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The precisions of existing gravitational calibrators for gravitational wave observatories are limited by
their dependence on the relative position between the calibrators and the observatory’s test masses. Here we
present a novel geometry consisting of four quadrupole rotors placed at the vertices of a rectangle centered
on the test mass. The phases and rotation directions are selected to produce a pseudoplane-wave sinusoidal
gravitational acceleration with amplitude of ∼100 fm=s2. We show that this acceleration only has minimal
dependence on the test mass position relative to the rotor array and can yield 0.15% acceleration amplitude
uncertainty while tolerating a 1-cm test mass position uncertainty. The acceleration can be directed
precisely along the optical axis of the interferometer arm and applies no torque on the test mass. In addition,
the small size of the rotors has significant engineering and safety benefits.
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I. INTRODUCTION

Gravitational wave astronomy has blossomed into a
novel method to observe the Universe. The number of
gravitational wave observations is expected to grow sub-
stantially in the coming years with the continued operation
of the LIGO [1] and Virgo [2] interferometers as well as the
future addition of LIGO-India [3] and the further improve-
ments of KAGRA [4].
Precise and robust absolute calibration of these interfer-

ometers is essential. Cosmological measurements [5–7],
searches for deviations from general relativity [8], and
binary-merger characterization [9] all require precise strain
calibrations. Currently, these calibrations are made using
photon pressure [10,11]. These calibration systems provide
absolute calibrations limited to ∼0.4% uncertainty [12].
Improvements on this have proven difficult. In addition,
relying on a single calibration system may be susceptible to
unknown systematics.
Calibrating with a gravitationally induced strain has long

been suggested as an alternative calibration technique
[13–18] and has recently been implemented at gravitational
wave observatories [19–22]. Gravitational calibration has

multiple advantages over photon pressure including
minimal sources of systematic error and guaranteed sta-
bility over long time durations. Operating both gravita-
tional and photon calibration systems allows the systems
to cross-check each other and combined yield a higher-
precision absolute calibration.
Single-rotor gravitational calibrators [19,21,22] produce

accelerations that have large dependence on the radial
distance r between the rotor and the test mass. The
acceleration is typically proportional to ∼1=rlþ2 where l
is the order of the dominant mass-multipole moment.
For example, a rotor with a quadrupole mass distribution
(l ¼ 2) will follow ∼1=r4. This strong positioning depend-
ence causes the performance of the absolute calibration to
be limited by the measurement of the test mass to rotor
separation. The Virgo observatory is pursuing an asym-
metric system of rotors rotating at different frequencies that
may alleviate this limitation [20].
Here, we present a novel geometry consisting of four

quadrupole rotors that produces a pseudoplane-wave gravi-
tational acceleration; see Sec. IV. This symmetric geometry
has no first-order dependence on the position of the rotors
relative to the test mass. It instead depends on the easy-
to-measure positions between the rotors in the array.
Additionally, this geometry suppresses the torques acting
on the test mass and eases much of the engineering and
safety concerns of previous rotors.
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II. GEOMETRY

The example pseudoplane-wave calibrator proposed
here consists of four identical rotors placed at the vertices
of a 2.25-m by 4.50-m rectangle centered on the test
mass. Figure 1 shows a rendering of the geometry placed
around LIGO’s end-station vacuum chamber. The rotors
are designed with the similar dimensions as the LIGO
Newtonian Calibrator (NCal) [22] but without a hexapole
mass arrangement. Each rotor is a 17-cm-diameter,
5-cm-tall aluminum disk with four holes cut at a radius
of 6 cm separated by 90°. Two holes are filled in with
4-cm-diameter, 5-cm-tall tungsten cylinders which produce
a quadrupole mass distribution. The parameters of the
geometry are displayed in Table I.
The rotor parameters that are common with the LIGO

NCal are assigned uncertainties equal to what was pre-
viously achieved [22]. The rest of the parameters (position-
ing, phase, etc.) are assigned uncertainties based on what
is reasonably achievable with standard measurement

techniques. For example, since the rotors would be outside
the interferometer’s vacuum system, their positions can be
readily measured to mm precision with standard surveying
equipment [22].
The relative phases of the rotors and the rotation

directions are set to achieve a pseudoplane-wave nature.
The four rotors with a positive x coordinate are rotated
by 90° from the rotors with a negative x coordinate.
Additionally, the rotors with a positive y coordinate rotate
clockwise, while those with negative y coordinates
rotate counterclockwise. These choices cause the applied
acceleration to be purely in the x direction with no net
torques.

III. ENGINEERING SIMPLICITY

Since the four-rotor array produces more acceleration at
a given separation than a single rotor, the array can be
placed at a larger radius to produce a similar amplitude
acceleration on the test mass. This allows the array to be
placed well away from the existing infrastructure of the
observatories. Here we have chosen a geometry that fits
around the LIGO end-station vacuum chamber and seismic
isolation system, as shown in Fig. 2. This significantly
simplifies the structure that holds the rotors, as it does
not need to be incorporated into the existing structural
components.
The use of only quadrupole mass distributions as

compared to both quadrupole and hexapole masses [22]
decreases the rotor’s kinetic energy thus decreasing the
likelihood of damage through catastrophic failure. Because
of the decreased moment of inertia, a smaller radius
also decreases the torques needed to spin the rotor and
maintain a fixed rotation speed which loosens the require-
ments on the drive motors as well as decreases spurious
electromagnetic effects caused by the motors and auxiliary
electronics.

FIG. 1. A rendering of the geometry of the rotors with the test
mass at the center of the 2.25-m by 4.50-m rectangle. Also shown
is a detail of a single rotor consisting of the dark gray aluminum
disk with two light gray tungsten slugs inserted into two of the
four-rotor holes.

TABLE I. Individual contributions to the acceleration uncertainty for the parameters of the simulation. The quadrature sum is only an
approximation of the uncertainty. The full uncertainty must take into account nonlinearities and degeneracies as is done in Fig. 4.

Parameter Mean Estimated uncertainty Fractional acceleration uncertainty

Cylinder mass 1 kg 0.3 g 3.5 × 10−4

Cylinder radius 2 cm 2.5 μm 1.5 × 10−8

Cylinder length 5 cm 5 μm 2.7 × 10−8

Quadrupole radius 6 cm 5 μm 1.7 × 10−4

Test massa 40 kg 10 g 1.9 × 10−15

Test mass length 200 mm 0.1 mm 4.0 × 10−6

Test mass radius 170 mm 0.05 mm 3.9 × 10−6

Test mass flat width 327 mm 0.05 mm 1.4 × 10−15

Rotor positions (�2.25 m, �1.125 m, 0 m) (1 mm, 1 mm, 1 mm) 1.1 × 10−3

Test mass position (0 m, 0 m, 0 m) (1 cm, 1 cm, 1 cm) 1.3 × 10−4

Rotor relative phase 0°, 90° 1° 1.2 × 10−3

Quadrature sum 1.68 × 10−3

aSince the gravitational acceleration is independent of the test mass, this entry represents the numerical precision of the simulation.
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IV. PSEUDOPLANE-WAVE NATURE

To verify the performance of such a rotor array, we
simulated the system with a finite-element analysis using
the POINTGRAVITYalgorithms of the newt libraries [23,24].
This simulation breaks each of the rotor cylinders and
the test mass into independent clouds of point masses.
The force between each pair of point masses, one from the
rotors and the other from the test mass, is calculated. The
simulation sums the forces between all rotor-test-mass
point pairs to yield the acceleration in all three directions.
We extract only the x acceleration, as this is the sensitive
direction of the interferometer. Although not detailed here,
the acceleration predictions were cross-checked with the
results of an analytical point-mass approximation [22] and
an independent numerical integration calculation.
The superposition of the gravitational fields from the

four rotors produces an oscillating gravitational acceler-
ation field which at the center of the rectangle is purely in
the x direction and has an amplitude of 101.37 fm=s2. This
amplitude corresponds to a strain of 7.1 × 10−22 at 30 Hz
for the 4-km-long interferometer. Note that although the
acceleration amplitude is frequency independent, the strain
amplitude will follow ∼1=f2.

The acceleration field changes weakly with deviations
from the center of the rectangle (i.e., a pseudoplane wave).
The percentage change in acceleration amplitude versus
offset from the center of the rectangle is shown in Fig. 3
for offsets in each direction. A relatively large offset of
10 cm in any direction changes the acceleration by < 1%.
Additionally, the change in amplitude is well described by a
parabola for small offsets displaying the second-order
nature of this effect.
Since the rotor array is in plane and symmetric about the

x-z plane, the rotors apply no net torque on the test mass.
If the array is out of plane, then the test mass would
experience a torque about the y axis. Similarly, if the array
is right-left asymmetric it would apply a z-axis torque. Such
torques are common in existing gravitational calibrators
and can substantially impact the precision of the sub-
sequent calibrations [22]. Note that a different selection
of relative rotor phases and rotation directions can apply a
net torque on the test mass with no net force. This
configuration could provide a novel diagnostic tool for
evaluating the interferometer’s angular sensitivity and beam
spot offsets.

V. NUMERICAL UNCERTAINTY ANALYSIS

The ultimate precision of our four-rotor calibrator
depends on all the parameters in Table I. We performed
a Monte Carlo simulation of the applied acceleration
accounting for the set of parameters which describe the
calibrator. We modeled each parameter as a Gaussian
distribution centered on the mean listed in Table I with
σ value equal to the uncertainty. The acceleration of the
test mass was then calculated with parameters sampled
from these distributions. This was repeated 2000 times
to yield a distribution of the gravitational acceleration

FIG. 2. A rendering of the geometry of the rotor array around
the LIGO end-station vacuum chamber with the corresponding
test mass at the center of our coordinate system and the
observatory’s main interferometer beam schematically shown
in red. The overlapping ground level pier foot is far below the
plane of the rotors and test mass.
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FIG. 3. The percentage change of the acceleration amplitude
applied by the rotor array with a test mass offset from the center
of the rectangle. The relatively large offset of 10 cm in any
direction causes a < 1% change in the acceleration amplitude.
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shown in Fig. 4, which took into account all nonlinearities
and degeneracies.
The simulation yields an injected acceleration of a ¼

101.37� 0.15 fm=s2 (0.15%) where the central value is the
mean and the uncertainty is the 68% confidence. To assess
how each parameter contributes to this total uncertainty,
the acceleration uncertainty was recomputed with only
one parameter varying. This was then repeated for each
parameter to yield the results in Table I. All four rotor
positions were simultaneously varied in all three directions,
and the test mass position was also varied in all three
directions. We assume the phase uncertainty is due to a

rotational offset of the rotors as the phase noise in the drive
is expected to be smaller than the uncertainty in the relative
geometry of the rotors.
Table I shows the acceleration uncertainty is strongly

dominated by the rotor positions and relative phases with
the test mass position contribution being 7 to 9 times
smaller. These contributions may be further reduced with a
higher precision surveying and phase determination than is
assumed here.

VI. CONCLUSION

We have described a four-rotor gravitational calibrator
that produces a pseudoplane-wave acceleration field, pro-
viding a direct and robust absolute calibration with simple
systematic uncertainties. Simulation of the acceleration
amplitude uncertainty shows that such a system can readily
achieve an absolute precision of 0.15%. This is approx-
imately an order of magnitude improvement over previ-
ously deployed geometries at LIGO [22]. In addition to
yielding a precise calibration, such a system may be used to
search for non-Newtonian gravity [25], make terrestrial
measurements of Shapiro delay [26,27], and measure the
gravitational constant [28].
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