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The dark matter abundance plays a crucial role in the determination of the valid parameter space of
models both in the case of a discovery of dark matter and in the context of exclusion limits. Reliable
theoretical predictions of the dark matter relic density require technically demanding precision
calculations, which were so far limited in their automation due to challenges in the treatment of
infrared divergences appearing in higher order calculations. In particular, massive initial states need to
be considered in early Universe computations, so that the known dipole subtraction methods could not
be directly exploited. We therefore provide a full generalization of the dipole subtraction method by
Catani and Seymour to supersymmetric (SUSY) QCD with massive initial states. All dipole splitting
functions and their integrated counterparts are given explicitly for four different dimensional schemes.
To showcase their application, we apply our results to dark matter (co)annihilation processes in the
context of the minimal supersymmetric Standard Model. We also demonstrate the accuracy of the
dipole method by comparing our numerical results with those obtained with the phase space slicing
method. Our analytical results will facilitate future automation of dark matter abundance calculations at
next-to-leading order for both SUSY and non-SUSY models.
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The very precise measurement of the present amount of
dark matter in the Universe by the Planck satellite allows to
place stringent constraints on dark matter models [1]. In
order to keep up with the experimental uncertainty, next-to-
leading order (NLO) corrections have to be included in
theoretical calculations of the relic abundance [2-9]. The
associated numerical evaluation of real emission processes
is problematic in phase space regions where the squared
matrix element becomes soft or collinear, as only the
sum of the real and virtual corrections is infrared finite.
The two main general approaches which allow the analytic
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cancellation of infrared singularities between both contri-
butions are subtraction methods [10-12] and the phase
space slicing (PSS) method [13-16]. A general treatment of
massive initial particles, e.g. in supersymmetric (SUSY)
QCD, as required for dark matter (co)annihilation proc-
esses is available for the slicing approach, but not for the
subtraction methods. Dittmaier considered photon radiation
off heavy fermions in QED, but used a small photon mass
as a regulator [17]. Consequently, the results cannot be
simply transferred to QCD, where divergences are com-
monly regularized via a dimensional scheme. Kotko [18,19]
previously considered a fully massive dipole formalism for
initial-final dipoles in conventional dimensional regulariza-
tion, leaving out e.g. the emission off a massless final-state
quark with a massive spectator and in a different convention
of parameters compared to the one used in this work,
complicating the computation of necessary integration lim-
its. Reference [20] focuses primarily on the case of the initial-
initial dipole configuration corresponding to the emission of
a gluon into the final state off a massive initial quark and pays
particular attention to the necessary modifications of the
standard treatment of parton distribution functions in the final
dipole formulas required by the inclusion of mass effects.
The phase space slicing method has been successfully
applied to dark matter calculations in the past [4,5,8], but
this approach has the practical disadvantages that the squared
real emission matrix element has to be subdivided into finite,
soft, collinear and soft-collinear contributions and that the
final result depends on the chosen cutoffs. In addition, the
slicing method is found to be less accurate and efficient
compared to the dipole approach [21].

For these reasons, it is the objective of this paper to
extend the Catani-Seymour dipole subtraction method to
massive initial states for initial-final as well as initial-initial
dipoles in a unified notation similar to the one used in
Ref. [12] and provide all formulas for squark and gluino
(co)annihilation as required by dark matter calculations. We
also pay particular attention to provide all formulas for
different dimensional schemes, as conventional dimen-
sional regularization breaks supersymmetry already at
the one-loop level in contrast to dimensional reduction,
which is therefore the preferred scheme for calculations in
supersymmetry. By a simple change of the color factor, the
results can also be applied to heavy scalar and fermionic
dark matter in general. The provided formulas also allow
for one massive and one massless particle in the initial state.
The results do not apply to processes with identified (R)
hadrons and to splitting processes where the mass of the
parent particle is unequal to the mass of one of its decay
products such as the splitting g — ¢g into massive quarks.

The paper is organized in the following way: in Sec. II
we review the dipole subtraction method for the case of no
(R) hadrons in the initial or final state. We also cover
the factorization of (SUSY)-QCD amplitudes in the soft
and (quasi)collinear limit for the construction of the
dipole splitting functions. The main part from Secs. III-V

provides the dipole splitting functions along with the
integrated counterparts and a detailed account of the inte-
gration technique for the three possible emitter-spectator
pairs with at least one colored initial state. Section VII covers
the application of the dipole method to the example processes
Vi, = tgand 1,7, — 1t and the corresponding comparison
with the phase space slicing method. Our summary is given in
Sec. VIIL In the Appendixes, further details on the phase
space factorization are provided and the computation of the
required nontrivial integrals is sketched. In addition, we
define precisely the four different dimensional schemes that
we distinguish in our calculation for a better common
understanding.

II. REVIEW OF THE DIPOLE
SUBTRACTION METHOD

A generic cross section 6™-© describing the production
of m particles at next-to-leading order (NLO) accuracy in
(SUSY) QCD without initial-state (R) hadrons can be
decomposed as

GNLO — gTree 4 AGNLO /dGB + AN, (1)

where do® denotes the differential tree-level cross section
and the NLO part Ac™O receives contributions from
virtual corrections doV as well as from real emission
do® of massless particles:

AUNLO:/dav+/ do®. (2)
m m+1

The subscript on the integrals refers to the number of
particles in the final state. The inclusion of (R) hadrons
would require a proper factorization of short and long
distance physics whereas we assume that the cross section
is perturbative. After successful renormalization the virtual
part is ultraviolet finite, but still contains another type of
divergence: the infrared (IR) divergence which appears
when the loop momentum of a massless virtual particle
becomes almost zero or collinear to the direction of another
massless particle. Therefore, one distinguishes between
soft, collinear and soft-collinear infrared divergences,
where in the latter case the massless particle is soft and
collinear at the same time.

The same kind of infrared behavior occurs within the real
contribution. According to the Kinoshita-Lee-Nauenberg
theorem [22], every unitary quantum field theory such as
the Standard Model or its minimal supersymmetric
extension [the minimal supersymmetric Standard Model
(MSSM)] is infrared finite as a whole. As a consequence,
the IR divergences from the phase space integration of
the real part cancel those coming from loop integrals of the
virtual part on the right-hand side of Eq. (2). In practice, the
divergences have to be extracted with the help of a regulator
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such as an artificial mass. However, the only known
regularization procedure which preserves gauge and
Lorentz invariance (as well as supersymmetry) is dimen-
sional regularization (dimensional reduction). Within these
procedures, the number of space-time dimensions is
continued analytically from four to D =4 —2¢. In this
regularization scheme, soft and collinear divergences take
the form of simple poles in ¢, whereas soft-collinear
divergences appear as double poles. Because of the large
number of terms that enter during the standard Feynman-
diagrammatic calculation of (SUSY)-QCD matrix elements,
it is often impossible to perform the integration over the
m + 1 particle phase space in Eq. (2) analytically in D
dimensions except for the very simplest processes. In order to
make a numerical evaluation of the real emission matrix
elements over the whole phase space possible, i.e. without
relying on cuts and approximations as in the phase space
slicing approach, Catani and Seymour developed the dipole
subtraction method [11]. The basic idea is to construct an
auxiliary cross section de” which converges pointwise
to do® in the singular region in D dimensions, so that
do® — do is finite over the whole region of phase space and
can be integrated in four dimensions. At the same time it must
be possible to integrate do? analytically in D dimensions
over the one-particle phase space of the radiated massless
particle giving rise to the divergence. This allows to add back
the subtraction term and to cancel those divergences appear-
ing in the virtual contribution which are present in the form of
simple or double poles in . The computation of the NLO
correction can then be summarized as

Ao = / [do® ) — do? ] + / [dav + / dGA] .
m+1 m 1 e=0
(3)

The counterterm do” is constructed from the knowledge that
QCD amplitudes factorize in the soft and collinear limitin the
process-dependent Born level cross section d6® convolved
with a universal splitting kernel dV g1, Which reflects the
singular behavior. From another point of view, the factori-
zation can be thought of as a two-step process. In the first
step, m final-state particles are produced through the Born
level cross section de®. In the second step, the final (m + 1)-
particle configuration is reached through the decay of one of
the m particles—the emitter—into two particles. This last
step is described by the splitting function dV .. The
information about color and spin correlations is accounted
for by referencing an additional particle—the spectator. The
final expression for do* is obtained by summing over all
possible emitter-spectator pairs,

do? = /daB®/dVi = de® @11,
jn-‘rl Z m 1 dipol z [ ]

dipoles dipoles” "
(4)

where the universal factor I corresponds to the integral of the
dipole splitting function over the one-particle phase space,
and thus cancels the infrared divergences in the virtual part.
The fact that the underlying structure of this factorization is
formed by these pairs lead to the name “dipole formalism.”
However, as this factorization holds only in the strict soft and
collinear limit and it is desirable that d6* approximates do®
also in a small region around the singularity to render the
subtraction procedure numerically stable, one has to intro-
duce the so-called dipole momenta to ensure that the
factorization does not violate momentum conservation.
These obey momentum conservation in the whole m + 1-
particle phase space and are defined through a smooth map
from the m + 3 real emission momenta to the m + 2 dipole
momenta. Their precise definition depends on the kinemati-
cal situation and therefore their concrete expressions will be
given in the sections dedicated to the different emitter-
spectator pairs.

In order to allow for a general construction of the
auxiliary cross section, the aforementioned color and spin
correlations are implemented into the factorization formula
by realizing the splitting functions Vi, as operators that
act on matrix elements which are defined as abstract objects
in color and spin space. For this purpose we make use of the
conventions and the notation established in Refs. [11,12]
which we introduce in the following. That is, colored
particles in the initial state are labeled by a, b, ... and those
in the final state by i, j, k, .... Since noncolored particles
are irrelevant for the subtraction procedure, they are sup-
pressed in the notation. Scattering amplitudes are consid-
ered as objects in an abstract vector space spanned by the
spins s,, §; and colors c,, c¢; of all colored particles
involved in the process

1 .
Minciashcwsa} i Pa ciicy,
O] ({pis pab)({eisca})

® [{si54})). (5)

where [ [, 1/n.(b) fixes the normalization by averaging over
the n.(b) color degrees of freedom for each initial particle b.
The kets |{c;;¢,}) and |{s;;s,}) constitute formally an
orthogonal basis of the color and spin space, respectively.
The color charge operators T; or T, reflect the emission of a
gluon (or another massless colored particle) from a particle i
or a. Their action on color space is defined as

{i.a})m =

n{i,a}[T; - T[{i, a}),

_ 1 ClueeasCirensChnnnCi{al . *
~ o) M ({pispa})]

T To g M (pip}) (6)

crdy

and analogously if j or k are initial-state particles. For a final-
state particle j, the color charge matrix 7°¢, is defined as
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—ifede adjoint
Ty = TCa  if jisin the fundamental  representation of 81 (3).. (7)
-T ch,- antifundamental

with 7% = 4 being half of the Gell-Mann matrices A% and f .. the structure constants of 81¢(3),.. The color charge operator T,
of an initial particle a obeys the same action defined in Eq. (6). However, by crossing symmetry the color charge matrix in this
case is defined as

—ifcde adjoint
T¢, =3 ~Ti. if aisinthe fundamental  representation of 81(3).. (8)
. antifundamental

cqd,

Since each ket |{i, a}),, must be a color singlet, color conservation can be written as

(ZT +ZTb)|{z o= T o)

where we introduced the index / which runs over both initial and final-state particles. Furthermore, the commutation relation

C,, i adjoint
2_C = { A ! (10)

Cr, i (anti)fundamental

I
where the quadratic Casimir operators C; follows directly ~ emission matrix element can be written in terms of an
from the definition of the color charge operators. eikonal current of the gluon

With these definitions and conventions at hand, we can
move on to the explicit construction of the dipole splitting

. . ) S . = T 11
functions which approximate the real emission matrix p j pl T, 21: D1 Di ! (11)
element in the soft and collinear limit. In the soft limit,
where the momentum of a gluon i tends to zero, the real ~ and behaves as

|

. . . . . . pl—>0 4 . . + u . .
DRI (OING FOIIT ADUYY: TRON RS APONY AP R S g, o (oo fosanBIF s ) a
(12)

with the strong coupling @,. The renormalization scale y comes from the transition from four to D space-time dimensions
and ensures that the strong coupling remains nondimensional. By using partial fractioning

Pi- Pk _ Pr- Pk + Pi- Pk (13)
(pr-p)(px-pi)  (Pr-p)(Pr+px)-pi (P Pi)(Pr+Pk) - Pi

and color conservation, the squared eikonal current can be recast into a sum over emitter (/) and spectator (K) pairs:

. ) 2
J}:Jﬂ — Z( Pr- Pk KZ < 2p; - pk _my > T, Tg. (14)
I,

= pz‘pi)(pK-p T PP (pr+pk) Pi PrDi

|
For two final-state particles i and j that are produced through ~ compared to the energy scale of the calculation so that the
a splitting fj — i+ j of a parent particle iNj, there is also a true collinear divergence is screened by the nonzero mass. In
collinear divergence if i and j are massless or a quasicol-  order to make the divergence visible, their momenta p; and
linear divergence if i and j are massive but theirmassissmall ~ p; can be expressed through the Sudakov parametrization
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ki 4 2*mi; —mi  pt

H— zpht + K — 15
pi =zpt k| . o (15)
k2—|—(1—z)2m.2.—m2. n#
(] = I ¥ L ij J
p] ( Z)p 1 l_Z 2p'l’l’
(16)

where the timelike momentum p with p = m . gives the
collinear direction and an auxiliary lightlike four—vector nis
needed to specify the transverse component k; which is
perpendicular to n and p (k; -n =k, - p =0), cf. Fig. 1.
The variable z corresponds to the momentum fraction
involved in the splitting. With the help of this parametriza-
tion, the squared real emission matrix element reduces in the
(quasi)collinear limit to

mita. oo b @ @) g
pillp; dmpearg ~ A
- pi'Pj‘ma (coosifsesa, o |Pg (2, ks €)]
N T AN S (17)

with the (generalized) Altarelli-Parisi [23] splitting function
13i~j i(z, k,;e).Forthe process g — g + g we are interested in

the cases of massless as well as massive quarks and include
for this reason the quasicollinear limit which corresponds to
the collinear one in the zero-mass limit. We only consider the
pure collinear limit for the splittings ¢ — ¢ + g and g — gg.
The associated splitting functions are given by [12,23,24]

. 2(1-2) 1 m?
s|IP,.(z,.k,;€)|s") =6..C RSz —1 |
1Py i3 )Y) = b Cr | T g Sz L

(18a)
i
Dj
— // ﬁ
Di
kL
FIG. 1. Sudakov vector parametrization.

Kk

Pyl = T |-+ 4201 =) 5

}, (18b)

is

(ulPyy(z. ko e)l0) zch{ g ( . l—z)

1-z2 z

% ki}

- h¥Sz(1-72) 21 (18¢c)
The number of internal helicity states of the gluon 45 is
introduced in Eq. (18) to distinguish between different
variants of dimensional regularization. Its precise definition
for the four different dimensional schemes that we distin-
guish as well as the definition of the schemes themselves are
provided in Appendix A. For the construction of the dipole
splitting function Vgjye, We need to take into account both
the soft and collinear limit. However, it is not simply possible
to add both limits as this will lead to an “overcounting” of the
soft divergence, as the Altarelli-Parisi splitting functions also
diverge in the soft limit. Therefore, it is necessary to construct
the dipole splitting functions such that both limits are fulfilled
separately, i.e. the overlapping region is only taken into
account once.

The final dipole factorization formula that defines the
auxiliary squared matrix element related to do®

Myl =20 Pust ) D Py+3 3 Df

i,j k#ij a,i j#i

+ Z Z fDaz,b’

a,i b#a

(19)

where one has to distinguish between four different dipoles
for the four different initial/final-state combinations of
emitter and spectator. The precise definition of the dipoles
D, D‘” and D related to the splitting kernels Vipole a8
well as the process dependent kernels themselves will be
given in the following sections. We will not provide a
definition for the dipole D;; ; where emitter and spectator
are both from the final state as this case is already fully
covered for the massive and the massless case in
Refs. [11,12].

III. FINAL-STATE EMITTER
AND INITIAL-STATE SPECTATOR

The dipole contribution D?j in Eq. (19) is defined as

Da_11<.~..~‘TT
i-ii—Zpi-pjx,'j'am,a RUUR 7 N T2

Ua> ,
m,a

where the function V; describes the splitting process

ij Va

(20)

i~j — i+ j. The variable x;; , will be defined in the section
on the kinematical quantities used for the formulation of the
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splitting kernels. The tree matrix element with m final-state
particles is obtained from the original one with (m + 1)
particles by replacing i and j with the emitter 17 of
momentum p;; and by exchanging the initial particle a
with & of momentum p,,. In the following, we consider only
the specific case m;; = m; where the mass of the emitter 17
is identical to the one of j as the more general case m;; #
m; case is not needed for the example processes.

Since a treatment of massless initial particles is already
available in the literature [11,12], the initial particle a will
be treated as massive throughout this paper, whereas the
final-state particle with momentum p; has an arbitrary mass
and the mass of i is zero,

2

pi=mg >0, ;=mj

A. Kinematics

For the construction of the dipole Dj; we adopt the
kinematic quantities introduced in Ref. [17] for photon
emission off massive fermions. However, in that paper a
small photon mass is used as an infrared regulator as it is
common in electroweak physics, so that the crucial part lies
in the generalization of the phase space parametrization
from four to D dimensions.

The two main quantities are the total outgoing momen-
tum of the dipole phase space

P=p;+p; (22)

and the total transferred momentum
Q=P-p,=py— Y _pc=Dij—bar  (23)
k

where k runs over the momenta of all other (m — 1) final-
state particles besides p; and p;, cf. Figs. 2 and 3. At this
point, one should highlight the difference between P and
pij- Thatis, P is the true momentum of the parent particle z~]
in the real emission matrix element whereas p;; is the

FIG. 2. Diagrammatic interpretation of the dipole Df; and the
associated splitting function V.

AN

.

FIG. 3. Kinematics for a final-state emitter and an initial-
state spectator in the original momenta (left) and the dipole
momenta (right).

dipole momentum which is inserted into the tree matrix

element as momentum of ij within the auxiliary matrix
element. Before we can define the dipole splitting functions
and the dipole momenta explicitly, some auxiliary variables
have to be introduced. These are first of all the momentum
fractions

Xij.a :%, (24)
a

Pa"Pj
R
=%, D, Z
which take by definition only values between 0 and 1 and
behave in the soft (p — 0) and collinear limit (p; - p; —
0) as

Zi b 0, Zj b 1, xij,a e 1 (25)

The different quantities are related through

LY _M2
P="C0om Pop =2 (2)
Xij.a 2xij,a
where we introduced the abbreviation
0* = Q% —mg —mj. (27)

It is worth noting that since the product P - p, is always
positive and x;;, can only take values between 0 and 1,

Q% is always negative such that \/Q* = -0 with
0* = (0?)*. In addition, we define the auxiliary variables

Aaj = MQ* m3,m%) = O* — 4m§mi and (28)

2 T a2 (022
R(x) = V(0% +2m2x)? — 4m2 Q%x (29)

‘/ﬂaj

with the Killén function
Mx,y,z) =x*+y? + 22 —2xy —2yz—2zx  (30)

as well as the reduced masses 7, and the relativistic relative
velocity v between p;; and p,:
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m% . V ’101'
? (n a - .
It is straightforward to check that P> — m7 and R(x;;,) —

1 in the soft and collinear limit. The dipole momenta of
emitter and spectator

X

,.,/-4- _ ij.ll V4
Pii R(x;jq)""
A2 2 2 2_ 2
. 1 Q0 +2maxij,a_Q + my m]+1 o
R(xij,a) 202 207
(32)
pa=pi;— Q" (33)

are constructed from the requirement to fulfill the on-shell
conditions p; = mg, pj; = mj; and momentum conserva-

tion p, + pp = Pij + P

B. Phase space factorization

The factorization of the (m 4 1)-particle phase space
dpy1(Pis Pjs P Pa + Pp) into  the m-particle phase
space de,,(P(x), px; pa + pp) and the dipole phase space
[dp;(Q?, x, z;)] is derived in Appendix B 1 and corresponds
to a convolution over the parameter x,

/d¢m+l pl’p]’pk pu+pb)9( t]a_xO)

/ dx / dp,, (P

X / [dPi(QZ,x’ zi)],

)s Pii Pa + Pb)
(34)

where x plays the role of x;;,. In Eq. (34) an additional
auxiliary parameter x, with 0 < xy < 1 is introduced as a
lower limit on x which is provided by the constraint that the
argument of the square root in Eq. (29) remains positive for
all possible values of Q2. This translates into the condition

_Q2
zma(ma - \/@)

if 0 < \/Q% < m, —m;. If the latter condition is not met,
any value for x, between 0 and 1 can be used. Since the
singular behavior occurs for x — 1, applying the splitting

function V{; only forxy < x < 1still cancels the divergences.
NLO

<xy <1, (35)

In addition, the independence of Ac™-* on the choice of x
serves as a nontrivial check for the correct implementation of
the subtraction procedure. The integration of the dipole
splitting function over the one-particle phase space

1 (P =07 <R(x)m>2s—1

JCEE

(4r)>cT(1—¢) x* -0?
24
< [ dnl@-a)e - G
Z-
with the integration limits
1 —x—-0>4 \/1,R(x
T AL (37)

xmi — Q*(1 = x)

yields the singular behavior parametrized by D = 4 — 2¢
dimensions. In the massless case m; = 0 the integration
limits related to z; simplify to

1

2o == (1 £ R(x)).

: (38)

C. The dipole splitting functions

The functions V¢, in Eq. (20) are provided for the four
(SUSY)-QCD splitting processes:

) ¢ = 9(pi) + q(p;): m; =0 and my; = m; =m,
(i) g — g(p:) +a(p;): m; =0 and m;; = m; = my
(i) g = g(p;) +9(p;): my; = m; = m; )

iv) g— q(p:) + ¢ (pj) m; —mj—m,j—mq:O.

The processes where the part1cles are exchanged through
their corresponding antiparticles are formally identical to
those given here and are therefore not listed separately. The
dipole splitting functions read explicitly

2 1 Z
(s|Va,ls') = 8rau®Cp =245 hiPz = —— )6y = (V{5 (39)
2- ija —%j 2 it rj
2 2
Ve |s') = 8rauC —2——L )6,y = (Vo5 40
<S| gq|S> e F<2_xij,a_zj D /> ss < gq> ss ( )
(u|Vg,lv) = 16 2C { g””( ! ! 2>+ hgs C"”} (41)
v) = 167za; -
9 # 4 1+Zi_xij$a 2 Zj xt]a 2pi'p]
a 2¢e v 2 v
([ Vigle) = 8T —g ———om). (42)
Pi Pj
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In contrast to the work done in [12,18], the dipole splitting
functions for processes involving quarks and gluons in
Egs. (39) and (41) also include the number of helicity states
of the gluon hgs in order to distinguish directly between the
different variants of dimensional regularization schemes.
The dipole splitting function for the squarks in Eq. (40) was
derived by using the eikonal approximation for a process
involving the emission of a gluon off a squark. The function
in Eq. (39) for the splitting ¢ — ¢ + ¢ is valid for a massive
as well as a massless quark and the one in Eq. (40) for the
splitting § — ¢g can also be applied to the process § — g7
since Eq. (40) only contains the soft limit. The spin
correlation tensor

o = (2" ph =2 =) (43)

depending on the new variables

m 1
4" =u-2 =2 -5 (1-R(),

M =z—z :zj—%(l—R(x)) (44)

is constructed such that it reduces to k' k4 in the collinear
limit as dictated by Eq. (18) and is at the same time
orthogonal to the direction of the emitter

f)’i‘jCﬂD = piCu = 0. (45)
The orthogonality allows to simplify the integration of the
nondiagonal dipole functions in helicity space over the one-
particle phase space in Eq. (36) which is complicated due to
the additional azimuthal correlations. However, the integral
over the spin correlation tensor takes by Lorentz invariance

(it can only depend on p;; and p,) the form

~U o~y ~y ~
PiiPa+ PP
/ [dpi(Q°. P2, z))|C" = —A, 9" +A2[/~a7”a

Dij " Pa
22H v 2H =y
—A3 ~llplj~pl]2+A4pal;a
( ij a) my

(46)

At this point, note that the metric tensor multiplying A is
quasi-D-dimensional as momenta are kept in D dimensions
in all dimensional schemes. Because of the transversality
condition on C,, in Eq. (45) the term A, is 0 and 1 finds
additionally A = A, such that the right-hand side reduces to

2 5H =y
mapijpij

Plipl + DY Pa
— | Ay 5. (47)
(pij'pa)

—A1<9””— —
Pij Pa

Therefore, A; can be disentangled by performing the
azimuthal average over the transverse polarizations of the
emitter

N5 Py PO (48)

Al = / [dpi(QZ’PZ’Zi
with the help of the polarization tensor
Py Sy =H
PijPa+ DijPa

pij : i)a

L PR

—ml

(pij'pa)
(49)

"™ (pij, pa) = —9" +

which fulfills in D dimensions d*d,, = D —2. The
coefficient A; drops out in this computation since
d,(Pijs Pa) ﬁﬁ’j P?; = 0.Furthermore, A3 is irrelevant because
of the Slavnov-Taylor identity p};M,, = 0 which holds for
any matrix element M, in a Becchi-Rouet-Stora-Tyutin
(BRST)-invariant theory where the polarization vector
¢ (p;;) has been amputated if all other polarization vectors
in M,, are transverse. This means in particular that the spin-
averaged splitting functions (V{;) emerging from Eq. (48) are
diagonal in helicity space, i.e proportional to —g*”. Con-
cretely, they are

1 1
Ve =16 2SC
(Vi) OH A L T2 — Xija " 2 =2~ Yija
RS
, p YA 50
EIET A Z_)} o

1—¢

(Vig) = $m Ty (1= 12 =)= ). 1)

where z.. correspond to the integration limits in Eq. (37).

D. The integrated dipole functions

The integral of the spin-averaged dipole function (Vf;)
over the dipole phase space is defined as

a 1 drp?
2z0(1 —€) \ -0?

) 1500 = [ lon@2 )

1 1
—(Ve), (52
Vi 62

X

where /; depends on the auxiliary variable x (and 0?). The
cases m; # 0 and m; = O for the process ¢ — gq have to be

treated separately due to different kinds of singular behav-
ior. For this reason, the associated integrated dipole is
marked with a hat 7 for m ; = 0 to distinguish it from the
massive case. By writing the dipole phase space in Eq. (36)
in the form

/“am@—axu—aws

-

—@+—Lw%Aﬂmu—o¢€ (53)
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through the substitution 7 = i’j the integration of the
splitting function becomes straightforward in terms of the

and the Gaussian hypergeometric function

Euler beta function o TIo) / Lo (1 = p)ett
A (O DN A (e
Bla,b) = /1 dr(1 t)a—ltb—l _ (a)L'(D) (54) (55)
0 I'(a + b) .
The integrated counterparts /{; of Eq. (52) read
a . 2CF 1 26 —Q2 € )«a]R()C) 1 RS
ng(x’e) = UR(X)XZ (1—X)1+2£ (’7]x+(1 —.X')) P2 Q2 +th Z_(Z+_Z_) ﬂ(l —8,1 —8)
+%h_§s(z+ -7 ) p(1 —e,2—¢) —11(—A(x);e)] (56)

Ty () = 20 [ (G50 - R = )0 = e SR = 02 0) = s (A0 | (57
—0*\ ¢ AgiR(x
Izgl(x;s) = sz(i;xz T _)16)1+2e (njx + (1 —x))zs( PQ2 ) K anf( )>ﬂ(l —e,1—¢)— Il(—A(x);e)] (58)
RS
B ) = = g [u(—A(x);e) - 1A 0) 57 R B2 6.2 0) + 2R(A(1 =1 - e>]
(59)
19 (xie) = xffﬁ(l_lw (ﬂ(l —el-6) = ROPH2—e2- e)>, (60)
where the arguments A(x) and A(x) of the function
Ii(ze) = zAldt((ll%t);[)_s =zfp(l —e, 1 —¢€),F(1,1 —¢&2—2¢;z2)
=—In(l —z) —|—e<2Li2(z)+%ln2(l —z)) + O(&?) (61)
I
are defined as when being expressed through the quantity
Alw) = = Z_*;Jf—z A= 722;*:;_ (62) w(x) = 2V/(1 - x;(f ;xx(l 1)), (64)

and v was defined in Eq. (31). The expansion of I, (z; €) in &
is derived in Appendix C and is valid as long as its
argument z remains bounded between one and negative
infinity —oco < z < 1 which is always fulfilled for m; # 0.
In the massless case m; = 0, the variables A and A take a
similar form:

A = 2VI=w)" g 2V oWl
1—/1T—wx)? 1+ /1 —w(x)?
(63)

where 57, was defined in Eq. (31). Writing A(x) and A(x) in
this manner makes the relation

T 27 = ~A®) (65)

apparent which allows to simplify the difference of the I,
functions in Eq. (59):

I(=A(x):e) = 11 (A(x):e) = 211 (=A(x):¢)  (66)

by employing the identity
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I (re) — ] z 67 extraction of the divergence in terms of & while being able
i(ze) =1, (67) to perform the mentioned integration numerically, the
[--+]T distribution defined as

z—1°

which follows directly from the Pfaff transformation ,
Z a0) = g0y + 30r= 1) [T dygls) (69
SFi(a,byc;z) = (1 - z)'“2F1< —bie;— 1) (68) ¢
< provides a way around and serves as an artificially inserted
zero to render the end point contribution finite. The end

For ¢ = 0 the functions /{; become singular at the end point ) ) ) o NS
point part is then further decomposed into a finite J f] and

x — 1 giving the infrared divergence. Therefore, the S
integration over x involving the tree matrix element squared ~ singular J;;> piece where the latter contains the infrared
cannot be handled numerically yet. To allow for the  poles such that we can write

|

I5,(x€) = Cr{[J5,(x)], + (1 = x)(Jg7 (e) + I )} + Ole) (70)
I, (xs€) = Cr{[Jg (0)], +6(1 = x)(Jg7 (e) + J55°)} + Ole) (71)
I5,(x; €) = 2C4{[J5,(x)], +8(1 = x)(J55’ (€) + 55 °) } + Oe) (72)
19 (xie) = Tp{[J35(0)], +8(1 = x)(Jo (e) + Jen®)} + O(e). (73)

The decomposition in Eq. (70) holds similarly for the hatted and nonhatted versions. Note that the notation in Eq. (70) to
(73) is purely symbolic: [J{;(x)], is not a “plus” distribution itself but contains all the plus distributions. The decomposition
above is straightforward for the two cases involving either a soft or a collinear divergence through the identity

1
[ e = (<m0 )+ (x) = £(1)) + O(e). (74)
The gluon emission contributions for massive (s)quarks are
» - 3 L + (x—1)? 1
Va0, = [1 - x] - <4(x(n, e ke +A(x))> (75)
Je AL ! In(1+A 1 76
0L =3 ) (e + 40 1) (76)
o po S SNy 77
536 =I5 = (1= 1 mia -+ 1) ™)
JONS — JaNS _ 2 (1 (v —In(A+1))In ('77> +v+ 11112(1 +A) +Li (—A)) (78)
9 v \2 (1—x)? :
Note that A is evaluated at x = 1 in Eqgs. (77) and (78) giving
2v

The continuum and end point contributions for the case of the splitting process g — gg are

o)), = [ : T 1]% (1 _%RW) (80)

1-—x [xo
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: 2
a;S _
Jag (€) = e (81)
. 10 2
JENS = —5 t3in (1 -x). (82)

Disentangling the infrared poles for massless quarks as well
as gluons in the splittings ¢ — gg and g — gg is more

involved due to the fact that besides the factor W in

Eqgs. (57) and (58) the function 7,(—A;¢) diverges as well
for x — 1 which corresponds to a soft-collinear divergence.
Since the expansion in € of I1(—A;e¢) is not analytic for
x =1, the hypergeometric function itself has to be placed
inside the [---]* distribution which is achieved by intro-
ducing the argument of the hypergeometric function as new
integration variable

yﬂw=35:u—nAw (83)

which behaves analogously to x in the singular region. This
factorization is achieved by expanding both the numerator
and the denominator of A as given in Eq. (63) with the term

(14 +/1—w(x)?] leading to

2((1 = na)x-2)

with the abbreviation

p=+/1+4n,(x—-1)x.

In this new variable y, only the integral

Yo 1 1
A JE) = dy—1I,| ——,¢
1(vos €) /0 yylﬂ 1< y )

has to be computed analytically which is outlined in
Appendix C. As we still want to perform the numerical

integration of the [---|* distribution in terms of x, the
derivative
dyalx) 1
' (x) = = —((3=4x)y, - 1 87
=2 = (G- -1 ()

has to be included inside the plus distribution. For the
special case x = 1 it simply evaluates to

yall) =-A(1) = —n, - 1. (88)

Ax) = (84) The explicit contributions to the decompositions in
p(2x =3 —p) Egs. (70) and (72) read then
|
. 2/ 3] 1]+ , AR
O30, = (=5 ] DAwAw G+ Al R (59)
11 3
J&S(¢) =2t <1n(1 +1,) +2) (90)
_ 2
JENS = %m2 (1+n,) - %m (1 =x0) + 2Ly (=A(xp)) + Tor_ % (91)
. L/ L 2A(x) 17+ (Rx)?
L = 2 (DA I+ A s ] (FeE -2 92)
. 11 11
J45(g) =5+ <1n(1 +na)+g) (93)
ans _ 1, o _u _ o 61 7 _r
Jgg - 21n (1 + ’/Ia) 6 ln (1 xo) + 2L12( A(XO)) + 18 6 6 * (94)

E. Final expression

We are now ready to present the explicit form of the
insertion operator I defined in Eq. (4) following the same
notation used by Catani and Seymour in Ref. [12].
Therefore, we consider a process with one colored initial
particle carrying the momentum p, and another not

necessarily colored particle with momentum p,. The
final result for the auxiliary cross section can then be
written as

[ o= o [ foskirao) T2 @ natuie)] 09
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with the new insertion operator

a, (4n)° N1
Im,a<x;€’,u2;{pivmi}’pa) :_ﬂr<1—8) ZTj'Ta<_—Q2 FVJ(X;QZ’mj;S)' (96)
J J

The factor F;/F, in Eq. (95) with
Fo=20((pa+ pp)mimy).  Fo=22((pa(x) + pp)* m,m}) (97)
is responsible for the correct flux factor. The flavor functions V; already incorporate the correct counting of the symmetry
factors for the transition from m + 1 particles to m particles:
(1) If j is a massive quark (or antiquark), then
V,(x, 0% my;e) = I4,(x:€). (98)

(i1) If j is a massless quark (or antiquark), then

V,(x,0%05¢) = CrlJg,(x)] . +8(1 —x){CF (é—&—)((QQ) —%ln (1 —xo)) +TRS(e) + Kq} (99)
with
£Q%) =11 (14 n,) + 3102 (14 1) + 2Lin(~A(x). (100

(iii) The flavor kernel for a gluon j is
1 11
Vy(x, 0%, 0;¢) = CalJg ()], + TFNf[JCéQ(x)]+ + (1 _x){CA (; +x(0%) —gln(l —xo))
+%T Neln(1=xy) +TRS(e) + K (101)
3 0 g 9 ("

The functions T'; for gluons and massless quarks (antiquarks) are

1 1

D) = rg =75 () =7, = 7 (102)
|
with the flavor constants IV. INITIAL-STATE EMITTER
AND FINAL-STATE SPECTATOR
vy = % Cro 7= %1 c, _% TN, (103) The dipole D4’ in Eq. (19) is defined as
ai 1 1 ~ ~. T Jj° Tai
i == ¢<...,J,...;al,...’ T2
and the regularization scheme dependent terms Pa* PiXijama ai
ij.‘" ]c;> ~, (106)
sRs _ T sRs _ T e
7o =—=Cy, 70> ==Cp. 104) , -
J 6" ! 27 F ( where V' describes the splitting process a — i + ai. The
tree-level matrix element is obtained from the original
The constants K, are defined as matrix element with (m -+ 1) particles in the final state by
replacing the momentum p, of the particle @ in the tree-
7 2 67 2 10 level matrix element by the dipole momentum p,;, the
K,= (2_6> Cr. g = (18_ 6) Cy KTFN iz momentum p; of j by p; and discarding the final-state
particle i. Similar to the previous section, we consider only
(105) the case where the masses of a and ai are identical.
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A. Kinematics and phase space factorization in the presence of a massive emitter ai reads

The case of an initial-state emitter and final-state spectator )
. . . . . _ . 5 2 Mm2x::
18 kmelfna}t%cally identical to the case. of -a final-state emitter <V?g> — 87a, CFuzg ( _ o _Mati j,a) _ (107)
and~an initial-state spectator after switching the roles played 2= Xija— 7 Pa " Di
by ij and a. Particle j takes over the role of the spectator and ) . o
the associated dipole momenta are relabeled accordingly as ~ The same function holds for the gluino splitting process

pij — pj and p, — p,;. Therefore, the kinematics from g— g+ gaswellasforg — ggq involvipg a massive quark
Sec. T A can be adopted completely. as Eq. .(107.) pnly accounts for the soft limit. In the case of
the gluino, it is only necessary to replace the color factor Cr
in Eq. (107) by Cjy.
B. The dipole splitting functions

The function V¢ in Eq. (106) for the SUSY-QCD C. The integrated dipole functions
splitting process We define the integral of the spin-averaged dipole
@) q(pa) = 9(pi) + g m; =0 and m, = m; function (V¢) over the dipole phase space as
a 1 A\ > 1 1 .
= L5 ) I9"(x;¢) = [ [dp;(Q*. x.z; — (V4. 108
e () e = [lam@ ozl v) (108)

In our case, it is not necessary to differentiate between the number of polarizations n,(ai) [1,(a)] of ai (a) in contrast to [11]
as we always have the same number of polarizations of a and ai. For the only splitting function considered in this section,
the integral over the dipole phase space can be performed in a straightforward manner through a partial fraction
decomposition and the application of the hypergeometric as well as Euler’s Beta function giving

X <11(—A(x);£) —xI(—-B(x);€) + 2ﬂax2%12(—3(x);8)> (109)
113 (0i6) = 0 o e (1 (-AW)se) =, (<BWe) 45 (R0 + DL(-BGxe) ). (110

where the hat separates again the cases m; # 0 and m; = 0. The variable B is defined as

oz -z =2\/24R(x)
B ="""=%7 TR (X) (1

and can be written in the massless case as

2y/1 = u(x)?
1—+/1—u(x)?

The variable A(x) as well as the function /,(z;¢) were introduced in Sec. III D. The function

with  u(x)? = 4(1 — x)xn,. (112)

B(x) =

Lize) = ZAI dt(((ll__tz)tt))z_s =zfp(l—e, 1 —¢€),F(2,1 — &2 —2¢;2)
e o

is defined similarly to 7,(z;¢) but with a different argument set of the hypergeometric function. The extraction of the
divergences proceeds again through the application of plus distribution
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1 (xe) = CR{l] ()], + (1 =0T (e) + T]™5)) + OCe). (114)

Performing this decomposition in the massless case is as peculiar as in the case of the gluon splitting function. However, it is
possible to proceed in the same way. The divergent pieces given by /1 (—A(x); ¢) and I, (—B(x); ¢) in Eq. (110) lead to the
same integral Z that already appeared in Sec. III D. The poles that arise through I,(—B; ¢) can now be disentangled in a
very similar manner by introducing the variable

1

50~ (1= 9B (115)

yp(x) =

as a new integration variable. This factorization is achieved as in the case of A(x) by expanding B(x) written as in Eq. (112)
with 1+ V1 — u? which yields

2n,x

B(x) = , (116)
P tp
where p was defined in Eq. (85). For the integration of the function /,(—B;¢) the integral
Yo 1 1 1 1
Zr(vos €) = dy—D0L|——e)=—+In(1+— o 117
00e) = [ gt (<3e) =g em (145 ) 0 ()
is calculated in Appendix C. Connected to the transition from x to yp the derivative
9yp(X) _ M
yp(x) :sz—ﬂ] - 2x) (118)
has to be placed inside the [---]* distribution. It simplifies to
yp(1) = =B(1) = =14 (119)

for x = 1. With the knowledge of the integrals 1, I,, Z, and Z, we can give the different contributions to Eq. (114) which
read for the massive case

3l = L i x} ;.l] R (i)xz <x In(1 + B(x)) = In(1 + A(x)) — 4n,x> % vR(x)) (120)
JI%S(e) :é(l—%ln(ii—i)) (121)
JIENS = % <<v +1n Gig)) In ((1_'7;0)2) +1In(1 + B)+% [In(1 + B) — In?(1 + A)] + 2Liy(-B) — 2Li2(—A)>
(122)
and for the massless case
3G 2 , L Bx) , L Al
Vi)l = R <[y3(x)B(x) In(1 + B(x))];, A V4 (x)A(x) In(1 +A(x))][x(),l]m
[y B ] B() .
o W () 12
7978 (¢) = é (1 —1n<1 :")) (124)
77 = élnzma) +In(y,) — élnz (1+ 1) = 2Lin(~A(xp)) + 2Lin(=B(xp)) + 2In (1 + B(xo)).  (125)
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Note that A and B in Eq. (121) are evaluated at x = 1, i.e.

20

(126)

where v was defined in Eq. (31). The corresponding
expression for A is given in Eq. (79).

D. Final expression

By using the same labels as in Sec. III E, the auxiliary
cross section for initial-state singularities with final-state
spectators can be written as

1 F -
A __ E B (% a A xe
[n+l dgll ; a [o dx[n |:d6a’(pa (X)) Fa ® Im.aa (x,g)

(127)

with the insertion operator
Im,aa’(X;guuz; {pivmi}’ pa)

E— (4ﬂ)g Mz ‘1 a,d (. )2 .
i () e

J

(128)

The flavor functions V*“ are related to the integrated
dipoles defined in Eq. (108) via

Ve (x, Q% myse) = 19 (xs ). (129)

V. INITIAL-STATE EMITTER
AND INITIAL-STATE SPECTATOR

The dipole for emitter and spectator both from the initial
state is defined as

) 1 1 e T
paib — __ — <1,...,7’H+1;aiab
=2pa - DiXjqpmab
Ty Tii Gain|7 1 ai
% T7‘2”V - 1,...,m+1,al,b>m.ab, (130)

where the m-particle matrix element is obtained by dis-
carding the particle i in the (m + 1)-particle matrix element
and rescaling the momenta p; of all other final-state
particles to their dipole analogs p, as well as p, to p,;
while the momentum of the spectator p;, remains
unchanged. The operator V¥-* in Eq. (130) describes the

splitting a — ai + .

A. Kinematics and phase space factorization

For the parametrization of the divergences we introduce
the auxiliary variables

xi’ab:pa'pb_pi'pa_pi'pb’ _ PaPi (131)
Pa " Pb Pa " Pb
which behave in the soft limit p¥ — 0 as
Xiap = 1, y — 0. (132)

The sum of all outgoing momenta p; except for the soft
gluon is denoted by

P=p,+py—pi=) P (133)
k

cf. Figs. 4 and 5. Furthermore, it is convenient to define the
abbreviations

2

Aap = Ms,m2, m3) = 52 — dmim? (134)

§:s—m§—m127.

(135)
The construction of the dipole momenta is different from
the previous two cases. Instead of modifying only the
momenta of emitter and spectator, the momentum of
the spectator p, remains unchanged whereas all other
momenta are modified. The new momenta

2 2 2 2 2 2
u AMP* mg,my) (P —mg; —m;

pai - a
/Iab 2m%
Pa- Py [APEm2m2)\ ,
_ 136
m[% Aab pb ( )
Pt = ph+ Pl (137)

are then built from the requirement to retain the mass-shell
relations p2, = m2, and P> = P?. The outgoing momenta
P except for p; are modified by a Lorentz transformation

(138)

ﬁl]z = Aﬂvpl]é

with

FIG. 4. Diagrammatic interpretation of the dipole D’ and the
associated splitting function V.
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FIG. 5.
(right).

(P+PH(P+P), N 2P+P,
P:4+p.P P

Aﬂu:g”v_ (139)

If follows from direct calculation that A#, indeed leaves the
Minkowski metric invariant A,#A”” = gu” such that it can
be verified easily that the new momenta p; obey the on-
shell condition p? = m3. The definition of these momenta
coincides with [17]. In order to ensure that A(P?, m2, m?)
remains positive, so that the dipole momenta take only real
values, the kinematical lower bound

2m,my,

Xi.ab > X > X = (140)

N

on x; 45, has to be enforced. For values of x; ,;, below x the
splitting functions V¢/* are set to zero. The dependence on
the lower bound x; must cancel out and can therefore
be chosen arbitrarily which offers the possibility to check
whether the implementation of the subtraction procedure
is correct. The factorization of the single-particle phase
space [dp;(s,x,y)| from the (m + 1)-particle phase space
dg,i1(pis Py py + pp) is derived in Appendix B2. It
corresponds to a convolution over x which plays the role
of x; 4

/d¢m+l(pi’ P’ Pa + pb)g(xi,ab - XO)

:/ldx/dcﬁm(ﬁk(x);f?ai(x)+Pb)/[dpi(s’x’y)]'
(141)

In D = 4 — 2¢ dimensions the dipole phase space becomes

52—25 s

(4ﬂ)2_gl—~(l_€) \/El—h
x / Tyl -y s =y (142)

/ [dpi(s.x, )] =

where the integration boundaries read

1—
2s

T (5 4+ 2m2 £ \/A).

Y+ = (143)

Kinematics for an initial-state emitter and an initial-state spectator in the original momenta (left) and the dipole momenta

From Eq. (137) it can be deduced that the c.m. energy

§=P*=5x+m2+ m? (144)

of the reduced phase space d,,(Pi(x); Pui(x) + pp) is
already determined through x and the original c.m.

energy +/s.

B. The dipole splitting function

The dipole function V* in Eq. (130) for the SUSY-
QCD process

() é(pa) - g<p1) +qm =0 and my;i = m, = mg
reads

. 2 i 2
<V‘I{],b> — Sﬂasﬂzgcfr ( _2_ xl,abma) ‘

145
I — Xiab Pa - Pi ( )

The dipole splitting functions for the processes involving a
gluino § — ¢ and a massive quark ¢ — gq are for the pure
soft limit identical to Eq. (145) where only the color factor
Cr has to be replaced by C, for the gluino. For this reason,
only the squark splitting function is treated in the following
without losing generality. The same splitting function holds
if the squark is replaced by an antisquark.

C. The integrated dipole functions

In complete analogy to previous cases, the integrated
dipole for the case of emitter and spectator both from the
initial state is defined as

a 1 Agpu>\e ~
s Iu,al.b .
27:F(1—8)< 5 > (i)

~ [ lanitsxly

1 1 .
- <Vul,h>

146
Pa " PiXiab (146)

and the factorized phase space of the gluon can be turned
into the convenient form

/y+ dy[(y =y ) vy =]~

y_

= (s —y )i /O (-l (147)
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via the substitution t = ﬁ By expressing the denom-
inator in the dipole as 2p,, - p; = ys and with the help of the
already known integrals /(z;¢€) and I,(z;¢) defined in
Egs. (61) and (113), the integration of the splitting function
in Eq. (145) results in

- CF 2 s\¢
9 = i ()

y (2’25512(_@ ¢) — 51,(~C: g)>, (148)

where the new auxiliary variables C and d; are defined as

— 2/
C:y+ y—: ab (149)
Y- d

dy =5+2m2—\/Ay. (150)
Since only massive initial states are considered, the argu-
ment —C of the functions /; and /, does not diverge and we
are allowed to use their associated expansions in €. As
explained in Sec. III D, the soft divergence can be disen-
tangled with the help of the [---]™ prescription

1980 (x;€) = Cp{[J79° (x)] . + 6(1 — x)[J7T0S ()

+ JATENSTY 4 O(e). (151)

The continuum part of Eq. (151) that contains the plus
distribution is given by

_ 1]+
[Ja20 (x)], = 2[1 } (dyIn(1+C)—1). (152)
= M xo.1)
The end point parts are
_ 1
JAT5S(g) = = (1 - dyIn(1 + C)) (153)
€
NS _ 1 dy ;
JaabNS — Eln(l +CO)(C+2) +E(4L12(—C)
+1n%(1 +C)) + (1 = d, In(1 + C))
s
In|——— 154
g “(m —xo)2> 1
with
K
d, = 155
? ’Iuh ( )

D. Final expression

The auxiliary cross section for an emitter and spectator
both from the initial state can be recast into the form

1
/ dot, =" / dx
m+1 o VX0

y Fa
X / |:d0]3h(pa (X)) ]_—— ® Im+b,aa' (x§ 8)
(156)

with the insertion operator
Im-‘rb,aa’(X; €, ﬂz; {Piv mi}’ Pa> pb)

a, (4n)¢ u*\e 1 ,
=T, Ty | =) 5 VP (xe). (157

22T(1—¢) 7 ¢ (' Ti,v (xi) (157)

There is no sum over all possible spectators b in Eq. (157)
as we only consider two particles in the initial state. The
flavor functions V%** are given by the integrated dipoles
defined in Eq. (146) via

Vaab(x,my, my;€) = 190 (x; €).

(158)

VI. FINAL-STATE EMITTER
AND FINAL-STATE SPECTATOR

Since the mass of the initial particles does not influence
the splitting behavior, the case of final-state emitter and
spectator is already fully covered for the massless and
massive case in Refs. [11,12].

VII. EXAMPLES AND COMPARISON
WITH THE PHASE SPACE SLICING METHOD

In this section, we compare the results of NLO SUSY-
QCD corrections for the processes 77, — tg and 7,7, — 1t
obtained with the phase space slicing method [16] with the
ones obtained with the extension of the dipole subtraction
method covered in this paper. Both of these processes are
part of the dark matter precision tool DM@NLO which
provides NLO and Coulomb corrections for selected (co)
annihilation processes. For the first process with a top
quark and a gluon in the final state the two-cutoff phase
space slicing method is used. Within this approach the three
particle phase space is split into a hard and a soft part by
imposing a soft cutoff §; on the energy of the radiated
gluon. The hard phase space region is split further into a
hard and collinear and a hard and noncollinear part through
a collinear cutoff §., if the process contains another
massless particle:

R __ _hard hard
0" = O (557 50) + O hon-coll

(6,.:6.) +*1(5,).  (159)
If there occurs no collinear divergence as in the second
process under consideration with two top quarks in the
final state, one soft cutoff is sufficient. In this way the
real emission cross section o® is split into a finite part

hard . . . . .
oo 1(8s.8,), which is safe for numerical evaluation in
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TABLE 1. Reference scenario within the pMSSM-19 and the corresponding physical mass spectrum for the
numerical comparison. All dimensionful quantities are given in GeV.

M, M, M; M;, M:, My, M;, Mg, Mg, Mg,
1278.5 2093.5 1267.2 3134.1 1503.9 2102.5 1780.4 3796.6 2535.1 3995.0
M, Mg, M;, A, Ap A, JZ M40 tan /3 Osusy
1258.7 31332 3303.8 2755.3 2320.9 —1440.3 —3952.6 3624.8 15.5 1784.6
m)?? m)?g m)?]i m;l m,;l mg mpyo mpgo
1279.7 2153.6 2153.5 1301.9 2554.2 1495.5 125.8 3625.6

four dimensions, whereas the two other parts have to be
integrated analytically in D = 4 — 2¢ dimensions to isolate
the infrared poles in &. For the numerical comparison we
use the following set of Standard Model parameters [25]:

m, = 173.2 GeV
Qe (M) = 0.00781806
m, = 91.1876 GeV

mh(mh) =4.18 GeV
as(my) = 0.1184

sin Oy = 0.481 (160)

along with the example scenario in the phenomenological
MSSM with 19 free parameters (pMSSM-19) displayed
in Table I, where all input parameters are defined at the
scale Qgysy, which is also taken to be the renormalization
scale up = Qsyusy- The associated physical mass spectrum
is computed with the public spectrum generator SPheno 3.3.3
[26,27]. The most relevant masses for the two given
processes such as the mass of the lightest neutralino, the
lightest stop and the gluino are shown in Table I as well. We
emphasize that the parameters in Eq. (160) and Table I
undergo changes through the renormalization scheme
defined in Refs. [4,5,8]. For all considered processes the
integration of the three particle phase space and of the
plus distribution within the dipole subtraction method
is performed with the Vegas algorithm from the cuBa
library [28], whereas the two particle phase space is
integrated with a nonadaptive Gauss-Kronrod-Patterson
integrator adapted from FormCalc [29]. Both algorithms also
provide an estimate on the numerical error. These are
combined to the total numerical error of the NLO correction

_ /2 2 4 2
ENLO = \/&pus T €V 1 €R»

which is computed as the geometric mean of the respective
numerical errors of the plus distribution (g,,s), the virtual
(ey) and the real (eg) contribution. For the PSS approach,
€plus 18 set to zero.

(161)

A. The process 3, — tg

The O(a,) SUSY-QCD corrections to neutralino-stop
coannihilation into a gluon and a top quark have been
discussed in Ref. [5] including a detailed account on the

application of the phase space slicing method with two
cutoffs.!

The process )?‘1)?1 — tg receives contributions at next-to-
leading order from the two real emission processes

11(pa) +1(ps) = t(p1) + 9(p2) +9(ps)  (162)

and

11(pa) + 2V (py) = t(p1) +a(p2) + a(ps).  (163)

The decay of a gluon into a massless quark-antiquark pair
has to be included, since the first four quark flavors N, = 4
are treated as effectively massless in bM@NLO. For a
process involving only three colored particles, the different
color projections fully factorize in terms of the associated
quadratic Casimirs. Therefore, it is not necessary to
calculate any color-correlated tree amplitudes thanks to
the relation

2T, - T5|1,2,3) = (T3 = T3 - T2)|1,2,3), (164)
which holds analogously for T :T; and T;-T,. The
dipole factorization formula in Eq. (19) yields a total of
ten dipoles to compensate all infrared divergences in the
three-particle phase space for the process with two final-
state gluons

Dy = ﬁ%(vgﬁl,ﬁMz(Pa,f?zl,f’z)P (165)

Daia = AV )Moy P B3P (166)
T 2py - pa2Cp P

Dysy = 1 l<M|V DT (Pas P1s P23) (167)
T 2pyep32 o g

'Note that the numerical results in the present paper cannot be
directly compared to those in Fig. 10 (lower right) of Ref. [5], as a
term —z2/3 from the expansion of I'(1 — ¢&)/T'(1 —2&)['(1 + ¢)
in the (correct) Eq. (2.28) was missing in the numerical
implementation. Replacing A~ — AJ™% —£C, with r=1
in Eq. (2.37) as required for dimensional reduction is, however,
numerically insignificant.
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bt 11 c
DSy =—— u VT 0 (Pas P15 P 168 D2 — 1= i
3 2p2 - P3 x23a2< | 92g3| > K ( ! 23) ( ) 1 2pa P2 Xt g 2C < >|M2(pa27P1,P3)|
1 1 C (174)
Dy =5t (1= 52 Vg P . 22
et (169) with the tree-level matrix element squared |M,(ps,

Pi. Py)|*. The tensor 7 ,, corresponds to the leading order
| | c, squared amplitude where the polarization vector €, (p,;) of

Ds, = P (1 - 2—) (Ve )Ma(Pg. Par. p3)|*  the emitter gluon has been amputated. Since both gluons
D1 P2X214 Cr can become soft in the splittings 7, — 7,¢g and ¢t — tg, one

(170)  dipole is introduced for each individual gluon in the final

state. To cancel the collinear divergences from the pro-

1 1 Cy v duction of the N, massless quark-antiquark pairs, the
'Du?; — lagS , f q q P 5
2 T 2py P3Xina 2CF< Ma(Pazs 1 P2) P dipoles
(171) L
D = 7ﬂV’.I/Typa’i) vij 175
G e 11 = 5 WVl TP P B1) - (175)
3= 2Py - Paxasa 2Cr 2(Pa2: P15 P3
1 11 . .
(172) D23 2p—l)3x23a2<ﬂ| q2q3|y> m/(pavplvp23) (176)
Da’% ] ] 1 CA tl a93 M
2P0 P3xar _2CF (VP Mo (Pas, Pr p2) P are needed. The auxiliary cross section that cancels the
¢ ¢ infrared divergences of the virtual one-loop corrections is
(173) constructed from the three insertion operators
|
(47)°
< () (8’”2’{1717 t}) > 4 F( )l 2|2
W\ ¢ (NS) (NS) 27
X |:CA (s—> <2V(S)(S127mn0§8) +Vy (812, 0.m6) + Vi (s12,m,,0) — T)
12
2 C ”2
+FFDH(8) +7y ln< > +7y+ K + = Cr <Ft(ﬂ7mz;5) +7tln<s_> +r +K >:| >
12
(177)
a, (4r)¢ u\ ¢ - C 2\ ¢ -
(2.3 e (e pl1.2.3) = et aop (() Voo + (2- 1) (4 ) Viwamie) )
(178)

_a (4n) 2(Ca (2N Va7 0.
3= a1 — o) M (CF< ;) V10

(2 —S—i) <’_‘u>gw I(x, @ m,,e)) (179)

with 51, = s — m?, where the first one in Eq. (177) corresponds to emitter and spectator both from the final state, the second
one in Eq. (178) to final-state emitter with a spectator from the initial state and the last one in Eq. (179) to an initial-state
emitter with final-state spectators. The dipole invariants 7 = (p;, — p,)* and it = (p;, — p,)* correspond to the Mandelstam

<1 2 3|IZ ()C g, :u {pl’ i}7pa)

variables ¢ = (p; — p,)* and u = (p, — p;,)* in the squared Born amplitude and they play the role of Q*. With that, the
“barred variables” 7 and 7 are given by

~l
|
~
|
3
S

2 2, (180)

3
S
|
N
|
3
:l
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The insertion operator in Eq. (177) for emitter and spectator both from the final state as well as the related flavor functions
1 1. /m?\ 1 m\ > 1 /(s m? m?
() 0;6) ==—+—In[ — ) ——In*( =) == ——In[ 22} |In[ — ) + In(— 181
V <SI2’ s 8) 282 + 2e n(Slz) 4 " <S12> 12 2 n A n S12 +in N ( )
(NS) . Vg S12 Vs —m, 2m, w*
V ) Oa ) - 1 21 bl —_—
s 0mi) = 2 () 20U ") - ) £
. S12 2 m,z TF 2mt
—Li, | — —— | —(2N;——-1 | In[ ——— 182
12<S)+<K 3>312<< e > n<\/§+mz (182)
YN 0) = 232} 4 7 i, (52) o (22 1 (7 (183)
Sia, M == — = - — | ——In{—
! 2 2 s 6 s s S12 s

are provided in Ref. [12] where the function I'; for massive quarks reads

I 1 2
T,(u,mye) = Cp <—+§ln<%> —2). (184)

&

The value of the variable k in Eq. (182) can be chosen arbitrarily as its dependence must cancel out between the virtual
and real part. Within the numerical comparison it is set to k = 0. Note that due to Bose symmetry the dipoles which are
related through the interchange of an emitted gluon result in the same integrated dipole. Therefore, it is sufficient to
incorporate one of the integrated counterparts and weight it with a factor of 2 which gets canceled by the Bose symmetry
factor S5 = 1 of the associated real emlssmn cross section. This counting of symmetry factors is already incorporated into
the deﬁnitlon of the flavor functions V In order to perform the convolution in Eq. (34), the well-known parametrization of
the two-particle phase

1 2z
[ 4.1 1) = / a0’ [ i (185)
(s, m3, m3)

is inserted, where ¢, denotes the azimuthal angle of p, in the center-of-mass system of p, + p,. Since the integrand is
rotationally invariant, the integration over @, yields a factor of 27z. We still need to determine the integration limits of Q? as a
function of x which is achieved by expressing Q7 in the c.m. frame of p, and p;:

Q% = mj + mj — 2E,E; + 2| Bp|| | cos 9

(s +mi —m2)(s +m; — P?)

X \/ s ma,mb \//1 s mk, (186)

=m} +mj — + cos 9

where 8 corresponds to the angle between p, and p,. The x dependence enters by expressing P> through x and Q? as given
in Eq. (26) which results in an equation which we can solve for Q%. The integration limits

! alx) + p(x)

) = 3 (1 - ) — ) 187)
with the abbreviations
a(x) = x*(mg + 2m(mj, + my) = (my = $)) + 2mj (mg + m3)
= x(m + mg(4mj, + mj + mi = s) = (my = s)(mj, = mj —my)), (188)

*The counting of symmetry factors for the general case of going from m + 1 to m particles for a gluon and quark as emitter is
discussed extensively in Ref. [11].
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FIG. 6. The NLO correction times velocity vAcN-© subdivided into the virtual part plus the auxiliary cross section ¢V 4 ¢* and the
real part minus the auxiliary cross section 6® — ¢* for the process 7Y%, — tg for different values of the lower integration limit x, (left) as
well as the dependence of the NLO correction obtained with the slicing method on the soft §; as well as the collinear cutoff J, (right).
Both plots are created for the c.m. momentum p.,, = 100 GeV.

Plx) = x4, m3 5) [ (= md)2(1 =2 + (1= x) (23 (3 + ml(20 = 1) = s)

—2mj(m; + mg — sx)) + A(xs, my, m3) (189)

are then obtained by setting cos d to its extreme values —1 and 1. Within the integration over Q? two different kinematical
configurations have to be distinguished. The variable 7 in Eq. (178) and (179) equals Q? for the cases m; =0, m =m,
whereas it equals O for m ; = my, m = 0. After having fixed the values of x and Q? (it and 7) in the phase space integration,

the squared c.m. energy § of the new initial state with momenta p, and p, can be determined as

2 2

§=(Pa+pp)* =mg+mp+ x(s —mg —mj)+

b
R(x)

The remaining “dipole Mandelstam variable” i for Q% = 7
and vice versa can then be deduced from §+ it +7=
mg 4+ my +m; +mj. As the squared tree-level matrix
element is a function of the usual Mandelstam variables s,
t and u, we only need to substitute those through the dipole
invariants 3, 7 and i, respectively, in order to formulate the
tree-level matrix element in terms of the dipole momenta.

The independence of the final result on the lower inte-
gration limit x, is shown in Fig. 6. For the numerical
comparison the value x, = 0.9 was chosen as it fulfills the
condition in Eq. (35) for all probed c.m. momenta. For the
determination of appropriate values for the soft and collinear
cutoff, the behavior of the NLO correction is examined in
dependence of both, which is shown in Fig. 6. The cutoffs are
chosen to be pg,pg > 6, =3.0x107*/s and 2p, - p3 >
5, = 3.0 x 107 s such that they are located in the broad
plateau region in the lower right half of the plot.

In Table IT and Fig. 7 the total cross section obtained with
the two different methods is given for c.m. momenta p. , ,
that are typical for dark matter annihilation. Even though all
chosen cutoffs for a momentum of 100 GeV lie in the
plateau region shown in the right plot of Fig. 6, the central
values of the correction for the smallest and largest cutoff

0% +2m2x
20?

Q> +mi—m?

(m; —m3i + Q%) | — 20 L(m? —m2 + Q).

(190)

I

differ by 13%, while the dependence on the artificially
introduced lower integration limit x, of the dipole method
is completely compensated between the virtual and real
part. Furthermore, the total numerical error of the result
obtained with the phase space slicing method for the NLO
correction increases with decreasing cutoff values which is
expected as the real cross section blows up like In(5,/s)
in the soft region and like In(8./s) in the collinear one.

TABLE II. Results on the correction »Ac™N-O of the process

)?(1);1 — tg for two different c.m. momenta p.. ,, . All cross sections
times velocity are given in 10710 GeV 2.

Pem. [GeV]  v6™  Method &,/+/s 6./s vAGNO
100 4.604596 1072 1073 0.915 £0.036
PSS 1074 107° 0.974 £0.152
106 1077 1.033 £0.241
Dipole 0.891 £ 0.002
1200 2.501535 1072 1073 0.408 £ 0.021
PSS 1074 107° 0.429 +0.083
10 1077 0.458 +0.135
Dipole 0.385 + 0.001
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In addition, the integration error of the dipole method is at
least 1 order of magnitude lower than the one of the slicing
method so that the error of the dipole result is smaller than the
linewidth in the plot. Both of these findings, the cutoff depen-
dence as well as the integration error, show the superiority of
the dipole subtraction method with respect to precision.

B. The process #,; — tt

As another example, the process

t1(pars) +1(pp.t) = t(p1, i) + t(p2. j) + 9(p3. a)
(191)

is considered where the parentheses contain the particle
momenta p,, pp, P1, P2, P3 and the corresponding color
indices s, ¢, i, j, a. This process is chosen as it allows to
demonstrate and compare the dipole formalism for sit-
uations with two massive and color charged particles in the
initial state. The next-to-leading order corrections for this
process performed with the slicing method are discussed in
Ref. [8]. The auxiliary squared matrix element receives
contributions from in total twelve dipoles and reads

|

IM4)? = Di3p + D3y + Dy + Dby + D4y + Dby + DE + D3 + DS + D53 + DW3b  Dh3a,

where the subtraction functions are consistently set to zero for values of x below x, =

oMo
R

it —tg

NLO
Opss

NLO
ODipole |-

ov [10710 Gev2]

:
+ + +
NLO NLO
1.31 _ AoDipole/Aapss 1

ratio

300 600 900
pem [GeV]

FIG. 7. Neutralino-stop coannihilation cross section cv with a
top and a gluon in the final state for the example scenario defined
in Table I. The leading order result is computed with MicrOMEGAs
2.4.1 [30,31] (MO) and pM@NLO (Tree). The NLO results are
calculated with the phase space slicing method (PSS) and the
dipole method (Dipole). The lower panel shows the ratio of the
NLO corrections obtained with the two different approaches.
The uncertainty band in the upper panel corresponds to the total
numerical error eyy o defined in Eq. (161). The gray shaded area
shows the thermal velocity distribution of the neutralino at the
freeze-out temperature in arbitrary units.

(192)

2
2my

s

in conjunction with Eq. (140).

For a process involving four colored particles it is no longer possible to factorize the color charge algebra. However, it
follows from color conservation that four of the six color charge operators T;T; with i # j can be expressed through the

quadratic Casimir invariants and T;T,, T, T3 giving [11]

1
T;Ty|1,2,3,4) = [§<C1 +C,—C3—Cy) + Tsz} I1,2,3,4) (193)
1
T,T4|1,2,3,4) = [E(Cl +C3—-Cy—Cy) + T1T3} 1,2,3,4) (194)
1
T,T5/1,2,3,4) = [5 (C4=C=C,=C3) =TT, - T1T3} 1,2,3,4) (195)
T, T4|1,2,3,4) = —(C, + T, T, + T, T3)|1,2,3,4). (196)
The four color charge operators are associated with the particles in our process as follows:
T1 — qu, T2 — TZ]I’ T3 - Tti’ T4 - th. (197)
For the remaining two operators the color correlations have to be evaluated explicitly:
(1,2,3,4T,T,|1,2,3,4) = [MF")'T¢, TS MY, (198)
(1,2,3,4/T\T5|1,2,3,4) = [MF*]*(=1¢,T5) MT (199)
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FIG. 8. Same as Fig. 7 for the annihilation process 7,7, — ff.

with the tree-level matrix element M5, As the application
of the dipole formulas has already been exemplified in the
previous section for all emitter-spectator pairs besides the
configuration where both are from the initial state, we only
cover the two particle phase space integration in the
convolution in Eq. (141). In order to provide a general
expression for the parametrization of the phase space, the
masses related to the momenta p; and p, are labeled as m;
and m, and we distinguish the masses m, and m, of the
initial particles even though they are identical in this case.
Since the variable x enters the phase space integration only
through the reduced squared c.m. energy 5 given in
Eq. (144) the well-known parametrization

1 2 (3) 2z
/ 4 (P (x): Pai(x) + Pp) = / =9 42 /0 dy/
q

VI S
(200)
with the integration limits
3 2 2\(% 2 2
2 (%) — 2 o (34 mG—mp)(5 4+ mi—m3)
qj:(‘g) ma + ml 25
-
+ ‘g: A3, m}, m3) (201)

can be employed where ¢> = (p,3 — P1)?* plays the role of
a Mandelstam variable and the abbreviation /; is given by
A5 = A(3,m2, m3). The remaining dipole Mandelstam var-
iable that enters the squared Born amplitude is determined
through m2 + m? + m? + m3 — 3 — ¢*. For the numerical
comparison in Fig. 8, the cutoff for the slicing method is
chosen as p3 > &, = 107/s. In Table III, results on the
NLO corrections for different cutoff values §, and c.m.
momenta are shown in comparison with the result of the
dipole approach. Similar to the previous example, the
integration error of the slicing method increases with
decreasing cutoff values while the errors of dipole method
are at least 1 order of magnitude lower than the ones for

TABLE III. Results on the correction ¥AcN™C of the process

7,1, — 1t for two different p. , . All cross sections times velocity
are given in 10~ GeV 2,

Pem. [GeV] volree Method  &,/+/s AN

100 5.030288 1072 —1.392 £0.018
PSS 10~ —1.407 £0.032

106 —1.399 £ 0.053

Dipole —1.410 £+ 0.007

1200 2.853008 1072 0.821 £0.016
PSS 1074 0.810 £+ 0.036

106 0.787 + 0.062

Dipole 0.802 £ 0.007

small cutoff values indicating again that the dipole method
is ahead of the slicing approach.

VIII. SUMMARY AND OUTLOOK

In this paper, we have presented an extension of the dipole
subtraction formalism introduced in Refs. [11,12,17] to
massive initial-state particles for NLO (SUSY)-QCD calcu-
lations which allows the analytic cancellation of infrared
singularities between the virtual and real corrections. Our
results are in particular relevant for precision computations of
the dark matter relic density in SUSY and non-SUSY models
and should in the future allow for automated calculations of
the pertinent higher-order corrections.

We reviewed the dipole subtraction method and its under-
lying notation as well as the factorization of real emission
amplitudes in the soft and collinear limit. From there we
constructed the dipole splitting functions for different regu-
larization schemes. Even though it is possible to adopt the
corresponding kinematics from Dittmaier, the factorization
of the (m + 1)-particle phase space into an m-particle and a
dipole phase space had to be performed again in D
dimensions. Since the integration of the dipole functions
and the extraction of the singular terms with the help of the
plus distribution turned out to be rather cumbersome, the
associated steps were presented in a detailed way. At the end
of each section dedicated to one of the three emitter-spectator
pairs covered in this paper, the results were collected in
effective final formulas for the universal insertion operator
which allows to render the virtual part infrared finite.

In order to illustrate the use of the dipole method, our
results were applied to the dark matter (co)annihilation
processes 7V7, — tg and 7,7, — 1. Therefore, a general
parametrization of the physical two-particle phase space
with arbitrary masses in dependence of the associated
convolution variables was provided. The results of the
dipole method were compared with those obtained with the
phase space slicing method. A significant reduction of
the integration error was found for the dipole approach.
Similar findings were reported by Dittmaier who compared
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both methods for electroweak processes and in Ref. [21] for
the process y* — QQ. An application of this method to
the annihilation processes 7,7; — gg and 7,7} — ¢g is in
preparation.
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APPENDIX A: DIMENSIONAL
REGULARIZATION
AND REDUCTION SCHEMES

There exist two main dimensional schemes for the
calculation of matrix elements at one-loop order, which
are dimensional regularization and dimensional reduction.
Both have in common that the number of dimensions of all
momenta and space-time coordinates is analytically contin-
ued to D # 4 dimensions, whereas there remains some
freedom regarding the dimensionality of “internal” and
“external” vector bosons. Internal gauge bosons are defined
as those that appear in a one-particle irreducible diagram of
the virtual corrections or that become soft or collinear in a
phase space integral related to the real corrections. External
gauge bosons are then defined as all other gauge bosons. In
order to formulate the different treatments of internal and
external gauge fields in a mathematically consistent and
precise way, three different spaces are introduced: the

|

where the modified Dirac delta distribution contains the
Heaviside step function 6(x) and is defined as &, (p> —m?) =
5(p*—=m?)0(p°). The momentum of the spectator is p,,
while the emitter i j splits into two particles with the momenta

2) d”py 5, (p? 2
—mj H(zﬂ)D—l +(pi — my),

original four-dimensional space (4S), the quasi-four-dimen-
sional space (Q4S) and the quasi-D-dimensional space
(QDS) as a subspace of Q4S [34]. Following the definitions
in Ref. [35], each of the two main schemes has two
subvariants. These are in the case of dimensional regulari-
zation the conventional dimensional regularization scheme
(CDR), where internal and external gauge bosons are treated
as D-dimensional, and the 't Hooft-Veltman scheme (HV),
where external gauge bosons live in 4S instead of QDS.
‘Within the two subvariants of dimensional reduction, internal
gauge bosons are elements of Q4S, whereas external gluons
are strictly four dimensional in the four-dimensional helicity
scheme (FDH) and also D dimensional in the original
dimensional reduction scheme (DRED). In order to guarantee
that the final result for the physical cross section is inde-
pendent of the chosen regularization prescription, the gauge
bosons in the tree-level matrix element M,, have to be
treated like external gauge bosons in the loop amplitude,
whereas the particles in the dipole factor dV ;.. have to be
treated as internal particles [24]. The scheme-dependent
terms can thus be parametrized by the number of helicity
states 7> = 2(1 — e+ re) of internal gluons, where we
introduced the parameter r defined as

0, CDR,HV
- (A1)
1, DRED, FDH

to distinguish between the different schemes according to the
definitions above.

APPENDIX B: DERIVATION OF THE PHASE
SPACE FACTORIZATION

In this section, we derive the expressions for the dipole
phase space that are used for the analytic integration of the
dipole splitting functions.

1. Final-state emitter and initial-state spectator

We start with the phase space element for m + 1 particles
in the final state in D = 4 — 2¢ dimensions which is given
by [36]

(B1)

[
p; and p;. The momenta of the remaining final-state particles
other than i or j are labeled as py. The (m + 1)-particle phase
space is factorized exactly into a m-particle phase space and a
two-particle phase space through a convolution of the form
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A1 (Pis Pjs Pi: Pa + Pb)

dm?
= z—ﬂpdcﬁm(P, Pii Pa+ Pp)dda(pi pji P),  (B2)

where m3 = P? acts as the squared invariant mass related to

the momentum P = p; + p;. As the dipole splitting func-
tions are expressed as functions of x and z;, we replace the
integration over m% with an integration over x by using the
relation in Eq. (26) and we turn the integration over the two-
particle phase space

dei
dep>(pi. pji P) = 27)P6P)(P - p; — pj)W
dPp;
X 5+<P12 - mzz) —(zﬂ)bl_l 5+(P]2 - m?)

(B3)

into an integration over z;. As a first step towards the
parametrization through z;, two Dirac delta functions are
integrated out which gives

dP~1p,

dey(pi. pj; P) :m

8,((P=pi)* —m3). (B4

Fromnow on, we will work in the ¢.m. frame of p; and p;, i.e.
in the rest frame of P, which sets the time and spatial
components of p; and p; to the well-known expressions [36]

P2 +m? —m?

2 2_ .2
; _P +mj ms;

E=—— "  E ,
2V P2 ! 2/ P2
/I(Pz,ml?,mjz)
pil =pjl =—=— B5
|pil = |pl N/ (B5)
For the momentum p,, we get
E _pa'P_ _Q2
VP /P
R . P)? 1 AqaiR(x
Pul =/ PPV VAR ey

P2 a:2 /-—P2 X ’

where Eq. (26) was used to replace the product p, - P. The
expressions in Eq. (B5) can be used to write the remaining
delta function in Eq. (B4) as a function of the norm of the
momentum p;:

8, (P*=2P - p; +m} —m3)
- @), (B)

E; 1
=5, (1B~ ==/
2VP?|j) +(' 2VP?

Inserting polar coordinates in D — 1 dimensions

dP='p, = d|p;||p;°2|dQp_»d cos Osin®*6  (BS)
allows to integrate out the remaining delta function and the
phase space measure becomes

dQp_, .
T p3 d cos@sin

(27)

x (4P )T (P2, m?, m?),

1
d¢2<Pi7Pj§P): D_49§

(B9)

where the angle 0 is defined as the angle between p, and p;,
so that cos @ is given by

E'Ea — Pi* Pa

cosh = ——— (B10)
|pillPal

The integration over cos 6 can now be turned easily into an
integration over the desired variable z; as E;, E,,, | p;| and | p,,|
do not depend on z;. In order to express sin € through z;, the
integration limits

_EE, £ |pI7d)

Bll1
P'pu ' ( )

it

which are given in Eq. (37) in terms of x and Q? for m; = 0,
can be used to write

sin? @ = (1 — cos0)(1 + cos 0)

_ (M)z(zi — )z, —z). (BI2)

|pil|Pal

As we assume rotational invariance of the squared matrix
element around the axis given by p,,, we can already perform
the integration over the solid angle Qp_,, so that we have

(B13)

After defining the Jacobian from the transition from m? to x
into the dipole phase space [dp;(Q?,x, z;)], one arrives at
Eq. (36).

2. Initial-state emitter and initial-state spectator

As in the previous section, the form of the measure
[dp;(s,x,y)] is derived by considering a convolution of
the form
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dm> d[D]py
Apuni (i pis pa+ po) = ] | ()P 8.(p} = m})2m)P6P) ( py + py— pi = > _pi |da(pi Pipa+ py). (B14)
3 k
where mp acts as the invariant mass of the momentum P = p, + p, — p;. By using the facts that the dipole momenta obey
the mass-shell relations p; = m? and momentum conservation p, + p, — p; — > . Pk = Pai + P» — 9 i Px by construc-
tion and that a Lorentz transformation p; = A*, p% leaves the measure d[D]p; invariant, the remaining momentum
integrations in Eq. (B14) can be expressed through an m-particle phase space with initial momentum p,; + p, and final
momenta py:

dm? .
A1 (Pis Pis Pa + Pb) = 2—;d¢m(pk; Pai + Pp)dd2(pi. Pspy + Py)- (B15)

Following the same line of thought as in Appendix B 1 and working in the c.m. frame of p, and p,, the integration over the

two-particle phase space for m; = 0,

d”p; , d°P 2 2 D (D)
dpy (P, pis pa + pp) = W +(Pi)W5+(P —mp)(27)°8") (py + pp — P = pi) (B16)
can be turned into an integration over y:
dQp_, = || 7 |D-3 i D—4 7 2
do» (P, pis pa + Pb) :Wd|pi||p,~| dcos Osin?~*05_ (s — 2|pi|\/s — P?)
dQp_, 2-D 2\D—-3 - D4
= 30202 (24/5)>7P(s — P?)P=3d cos Osin” 40
}]—26 4S —& i
a0 abyl(y — )y =y )] (B17)

= 2(471.)2—25 /ﬂab]_zg

The angle 0 is defined as the angle between p; and p, and
therefore determined through

pa'pi:|ﬁi|Ea_|ﬁa||ﬁi|Cose' (Blg)

A simple substitution from m3 to x via Eq. (144) yields the
dipole phase space [dp;(s,x,y)] given in Eq. (141).
APPENDIX C: INTEGRALS

The expansion in € of the integrals 1,(z;¢) and I,(z; €)
up to O(e) is obtained by inserting the ansatz

u(z) = r(z) + es(z) + O(e?) (C1)

into the hypergeometric equation [37]

(1 =2)u"(z) + (¢ = (a+ b+ 1)2)u'(z) — abu(z) = 0
(C2)

|

|
whose general solution for the initial condition u(0) = 1 is
the hypergeometric function u = ,F;(a, b;c;z). Solving
the resulting system of equations order by order while
enforcing the boundary conditions r(0) = 1 and s(0) =0
yields the functions r(z) and s(z).

For the computation of the integrals Z(yy; &) and
Z5(yg; €), the integral

® e oy _T(@I(l (a=a)l(b—a)
A dr*=,Fi(a,byc;—1) = MBI (c—a)

(C3)

is used. It can be computed by inserting the integral
representation of the hypergeometric function followed
by factorizing the double integral into two Euler-Beta
functions

o 1 1 1
/ dl/ dt/[a—lt/b—l (1 _ t/)c—b—l (1 4 tt/)—a — / dx(l _ x)a—lxa—a—] / dl/(l _ t/)c—b—l t/b—a—l
0 0 0 0

=pla,a—a)p(c—b,b—a)

(C4)
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. . _ 1
through the substitution x = .

giving the divergences for y — 0 and a finite part

The remaining step for the computation of Z (yy; €) is to separate the integral into a part

1 1 t o0
Il(yo;s):ﬂ(l—e,l—e)(l—ﬂ/ dtt*'2F1<1,1—€;2—2€;——>—/ dtt52F1(1,1—8;2—28;—t)). (C5)
0 0

Yo

Yo

The last part contains the divergent piece and is evaluated with the help of Eq. (C3):

0

1 1

/wdtl€2F1(1,1—8;2—28;—l):———+O(£), (Co6)

262 &

whereas the first integral is finite and can be evaluated for ¢ = 0:

i 1
/ di ¢, F, (1, -2 -2 —i> — —yoLiy (— —) +Oe). (c7)
0 Yo

The calculation of Z,(yg; ) proceeds in an analogous way.

Yo
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