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In this paper, we extend the Unruh-DeWitt (UDW)model to include a relativistic quantized center of mass
(c.m.) for the detector, which traditionally has a classical c.m. and follows a classical trajectory. We develop
a relativistic model of an inertial detector following two different approaches, starting from either a first- or
second-quantized treatment, which enables us to compare the fundamental differences between the two
schemes. In particular, we find that the notion of localization is different between the two models and leads
to distinct predictions, which we study by comparing the spontaneous emission rates for the UDW detector
interacting with a massless scalar field. Furthermore, we consider the UDW system in both a vacuum and
medium and compare our results to existing models describing a classical or quantized c.m. at low energies.
We find that the predictions of each model, including the two relativistic cases, can in principle be
empirically distinguished, and our results can be further extended to find optimal detector states and
processes to perform such experiments. This would clarify both the role of a quantized c.m. for interactions
with an external field and the differing localizations between the first- and second-quantized treatments.
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I. INTRODUCTION

The Unruh-DeWitt (UDW) model, originally proposed
by Unruh [1] and later simplified to its monopole form by
DeWitt [2], has become the customary model for particle
detectors in quantum physics. It was originally formulated
for the investigation of quantum field theory (QFT) in both
flat and curved spacetimes [3–5], is commonplace in the
study of relativistic quantum information [6–8] and entan-
glement harvesting [9–11], and is used in quantum optics as
an idealized model of the atom-light interaction [12–14].
Conventionally, the detector is modeled as a quantized

two-level system following a classical trajectory, i.e., with
a classical center of mass (c.m.). The traditional UDW
model is an idealization which does not account for fully
quantized dynamics but can be extended to include
quantized external degrees of freedom. Recently, such a
detector model featuring a quantized c.m. was studied in
the nonrelativistic regime by Stritzelberger and Kempf [15]
for inertial and uniformly accelerating detectors (but see
also Ref. [16] for an earlier, atom-light treatment). This
model was proposed in order to study the dynamics of a
quantized c.m. and in particular the effects of the c.m.
coherence on the detector-field interaction.
However, a nonrelativistic treatment of a quantized c.m.

does not come without issues and raises the question of the
consistency of the resulting model. These subtleties are

especially relevant in the case of quantum electrodynamics
(QED) and quantum optics, where a quantized c.m. exten-
sion of the detector model is often considered (see, e.g.,
Ref. [14] and references within). In an early paper studying
the effects of a c.m. in QED, Wilkens [17] found spurious
velocity-dependent effects due to the omission of requisite
relativistic corrections, namely the Röntgen interaction
term [18], which were resolved once this correction was
introduced [19]. However, the inclusion of the Röntgen term
alone is not enough to deal with all spurious effects; the mass
defect of the detector must also be considered in order to
avoid anomalous friction forces [20]. These nonphysical
results are ultimately due to the mixing of the Galilean and
Lorentz groups, which respectively govern the dynamics of
the detector and field. The problems of the model can be
partially remedied by introducing the Röntgen term and
modeling the mass defect, but as Wilkens noted, “the
ultimate cure of this deficiency may be expected from a
relativistically covariant description of the atomic motion…
this program is, however, highly nontrivial” [17].
There are two possible approaches to developing a

relativistic formulation of the c.m. dynamics, one starting
from a second-quantized description and the other by
developing a relativistic first-quantized description. While
the detector in the UDW model is most commonly formal-
ized as a first-quantized system, a second-quantized model
was also proposed in Unruh’s original paper [1] and has
since been considered in a number of recent analyses: in the
study of backreaction effects on an accelerating, finite-mass
detector [21,22] (see also Ref. [23] for a first-quantized
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treatment), in the study of detector models comparing the
“bare” and “dressed” states of the detector [24], and most
recently in the study of quantum reference frames [25].
In this paper, we extend the UDW model to incorporate a

relativistic quantized c.m. for an inertial detector, and
compare the first- and second-quantized approaches. We
find that these two models lead to distinct notions of
localization, whose consequences can be studied for a given
physical process, which we consider specifically in the case
of spontaneous emission. We compare the first- and second-
quantized models by studying their predictions for the rate
of spontaneous emission, for which we obtain analytical
expressions as a functional of the detector’s initial state. An
advantage of working within the UDW model is that spin is
neglected, which is particularly convenient for the compari-
son of the different localizations. In addition to questions of
localizability, we also consider a detector interacting with a
field in both a vacuum and medium, from which we obtain
previously proposed models for the nonrelativistic [15] and
“semirelativistic” [26] regimes as limiting cases.
Often, one develops relativistic quantum mechanics

(RQM) within the framework of a relativistic QFT, i.e.,
second-quantized approach; the status of a relativistic non-
field-theoretic quantum mechanics is controversial and is
often objected to on both formal and ontological grounds,
e.g., regarding the nonlocalizability and observer depend-
ence of particles (for some discussion on this and related
topics, see Refs. [27–32]). While a second-quantized
approach is required for a fully relativistically covariant
treatment of standard quantummechanics, our intention here
is to present and explore consequences of both of these
approaches. Furthermore, analogous to how nonrelativistic
quantum mechanics (NRQM) exists as a limiting case of
relativistic QFT, a first-quantized RQM should also be
“embedded” within such a theory, provided that the system
remains in a low-energy regime with respect to the Compton
scale, as for example evidenced by experiments such as
those studying the electron’s magnetic moment [33,34].
Throughout this paper, we refer to the different formal

descriptions of quantum mechanics as either “first-” or
“second-quantized.” Although this terminology was origi-
nally coined based on a historical misunderstanding, we
adopt this terminology to avoid potential confusion when
referring to the detector and field constituents. That is, we
refrain from referring to the fully covariant approach as a
“field” theory and instead refer to first- or second-quantized
approaches, either of which may be treated relativistically.
The paper is organized as follows. In Sec. II, we review

the conventional UDW model, its history, and various
extensions, paying close attention to how the different
models are related. We review the standard pointlike and
smeared detector models, the quantized c.m. extension, and
second-quantized treatments of the detector. In Sec. III, we
present our relativistic first-quantized model of the UDW
detector and compare to the second-quantized formulation,

primarily with regard to the differences in localization.
Additionally, we consider the detector-field system in both a
vacuum and medium and compare the relativistic first- and
second-quantized models to earlier results featuring a
classical, or semi-/nonrelativistic c.m. In Sec. IV, we derive
the spontaneous emission rate of the detector as a functional
of the initial c.m. wave function, which we take to have a
Gaussian profile, and again compare our relativistic treat-
ment to past models. Finally, we discuss our results in
Sec. V, where we systematically address the issues of
localizability, time, and mass energy in RQM, before
concluding in Sec. VI.
We consider (3þ 1)-dimensional Minkowski spacetime

with metric signature ðþ;−;−;−Þ and abbreviate ðx; tÞ by
x. We work in natural units ℏ ¼ c ¼ 1, although we restore
units when needed for clarity.

II. UNRUH-DEWITT DETECTOR MODELS

Unruh’s [1] seminal paper originally proposed two
detector models: a “particle in a box” detector model and
a second-quantized detector model. The latter is generally
not studied, while the former was simplified to the well-
known pointlike “monopole” description by DeWitt [2],
now known simply as the UDW model. While the UDW
detector has become the standard model, and the one most
often treated in the literature, various iterations have since
been made. In this section, we review the monopole detector
model and some common extensions made by past authors
and conclude by introducing and evaluating the second-
quantized model, which has been the subject of varied
interests [21,22,24,25].
In its most general form, the UDW model features a

detector coupled to a field, with total Hamiltonian

Ĥ ¼ ĤD þ ĤF þ ĤI: ð1Þ

For the moment, we leave the Hamiltonians for the detector
ĤD and interaction ĤI unspecified but subsequently treat
them in detail. In the UDWmodel, a real-valued scalar field
is most commonly considered, with a free Hamiltonian
given by

ĤF ¼
Z

d3kωðkÞâ†ðkÞâðkÞ; ð2Þ

where ωðkÞ denotes the dispersion relation for the field and
â†ðkÞ and âðkÞ are, respectively, the creation and annihi-
lation operators, which satisfy the commutation rela-
tions ½âðkÞ; â†ðk0Þ� ¼ δð3Þðk − k0Þ.
The scalar field, coupled to the detector in the interaction

Hamiltonian, is characterized by the field operator ϕ̂ðxÞ.
Expanding ϕ̂ðxÞ into its positive and negative frequency
modes, we choose the plane-wave basis such that
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ϕ̂ðxÞ ¼
Z

d3k

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2

2ωðkÞ

s
ðâðkÞe−ik·x þ H:c:Þ; ð3Þ

where ν is the propagation speed of the field, and we have
restricted our analysis to Minkowski spacetime. A full
derivation of ϕ̂ðxÞ, and summary of conventions employed,
can be found in the Appendix. We distinguish the propa-
gation speed of the field from the speed of light in our
analysis for two reasons:

(i) to separate the relativistic nature of the detector from
the field, which allows for easy determination of the
detector’s nonrelativistic limit and

(ii) for the study of detectors in media (which has
been previously treated in Refs. [15,35,36]) and
for possible connections to analogue models of
relativity [37,38].

The standard treatment of a scalar field in a vacuum can be
reobtained by taking ν ¼ c, which in natural units is ν ¼ 1.
The explicit form of the interaction Hamiltonian depends
on the model of the detector and its coupling with the field.
In the simplest case, one has a pointwise coupling between
the field and monopole detector, but this is often extended
to include a spatial smearing in the detector-field coupling,
which we discuss in the following section.

A. Pointlike and smeared monopole detectors

The pointlike detector model is generally treated as an
idealization of a particle confined to a box, or alternatively
as an atom, ion, or molecule, which can be modeled as a
two-level system with ground state jgi and excited state
jei and energies Eg and Ee, respectively. Furthermore, a
“particle” is said to be detected when the detector tran-
sitions from its ground state to its excited state. While the
detector has quantized internal states, it is assumed to have
a classical c.m. and to follow a corresponding classical
worldline (tðτÞ; xðτÞ), which is conventionally parame-
trized by its proper time τ.
From these assumptions, the free Hamiltonian for the

detector is simply given by

ĤD ¼ Ejei hej; ð4Þ

where E ¼ Ee − Eg denotes the energy gap, and without
loss of generality, we have taken Eg ¼ 0.
The interaction between the detector and scalar field is

most often treated as a linear coupling, taken as analogous
to the atom-light interaction between a dipole and quan-
tum electromagnetic field −d̂ · Ê. Such a form of the
Hamiltonian for the detector-field interaction, which
generates time evolution with respect to the detector’s
proper time τ in the interaction picture, is described by

ĤIðτÞ ¼ λμ̂ðτÞ ⊗ ϕ̂(xðτÞ); ð5Þ

where λ is the coupling strength, ϕ̂ is the aforementioned
quantized scalar field, and μ̂ is the monopole operator for
the detector, whose time evolution is defined by

μ̂ðτÞ ¼ jgi heje−iEτ þ jei hgjeiEτ; ð6Þ

and enables the field to excite and deexcite the detector.
The simple coupling between the detector and field in

Eq. (5) is commonly considered in the literature, where the
interaction is generally assumed to be time independent.
However, if the interaction is confined to a finite time
interval, then one encounters ultraviolet divergences in the
response of the detector [39]. These divergences can be
removed by allowing the coupling to vary in time, such that
λ → λðτÞ, and requiring the interaction to be smoothly
switched on and off [40–42].
Further problems arise from the pointlike nature of the

detector model. Ironically, while the pointlike approxima-
tion originally introduced by DeWitt [2] was intended to
simplify the model, it leads to divergences that must in turn
be regularized by modeling the finite extension of the
detector. As treated in Refs. [3,43–45], these problems are
resolved by modeling the spatial profile of the detector,
which can be introduced by modifying the interaction
Hamiltonian to include a smeared coupling between the
detector and field, i.e., λ → λðxÞ.
To ensure that the response of the detector is safe from

the above-mentioned problems, both the switching of the
interaction and the finite extension of the detector must be
included in the model. For simplicity, one may assume the
interaction to be smeared over a spacelike hypersurface,
here parametrized by the coordinate time t. In this case, the
time-dependent coupling with smearing can be decom-
posed as

λðx; tÞ ¼ λχðtÞFðx − xDÞ; ð7Þ

where χðtÞ is the switching function and Fðx − xDÞ is the
smearing function centered around the stationary detector’s
c.m. at x ¼ xD. The interaction Hamiltonian is obtained by
integrating over the spatial extent of the detector

ĤIðtÞ ¼ λχðtÞ
Z

d3xFðx − xDÞμ̂ðtÞ ⊗ ϕ̂ðx; tÞ: ð8Þ

The switching and smearing functions are smooth func-
tions, commonly chosen to have compact support, or to
have a Gaussian or Lorentzian profile. While one largely
has freedom to choose the switching function for the
interaction, the introduction of a smearing profile is
physically dubious if done in an ad hoc manner.
Instead, one can derive the smearing profile from first

principles by considering a specific physical description for
the detector, for example, the smearing associated with the
discrete energy levels of a particle trapped in a box [46] or
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the smearing of a two-level atom given by its atomic wave
function [13].
While the introduction of a spatial smearing is sufficient

for the problems caused from the pointlike idealization,
the model still assumes a detector following a classical
trajectory. A fully quantum treatment would include the
quantized degrees of freedom associated with the detec-
tor’s c.m. Moreover, by quantizing the c.m. degrees of
freedom, the motivations for introducing a smearing
profile do not arise; thus, smearing is not considered in
the subsequent models.

B. Detectors with quantized center of mass

To provide a more physical account of the detector and
its smearing, one can take the detector to be localized inside
a box, rather than assume a pointlike monopole. Such a
model was given by Unruh and Wald [46], who considered
a scalar field coupled to a detector with a quantized
c.m.; i.e., xD → x̂D describes the position operator of the
detector. The interaction between the box detector and field
in the Schrödinger picture is

ĤI ¼ λ

Z
d3x δð3Þðx − x̂DÞϕ̂ðxÞ ð9Þ

and by introducing a completeness relation over position
states can equivalently be written as

ĤI ¼ λ

Z
d3x jxi hxjD ⊗ ϕ̂ðxÞ: ð10Þ

Because the detector is confined in a box, we may express
the above in terms of the detector’s energy eigenstates jji.
Further insertion of completeness relations gives

ĤI ¼ λ

Z
d3x

X
j

jji hjjjxihxjD
X
k

jki hkj ⊗ ϕ̂ðxÞ

¼ λ

Z
d3x

X
j;k

ψ�
jðxÞψkðxÞjji hkj ⊗ ϕ̂ðxÞ; ð11Þ

where ψ jðxÞ≡ hxjji denotes the position-space wave
function for the jth energy level. Following Ref. [46],
one may restrict the detector to two energy levels j ¼ fg; eg
and drop diagonal terms in the interaction, i.e., jgi hgj and
jei hej. One thereby obtains an interaction with a position-
dependent monopole operator

ĤI ¼ λ

Z
d3x μ̂ðxÞ ⊗ ϕ̂ðxÞ; ð12Þ

where

μ̂ðxÞ≡ ψ�
gðxÞψeðxÞjgi hej þ ψ�

eðxÞψgðxÞjei hgj; ð13Þ

which may be compared to the earlier introduction of
smearing for the pointlike detector (8).
A different extension of the UDWmodel, which idealizes

the atom-light interaction, was considered by Stritzelberger
and Kempf [15]. Their detector model extends the tradi-
tional UDWmodel to include the quantized c.m., in addition
to the usual quantized internal degrees of freedom for the
two-level system. In their original paper, Stritzelberger and
Kempf consider an inertial detector whose evolution is
described by the free nonrelativistic Hamiltonian given by

ĤD ¼ p̂2

2M
þ Ejei hej; ð14Þ

which generates time evolution with respect to the coor-
dinate time t and where p̂ is the c.m. momentum operator
and M the detector’s mass. As opposed to the traditional
UDW model, which features a detector following a classical
trajectory, a c.m. rest frame (where p ¼ 0) cannot be freely
chosen for a quantized c.m. wave function, since this would
violate the Heisenberg uncertainty relation. Therefore, the
external c.m. degrees of freedommust be included in the free
evolution, where the detector states now live in the product
Hilbert space HD ¼ Hext ⊗ Hint. The free Hamiltonian has
eigenstates of the form

ĤDjpijji ¼
�
p2

2M
þ Ej

�
jpijji; ð15Þ

where Ej is the jth energy level, corresponding to either the
ground or excited state of the detector j ¼ fg; eg.
The detector-field interaction has the same form as the

box detector model of Unruh and Wald [46] but now
features a monopole operator separate from the c.m. degrees
of freedom, which couples to the field as

ĤI ¼ λμ̂ ⊗ ϕ̂ðx̂Þ

¼ λ

Z
d3x μ̂ ⊗ jxi hxjD ⊗ ϕ̂ðxÞ; ð16Þ

where the detector’s monopole and c.m. are evolved with
respect to the detector’s free Hamiltonian (14)

μ̂ðtÞ ¼ eiĤDtμ̂ð0Þe−iĤDt; ð17aÞ

jxðtÞi hxðtÞjD ¼ eiĤDtjxi hxjDe−iĤDt: ð17bÞ

Given the nonrelativistic form of Eq. (14), the
Hamiltonian is no longer Lorentz invariant and cannot
describe relativistic trajectories. Moreover, as discussed in
the Introduction, the mixing of the Galilean and Lorentz
groups between the detector and field leads to nonphysical
effects, particularly in the full atom-light interaction,
although this can be partially remedied by inclusion of
relativistic corrections, such as the Röntgen term.
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In the case of the UDWmodel proposed by Stritzelberger
and Kempf [15], an incorporation of the detector’s mass
defect was recently studied in Ref. [26], whereby one
models the change in the detector’s mass energy resulting
from emission and absorption. Such a “semirelativistic”
approach is advantageous insofar as one wants to avoid a
relativistic treatment, although a fully Lorentz-covariant
approach can be developed only in a relativistic second-
quantized model.

C. Second-quantized detector models

In addition to the box detector model, Unruh [1]
proposed a fully relativistic second-quantized model, where
the detector was represented by a composite scalar field.
Despite its initial proposal almost a half-century ago, the
second-quantized model has seen comparatively little
study. A likely reason for this unpopularity is that one
loses the convenient localization, and simplicity, of the
pointlike UDW model. Despite these disadvantages, a full
consideration of relativistic effects in a detector model is
certainly of interest and has been previously considered in a
number of recent analyses [21,22,25].
In the past treatments, the second-quantized detector has

generally been assumed to stay confined to some region,
such as in a box detector by Unruh or the field in a cavity
considered by Grove and Ottewill [47]. A disadvantage of
these models is that additional care must be taken to define
the rigidity of the container, namely how one should
formalize the detectors’ walls, but is generally resolved
by taking the walls to remain fixed relative to some inertial
observer.
However, one might well ask whether a full treatment of

the detector’s container is really necessary, particularly
given the simplicity of the UDW model where no mention
or treatment of a box is required. Indeed, due to the
complexities of the second-quantized model, it is much
easier to simplify the model to a monopole detector by
restricting to the low-energy regime [47]. Likewise, in a
separate analysis, Colosi and Rovelli [49] found that for a
box detector sufficiently large with respect to its Compton
wavelength λc ≡ ℏ=mc, the correlation functions of the
localized states exponentially converge to the global states
defined on Minkowski spacetime [48]. Consequently, one
can justify neglecting the detector’s container on the basis
that one remains in the low-energy regime for large
wavelengths with respect to the size of the detector, and
where boundary effects are neglected.
As in previous treatments [1,21,22,25], the detector is

modeled as a composite real-valued scalar field ψ̂ j, for
which we consider a continuum normalization. As in
the first-quantized case, the detector has two energy levels
j ¼ fg; eg corresponding respectively to the ground and
excited states. In the Schrödinger picture, the detector is
defined by

ψ̂ jðxÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EjðpÞ

p ðb̂jðpÞeip·x þ H:c:Þ; ð18Þ

with EjðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

j

q
and total mass energy

Mj ¼ mþ Ej given by the sum of the detector’s rest
mass and internal energy. The creation and annihilation
operators satisfy the noncovariant commutation relations
½b̂jðpÞ; b̂†kðp0Þ� ¼ δð3Þðp − p0Þδjk.
The free Hamiltonian for the detector is given by the sum

of two fields describing the internal energies

ĤD ¼
X
j

Z
d3pEjðpÞ b̂†jðpÞb̂jðpÞ; ð19Þ

while the Hamiltonian for the detector-field interaction is
given by

ĤI ¼ λð2ndÞ
Z

d3x
X
j≠k

ψ̂ jðxÞψ̂kðxÞ ⊗ ϕ̂ðxÞ: ð20Þ

In Ref. [25], to simplify the model’s structure, the inter-
action Hamiltonian was restricted to the single-particle
sector, resulting in

Ĥð1Þ
I ¼ λð2ndÞ

Z
d3x

X
j≠k

jxji hxkjð2ndÞD ⊗ ϕ̂ðxÞ; ð21Þ

which is close, but not identical to, the first-quantized
interaction (16) introduced in Ref. [15]. Before we discuss
the above interaction, it is worth noting that the restriction
to the one-particle sector is in some sense redundant.
Applying this interaction to an initial state containing,
say, one detector yields final states with also just one
detector, possibly with a different internal energy. In this
respect, Eq. (20) preserves the total number of detectors ψ̂ .
In addition to the different dispersion relations for the

c.m. of the detector between Eqs. (16) and (21), one finds
that the second-quantized model has nonorthogonal “posi-
tion states” defined by

jxjið2ndÞD ≡
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EjðpÞ

p e−ip·xb̂†jðpÞj0iD; ð22Þ

which are equivalently given by

jxjið2ndÞD ¼ ψ̂ jðxÞj0iD: ð23Þ

According to the common textbook interpretation, the above
states constitute position states of the second-quantized
theory (see, for example, Eq. (2.41) and successive
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comments in Ref. [50]); however, the presence of the
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EjðpÞ

p
integration measure obfuscates such a straight-

forward view. Clearly, while these second-quantized posi-
tion states transform covariantly, they do not correspond to
eigenstates of a position operator, nor any Hermitian
operator for that matter, a fact which was pointed out
in Ref. [51].
The aforementioned nonorthogonality of these position

states is also due to the presence of the integration measure.
Indeed, these states do not correspond to a Fourier transform
in momentum space, as is the case for the first-quantized
position states [52]. This nonorthogonality is generally
interpreted as a nonlocalizability in RQM, which has been
the subject of extensive discussion in the literature, and has
recently been studied in several papers analyzing the
transition from relativistic QFT to NRQM [51,53,54].
To summarize, one can easily define a second-quantized

model of the detector dynamics, which in the single-particle
sector has an interaction that resembles, but is not identical
to, the first-quantized treatment due to the different locali-
zation that one obtains. However, if this resulting second-
quantized model is adopted, then the question arises as to
whether one can start directly from a relativistic first-
quantized treatment of the detector. Such a model would
already be constrained to the single-particle sector and
would necessarily treat the detector as a localized system.
In the following section, we therefore construct and analyze
such a first-quantized model from the standpoint of RQM
and compare its predictions to both the relativistic second-
quantized model, as well as the semi- and nonrelativistic
regimes.

III. RELATIVISTIC DETECTOR WITH FIRST-
QUANTIZED CENTER OF MASS

In our review of past detector models, the physical
description of the detector is often abstracted in order to
focus exclusively on the field. Generally, in the context of
quantum field theory, particle detectors are introduced in
order to give an operational meaning to particles, i.e.,
particles are what particle detectors detect. There are a
number of remarks to be made here, the first being that the
idealization of a detector by the monopole model leads to
problems which must be resolved by reintroducing the very
structure that was originally abstracted away. Second, the
operational definition of a particle detector risks circularity;
just as a particle has some effective ontology, so too does a
particle detector. Care must be taken to adequately define
and formalize what precisely one means by a “detector.”
Here, we consider a detector to be a suitably localized

system such that one can employ a first-quantized formu-
lation, but where the free dynamics may not be abstracted.
In formulating a relativistic first-quantized model, we take
the interaction to be of the same general form as in
Eqs. (16) and (21),

ĤI ¼ λð1stÞ
Z

d3x μ̂ ⊗ jxi hxjð1stÞD ⊗ ϕ̂ðxÞ

¼ λð1stÞ
Z

d3x
X
j≠k

jx; jihx; kjð1stÞD ⊗ ϕ̂ðxÞ; ð24Þ

where we have combined the detector’s external and
internal states into the first-quantized position states.
Note that we distinguish between the first- and second-
quantized coupling constants, λð1stÞ and λð2ndÞ, which have
different dimensions between the two models. We take the
first-quantized position states to be equivalent to the non-
relativistic theory, defined by

jxið1stÞD ≡
Z

d3p

ð2πÞ3=2 e
−ip·xjpiD: ð25Þ

These first-quantized position states, unlike those derived
from the second-quantized theory, do not transform
covariantly [55] but are orthogonal and correspond to
eigenstates of a respective position operator. More spe-
cifically, they correspond to the Newton-Wigner position
operator [56], which was derived by invariance conditions
that a suitable position operator should reasonably satisfy.
Later, in Sec. V, we shall discuss the two localizations in
more detail; at this stage, we concurrently consider both
the first- and second-quantized models and subsequently
compare their predictions.
Working in the interaction picture, we evolve the

position states with respect to the time coordinate t,

ĤIðtÞ ¼ λ

Z
d3x

X
j≠k

jxðtÞ; ji hxðtÞ; kjD ⊗ ϕ̂ðx; tÞ; ð26Þ

with the time evolutions for the first- and second-quantized
position states respectively defined by

jxðtÞ; jið1stÞD ≡ eiĤDtjx; jið1stÞD ; ð27aÞ

jxjið2ndÞD ≡ ψ̂ jðxÞj0iD; ð27bÞ

and the detector in the Heisenberg picture is given by

ψ̂ jðxÞ ¼
Z

d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EjðpÞ

p ðb̂jðpÞeip·x þ H:c:Þ: ð28Þ

For convenience, we introduce the general position state

jx; jiD ≡
Z

d3p

ð2πÞ3=2fjðpÞ
e−ip·xjpiD; ð29Þ

where fjðpÞ is the integration measure for the second-
(fjðpÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EjðpÞ

p
) and first-quantized (fjðpÞ≡ 1) position

states; cf. Eqs. (22) and (25) respectively.
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Considering the detector as a classical system with mass
M, the rest frame Hamiltonian would be given by

Hτ
D ¼ M;

where we explicitly denote that time evolution is generated
with respect to the detector’s proper time τ. Rewriting this
in terms of the coordinate time t, we obtain

Ht
D ¼ dτ

dt
M;

acquiring a Lorentz factor from time reparametrization of
the equations of motion [57]. While we restrict our analysis
to Minkowski spacetime, one can in principle extend this
treatment to curved spacetimes [58,59]. Expressing the free
dynamics in momentum space, and quantizing in this
frame, one would conventionally consider a Hamiltonian
of the form

Ĥt
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þM2

q
;

where the mass is treated as a c-number. However, this
expression would be inappropriate for this model since the
above Hamiltonian is unable to characterize the detector’s
internal degrees of freedom. Instead, we include a quan-
tized mass-energy operator [60–63]

Ĥt
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þ M̂2

q
; ð30Þ

whose eigenvalues are given by the action on a correspond-
ing mass eigenstate

M̂jji ¼ Mjjji: ð31Þ

For a detector modeled as a two-level system, one may
express the mass-energy operator by

M̂ ¼ Mgjgi hgj þMejei hej; ð32Þ

with Mj ¼ mþ Ej corresponding to the total mass energy
of the detector, as in the second-quantized model. Note that
such a model is consistent with the conventional UDW
Hamiltonian; i.e., Eq. (4) is recovered up to a dynamically
irrelevant constant (the ground state mass energy of the
detector) for states with vanishing momentum. Aside from
the introduction of a mass operator in the model just
outlined, there are various other motivations for quantizing
the mass energy in RQM, which we outline and discuss
in Sec. V.

A. Calculation of spontaneous emission rate

For simplicity, we consider only a single physical
process, namely spontaneous emission, which is primarily

done to more easily compare with past analyses [15,26] and
because it is a frequent subject of study in the UDWmodel,
particularly from the context of quantum optics. One can
also consider alternate physical processes, such as absorp-
tion and vacuum excitation, or in principle obtain more
general results by formalizing in terms of correlations
functions, which we defer to future work.
In the case of spontaneous emission, one starts with an

excited detector in the vacuum,

jΨii ¼ jψ i; eiD ⊗ j0i; ð33Þ

with an arbitrary center-of-mass wave function ψ i of the
detector, which can be represented in the momentum basis
as

jψ ii ¼
Z

d3piψ iðpiÞjpii: ð34Þ

For the final state, the detector is in its ground state with a
spontaneously emitted field quantum

jΨfi ¼ jpf; giD ⊗ â†ðkÞj0i: ð35Þ

Expanding the evolution operator perturbatively up to first
order, we obtain

Ûðtf; tiÞ ¼ 1̂ − i
Z

tf

ti

dtĤIðtÞ þOðλ2Þ: ð36Þ

The resulting transition amplitude evaluates to

Ajpi;e;0i→jpf;g;1ki ¼
−iλ

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2

2ωðkÞ

s
ψ iðpf þ kÞ

fgðpfÞfeðpf þ kÞ

×
Z

tf

ti

dt eiðEgðpfÞ−EeðpfþkÞþωðkÞÞt: ð37Þ

It is most interesting to find the total transition rate, which
can be obtained by first deriving the total probability of the
detector’s final internal state, given by

Pjpi;e;0i→jgi ¼
Z

d3k
Z

d3pfjAjpi;e;0i→jpf;g;1kij2; ð38Þ

where we have traced over the final momenta for the field
and detector.
In conventional analyses of the UDW model, one

separates the detector’s selectivity from the response func-
tion of the field and only considers the latter [4]. However,
due to the modified form of both the interaction (26) and
free Hamiltonian (30), the internal and external degrees of
freedom of the detector are coupled, and as a result, its
dynamics can no longer be excluded. Therefore, we
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consider the full transition rate rather than just the response
rate of the field. Substituting the transition amplitude (37),
one finds

P½ψ i� ¼
λ2

ð2πÞ3
Z

d3k
Z

d3pf
ν2

2ωðkÞ
jψ iðpf þ kÞj2

f2gðpfÞf2eðpf þ kÞ

×
Z

tf

ti

Z
tf

ti

dt dt0 eiðEgðpfÞ−EeðpfþkÞþωðkÞÞðt−t0Þ; ð39Þ

and recognizing that the above integrals over time depend
only on the interval s ¼ t − t0, but not on the total time
s0 ¼ tþ t0, we may find the transition rate _P½ψ i�≡
ðd=dtfÞP½ψ i� over the interval Δt ¼ tf − ti, given by

_P½ψ i� ¼
λ2

ð2πÞ3
Z

d3k
Z

d3pf
ν2

2ωðkÞ
jψ iðpf þ kÞj2

f2gðpfÞf2eðpf þ kÞ

×
Z

Δt

−Δt
ds eiðEgðpfÞ−EeðpfþkÞþωðkÞÞs: ð40Þ

Since switching effects are neglected, we restrict to asymp-
totic times Δt → ∞, and reintroducing the integration over
the initial momentum p, the above expression becomes

_P½ψ i� ¼
λ2

ð2πÞ2
Z

d3p
f2eðpÞ

jψ iðpÞj2
Z

d3k
f2gðk − pÞ

ν2

2ωðkÞ
× δ½Egðk − pÞ − EeðpÞ þ ωðkÞ�: ð41Þ

At this point, we consider the different localizations for the
first- and second-quantized models separately. For the case
of a massless scalar field, the dispersion relation is
ωðkÞ ¼ νjkj, and the transition rate evaluates to

_P½ψ i� ¼
λ2

2π

Z
d3pjψ iðpÞj2T relðpÞ; ð42Þ

where T denotes the “template function,” originally coined
and defined for the nonrelativistic case in [15]. Considering
each localization separately, the relativistic template func-
tions for the first- and second-quantized models are given by

T ð1stÞ
rel ðpÞ≡ ν

ð1 − ν2Þ2
�
ð1þ ν2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

q

−
�
1

jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

q
þ ν

�

× l
�
νjpj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

q
;Mg

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p ��
; ð43aÞ

T ð2ndÞ
rel ðpÞ≡

ν

�
jpj − l

�
νjpj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

p
;Mg

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p ��
4ð1 − ν2Þjpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

p ;

ð43bÞ

where l is an auxiliary function of the form [64]

lða;b;cÞ≡ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞ2þ c2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða−bÞ2þ c2

q �
: ð44Þ

The above expressions for an interaction in media simplify
dramatically in the vacuum case, i.e., when taking
ν ¼ c ¼ 1. While it may initially appear that the template
functions (43) diverge, the results are well defined in the
limit ν → 1. The vacuum template function corresponding
to the first-quantized localization is given by

lim
ν→1

T ð1stÞ
rel ðpÞ ¼ 1

4

�
1 −

M4
g

M4
e

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

q
; ð45aÞ

while for the second-quantized localization, one finds

lim
ν→1

T ð2ndÞ
rel ðpÞ ¼ 1

8

�
1 −

M2
g

M2
e

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
e

p ; ð45bÞ

where notably the second-quantized model features the
reciprocal of the relativistic dispersion relation, in contrast
to the first-quantized case; see also Fig. 1 for a comparison
of these two localizations.
The different behavior between the two models results

from the distinct integration measures, which enter in the
first- and second-quantized position states, and is ulti-
mately due to the different notions of “local interaction”
between the field and detector in the two cases. Moreover,
the different dimensions of the two template functions is
offset by the effective difference in dimensions between the
coupling constants of each model, which give the correct
dimension for the transition rate.
Given that the coupling constants between the first- and

second-quantized localizations are distinct, it is necessary
to find a means to equate them so that the two cases can be
meaningfully compared. Requiring that the first- and
second-quantized template functions agree for jpj ¼ 0,
one obtains a mass-dependent factor relating the respective
coupling constants by

λð2ndÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM2

g þM2
eÞ

q
λð1stÞ: ð46Þ

Employing this relation between coupling constants, one
obtains corrected expressions for Eqs. (43b) and (45b),

T ð2ndÞ
rel ðpÞ

≡
νðM2

g þM2
eÞ
�
jpj − l

�
νjpj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

p
;Mg

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p ��
2ð1 − ν2Þjpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

p ;

ð47aÞ
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lim
ν→1

T ð2ndÞ
rel ðpÞ ¼ 1

4

�
1 −

M4
g

M4
e

�
M2

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

e

p ; ð47bÞ

which agree in dimension with the first-quantized case. In all
instances where we compare the first- and second-quantized
localizations, such as for the template functions given in
Figs. 1 and 2, we use the above results and in general
employ Eq. (46).

B. Rederivation of transition rates for semi- and
nonrelativistic detectors

While the template functions are particularly simple in
the vacuum case, one is unable to recover exact analytical
expressions found in the Galilean limit, where jpj ≪ Mj.
This is due to the fact that only the dynamics of the
detector are governed by the Galilean group, while the
field’s dynamics are still described by the Lorentz group.

Therefore, it is necessary to distinguish between the speed
of light present in the detector’s relativistic dispersion
relation and the field’s propagation speed so that one has
respectively separated the group structure governing the
detector and field.
Consequently, one may take the limit of the Lorentz

group to the Galilean group for the detector by subtracting
the rest energy and taking jpj ≪ Mj; by “limit” here, one
formally means a contraction of a given Lie group, such
that a new group structure is obtained from the limiting case
of a parameter in the Lie algebra [65]. Recall from Eq. (32)
that the mass energy for the two levels is defined by
Mj ¼ mþ Ej, wherem≡Mg is the rest mass energy of the
detector for Eg ¼ 0. Contracting the free Hamiltonian (30),
one obtains

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þ M̂2

q
−m1̂ →

1

2
p̂2M̂−1 þ Ejeihej; ð48Þ

FIG. 2. Template functions for energy gap E=m ¼ 0.001 between the first- and second-quantized localizations in a medium, alongside
their semi- and nonrelativistic limits. Results are given with respect to the Compton scale of the detector, where m is the detector’s rest
mass. In comparison to the vacuum case, one observes new transient behavior for small p=m; in (a), the relativistic template functions
closely follow their semi- and nonrelativistic limits, while in (b), the relativistic template functions initially peak, reaching a local
maximum dependent on the propagation speed of the field.

FIG. 1. Template functions for the first- and second-quantized localizations in a vacuum (ν ¼ c ¼ 1), alongside their semi- and
nonrelativistic limits. Results are given with respect to the Compton scale of the detector, where m is the detector’s rest mass. For small
energy gap (a), all cases coincide for small p=m (i.e., for small momenta or sufficiently massive detectors); for large energy gap (b),
results no longer agree between the relativistic, classical, and semi- and nonrelativistic c.m., even for small p=m. The distinction
between the different template functions suggests that these cases can be empirically distinguished.
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where E is the detector’s internal energy gap (equivalently taking E ¼ Ee). Notably, Eq. (48) still features a quantized mass
energy, as one has contracted to the centrally extended Galilean group in this limit. Regarding the template functions, the
first-quantized case (43a) reduces to

T ð1stÞ
semi-relðpÞ ¼

Mgν

jpj
�
jpj − l

�
jpj;Mgν;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MgE − p2

�
1 −

Mg

Me

�s ��
; ð49Þ

which was previously obtained in Ref. [26] directly using
the semirelativistic Hamiltonian (48) for the detector’s c.m.
In this semirelativistic template function (49), the parameter
ν has been previously interpreted as the speed of light but
should more precisely be understood as the propagation
speed of the field, i.e., a parameter formally independent of
the speed of light.
One can fully contract to the nonrelativistic limit by

taking M̂ → m1̂ withMg ¼ Me ¼ m, whereby the template
function reduces to

T ð1stÞ
non−relðpÞ ¼

mν

jpj ½jpj − lðjpj; mν;
ffiffiffiffiffiffiffiffiffiffi
2mE

p
Þ�; ð50Þ

and one obtains the nonrelativistic model analyzed in
Ref. [15]. Comparing the semi- and nonrelativistic models
alongside the relativistic cases, as seen in Fig. 1, the
difference between the semi- and nonrelativistic cases is
small but becomes particularly notable when comparing to
the relativistic cases. As can be most easily seen in Fig. 1(a),
the relativistic first-quantized template function increases
without bound, while the semi- and nonrelativistic template
functions asymptote to the propagation speed of the field,
which for a vacuum is unity.
In the classical c.m. limit, i.e., for sufficiently massive

detectors jpj ≪ m, one reobtains the results for the tradi-
tional UDW model. In this regime, the dynamics are
independent of the detector’s c.m.,

T ð1stÞ
classicalðpÞ ¼

E
ν
; ð51Þ

and simply proportional to the energy gap. Moreover, in the
regime where the detector mass is sufficiently large and
dominates all other dimensional quantities, such as E ≪ m,
then all models coincide as seen in Fig. 1(a).
In the case of a medium, one can compare the template

functions for different propagation speeds ν and constant
energy gap, as depicted in Fig. 2. One observes that the
template functions converge for small p=m (i.e., for small
momenta or suitably massive detectors) and also finds new
transient behavior before converging to the vacuum case.
Additionally, while the relativistic first-quantized template
function diverges for large p=m, the corresponding semi-
and nonrelativistic template functions asymptote to the
field propagation speed

lim
p→∞

T ð1stÞ
semi-relðpÞ ¼ lim

p→∞
T ð1stÞ

non-relðpÞ ¼ ν;

which was also observed for the vacuum case in Fig. 1(a).
Due to the presence of the field’s propagation speed ν,

one obtains a local maximum in the second-quantized case,
most easily seen in Fig. 2(b), which corresponds to the
asymptotic behavior observed for the semi- and nonrela-
tivistic c.m. limiting cases. Moreover, this local maximum
is still present even for field propagation speeds very close
to the speed of light, with large ν translating the peaks to
larger p=m.

IV. COMPARISON OF SPONTANEOUS
EMISSION RATES

As defined in the previous section, the transition rate (42)
is a functional of the detector’s initial wave function and is
given by

_P½ψ i�≡ λ2

2π

Z
d3pjψ iðpÞj2T ðpÞ;

where the dynamics are entirely described by a respective
template function. In the subsequent analysis of the
spontaneous emission rate, it is simplest to consider a
detector initially in a Gaussian state with width L, which in
momentum space is described by

ψ iðpÞ ¼
�
L2

2π

�
3=4

e−
L2
4
jp−pDj2 ; ð52Þ

where the detector is centered about p ¼ pD.
Analytic results for the relativistic first- and second-

quantized cases can be obtained in the case of a vacuum
with mean momentum pD ¼ 0. Substituting the Gaussian
wave function into the transition rate (42) alongside the
relativistic template functions (43), the respective integrals
can be evaluated by Euler substitution. For the relativistic
first-quantized case, this gives

_Pð1stÞ
rel ½ψ i� ¼

λ2LðM4
e −M4

gÞ
4π3=2

ffiffiffi
2

p
M2

e

e
L2M2

e
4 K1

�
L2M2

e

4

�
; ð53aÞ

where KνðzÞ is the modified Bessel function of the second
kind. In the second-quantized case, one obtains
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_Pð2ndÞ
rel ½ψ i� ¼

λ2LðM4
e −M4

gÞ
4π

ffiffiffi
2

p
M2

e

U

�
1

2
; 0;

L2M2
e

2

�
; ð53bÞ

where Uða; b; zÞ is the confluent hypergeometric function
of the second kind, and we have expressed the above result
in terms of the first-quantized coupling λ≡ λð1stÞ by
employing Eq. (46).
While analytic results can be easily obtained in the

vacuum case, for the semi- and nonrelativistic regimes and
generally in a medium, the spontaneous emission rate is
evaluated numerically. In Fig. 3, we plot the spontaneous
emission rates for the relativistic first- and second-
quantized models for both a vacuum and medium. One

observes that for the system in a medium, the transition rate
is rescaled when compared to the vacuum case.
Comparing the transitions rates for the relativistic,

classical, and semi- and nonrelativistic c.m. in a vacuum,
we analyze the effects of the Gaussian width L on the
results, given in Fig. 4. The relativistic localizations con-
verge for large energy gap E=m but fall short of the value
predicted in the case of a classical c.m. More precisely, in
the limit of small rest mass m, one finds that

lim
m→0

_Pð1stÞ
rel ½ψ i� ¼ lim

m→0

_Pð2ndÞ
rel ½ψ i� ¼

λ2

2π

Eν
ðνþ 1Þ2 ;

FIG. 3. Spontaneous emission rates between the relativistic first- and second-quantized localizations for a medium (ν ¼ 0.1) and
vacuum (ν ¼ c ¼ 1). Results are given with respect to the Compton scale of the detector, where m is the detector’s rest mass, λc ≡m−1

is the Compton wavelength, and L is the spread of the Gaussian wave function in position space. For propagation in a medium, the
distributions of the transition rates retain the same form as that in a vacuum, with the two localizations converging for large energy gap
E=m, albeit at a lower rate. For (a) Gaussian widths below the Compton wavelength, the first- and second-quantized localizations can be
distinguished, although they would not be observable in practice given the inability to empirically access this regime; for (b) Gaussian
widths above the Compton wavelength, the two localizations coincide.

FIG. 4. Spontaneous emission rates between the first- and second-quantized localizations in a vacuum, alongside their semi- and
nonrelativistic limits. Results are given with respect to the Compton scale of the detector, wherem is the detector’s rest mass, λc ≡m−1 is
the Compton wavelength, and L is the spread of the Gaussian wave function in position space. We compare the effect of different
Gaussian widths on the transition rate: for small Gaussian widths (a), the relativistic transition rates converge for large energy gap but do
not in the case of a classical c.m., while the semi- and nonrelativistic cases are approximately constant compared to the other cases. For
large Gaussian widths (b), the spontaneous emission rates for all cases converge for small energy gaps E=m, and remarkably the
relativistic first- and second-quantized localizations coincide for all E=m.
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while for a classical c.m., whose template function (51)
is independent of momentum, the transition rate trivially
evaluates to

_Pclassical½ψ i� ¼
λ2

2π

E
ν
;

from which it is clear that the classical and relativistic c.m.
disagree in the regime of small mass detectors, which is
unsurprising given the mass defect between the ground and
excited energy levels. All models coincide for sufficiently
massive detectors, i.e., when L=λc ≫ 1 and E=m ≪ 1,
where the free dynamics of the c.m. become trivial; this
regime can be most easily seen in Fig. 4(b), where the
models coincide for small energy gap E=m.
In the semi- and nonrelativistic regimes, both of the

transition rates converge to zero in the limit of small rest
mass, that is

lim
m→0

_Psemi-rel½ψ i� ¼ lim
m→0

_Pnon−rel½ψ i� ¼ 0:

As seen in Fig. 4(a), the semi- and nonrelativistic results are
particularly discrepant in comparison to the relativistic and
classical c.m. cases, with significant disagreement for small
Gaussian widths, which is most likely due to the use of the
Galilean group for the detector [66].
Notably, in Fig. 4(b) for the regime where the Gaussian

width is large L=λc ≫ 1, one sees that both localizations for
the relativistic c.m. are in close agreement and perfectly
coincide in the infinite width limit LMe → ∞. Taking this
limit in the case of a vacuum, we find

lim
LMe→∞

_Pð1stÞ
rel ½ψ i� ¼

λ2ðM4
e −M4

gÞ
4πM3

e

×

�
1þ 3

2

1

ðLMeÞ2
þO

�
1

ðLMeÞ4
��

;

lim
LMe→∞

_Pð2ndÞ
rel ½ψ i� ¼

λ2ðM4
e −M4

gÞ
4πM3

e

×

�
1 −

3

2

1

ðLMeÞ2
þO

�
1

ðLMeÞ4
��

:

To better understand this convergence between the first-
and second-quantized localizations, one finds that the two
localizations scale inversely with respect to the spread of the
Gaussian wave function, which can be seen in Fig. 5. For
small Gaussian widths, the transition rate for the first-
quantized c.m. is amplified, while for the second-quantized
c.m., it is suppressed, which ultimately leads to the observed
difference in sign between the second-order terms.
Quantitatively, for a hydrogen atom with L on the order

of the Bohr radius, the fractional difference between the
two rates is of the order ∼10−10, which would be very
difficult to distinguish empirically; we briefly comment on
potential experimental tests in the following section.

V. DISCUSSION

Given the results of the previous sections, a pertinent and
obvious question to ask at this stage would be which of the
two localizations, the first- or second-quantized, is the
“true” or “correct” one. Due to their different predictions,
namely the different emission rates, this question can and
should ultimately be resolved by experiment.
Note that the analytical results for the emission rates

presented here are for a detector with vanishing mean

FIG. 5. Spontaneous emission rates for relativistic (a) first- and (b) second-quantized localizations in a vacuum. Results are given with
respect to the Compton scale of the detector, where m is the detector’s rest mass, λc ≡m−1 is the Compton wavelength, and L is the
spread of the Gaussian wave function in position space. In (a) the first-quantized model, smaller spreads amplify the transition rate with
respect to the energy gap of the detector, while the inverse occurs in (b) the second-quantized model, where the rate of spontaneous
emission is suppressed for smaller Gaussian widths.
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momentum, which is expected to minimize the difference
between these two models. The marked difference in the
dependence of the first- and second-quantized template
functions on momentum, e.g., Eqs. (45a) and (47b), suggests
that the predictions of the two models would diverge further
for initial states with nonvanishing momentum. Choosing an
optimal initial state and exploring other processes, such as
absorption, to empirically distinguish between these two
models is a worthwhile topic for further research.
Throughout this analysis, we have considered a relativ-

istic first-quantized regime, which somewill object to on the
grounds that RQM can be consistently formalized only in
terms of a relativistic QFT, i.e., the second-quantized model
outlined in Sec. II C. Such an argument is often made on the
basis of relativistic covariance, namely that both space and
time must be treated equivalently under the Lorentz group.
While this is an important point, it must be stressed that the
issue of localization exists independently of covariance.
Both a clear physical explanation of the discrepancy
between the two localizations and a theoretical argument
for which of the predictions would correspond to empirical
observation are missing. Filling this gap is necessary for a
complete understanding of RQM.
Regarding which of the two localizations provides the

correct description, there are a number of different posi-
tions one can take, which we discuss in the following:

(i) The second-quantized localization provides a better
representation of the physics, since a complete
account of a relativistic theory must ultimately be
formalized in terms of quantum fields.

(ii) The first-quantized localization is an idealization,
which provides an effective model of the dynamics
within an appropriate regime.

(iii) The first-quantized localization provides a better
representation, even beyond an effective description.
Such a localization would presumably play a fun-
damental role in relativistic quantum mechanics,
particularly in its connection to an appropriately
defined covariant position operator.

Considering these different positions, one might intuitively
take position (i) to be obviously correct. However, such a
view would seriously challenge a particle detector descrip-
tion, such as the standard UDWmodel. The introduction of
a “particle detector” was motivated precisely to avoid these
issues regarding both the definitions of a particle and
localization. By introduction of a particle detector, one
couples a system of relativistic quantum fields to a detector,
which necessarily assumes a localized system in contra-
diction to position (i).
Perhaps, to avoid abandoning the detector concept, one

could adopt the viewpoint given by position (ii). Thus, a
localized description only provides an effective model, and
one would interpret the detector as an idealized system,
e.g., a relativistic composite system such as an atom, where
the degrees of freedom of the model are not fundamental,

implying a coarse-grained c.m. By characterizing a local-
ized system through the introduction of a position operator,
one obtains an effective description of the underlying
fundamental fields, at least according to position (ii).
Arguably, however, position (ii) merely defers the prob-

lem. Rather than treat the detector as an effective model of
an atom, one could in principle equally apply the model to
an elementary system, wherein the detector is interpreted as
an electron or neutrino. By this view, one is seemingly led
to position (iii), which itself has no easy interpretation, and
one must again confront the question of localization in
relativistic quantum mechanics.

A. Position operator and localization

The problem of localization in RQM has a long history,
with its initial study originating in the seminal paper by
Pryce [67], covering the different possible definitions of a
relativistic c.m. As opposed to the Newtonian case under
the Galilean group, one finds many different competing
definitions of a c.m. in relativity, whether it be classical or
quantum. Shortly after Pryce’s analysis, Newton and
Wigner [56] investigated possible definitions for a relativ-
istic position operator by imposing a number of invariance
conditions, from which they derived their Newton-Wigner
position operator, which is equivalent to the standard
position operator of NRQM.
Subsequent analyses (see, e.g., Ref. [27] and references

within) have further investigated the problem of localiza-
tion, namely whether one can introduce a covariant
position operator and whether localized states are consis-
tent with RQM and requirements of causality. The UDW
model provides an especially simple and convenient
theoretical framework to study this question, particularly
the consequences of what we refer to as the first- and
second-quantized localizations. Moreover, in the massive
spin-0 case, the different possible definitions for a rela-
tivistic c.m. are comparatively simpler and in this instance
equivalent [68,69], which is particularly convenient for
studying and interpreting the first- and second-quantized
localizations.
In the first-quantized model, we required that the

respective position states be identical to that of NRQM,
which is equivalent to imposing the Newton-Wigner
localization and defining a corresponding position oper-
ator that obeys x̂NWjxiD ¼ xjxiD [56]. As discussed
previously in Sec. II C, by imposing this localization
scheme, one obtains orthogonal position states, unlike
that obtained for the second-quantized model. The diffi-
culty of these second-quantized position states (22) is that
they are nonorthogonal, which can be most easily seen by
taking the inner product

hxjjykið2ndÞD ¼
Z

d3p

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EjðpÞEkðpÞ

p eip·ðx−yÞδjk;
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with indices denoting the internal degrees of freedom.
Working in spherical coordinates, and suppressing indices,
the above integral can be evaluated to

hxjyið2ndÞD ¼ M
ð2πÞ2jx − yjK1ðMjx − yjÞ;

which can alternatively be rewritten in terms of the
Compton wavelength λc ¼ 1=M with respect to the detec-
tor mass M,

hxjyið2ndÞD ¼ 1

ð2πÞ2λcjx − yjK1

�
1

λc
jx − yj

�
:

Following Ref. [53], the dependence on the Compton scale
can be more easily seen by Taylor expanding the integra-
tion measure EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
about jpj ¼ 0,

hxjyið2ndÞD ¼ 1

2M

Z
d3p
ð2πÞ3

�
1 −

p2

2M2
þOðp4Þ

�
eip·ðx−yÞ

¼ 1

2M

�
1þ 1

2
λ2c∇2 þOðλ4cÞ

�
δð3Þðx − yÞ;

where one finds that the position states are orthogonal up
to second order in the Compton wavelength. The first- and
second-quantized localizations are equivalent provided
that the Compton scale is sufficiently small with respect
to spread of the wave function in position space, which was
observed in the UDW model for large Gaussian widths
in Fig. 4(b).

B. Foldy-Wouthuysen transformation

The results of Newton andWigner [56] were subsequently
extended by Foldy and Wouthuysen (FW) [70], who found
the representation of the Newton-Wigner position operator
for the spin-1=2 case when the positive and negative energy
states are decoupled. Moreover, Foldy and Wouthuysen
found their eponymous unitary transformation relating the
two representations, where the decoupled representation
gives a Newton-Wigner position operator identical to the
nonrelativistic position operator [71].
In the relativistic second-quantized UDW model, the

nonorthogonal position states are transformed into the first-
quantized position states by the action of a FW trans-
formation, which maps between the respective first- and
second-quantized localizations and decouples the internal
states of the detector. Moreover, by transforming to the
first-quantized representation, one loses manifest Lorentz
covariance but obtains a position operator with correspond-
ing position eigenstates.
While in the literature it is common to take the second-

quantized localization as more fundamental, and thus as
more correct in any relativistic context, it may be pre-
mature here. Note that we are concerned with an effective

description of a composite system, such as an atom, whose
many degrees of freedom are reduced to just the c.m. and
two internal states; taking such an effective model as
fundamental by treating it within QFT appears inconsis-
tent. Indeed, in scenarios like ours, the predictions from the
first-quantized model may have a greater credence than
those obtained by modeling the complexities of an atom as
a two-component scalar field.
Further theoretical work combined with experiments is

necessary to distinguish between the first- and second-
quantized localizations and their corresponding represen-
tations. In particular, while the FW transformation is
commonly interpreted as a purely mathematical trans-
formation which decouples the internal states, it may be
possible to give it a physical interpretation and understand
its role both in mapping between the two different local-
izations and in the loss of covariance that results from the
first-quantized representation.

C. Time and covariance

In the traditional UDW model, one conventionally
parametrizes the classical trajectory of the detector by its
proper time; however, in the case of a relativistic detector
with a quantized c.m., the treatment of time is conceptually
more difficult, due to the various “problems of time” one
encounters in RQM. One particular strategy to formalizing
a first-quantized RQM in this way proceeds by introducing
an additional invariant evolution parameter, such as a
proper time, which parametrizes the spacetime coordinates.
These proper-time dynamical formulations were initially
developed in the early 20th century by a number of eminent
physicists and have since been developed considerably (for
a review of the different approaches, see Ref. [72] and
references within); one of the most recent realizations of a
proper-time dynamical formulation is the Stueckelberg-
Horwitz-Piron theory [73–75]. While it has been straight-
forward to consider the inertial dynamics of an UDW
detector in the present formulation developed here, a
proper-time or path-integral formulation would be benefi-
cial for the study of more general trajectories, namely in the
case of noninertial detectors and curved spacetimes.
Closely related to the aforementioned problems of

localization and time is the difficulty in defining a covariant
position operator and state with respect to the Lorentz
transformations. In conventional NRQM, one can identify a
wave function in the position basis parametrized by time
and obtain a covariant wave function under the Galilean
group. However, the relativistic extension is highly non-
trivial due to the mixing of space and time under Lorentz
transformations and problematizes a relativistic first-
quantized approach. This is avoided in a relativistic
QFT, where instead one defines a field operator as a
function of spacetime, which is manifestly covariant and
bypasses this particular problem of time in a first-quantized
formalism.
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D. Mass-energy operator

In traditional models, mass energy (mass) is treated as a
c-number and is formally described as the central charge of
the Poincaré (Galilean) group. In many relativistic exten-
sions to quantum mechanics, one considers a central
extension of the underlying group structure and treats
mass as a dynamical variable [75,76], although we do
not consider such a treatment here. In our relativistic first-
quantized model, we promote mass energy to an operator,
such that the dispersion relation for the second-quantized
detector with two mass components (18) has in flat
spacetime the same dispersion relation given by Eq. (30)
for a mass operator defined by Eq. (32).
The motivations for introducing a mass-energy operator

are numerous, and it has been introduced multiple times
independently in the literature. A mass-energy operator
naturally follows from proper-time dynamical treatments of
RQM [60–62,72,77], or, relatedly, within a dynamical mass
approach, it can be obtained through canonical quantization
by introducing a conjugate variable with respect to the
mass [78,79]. More recently, studies of the Einstein equiv-
alence principle in the quantum regime have also motivated
the introduction of quantized mass energy [63,80]; finally, a
compelling empirical motivation for introducing a mass
operator is the discovery of neutrino oscillations, which has
found an explanation in terms of superpositions of mass
eigenstates [81].

VI. CONCLUSION

In this paper, we proposed and studied an extension of
the UDW detector model which incorporates a first-
quantized relativistic c.m. By studying the process of
spontaneous emission, we have found that the transition
rates are different between our first-quantized description
and the second-quantized model, and likewise for the cases
of a classical, semirelativistic, and nonrelativistic c.m.
Furthermore, we have studied the detector-field system
in both a vacuum and medium, obtaining analytic results in
the former case.
The different predictions between the relativistic models

are ultimately due to the different localization schemes
implied by the first- and second-quantized approaches.
Significantly, for these two cases, we find that the dynamics
encapsulated by the template functions are notably distinct,
which suggests that the two localizations can be empirically
studied. In the interest of future experiments, these results
can and should be considered for other physical processes
such as absorption and stimulated emission; likewise, one
should also search for optimal detector states in order to
find more easily testable parameter regimes.
On the theoretical side, we indicate that the two local-

izations are related by a FW transformation, the physical
role of which must still be clarified given the importance of
its mapping between the two schemes. Extending the

model to include the spin of the detector and field would
also be beneficial for future investigations, since the
inclusion of angular momentum in the model may lead
to additional empirically distinguishable effects resulting
from the two localizations.
For the models we have developed in this paper, we have

only considered inertial detectors in Minkowski spacetime.
It is of obvious interest to extend this study to noninertial
trajectories and curved spacetimes, of which the former can
be modeled by introducing an electromagnetic field to
accelerate (e.g., a charged) detector. One could then study
the impact of the detector’s localization on the Unruh effect
and further explore the FW transformation in the context of
curved spacetimes.
Lastly, while one can provide a relativistically covariant

description for the detector following a second-quantized
approach, it is worth it to explore whether a first-quantized
model can also be formalized covariantly. Such a project
could be developed via a proper-time dynamical formu-
lation, which can be developed in several ways, such as in
terms of a path-integral formulation or alternatively in
terms of a relativistic dynamical approach, e.g., using the
Stueckelberg-Horwitz-Piron theory. Such an investigation
can help to clarify the relation between the Lorentz and FW
transformations and may have interesting implications for
the study of quantum reference frames.
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APPENDIX: SCALAR FIELD, CONVENTIONS,
AND DERIVATION

In the interest of providing a self-contained analysis, we
derive the field operator for a scalar field following similar
treatments given by Birrell and Davies [4] and Peskin and
Schroeder [50], employing the same conventions com-
monly used in the UDW literature. As opposed to the main
body of the paper, here we consider a (dþ 1)-dimensional
Minkowski spacetime.
A free real-valued scalar field ϕ has Lagrangian density

L½ϕ; ∂μϕ� ¼
1

2
ð∂μϕ∂μϕ −m2ϕ2Þ; ðA1Þ

from which one can derive the Klein-Gordon equation
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ð□þm2ÞϕðxÞ ¼ 0; ðA2Þ

where □≡ ∂
μ
∂μ denotes the d’Alembert operator and m is

the mass. The field equation is solved by a set of solutions

for positive and negative frequencies uð�Þ
k with momentum

k. Following convention, we choose a plane-wave basis for
the field modes such that

uð�Þ
k ðxÞ ¼ 1

fðkÞ e
∓ik·x; ðA3Þ

where k · x ¼ ωðkÞt − k · x, ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, and fðkÞ is

an arbitrary normalization factor. For two solutions ϕj and
ϕk of the Klein-Gordon equation, one obtains the con-
served current

Jμjk ¼ iðϕ�
j∂

μϕk − ϕk∂
μϕ�

jÞ; ðA4Þ

and with respect to the time component, one defines the
Klein-Gordon inner product

ðϕj;ϕkÞ ¼ i
Z

ddxðϕ�
j∂tϕk − ϕk∂tϕ

�
jÞ: ðA5Þ

To ensure orthonormal uk modes, we employ the sym-
metric Fourier convention ð2πÞ−d=2 and noncovariant inte-
gration measure ð2ωðkÞÞ−1=2, such that

ukðxÞ ¼
1

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp e−ik·x; ðA6Þ

where uk ≡ uðþÞ
k and u�k ≡ uð−Þk . A general solution to the

Klein-Gordon equation can be constructed by decomposing
the field into its positive and negative frequency compo-
nents

ϕðxÞ ¼ ϕðþÞðxÞ þ ϕð−ÞðxÞ; ðA7Þ

where ϕð�Þ can in turn be expressed as a superposition of

the corresponding uð�Þ
k modes, such that

ϕðxÞ ¼
Z

ddk

�
aðþÞðkÞuðþÞ

k ðxÞ þ að−ÞðkÞuð−Þk ðxÞ
�
: ðA8Þ

The field ϕ can be quantized by introducing a canonically
conjugate field,

πðxÞ ¼ ∂LðxÞ
∂(∂tϕðxÞ)

¼ ∂tϕðxÞ; ðA9Þ

such that ϕ and π are promoted to operators which obey the
equal-time canonical commutation relations

½ϕ̂ðx; tÞ; π̂ðx0; tÞ� ¼ iδðdÞðx − x0Þ; ðA10aÞ

½ϕ̂ðx; tÞ; ϕ̂ðx0; tÞ� ¼ ½π̂ðx; tÞ; π̂ðx0; tÞ� ¼ 0: ðA10bÞ

The field operator ϕ̂ may now be expanded in terms of
the field modes

ϕ̂ðxÞ ¼
Z

ddkðâðkÞukðxÞ þ â†ðkÞu�kðxÞÞ; ðA11Þ

where â†ðkÞ and âðkÞ are respectively the creation and
annihilation operators, which obey the noncovariant com-
mutation relations

½âðkÞ; â†ðk0Þ� ¼ δðdÞðk − k0Þ; ðA12aÞ

½âðkÞ; âðk0Þ� ¼ ½â†ðkÞ; â†ðk0Þ� ¼ 0: ðA12bÞ

The action of an annihilation operator on the vacuum
state is defined to be

âðkÞj0i ¼ 0; ∀ k; ðA13Þ

and a creation operator acting on the vacuum gives

â†ðkÞj0i ¼ jki; ðA14Þ

which defines a single-particle state with momentum k.
Expanding out the field operator in full, one obtains

ϕ̂ðx; tÞ ¼
Z

ddk

ð2πÞd=2 ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðâðkÞe−iðωðkÞt−k·xÞ þ â†ðkÞeiðωðkÞt−k·xÞÞ: ðA15Þ

One can derive the dimensions of ϕ most easily by comparing the Lagrangian density and its kinetic term ½L� ¼ ½ð∂μϕÞ2�,
which implies that ½ϕ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½energy�=½length�d−2

p
, and restoring ℏ and c gives

ϕ̂ðx; tÞ ¼
Z

ddk

ð2πÞd=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc2

2ωðkÞ

s
ðâðkÞe−iðωðkÞt−k·xÞ þ â†ðkÞeiðωðkÞt−k·xÞÞ: ðA16Þ

For a field in a medium, one replaces the speed of light c with the medium’s propagation speed ν, as given by Eq. (3).
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