data for events of excess power, recorded
a total 48,879 glitches of signal-to-noise ratio (SNR) 5 or

greater. The GravitySpy project [34] selects a subset of
high-SNR Omicron glitches that are well suited to mor-
phological classification through a combination of convolu-
tional neural network (CNN)–based machine learning and
citizen science. Of the 6,515 glitches classified in total by
GravitySpy during that period, 5,499 were classified as
“scattered light.” There were several breaks in lock during
the above period; we discarded data that fell outside of a
lock segment.
We draw training data from the 50,000-second period

from GPS times 1,259,197,952 to 1,259,247,952 and
validation and test data respectively from the 10,000-
second periods from 1,259,247,952 to 1,259,257,952
and 1,259,257,952 to 1,259,267,952. There were a total
of 3,555, 924, and 1,016 scattered light glitches during the
training, validation, and test periods respectively.

FIG. 3. Omegagram (a Gabor-wavelet time-frequency representation) of the strain data [66,67]) of a loud scattered light glitch around
GPS time 1,259,248,838.813. Note the characteristic arches with peaks spaced approximately 3–4 seconds apart.

FIG. 4. Microseismic noise on (left) a typical day at LLO and (right) December 1, 2019, showing significantly greater activity in the
0.1–0.3 Hz range.
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We follow the same procedure as [21,22] to reduce the
number of auxiliary channels considered from approxi-
mately 250,000 to approximately 40,000 by excluding
channels that are constant or only vary in a predictable
fashion (e.g., counting time cycles). We also exclude any
auxiliary channels known or suspected to be coupled to the
gravitational-wave data stream following the procedure
of [22]. We include all remaining channels at all sample
rates (a total of 39,147). We normalize each channel by
computing the mean and standard deviation of the raw
channel data over the entire training data period; then we
subtract the training mean and divide by the standard
deviation for all data in the training, validation, and test
periods.
Our positive samples are drawn from points in time

identified by GravitySpy [34] as scattered light glitches. As
in [21,22], our negative samples are drawn randomly from
periods where no glitch was identified by the Omicron
glitch detector [55] within two seconds. We select the same
number of negative samples as there are positive samples in
each dataset.

IV. RESULTS

In this section we describe our findings upon applying
the LF model to the scattered light data described in
Sec. III. We note that neither the model nor the authors
incorporated any specific prior knowledge of the character-
istics of scattered light glitches nor the input auxiliary
channels; these results were achieved independently and
automatically by the method presented here.
The model achieves an overall 97.1% accuracy distin-

guishing between glitches and glitch-free points from our
test dataset. It is able to achieve this level of accuracy after
being trained on data from all 39,147 potentially inform-
ative auxiliary channels and automatically selecting only 25
of them (Table I) as relevant to predict this type of glitch.
For each selected channel, the model also provides a
visually interpretable feature for each selected channel,
suggesting a signature of behavior in that channel asso-
ciated with the presence or absence of a scattered light
glitch.
These results and their potential interpretations may

suggest novel directions for investigation of the origins
and causes of scattered light glitches deserving of deeper
investigations by instrument science domain experts.

A. Predictive accuracy

The best-performing (by loss) model on the scattered
light validation dataset achieved a loss of 0.0933, corre-
sponding to an accuracy of 97.0% (true positive rate 97.4%,
true negative rate 96.6%). On the test dataset, it achieved a
loss of 0.0866, corresponding to an accuracy of 97.1% (true
positive rate 98.4%, true negative rate 95.8%). An ROC
curve for the test dataset is shown in Fig. 5.

Additionally, we manually examined Omegagrams
around the 43 instances classified as a glitch by our model
but not by GravitySpy or Omicron from our test dataset and
found faint but clear signatures of possible scattered light
glitches in as many as 30 of them. If we excluded those 30
from the 1,016 samples labeled “glitch-free” in our ground
truth, our model’s true negative rate would rise from 95.8%
to 98.7% and overall accuracy would rise from 97.1% to
98.6%. We show an example of one such false positive by
our model in Fig. 6.
For comparison, we also performed an experiment with

the same type of model and with data drawn from the same
periods as for the scattered light classifier (as described in
Sec. III A) but using all Omicron glitches as the positive
class rather than scattered light glitches only. It achieved a
maximum validation accuracy of 82.8%, indicating that

FIG. 5. ROC curve of LF classifier on scattered light test
dataset.

FIG. 6. Omegagram around GPS time 1259264752.9 (14.9 s on
the x-axis), which was classified as a glitch by our model but not
by GravitySpy or Omicron.
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scattered light glitches are significantly easier to classify
than general Omicron glitches.
As an example of how the model’s output varies over

time depending on the presence or absence of a glitch, we
fed it a continuous segment of auxiliary channel data
around several scattered light glitches that occurred around
GPS time 1,259,253,345. Figure 7 shows an Omegagram
[66,67] of these glitches (top) and our model’s estimate of
the probability of a glitch at any given time (bottom).
GravitySpy reports a 19.75-second scattered light glitch
centered at 1,259,253,341.438 (35 seconds on the x-axis of

Fig. 7), which our model classified as a glitch with very
high confidence. GravitySpy also reports several other
shorter scattered light glitches around that time, which
are visible in the Omegagram and reflected in our model’s
output.
We illustrate the Omegagrams of two more scattered

light glitches along with the model’s output over the
surrounding time period in Figs. 8 and 9. We illustrate
the corresponding raw channel value and correlation for
selected channels in Figs. 13 and 14 (see Sec. IV D). In
Fig. 10, we show the Omegagram of a glitch-free point

FIG. 7. Omegagram of several scattered light glitches around GPS time 1,259,253,345 (top) and our model’s estimate over time of the
probability that there is a glitch (bottom). GravitySpy reports multiple scattered light glitches during this period, including a 19.75-
second-long one centered at GPS time 1,259,253,341.438 (approximately 35.4 seconds on the x-axis), a 9.5-second-long one centered at
1,259,253,318.188 (12.2 seconds), and several shorter ones from 1,259,253,370.438 to 1,259,253,382.719 (64.4 to 76.7 seconds).

FIG. 8. Omegagram of several scattered light glitches around
GPS time 1,259,248,839 (top) and our model’s estimate of the
probability that there is a glitch over time (bottom).

FIG. 9. Omegagram of several scattered light glitches around
GPS time 1,259,249,846 (top) and our model’s estimate of the
probability that there is a glitch over time (bottom).
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along with the model’s output over the surrounding time
period; in Fig. 15, we also show the corresponding raw
channel value and correlation for the same channels as
shown in Fig. 12.

B. Selected channels

The nonzero channels from the best-performing scat-
tered light model and the magnitudes of their associated
learned filters are listed in Table I. Only 25 of the 39,147

channels have associated filters with magnitude greater
than zero.
The magnitude of the filters also provides an indication

of the relative importance of each channel to the model’s
predictions (intuitively, when correlated with a higher-
magnitude filter, an input data segment will contribute
more heavily to the sum and resulting probability estimate
than the same segment correlated with a lower-magnitude
filter) [21]. Among those 25, the magnitudes decay rapidly,
suggesting the model’s predictions are dominated by the
contributions of even fewer channels.
Many of the channels in question are related to LLO’s

suspension system (SUS), test masses (ETMX, ITMX), and
sensors (OSEM, OPLEV). The details of these subsystems
are described in [68–70].

C. Learned filters

Several of the learned filters are illustrated in Fig. 11. We
leave detailed interpretive analysis and instrument hard-
ware–related detective work regarding the channels and
features themselves to future work. However, we qualita-
tively observe that many of the channels have a similar
rising oscillatory shape. All four of the highest-magnitude
channels listed in Table I, the first two of which are shown
in the top left and top center of Fig. 1, are nearly identical in
shape, likely indicating that they are sensitive to the same or

FIG. 10. Omegagram of a glitch-free period of about 30 seconds
around GPS time 1,259,257,055 (top) and our model’s estimate
of the probability that there is a glitch over time (bottom).

TABLE I. Channels with nonzero filters and their associated magnitudes from the LF model trained on the
scattered light dataset.

Filter magnitude Channel name Frequency

0.258 L1:SUS-ETMX_L2_WD_OSEMAC_UL_RMSMON 16 Hz
0.180 L1:SUS-ETMX_L2_WD_OSEMAC_UR_RMSMON 16 Hz
0.117 L1:SUS-ETMX_L2_WD_OSEMAC_LR_RMSMON 16 Hz
0.112 L1:SUS-ETMX_L2_WD_OSEMAC_LL_RMSMON 16 Hz
0.093 L1:SUS-SR2_M1_WD_OSEMAC_T2_RMSMON 16 Hz
0.066 L1:SUS-SR2_M2_RMSIMON_LR_OUT16 16 Hz
0.056 L1:SUS-ETMX_L1_WD_OSEMAC_UL_RMSMON 16 Hz
0.054 L1:SUS-ITMY_L3_OPLEV_BLRMS_S_100M_300M 16 Hz
0.050 L1:SUS-ETMX_R0_WD_OSEMAC_RT_RMSMON 16 Hz
0.046 L1:SUS-ITMX_M0_WD_OSEMAC_SD_RMSMON 16 Hz
0.043 L1:SUS-ITMX_L3_OPLEV_BLRMS_P_1_3 16 Hz
0.038 L1:SUS-ITMY_L3_ISCINF_L_IN1_DQ 16 384 Hz
0.031 L1:IOP-SUS_OMC_WD_OSEM4_RMSOUT 16 Hz
0.031 L1:ISI-BS_ST2_BLND_BLRMS_X_300M_1 16 Hz
0.029 L1:SUS-ETMX_L1_WD_OSEMAC_UR_RMSMON 16 Hz
0.022 L1:CAL-PCALY_IRIGB_DQ 16 384 Hz
0.014 L0:FMC-CS_AHU1_FAN1_VS 16 Hz
0.011 L1:SUS-ETMY_PI_DOWNCONV_DC7_SIG_INMON 16 Hz
0.011 L1:SUS-ETMY_PI_DOWNCONV_DC4_SIG_INMON 16 Hz
0.008 L1:HPI-HAM6_BLRMS_X_30_100 16 Hz
0.007 L1:ASC-AS_B_RF72_I_SUM_OUT16 16 Hz
0.006 L1:SUS-ETMX_M0_WD_OSEMAC_F2_RMSMON 16 Hz
0.002 L1:ASC-AS_B_RF72_I_SUM_INMON 16 Hz
0.002 L1:ASC-AS_B_RF72_I_SUM_OUTPUT 16 Hz
0.000 L1:OAF-STS_SEN2ACT_1_1_IN1_DQ 256 Hz
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similar phenomena; this is also unsurprising given the
similarity of their names. We also note that the period of
oscillation in the features displaying that pattern is of a
similar (3–4 second) duration to the individual arches
characteristic of scattered light glitches, perhaps suggesting
that these channels are sensitive to the same phenomena
that result in the appearance of this type of glitch in the
strain.

D. Channel importance for individual
glitch classification

Figure 12 shows the normalized value of several aux-
iliary channels (blue) during the time period containing
several scattered light glitches illustrated in Fig. 7 as well as
the correlation between the channel and the model’s learned
filter (orange) at each time sample during that span. A
positive value for the correlation at a given time indicates

the channel is contributing to the model’s classification of
the time as containing a glitch (the higher the value the
more heavily weighted the contribution), and a negative
value indicates the channel is indicating no glitch is present.
We illustrate similar examples with different glitches in

Figs. 13 and 14 and an example with a glitch-free point (the
same glitch-free point shown in Fig. 10) in Fig. 15.

E. Interpretations

The most significant channels in Table I refer to the
third stage (from top) of the quadruple suspension system
[71–78] at the X end station (SUS-ETMX_L2). Figures 16
and 17 show the test mass chain and the reaction mass chain
behind it. Precision position sensors (so-called OSEMs
[73,79–83]) provide the optical sensing and electromag-
netic actuating capabilities for the upper three stages. L2
refers to the third (penultimate) stage above the test mass

FIG. 11. Twelve of the features learned by the best-performing LF model on the scattered light dataset. The filters shown are ordered
by magnitude (see Table I), although we omit some channels for illustration (for example, all of the first four highest-magnitude filters
are nearly identical in shape). The x-axes correspond to filter length in seconds; the y-axes show the magnitude of the filter over time.
Intuitively, a higher overall magnitude indicates the associated channel is more important to the model’s decisions: when cross-
correlated with a higher-magnitude filter, an input data segment will contribute more heavily to the sum and resulting probability
estimate than the same segment cross-correlated with a lower-magnitude filter.
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FIG. 12. Raw channel data (blue) from the same time period illustrated in Fig. 7, along with (orange) the cross-correlation of the
channel and the associated learned filter (i.e., its contribution to the classifier’s result). Note the oscillations in the “L1:SUS-ETMX”
channels with peaks spaced approximately 3.5 seconds apart, similar to the spacing between the peaks of the characteristic scattered
light arches in Fig. 7.

FIG. 13. Raw channel data (blue) from around the scattered light glitch illustrated in Figs. 3 and 8, along with (orange) the output of
that channel cross-correlated with the associated learned filter (i.e., its contribution to the classifier’s result). Similarly to Fig. 12, note the
oscillations in the channel data with peaks spaced approximately 3.2 seconds apart, similar to the spacing between the peaks of the
characteristic scattered light arches in Fig. 3.
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FIG. 14. Raw channel data (blue) from around the scattered light glitch illustrated in Fig. 9, along with (orange) the output of that
channel cross-correlated with the associated learned filter (i.e., its contribution to the classifier’s result).

FIG. 15. Raw channel data (blue) from the glitch-free period about 30 seconds long around GPS time 1,259,257,055 illustrated in
Fig. 10, along with (orange) the output of that channel cross-correlated with the associated learned filter (i.e., its contribution to the
classifier’s result).
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and the bottom mass of the reaction chain. UL, UR, LL, LR
refer to the sensors at the four quadrants of the penultimate
mass of the reaction chain. The band-limited RMS motion
for these sensors is continuously monitored. For the studied
time period, we observe that the channels related to these
sensors have the most significant nonzero filters; other
channels at SUS-ETMX referring to upper stages of the
suspension chain (R0, L1) and other locations around the

detector (e.g., SUS-SR2, ITMX, ITMY) are also indicated,
albeit with lower filter magnitudes.
Figure 12 shows the peaks in the oscillations in the

L1:SUS-ETMX channels are spaced approximately 3.5 sec-
onds apart, similar to the spacing between the peaks of the
characteristic scattered light arches in the corresponding
Omegagram (Fig. 7). This suggests that motion indicated
by the OSEMs at the end station suspension chain directly
gives rise to the observation of scattered light arches in the
gravitational-wave strain data channel. Key to taking strain
data is controlling the interferometer arms in unison such
that the optical cavities in the arms stay resonant and the
differential arm length can be continuously sensed. The end
test mass chain motion is “locked” to the motion of the
other interferometric optics at the detector’s km-scale, and
thus its motion relative to other local surfaces in the same
chamber can be enhanced, especially during times when
high local ground motion is observed.
Figure 4 shows significantly increased (by approxi-

mately a factor of five) microseismic activity in the
approximately 0.13–0.15 Hz range for the glitch data used
in our studies. This frequency can excite motion with a
characteristic time of approximately six to eight seconds.
Since the spacing of the arches (3–4 seconds as shown in,
e.g., Fig. 3) gives half the period of the scattering surface
[57], microseism-induced motion is a good candidate for
scattering mechanism. This phenomenon was investigated
in [57,86,87], and a scattering mechanism involving the
bottom-most reaction mass was verified. This ring-shaped
mass contains five highly reflective circular gold traces
(used as electrostatic drive used for interferometer control).
Any incoming stray light will be backscattered toward the
test mass with a phase shift; a fraction of that is transmitted
into the interferometer arm through the test mass, where it
can interfere with the main beam and manifest as an
increase in strain amplitude. The path between the reaction
mass and end test mass can be traversed multiple times (due
to multiple reflections), causing the appearance of harmon-
ics of scattering arches on the Omegagrams (see, for
example, Fig. 3). Our study is in agreement with back-
scattering from the bottom-most reaction mass being the
main source of scattered light glitches in the gravitational-
wave data stream. The four most significant channels
associated with scattered light glitches directly measure
motion of the penultimate reaction mass right above the
indicated scattering surface; its motion is naturally con-
nected to that of the scattering surface that can easily couple
back to the interferometer arms.

V. CONCLUSION

In this work we have demonstrated the application and
capabilities of a machine learning algorithm that employs
automatic feature learning to extract relevant information
for detecting and analyzing gravitational-wave detector
glitches from a vast collection of auxiliary data channels

FIG. 16. Diagram of the optical layout the LIGO detectors
(from [84]).

FIG. 17. Diagram of the quadruple suspension system
(from [85]).
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without the need for manual channel selection or feature
engineering. Given tens of thousands of raw time series,
the vast majority of which may be irrelevant to the task of
glitch analysis, the model automatically selects the few
most relevant ones and distills the most pertinent informa-
tion into several key components that can be further
analyzed by detector experts, providing a valuable new
tool in their efforts to decrease the incidence of glitches and
increase the detectors’ sensitivity. In particular, this method
provides accurate strain-independent glitch prediction,
automatic channel selection, and per-channel behavioral
signatures, as well as a straightforward way to investigate
which channels are associated with an individual glitch or
set of glitches.
The method performs exceptionally well on a real dataset

of scattered light glitches from LLO, achieving over 97%
accuracy in distinguishing them from glitch-free points.
Beyond glitch identification alone, we show how it selects
only 25 out of nearly 40,000 channels as relevant to
distinguishing glitches from glitch-free times and how it
automatically designs relevant features associated with
glitches (or the lack thereof) for each of those channels.
We also illustrate precisely how the model arrives at its
prediction for a given time of interest by visualizing
multiple real examples. Unlike some machine learning
methods, the method is highly interpretable, allowing
detector domain experts to clearly understand how and
why it makes a particular individual prediction as well as to
probe it for broader understanding of glitch-related behav-
ior over a given time period. We find physical, detector-
specific results with meaningful interpretations consistent
with previous research on the possible origins of scattered
light glitches and their association with microseismic
activity near the detector. We also find several instances
of scattered light glitches that were missed by Omicron and
GravitySpy but successfully identified by our model, as
discussed in Sec. IVA and illustrated in Fig. 6, highlighting
one of the benefits of having multiple independent,
complementary approaches to glitch detection and charac-
terization based on separate data sources.
Previous work [21] has also shown that deeper, more

complex neural network–based models can improve per-
formance. In addition to the LF model employed here, [21]
also proposed deeper models incorporating nonlinearities,
pooling, and other features and showed that they boost
performance on a similar LIGO auxiliary channel dataset.
However, more complex models are less straightforward
to interpret. For the scattered light study presented here
(Sec. IV), we found improved performance with the
VGG13-BN model of [21]—test accuracy of 98.2% vs
97.1%—but felt that the performance gain was not sig-
nificant enough to outweigh the tradeoff to interpretability.
For other applications or datasets, however, one might
prefer to sacrifice some interpretability for improved
accuracy. One direction for future work would be to

investigate analytical means of interpreting such models
applied to this type of data, especially in situations where
performance is more critical or the performance gains are
more significant.
Additional directions for future work include evaluating

the method on other types of glitches and over longer time
periods. Previous work on related models [21,22] has
shown that they generally do not perform as well when
asked to analyze data drawn from wider time periods,
perhaps because they are not able to account well for long-
term distribution shifts in the state of the detector. We
observed a similar effect in experiments using data drawn
from broader timescales. As mentioned in [22], one
straightforward method to address this issue would be to
periodically (e.g., daily) retrain the model on new labeled
data. Another potential avenue would be to identify and test
classes of machine learning models that are explicitly
designed to handle long-term time dependencies, such as
recurrent or long short-term memory neural networks;
another would be to retrain or update models like the
one employed here online in real time.
We have quantitatively observed here and in previous

works that not all glitch morphologies and classes can be
equally well predicted based on the auxiliary channels. One
intriguing explanation is that information critical to such
glitches is not recorded by any current auxiliary channel.
Absent such necessary information, it would be difficult or
even impossible for any auxiliary channel–based method to
detect them. Therefore, we can treat low-accuracy glitch
classes as possible clues to additional auxiliary channels
that could be added describing previously unmonitored
aspects of the detector. Therefore the method can also be
useful to help us understand what is missing from the
auxiliary monitoring network and channels.
Complex systems of humanity have always been plagued

with emergent transient issues that can predict or cause
eventual failure. Timely detection, understanding, and
repair are paramount to reliable and optimized system
operation. Gravitational-wave detectors can serve as excel-
lent test and development environments for generic sol-
utions to unpredictable issues that inevitably emerge in
such extremely complex, sensitive systems. The solution
outlined above is broadly applicable, enabling automated
anomaly discovery, characterization, and human-in-the-
loop anomaly elimination. The last step of automated
anomaly elimination remains a grand challenge of the
field, with the long-term goal of accelerating automated
understanding of complex systems and eliminating their
problems as they emerge.
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APPENDIX: TRAINING AND VALIDATION

We follow essentially the same training and validation
procedures as [21], except that instead of classifying
between all Omicron glitches and glitch-free points, we
classify between glitches classified by GravitySpy as
“scattered light” and glitch-free points (see Sec. III). We
train many models over a grid of hyperparameter settings,
evaluate each of them on our validation dataset, and choose
the one with the lowest loss. For more detail we refer the
reader to [21].
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Bondu, and E. Tournié, Scattered light noise in gravitational
wave interferometric detectors: A statistical approach, Phys.
Rev. D 56, 6085 (1997).

[63] P. Saha, Noise analysis of a suspended high power Michel-
son interferometer, Ph.D. thesis, Massachusetts Institute of
Technology, 1997.

[64] T. Accadia, F. Acernese, F. Antonucci, P. Astone, G.
Ballardin, F. Barone, M. Barsuglia, T. S. Bauer, M.
Beker, A. Belletoile et al., Noise from scattered light in
Virgo’s second science run data, Classical Quantum Gravity
27, 194011 (2010).

[65] Y. Asali and Z. Marka, Effect of commissioning break on
scattering glitches, LIGO document t2000052.

[66] J. Rollins, Multimessenger astronomy with low-latency
searches for transient gravitational waves, Ph.D. thesis,
Columbia University (2011).

[67] S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis,
Multiresolution techniques for the detection of gravita-
tional-wave bursts, Classical Quantum Gravity 21, S1809
(2004).

[68] F. Matichard et al., Seismic isolation of Advanced LIGO:
Review of strategy, instrumentation and performance,
Classical Quantum Gravity 32, 185003 (2015).

[69] D. Sigg, The advanced LIGO detectors in the era of first
discoveries, in Interferometry XVIII, Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference
Series, Vol. 9960, edited by K. Creath, J. Burke, and A.
Albertazzi Gonçlves (SPIE Optical Engineering + Appli-
cations, San Diego, California, 2016), p. 996009.

[70] J. G. Rollins, Distributed state machine supervision for
long-baseline gravitational-wave detectors, Rev. Sci. Ins-
trum. 87, 094502 (2016).

[71] B. N. Shapiro, R. Adhikari, J. Driggers, J. Kissel, B. Lantz,
J. Rollins, and K. Youcef-Toumi, Noise and control decou-
pling of Advanced LIGO suspensions, Classical Quantum
Gravity 32, 015004 (2015).

[72] S. M. Aston et al., Update on quadruple suspension design
for Advanced LIGO, Classical Quantum Gravity 29,
235004 (2012).

[73] L. Carbone, S. M. Aston, R. M. Cutler, A. Freise, J.
Greenhalgh, J. Heefner, D. Hoyland, N. A. Lockerbie, D.
Lodhia, N. A. Robertson, C. C. Speake, K. A. Strain, and A.
Vecchio, Sensors and actuators for the Advanced LIGO
mirror suspensions, Classical Quantum Gravity 29, 115005
(2012).

[74] A. V. Cumming et al., Design and development of the
advanced LIGO monolithic fused silica suspension,
Classical Quantum Gravity 29, 035003 (2012).

[75] N. A. Robertson and E. Majorana, Test mass suspensions, in
Advanced Interferometric Gravitational-Wave Detectors.
Volume I: Essentials of Gravitational-Wave Detectors,
edited by D. Reitze et al. (World Scientific Publishing,
Singapore, 2019), pp. 423–457.

[76] L. Barsotti, M. Evans, and P. Fritschel, Alignment sensing
and control in advanced LIGO, Classical Quantum Gravity
27, 084026 (2010).

ROBERT E. COLGAN et al. PHYS. REV. D 107, 062006 (2023)

062006-16

https://doi.org/10.1088/0264-9381/28/23/235005
https://doi.org/10.1088/0264-9381/27/19/194010
https://doi.org/10.1088/0264-9381/27/19/194010
https://doi.org/10.1088/1742-6596/243/1/012005
https://doi.org/10.1088/1742-6596/243/1/012006
https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.3390/galaxies10010012
https://doi.org/10.1103/PhysRevD.104.102004
https://doi.org/10.1103/PhysRevD.104.102004
https://doi.org/10.1088/1361-6382/ac011a
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1088/1361-6382/abc906
https://doi.org/10.1088/1361-6382/abc906
https://doi.org/10.1088/1361-6382/ac88b0
https://doi.org/10.1088/1361-6382/ac88b0
https://doi.org/10.1364/JOSAA.29.001722
https://doi.org/10.1088/0264-9381/29/2/025005
https://doi.org/10.1088/0264-9381/29/2/025005
https://doi.org/10.1103/PhysRevD.56.6085
https://doi.org/10.1103/PhysRevD.56.6085
https://doi.org/10.1088/0264-9381/27/19/194011
https://doi.org/10.1088/0264-9381/27/19/194011
https://doi.org/10.1088/0264-9381/21/20/024
https://doi.org/10.1088/0264-9381/21/20/024
https://doi.org/10.1088/0264-9381/32/18/185003
https://doi.org/10.1063/1.4961665
https://doi.org/10.1063/1.4961665
https://doi.org/10.1088/0264-9381/32/1/015004
https://doi.org/10.1088/0264-9381/32/1/015004
https://doi.org/10.1088/0264-9381/29/23/235004
https://doi.org/10.1088/0264-9381/29/23/235004
https://doi.org/10.1088/0264-9381/29/11/115005
https://doi.org/10.1088/0264-9381/29/11/115005
https://doi.org/10.1088/0264-9381/29/3/035003
https://doi.org/10.1088/0264-9381/27/8/084026
https://doi.org/10.1088/0264-9381/27/8/084026


[77] W. Hua, R. Adhikari, D. B. DeBra, J. A. Giaime, G. D.
Hammond, C. Hardham, M. Hennessy, J. P. How, B. T.
Lantz, M. Macinnis, R. Mittleman, S. Richman, N. A.
Robertson, J. Rollins, D. H. Shoemaker, and R. T.
Stebbins, Low-frequency active vibration isolation for
advanced LIGO, in Gravitational Wave and Particle Astro-
physics Detectors, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 5500, edited by J.
Hough and G. H. Sanders (SPIE Astronomical Telescopes +
Instrumentation, Glasgow, United Kingdom, 2004),
pp. 194–205.

[78] R. Abbott et al., Seismic isolation enhancements for initial
and Advanced LIGO, Classical Quantum Gravity 21, S915
(2004).

[79] E. Schwartz, Improving the robustness of the advanced
LIGO detectors to earthquakes, Classical Quantum Gravity
37, 235007 (2020).

[80] M. Walker, Effects of transients in LIGO suspensions on
searches for gravitational waves, Rev. Sci. Instrum. 88,
124501 (2017).

[81] H. P. Daveloza, M. Afrin Badhan, M. Diaz, K. Kawabe,
P. N. Konverski, M. Landry, and R. L. Savage, Controlling
calibration errors in gravitational-wave detectors by precise
location of calibration forces, J. Phys. Conf. Ser. 363,
012007 (2012).

[82] K. A. Strain and B. N. Shapiro, Damping and local control
of mirror suspensions for laser interferometric gravitational
wave detectors, Rev. Sci. Instrum. 83, 044501 (2012).

[83] A. Stochino, B. Abbot, Y. Aso, M. Barton, A. Bertolini, V.
Boschi, D. Coyne, R. DeSalvo, C. Galli, Y. Huang, A.
Ivanov, S. Marka, D. Ottaway, V. Sannibale, C. Vanni, H.
Yamamoto, and S. Yoshida, The Seismic Attenuation
System (SAS) for the Advanced LIGO gravitational wave
interferometric detectors, Nucl. Instrum. Methods Phys.
Res., Sect. A 598, 737 (2009).

[84] A. Buikema, C. Cahillane, G.Mansell, C. Blair, R. Abbott, C.
Adams, R. Adhikari, A. Ananyeva, S. Appert, K. Arai et al.,
Sensitivity and performance of the Advanced LIGO detectors
in the third observing run, Phys. Rev. D 102, 062003 (2020).

[85] B. Shapiro, Overview of Advanced LIGO suspensions,
LIGO document g1100866.

[86] B. Canuel, E. Genin, G. Vajente, and J. Marque, Displace-
ment noise from back scattering and specular reflection of
input optics in advanced gravitational wave detectors, Opt.
Express 21, 10546 (2013).

[87] D. J. Ottaway, P. Fritschel, and S. J. Waldman, Impact of
upconverted scattered light on advanced interferometric
gravitational wave detectors, Opt. Express 20, 8329 (2012).

[88] Gravitational Wave Open Science Center, https://www.gw-
openscience.org.

DETECTING AND DIAGNOSING TERRESTRIAL … PHYS. REV. D 107, 062006 (2023)

062006-17

https://doi.org/10.1088/0264-9381/21/5/081
https://doi.org/10.1088/0264-9381/21/5/081
https://doi.org/10.1088/1361-6382/abbc8c
https://doi.org/10.1088/1361-6382/abbc8c
https://doi.org/10.1063/1.5000264
https://doi.org/10.1063/1.5000264
https://doi.org/10.1088/1742-6596/363/1/012007
https://doi.org/10.1088/1742-6596/363/1/012007
https://doi.org/10.1063/1.4704459
https://doi.org/10.1016/j.nima.2008.10.023
https://doi.org/10.1016/j.nima.2008.10.023
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1364/OE.21.010546
https://doi.org/10.1364/OE.21.010546
https://doi.org/10.1364/OE.20.008329
https://www.gw-openscience.org
https://www.gw-openscience.org
https://www.gw-openscience.org
https://www.gw-openscience.org

