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The dark matter abundance plays a crucial role in the determination of the valid parameter space of
models both in the case of a discovery of dark matter and in the context of exclusion limits. Reliable
theoretical predictions of the dark matter relic density require technically demanding precision
calculations, which were so far limited in their automation due to challenges in the treatment of
infrared divergences appearing in higher order calculations. In particular, massive initial states need to
be considered in early Universe computations, so that the known dipole subtraction methods could not
be directly exploited. We therefore provide a full generalization of the dipole subtraction method by
Catani and Seymour to supersymmetric (SUSY) QCD with massive initial states. All dipole splitting
functions and their integrated counterparts are given explicitly for four different dimensional schemes.
To showcase their application, we apply our results to dark matter (co)annihilation processes in the
context of the minimal supersymmetric Standard Model. We also demonstrate the accuracy of the
dipole method by comparing our numerical results with those obtained with the phase space slicing
method. Our analytical results will facilitate future automation of dark matter abundance calculations at
next-to-leading order for both SUSY and non-SUSY models.
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I. INTRODUCTION

The very precise measurement of the present amount of
dark matter in the Universe by the Planck satellite allows to
place stringent constraints on dark matter models [1]. In
order to keep up with the experimental uncertainty, next-to-
leading order (NLO) corrections have to be included in
theoretical calculations of the relic abundance [2–9]. The
associated numerical evaluation of real emission processes
is problematic in phase space regions where the squared
matrix element becomes soft or collinear, as only the
sum of the real and virtual corrections is infrared finite.
The two main general approaches which allow the analytic
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cancellation of infrared singularities between both contri-
butions are subtraction methods [10–12] and the phase
space slicing (PSS) method [13–16]. A general treatment of
massive initial particles, e.g. in supersymmetric (SUSY)
QCD, as required for dark matter (co)annihilation proc-
esses is available for the slicing approach, but not for the
subtraction methods. Dittmaier considered photon radiation
off heavy fermions in QED, but used a small photon mass
as a regulator [17]. Consequently, the results cannot be
simply transferred to QCD, where divergences are com-
monly regularized via a dimensional scheme. Kotko [18,19]
previously considered a fully massive dipole formalism for
initial-final dipoles in conventional dimensional regulariza-
tion, leaving out e.g. the emission off a massless final-state
quark with a massive spectator and in a different convention
of parameters compared to the one used in this work,
complicating the computation of necessary integration lim-
its. Reference [20] focuses primarily on the case of the initial-
initial dipole configuration corresponding to the emission of
a gluon into the final state off amassive initial quark and pays
particular attention to the necessary modifications of the
standard treatment of parton distribution functions in the final
dipole formulas required by the inclusion of mass effects.
The phase space slicing method has been successfully
applied to dark matter calculations in the past [4,5,8], but
this approach has the practical disadvantages that the squared
real emissionmatrix element has to be subdivided into finite,
soft, collinear and soft-collinear contributions and that the
final result depends on the chosen cutoffs. In addition, the
slicing method is found to be less accurate and efficient
compared to the dipole approach [21].
For these reasons, it is the objective of this paper to

extend the Catani-Seymour dipole subtraction method to
massive initial states for initial-final as well as initial-initial
dipoles in a unified notation similar to the one used in
Ref. [12] and provide all formulas for squark and gluino
(co)annihilation as required by dark matter calculations. We
also pay particular attention to provide all formulas for
different dimensional schemes, as conventional dimen-
sional regularization breaks supersymmetry already at
the one-loop level in contrast to dimensional reduction,
which is therefore the preferred scheme for calculations in
supersymmetry. By a simple change of the color factor, the
results can also be applied to heavy scalar and fermionic
dark matter in general. The provided formulas also allow
for one massive and one massless particle in the initial state.
The results do not apply to processes with identified (R)
hadrons and to splitting processes where the mass of the
parent particle is unequal to the mass of one of its decay
products such as the splitting g → qq̄ into massive quarks.
The paper is organized in the following way: in Sec. II

we review the dipole subtraction method for the case of no
(R) hadrons in the initial or final state. We also cover
the factorization of (SUSY)-QCD amplitudes in the soft
and (quasi)collinear limit for the construction of the
dipole splitting functions. The main part from Secs. III–V

provides the dipole splitting functions along with the
integrated counterparts and a detailed account of the inte-
gration technique for the three possible emitter-spectator
pairs with at least one colored initial state. SectionVII covers
the application of the dipolemethod to the example processes
χ̃01 t̃1 → tg and t̃1 t̃1 → tt and the corresponding comparison
with thephase space slicingmethod.Our summary is given in
Sec. VIII. In the Appendixes, further details on the phase
space factorization are provided and the computation of the
required nontrivial integrals is sketched. In addition, we
define precisely the four different dimensional schemes that
we distinguish in our calculation for a better common
understanding.

II. REVIEW OF THE DIPOLE
SUBTRACTION METHOD

A generic cross section σNLO describing the production
of m particles at next-to-leading order (NLO) accuracy in
(SUSY) QCD without initial-state (R) hadrons can be
decomposed as

σNLO ¼ σTree þ ΔσNLO ¼
Z

dσB þ ΔσNLO; ð1Þ

where dσB denotes the differential tree-level cross section
and the NLO part ΔσNLO receives contributions from
virtual corrections dσV as well as from real emission
dσR of massless particles:

ΔσNLO ¼
Z
m
dσV þ

Z
mþ1

dσR: ð2Þ

The subscript on the integrals refers to the number of
particles in the final state. The inclusion of (R) hadrons
would require a proper factorization of short and long
distance physics whereas we assume that the cross section
is perturbative. After successful renormalization the virtual
part is ultraviolet finite, but still contains another type of
divergence: the infrared (IR) divergence which appears
when the loop momentum of a massless virtual particle
becomes almost zero or collinear to the direction of another
massless particle. Therefore, one distinguishes between
soft, collinear and soft-collinear infrared divergences,
where in the latter case the massless particle is soft and
collinear at the same time.
The same kind of infrared behavior occurs within the real

contribution. According to the Kinoshita-Lee-Nauenberg
theorem [22], every unitary quantum field theory such as
the Standard Model or its minimal supersymmetric
extension [the minimal supersymmetric Standard Model
(MSSM)] is infrared finite as a whole. As a consequence,
the IR divergences from the phase space integration of
the real part cancel those coming from loop integrals of the
virtual part on the right-hand side of Eq. (2). In practice, the
divergences have to be extracted with the help of a regulator
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such as an artificial mass. However, the only known
regularization procedure which preserves gauge and
Lorentz invariance (as well as supersymmetry) is dimen-
sional regularization (dimensional reduction). Within these
procedures, the number of space-time dimensions is
continued analytically from four to D ¼ 4 − 2ε. In this
regularization scheme, soft and collinear divergences take
the form of simple poles in ε, whereas soft-collinear
divergences appear as double poles. Because of the large
number of terms that enter during the standard Feynman-
diagrammatic calculation of (SUSY)-QCD matrix elements,
it is often impossible to perform the integration over the
mþ 1 particle phase space in Eq. (2) analytically in D
dimensions except for thevery simplest processes. In order to
make a numerical evaluation of the real emission matrix
elements over the whole phase space possible, i.e. without
relying on cuts and approximations as in the phase space
slicing approach, Catani and Seymour developed the dipole
subtraction method [11]. The basic idea is to construct an
auxiliary cross section dσA which converges pointwise
to dσR in the singular region in D dimensions, so that
dσR − dσA is finite over thewhole region of phase space and
can be integrated in four dimensions.At the same time itmust
be possible to integrate dσA analytically in D dimensions
over the one-particle phase space of the radiated massless
particle giving rise to the divergence. This allows to add back
the subtraction term and to cancel those divergences appear-
ing in thevirtual contributionwhich are present in the formof
simple or double poles in ε. The computation of the NLO
correction can then be summarized as

ΔσNLO ¼
Z
mþ1

½dσRε¼0 − dσAε¼0� þ
Z
m

�
dσV þ

Z
1

dσA
�
ε¼0

:

ð3Þ
The counterterm dσA is constructed from the knowledge that
QCDamplitudes factorize in the soft and collinear limit in the
process-dependent Born level cross section dσB convolved
with a universal splitting kernel dVdipole, which reflects the
singular behavior. From another point of view, the factori-
zation can be thought of as a two-step process. In the first
step, m final-state particles are produced through the Born
level cross section dσB. In the second step, the final (mþ 1)-
particle configuration is reached through the decay of one of
the m particles—the emitter—into two particles. This last
step is described by the splitting function dVdipole. The
information about color and spin correlations is accounted
for by referencing an additional particle—the spectator. The
final expression for dσA is obtained by summing over all
possible emitter-spectator pairs,Z
mþ1

dσA¼
X
dipoles

Z
m
dσB⊗

Z
1

dVdipole¼
X
dipoles

Z
m
½dσB⊗I�;

ð4Þ

where the universal factor I corresponds to the integral of the
dipole splitting function over the one-particle phase space,
and thus cancels the infrared divergences in the virtual part.
The fact that the underlying structure of this factorization is
formed by these pairs lead to the name “dipole formalism.”
However, as this factorization holds only in the strict soft and
collinear limit and it is desirable that dσA approximates dσR

also in a small region around the singularity to render the
subtraction procedure numerically stable, one has to intro-
duce the so-called dipole momenta to ensure that the
factorization does not violate momentum conservation.
These obey momentum conservation in the whole mþ 1-
particle phase space and are defined through a smooth map
from the mþ 3 real emission momenta to the mþ 2 dipole
momenta. Their precise definition depends on the kinemati-
cal situation and therefore their concrete expressions will be
given in the sections dedicated to the different emitter-
spectator pairs.
In order to allow for a general construction of the

auxiliary cross section, the aforementioned color and spin
correlations are implemented into the factorization formula
by realizing the splitting functions Vdipole as operators that
act on matrix elements which are defined as abstract objects
in color and spin space. For this purpose we make use of the
conventions and the notation established in Refs. [11,12]
which we introduce in the following. That is, colored
particles in the initial state are labeled by a; b;… and those
in the final state by i; j; k;…. Since noncolored particles
are irrelevant for the subtraction procedure, they are sup-
pressed in the notation. Scattering amplitudes are consid-
ered as objects in an abstract vector space spanned by the
spins sa, si and colors ca, ci of all colored particles
involved in the process

jfi; agim ¼ 1Q
b

ffiffiffiffiffiffiffiffiffiffiffi
ncðbÞ

p Mfci;si;ca;sag
m ðfpi;pagÞðjfci; cagi

⊗ jfsi; sagiÞ; ð5Þ

where
Q

b

ffiffiffiffiffiffiffiffiffiffiffi
ncðbÞ

p
fixes the normalization by averaging over

the ncðbÞ color degrees of freedom for each initial particle b.
The kets jfci; cagi and jfsi; sagi constitute formally an
orthogonal basis of the color and spin space, respectively.
The color charge operators Ti or Ta reflect the emission of a
gluon (or another massless colored particle) from a particle i
or a. Their action on color space is defined as

mhfi; agjTj · Tkjfi; agim
¼ 1Q

bncðbÞ
½Mc1;…;cj;…;ck;…;cm;fag

m ðfpi;pagÞ��

× T e
cjdj

T e
ckdk

M
d1;…;dj;…;dk;…;dm;fag
m ðfpi;pagÞ ð6Þ

and analogously if j or k are initial-state particles. For a final-
state particle j, the color charge matrix T e

cd is defined as
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T e
cjdj

¼

8>><>>:
−ifcjdje
Te
cjdj

−Te
djcj

if j is in the

adjoint

fundamental

antifundamental

representation of suð3Þc: ð7Þ

with Ta ¼ λa

2
being half of the Gell-Mannmatrices λa and fabc the structure constants of suð3Þc. The color charge operatorTa

of an initial particle a obeys the same action defined in Eq. (6). However, by crossing symmetry the color charge matrix in this
case is defined as

T e
cada

¼

8>><>>:
−ifcadae
−Te

daca

Te
cada

if a is in the

adjoint

fundamental

antifundamental

representation of suð3Þc: ð8Þ

Since each ket jfi; agim must be a color singlet, color conservation can be written as�X
j

Tj þ
X
b

Tb

�
jfi; agim ¼

X
I

TIjfi; agim ¼ 0; ð9Þ

where we introduced the index I which runs over both initial and final-state particles. Furthermore, the commutation relation

½Ti;Tj� ¼ 0 if i ≠ j; T2
i ¼ Ci ¼

�
CA; i adjoint

CF; i ðantiÞfundamental
ð10Þ

where the quadratic Casimir operators Ci follows directly
from the definition of the color charge operators.
With these definitions and conventions at hand, we can

move on to the explicit construction of the dipole splitting
functions which approximate the real emission matrix
element in the soft and collinear limit. In the soft limit,
where the momentum of a gluon i tends to zero, the real

emission matrix element can be written in terms of an
eikonal current of the gluon

Jμ ¼
X
a

pμ
a

pa ·pi
Taþ

X
j

pμ
j

pj ·pi
Tj ¼

X
I

pμ
I

pI ·pi
TI ð11Þ

and behaves as

mþ1;a…h…; i;…; j;…; a;…j…; i;…; j;…; a;…imþ1;a…⟶
pi→0

− 4πμ2εαsm;a…h…; j;…; a;…jJ†μJμj…; j;…;a;…im;a…

ð12Þ

with the strong coupling αs. The renormalization scale μ comes from the transition from four to D space-time dimensions
and ensures that the strong coupling remains nondimensional. By using partial fractioning

pI · pK

ðpI · piÞðpK · piÞ
¼ pI · pK

ðpI · piÞðpI þ pKÞ · pi
þ pI · pK

ðpK · piÞðpI þ pKÞ · pi
ð13Þ

and color conservation, the squared eikonal current can be recast into a sum over emitter (I) and spectator (K) pairs:

J†μJμ ¼
X
I;K

pI · pK

ðpI · piÞðpK · piÞ
TI · TK

X
I;K
I≠K

1

pI · pi

�
2pI · pK

ðpI þ pKÞ · pi
−

m2
I

pI · pi

�
TI · TK: ð14Þ

For two final-state particles i and j that are produced through
a splitting eij → iþ j of a parent particle eij, there is also a
collinear divergence if i and j are massless or a quasicol-
linear divergence if i and j aremassive but theirmass is small

compared to the energy scale of the calculation so that the
true collinear divergence is screened by the nonzero mass. In
order to make the divergence visible, their momenta pi and
pj can be expressed through the Sudakov parametrization
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pμ
i ¼ zpμ þ kμ⊥ −

k2⊥ þ z2m2
ij −m2

i

z
nμ

2p · n
; ð15Þ

pμ
j ¼ ð1 − zÞpμ − kμ⊥ −

k2⊥ þ ð1 − zÞ2m2
ij −m2

j

1 − z
nμ

2p · n
;

ð16Þ

where the timelike momentum p with p ¼ m2
ij gives the

collinear direction and an auxiliary lightlike four-vector n is
needed to specify the transverse component k⊥ which is
perpendicular to n and p (k⊥ · n ¼ k⊥ · p ¼ 0), cf. Fig. 1.
The variable z corresponds to the momentum fraction
involved in the splitting. With the help of this parametriza-
tion, the squared real emission matrix element reduces in the
(quasi)collinear limit to

mþ1;a…h…; i; j;…; a;…j…; i; j;…; a;…imþ1;a…

⟶
pikpj 4πμ2εαs

pi · pj
m;a…h…; ĩj;…; a;…jP̂ĩj;iðz; k⊥; εÞj

…; ĩj;…; a;…im;a… ð17Þ

with the (generalized) Altarelli-Parisi [23] splitting function
P̂eij;iðz; k⊥; εÞ. For the processq → qþ gwe are interested in

the cases of massless as well as massive quarks and include
for this reason the quasicollinear limit which corresponds to
the collinear one in the zero-mass limit.We only consider the
pure collinear limit for the splittings g → qþ q̄ and g → gg.
The associated splitting functions are given by [12,23,24]

hsjP̂qgðz; k⊥; εÞjs0i ¼ δss0CF

�
2ð1 − zÞ

z
þ 1

2
hRSg z −

m2
q

pg · pq

�
;

ð18aÞ

hμjP̂gqðz; k⊥; εÞjνi ¼ TF

�
−gμν þ 4zð1 − zÞ k

μ
⊥kν⊥
k2⊥

�
; ð18bÞ

hμjP̂ggðz; k⊥; εÞjνi ¼ 2CA

�
−gμν

�
z

1 − z
þ 1 − z

z

�
− hRSg zð1 − zÞ k

μ
⊥kν⊥
k2⊥

�
: ð18cÞ

The number of internal helicity states of the gluon hRSg is
introduced in Eq. (18) to distinguish between different
variants of dimensional regularization. Its precise definition
for the four different dimensional schemes that we distin-
guish as well as the definition of the schemes themselves are
provided in Appendix A. For the construction of the dipole
splitting function Vdipole, we need to take into account both
the soft and collinear limit. However, it is not simply possible
to add both limits as this will lead to an “overcounting” of the
soft divergence, as the Altarelli-Parisi splitting functions also
diverge in the soft limit. Therefore, it is necessary to construct
the dipole splitting functions such that both limits are fulfilled
separately, i.e. the overlapping region is only taken into
account once.
The final dipole factorization formula that defines the

auxiliary squared matrix element related to dσA is

jMA
mþ1j2 ¼

X
i;j

X
k≠i;j

Dij;k þ
X
i;j

X
a

Da
ij þ

X
a;i

X
j≠i

Dai
j

þ
X
a;i

X
b≠a

Dai;b; ð19Þ

where one has to distinguish between four different dipoles
for the four different initial/final-state combinations of
emitter and spectator. The precise definition of the dipoles
Da

ij, D
ai
j and Dai;b related to the splitting kernels Vdipole as

well as the process dependent kernels themselves will be
given in the following sections. We will not provide a
definition for the dipole Dij;k where emitter and spectator
are both from the final state as this case is already fully
covered for the massive and the massless case in
Refs. [11,12].

III. FINAL-STATE EMITTER
AND INITIAL-STATE SPECTATOR

The dipole contribution Da
ij in Eq. (19) is defined as

Da
ij ¼

1

−2pi · pj

1

xij;a m;a

D
…; eij;…; ã;…

���Ta · Tij

T2
ij

Va
ij

���
…; eij;…; ã;…

E
m;a

; ð20Þ

where the function Va
ij describes the splitting processeij → iþ j. The variable xij;a will be defined in the section

on the kinematical quantities used for the formulation of theFIG. 1. Sudakov vector parametrization.
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splitting kernels. The tree matrix element with m final-state
particles is obtained from the original one with (mþ 1)
particles by replacing i and j with the emitter eij of
momentum p̃ij and by exchanging the initial particle a
with ã of momentum p̃a. In the following, we consider only
the specific case mij ¼ mj where the mass of the emitter eij
is identical to the one of j as the more general case mij ≠
mj case is not needed for the example processes.
Since a treatment of massless initial particles is already

available in the literature [11,12], the initial particle a will
be treated as massive throughout this paper, whereas the
final-state particle with momentum pj has an arbitrary mass
and the mass of i is zero,

p2
a ¼ m2

a > 0; p2
j ¼ m2

j ; p2
i ¼ 0: ð21Þ

A. Kinematics

For the construction of the dipole Da
ij we adopt the

kinematic quantities introduced in Ref. [17] for photon
emission off massive fermions. However, in that paper a
small photon mass is used as an infrared regulator as it is
common in electroweak physics, so that the crucial part lies
in the generalization of the phase space parametrization
from four to D dimensions.
The two main quantities are the total outgoing momen-

tum of the dipole phase space

P ¼ pi þ pj ð22Þ

and the total transferred momentum

Q ¼ P − pa ¼ pb −
X
k

pk ¼ p̃ij − p̃a; ð23Þ

where k runs over the momenta of all other (m − 1) final-
state particles besides pi and pj, cf. Figs. 2 and 3. At this
point, one should highlight the difference between P and
p̃ij. That is, P is the true momentum of the parent particle eij
in the real emission matrix element whereas p̃ij is the

dipole momentum which is inserted into the tree matrix
element as momentum of eij within the auxiliary matrix
element. Before we can define the dipole splitting functions
and the dipole momenta explicitly, some auxiliary variables
have to be introduced. These are first of all the momentum
fractions

zj ¼
pa · pj

P · pa
¼ 1 − zi; xij;a ¼

P · pa − pi · pj

P · pa
; ð24Þ

which take by definition only values between 0 and 1 and
behave in the soft ðpμ

i → 0Þ and collinear limit ðpi · pj →
0Þ as

zi → 0; zj → 1; xij;a → 1: ð25Þ

The different quantities are related through

P2 ¼ −Q̄2

xij;a
þQ2 −m2

a; P · pa ¼
−Q̄2

2xij;a
; ð26Þ

where we introduced the abbreviation

Q̄2 ¼ Q2 −m2
a −m2

j : ð27Þ

It is worth noting that since the product P · pa is always
positive and xij;a can only take values between 0 and 1,

Q̄2 is always negative such that
ffiffiffiffiffiffi
Q̄4

p
¼ −Q̄2 with

Q̄4 ¼ ðQ̄2Þ2. In addition, we define the auxiliary variables

λaj ¼ λðQ2; m2
j ; m

2
aÞ ¼ Q̄4 − 4m2

am2
j and ð28Þ

RðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ̄2 þ 2m2

axÞ2 − 4m2
aQ2x2

p ffiffiffiffiffiffi
λaj

p ð29Þ

with the Källén function

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx ð30Þ

as well as the reduced masses ηn and the relativistic relative
velocity v between p̃ij and p̃a:

FIG. 2. Diagrammatic interpretation of the dipole Da
ij and the

associated splitting function Va
ij.

FIG. 3. Kinematics for a final-state emitter and an initial-
state spectator in the original momenta (left) and the dipole
momenta (right).
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ηn ¼
m2

n

−Q̄2
ðn ¼ a; jÞ; v ¼

ffiffiffiffiffiffi
λaj

p
−Q̄2

: ð31Þ

It is straightforward to check that P2 → m2
j and Rðxij;aÞ →

1 in the soft and collinear limit. The dipole momenta of
emitter and spectator

p̃μ
ij ¼

xij;a
Rðxij;aÞ

pμ
a

þ
�

1

Rðxij;aÞ
Q̄2 þ 2m2

axij;a
2Q2

−
Q2 þm2

a −m2
j

2Q2
þ 1

�
Qμ

ð32Þ

p̃μ
a ¼ p̃μ

ij −Qμ ð33Þ

are constructed from the requirement to fulfill the on-shell
conditions p̃2

a ¼ m2
a, p̃2

ij ¼ m2
ij and momentum conserva-

tion p̃a þ pb ¼ p̃ij þ pk.

B. Phase space factorization

The factorization of the (mþ 1)-particle phase space
dϕmþ1ðpi; pj; pk;pa þ pbÞ into the m-particle phase
space dϕmðPðxÞ; pk;pa þ pbÞ and the dipole phase space
½dpiðQ2; x; ziÞ� is derived in Appendix B 1 and corresponds
to a convolution over the parameter x,Z

dϕmþ1ðpi; pj; pk;pa þ pbÞθðxij;a − x0Þ

¼
Z

1

x0

dx
Z

dϕmðPðxÞ; pk;pa þ pbÞ

×
Z

½dpiðQ2; x; ziÞ�; ð34Þ

where x plays the role of xij;a. In Eq. (34) an additional
auxiliary parameter x0 with 0 ≤ x0 < 1 is introduced as a
lower limit on x which is provided by the constraint that the
argument of the square root in Eq. (29) remains positive for
all possible values of Q2. This translates into the condition

−Q̄2

2maðma −
ffiffiffiffiffiffi
Q2

p
Þ
< x0 < 1; ð35Þ

if 0 <
ffiffiffiffiffiffi
Q2

p
< ma −mj. If the latter condition is not met,

any value for x0 between 0 and 1 can be used. Since the
singular behavior occurs for x → 1, applying the splitting
functionVa

ij only forx0 ≤ x ≤ 1 still cancels thedivergences.
In addition, the independence of ΔσNLO on the choice of x0
serves as a nontrivial check for the correct implementation of
the subtraction procedure. The integration of the dipole
splitting function over the one-particle phase spaceZ

½dpiðQ2;x;ziÞ� ¼
1

ð4πÞ2−ε
ðP2Þ−ε
Γð1− εÞ

−Q̄2

x2

�
RðxÞ ffiffiffiffiffiffi

λaj
p

−Q̄2

�2ε−1

×
Z

zþ

z−

dzi½ðzi− z−Þðzþ−ziÞ�−ε ð36Þ

with the integration limits

z� ¼ 1 − x
2

−Q̄2 � ffiffiffiffiffiffi
λaj

p
RðxÞ

xm2
j − Q̄2ð1 − xÞ ð37Þ

yields the singular behavior parametrized by D ¼ 4 − 2ε
dimensions. In the massless case mj ¼ 0 the integration
limits related to zi simplify to

z� ¼ 1

2
ð1� RðxÞÞ: ð38Þ

C. The dipole splitting functions

The functions Va
ij in Eq. (20) are provided for the four

(SUSY)-QCD splitting processes:
(i) q → gðpiÞ þ qðpjÞ: mi ¼ 0 and mij ¼ mj ¼ mq
(ii) q̃ → gðpiÞ þ q̃ðpjÞ: mi ¼ 0 and mij ¼ mj ¼ mq̃
(iii) g → gðpiÞ þ gðpjÞ: mij ¼ mi ¼ mj ¼ 0
(iv) g → qðpiÞ þ q̄ðpjÞ: mi ¼ mj ¼ mij ¼ mq ¼ 0.

The processes where the particles are exchanged through
their corresponding antiparticles are formally identical to
those given here and are therefore not listed separately. The
dipole splitting functions read explicitly

hsjVa
gqjs0i ¼ 8παsμ

2εCF

�
2

2 − xij;a − zj
− 2þ 1

2
hRSg zi −

m2
j

pi · pj

�
δss0 ¼ hVa

gqiδss0 ð39Þ

hsjVa
gq̃js0i ¼ 8παsμ

2εCF

�
2

2 − xij;a − zj
− 2 −

m2
j

pi · pj

�
δss0 ¼ hVa

gq̃iδss0 ð40Þ

hμjVa
ggjνi ¼ 16παsμ

2εCA

�
−gμν

�
1

1þ zi − xij;a
þ 1

2 − zi − xij;a
− 2

�
þ hRSg
2pi · pj

Cμν
�

ð41Þ

hμjVa
qq̄jνi ¼ 8παsμ

2εTF

�
−gμν −

2

pi · pj
Cμν
�
: ð42Þ
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In contrast to the work done in [12,18], the dipole splitting
functions for processes involving quarks and gluons in
Eqs. (39) and (41) also include the number of helicity states
of the gluon hRSg in order to distinguish directly between the
different variants of dimensional regularization schemes.
The dipole splitting function for the squarks in Eq. (40) was
derived by using the eikonal approximation for a process
involving the emission of a gluon off a squark. The function
in Eq. (39) for the splitting q → gþ q is valid for a massive
as well as a massless quark and the one in Eq. (40) for the
splitting q̃ → gq̃ can also be applied to the process g̃ → gg̃
since Eq. (40) only contains the soft limit. The spin
correlation tensor

Cμν ¼ ðzðmÞ
i pμ

i − zðmÞ
j pμ

j ÞðzðmÞ
i pν

i − zðmÞ
j pν

jÞ ð43Þ

depending on the new variables

zðmÞ
i ¼ zi − z− ¼ zi −

1

2
ð1 − RðxÞÞ;

zðmÞ
j ¼ zj − z− ¼ zj −

1

2
ð1 − RðxÞÞ ð44Þ

is constructed such that it reduces to kμ⊥kν⊥ in the collinear
limit as dictated by Eq. (18) and is at the same time
orthogonal to the direction of the emitter

p̃μ
ijCμν ¼ p̃ν

ijCμν ¼ 0: ð45Þ

The orthogonality allows to simplify the integration of the
nondiagonal dipole functions in helicity space over the one-
particle phase space in Eq. (36) which is complicated due to
the additional azimuthal correlations. However, the integral
over the spin correlation tensor takes by Lorentz invariance
(it can only depend on p̃ij and p̃a) the formZ

½dpiðQ2; P2; ziÞ�Cμν ¼ −A1gμν þ A2

p̃μ
ijp̃

ν
a þ p̃ν

ijp̃
μ
a

p̃ij · p̃a

− A3

m2
ap̃

μ
ijp̃

ν
ij

ðp̃ij · p̃aÞ2
þ A4

p̃μ
ap̃ν

a

m2
a

:

ð46Þ
At this point, note that the metric tensor multiplying A1 is
quasi-D-dimensional as momenta are kept in D dimensions
in all dimensional schemes. Because of the transversality
condition on Cμν in Eq. (45) the term A4 is 0 and 1 finds
additionallyA1 ¼ A2 such that the right-hand side reduces to

−A1

�
gμν −

p̃μ
ijp̃

ν
a þ p̃ν

ijp̃
μ
a

p̃ij · p̃a

�
− A3

m2
ap̃

μ
ijp̃

ν
ij

ðp̃ij · p̃aÞ2
: ð47Þ

Therefore, A1 can be disentangled by performing the
azimuthal average over the transverse polarizations of the
emitter

A1 ¼
Z

½dpiðQ2; P2; ziÞ�
1

D − 2
dμνðp̃ij; p̃aÞCμν ð48Þ

with the help of the polarization tensor

dμνðp̃ij; p̃aÞ ¼ −gμν þ p̃μ
ijp̃

ν
a þ p̃ν

ijp̃
μ
a

p̃ij · p̃a
−m2

a

p̃μ
ijp̃

ν
ij

ðp̃ij · p̃aÞ2
ð49Þ

which fulfills in D dimensions dμνdμν ¼ D − 2. The
coefficient A3 drops out in this computation since
dμνðp̃ij; p̃aÞp̃μ

ijp̃
ν
ij ¼ 0. Furthermore,A3 is irrelevant because

of the Slavnov-Taylor identity p̃μ
ijMμ ¼ 0 which holds for

any matrix element Mμ in a Becchi-Rouet-Stora-Tyutin
(BRST)-invariant theory where the polarization vector
ϵμλðp̃ijÞ has been amputated if all other polarization vectors
inMμ are transverse. This means in particular that the spin-
averaged splitting functions hVa

iji emerging fromEq. (48) are
diagonal in helicity space, i.e proportional to −gμν. Con-
cretely, they are

hVa
ggi ¼ 16παsμ

2εCA

�
1

1þ zi − xij;a
þ 1

2 − zi − xij;a

− 2þ hRSg
2ð1 − εÞ ðzþ − ziÞðzi − z−Þ

�
ð50Þ

hVa
qq̄i ¼ 8παsμ

2εTF

�
1 −

2

1 − ε
ðzþ − ziÞðzi − z−Þ

�
; ð51Þ

where z� correspond to the integration limits in Eq. (37).

D. The integrated dipole functions

The integral of the spin-averaged dipole function hVa
iji

over the dipole phase space is defined as

αs
2π

1

Γð1 − εÞ
�
4πμ2

−Q̄2

�
ε

Iaijðx; εÞ ¼
Z

½dpiðQ2; x; ziÞ�

×
1

2pi · pj

1

x
hVa

iji; ð52Þ

where Iaij depends on the auxiliary variable x (andQ
2). The

casesmj ≠ 0 andmj ¼ 0 for the process q → gq have to be
treated separately due to different kinds of singular behav-
ior. For this reason, the associated integrated dipole is
marked with a hat Î for mj ¼ 0 to distinguish it from the
massive case. By writing the dipole phase space in Eq. (36)
in the formZ

zþ

z−

dzi½ðzi − z−Þðzþ − ziÞ�−ε

¼ ðzþ − z−Þ1−2ε
Z

1

0

dt½ð1 − tÞt�−ε ð53Þ
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through the substitution t ¼ zi−z−
zþ−z−

, the integration of the

splitting function becomes straightforward in terms of the
Euler beta function

βða; bÞ ¼
Z

1

0

dtð1 − tÞa−1tb−1 ¼ ΓðaÞΓðbÞ
Γðaþ bÞ ð54Þ

and the Gaussian hypergeometric function

2F1ða; b; c; zÞ ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
Z

1

0

dt
tb−1ð1 − tÞc−b−1

ð1 − ztÞa :

ð55Þ

The integrated counterparts Iaij of Eq. (52) read

Iagqðx; εÞ ¼
2CF

vRðxÞx2
1

ð1 − xÞ1þ2ε ðηjxþ ð1 − xÞÞ2ε
�
−Q̄2

P2

�
ε
�� ffiffiffiffiffiffi

λaj
p

RðxÞ
Q̄2

þ 1

4
hRSg z−ðzþ − z−Þ

�
βð1 − ε; 1 − εÞ

þ 1

4
hRSg ðzþ − z−Þ2βð1 − ε; 2 − εÞ − I1ð−AðxÞ; εÞ

�
ð56Þ

Îagqðx; εÞ ¼
2CF

x2−ε
1

ð1 − xÞ1þε

��
1

8
hRSg ð1 − RðxÞÞ − 1

�
βð1 − ε; 1 − εÞþ 1

4
hRSg RðxÞβð1 − ε; 2 − εÞ − 1

RðxÞ I1ð−AðxÞ; εÞ
�
ð57Þ

Iagq̃ðx; εÞ ¼
2CF

vRðxÞx2
1

ð1 − xÞ1þ2ε ðηjxþ ð1 − xÞÞ2ε
�
−Q̄2

P2

�
ε
�� ffiffiffiffiffiffi

λaj
p

RðxÞ
Q̄2

�
βð1 − ε; 1 − εÞ − I1ð−AðxÞ; εÞ

�
ð58Þ

Iaggðx; εÞ ¼ −
2CA

RðxÞx2−ε
1

ð1 − xÞ1þϵ

�
I1ð−AðxÞ; εÞ − I1ðÃðxÞ; εÞ−

hRSg
2ð1 − εÞRðxÞ

3βð2 − ε; 2 − εÞ þ 2RðxÞβð1 − ε; 1 − εÞ
�
ð59Þ

Iaqq̄ðx; εÞ ¼
TF

x2−ε
1

ð1 − xÞ1þϵ

�
βð1 − ε; 1 − εÞ − 2

1 − ε
RðxÞ2βð2 − ε; 2 − εÞ

�
; ð60Þ

where the arguments AðxÞ and ÃðxÞ of the function

I1ðz; εÞ ¼ z
Z

1

0

dt
ðð1 − tÞtÞ−ε

1 − zt
¼ zβð1 − ε; 1 − εÞ2F1ð1; 1 − ε; 2 − 2ε; zÞ

¼ − lnð1 − zÞ þ ε

�
2Li2ðzÞ þ

1

2
ln2ð1 − zÞ

�
þOðε2Þ ð61Þ

are defined as

AðxÞ ¼ zþ − z−
1 − xþ z−

; ÃðxÞ ¼ zþ − z−
2 − x − z−

ð62Þ

and vwas defined in Eq. (31). The expansion of I1ðz; εÞ in ε
is derived in Appendix C and is valid as long as its
argument z remains bounded between one and negative
infinity −∞ < z < 1 which is always fulfilled for mj ≠ 0.
In the massless case mj ¼ 0, the variables A and Ã take a
similar form:

AðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðxÞ2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðxÞ2

p ; ÃðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðxÞ2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðxÞ2

p
ð63Þ

when being expressed through the quantity

wðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞð2 − xð1 − ηaÞÞ

p
3 − 2x

; ð64Þ

where ηa was defined in Eq. (31). Writing AðxÞ and ÃðxÞ in
this manner makes the relation

ÃðxÞ
ÃðxÞ − 1

¼ −AðxÞ ð65Þ

apparent which allows to simplify the difference of the I1
functions in Eq. (59):

I1ð−AðxÞ; εÞ − I1ðÃðxÞ; εÞ ¼ 2I1ð−AðxÞ; εÞ ð66Þ

by employing the identity
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I1ðz; εÞ ¼ −I1
�

z
z − 1

; ε

�
ð67Þ

which follows directly from the Pfaff transformation

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a2F1

�
a; c − b; c;

z
z − 1

�
: ð68Þ

For ε ¼ 0 the functions Iaij become singular at the end point
x → 1 giving the infrared divergence. Therefore, the
integration over x involving the tree matrix element squared
cannot be handled numerically yet. To allow for the

extraction of the divergence in terms of ε while being able
to perform the mentioned integration numerically, the
½� � ��þ distribution defined as

gðxÞ ¼ ½gðxÞ�þ½a;b� þ δðx − bÞ
Z

b

a
dy gðyÞ ð69Þ

provides a way around and serves as an artificially inserted
zero to render the end point contribution finite. The end
point part is then further decomposed into a finite Ja;NSij and

singular Ja;Sij piece where the latter contains the infrared
poles such that we can write

Iagqðx; εÞ ¼ CFf½JagqðxÞ�þ þ δð1 − xÞðJa;Sgq ðεÞ þ Ja;NSgq Þg þOðεÞ ð70Þ

Iagq̃ðx; εÞ ¼ CFf½Jagq̃ðxÞ�þ þ δð1 − xÞðJa;Sgq̃ ðεÞ þ Ja;NSgq̃ Þg þOðεÞ ð71Þ

Iaggðx; εÞ ¼ 2CAf½JaggðxÞ�þ þ δð1 − xÞðJa;Sgg ðεÞ þ Ja;NSgg Þg þOðεÞ ð72Þ

Iaqq̄ðx; εÞ ¼ TFf½Jaqq̄ðxÞ�þ þ δð1 − xÞðJa;Sqq̄ ðεÞ þ Ja;NSqq̄ Þg þOðεÞ: ð73Þ

The decomposition in Eq. (70) holds similarly for the hatted and nonhatted versions. Note that the notation in Eq. (70) to
(73) is purely symbolic: ½JaijðxÞ�þ is not a “plus” distribution itself but contains all the plus distributions. The decomposition
above is straightforward for the two cases involving either a soft or a collinear divergence through the identityZ

1

x0

dx
1

ð1 − xÞ1þε fðxÞ ¼
�
−
1

ε
þ ln ð1 − x0Þ

�
fð1Þ þ

Z
1

x0

dx
1

1 − x
ðfðxÞ − fð1ÞÞ þOðεÞ: ð74Þ

The gluon emission contributions for massive (s)quarks are

½JagqðxÞ�þ ¼ 2

x2

�
1

1 − x

�þ
½x0;1�

� ðx − 1Þ2
4ðxðηj − 1Þ þ 1Þ2 − 1þ 1

vRðxÞ lnð1þ AðxÞÞ
�

ð75Þ

½Jagq̃ðxÞ�þ ¼ 2

x2

�
1

1 − x

�þ
½x0;1�

�
1

vRðxÞ lnð1þ AðxÞÞ − 1

�
ð76Þ

Ja;Sgq ðεÞ ¼ Ja;Sgq̃ ðεÞ ¼
1

ε

�
1 −

1

v
lnðAþ 1Þ

�
ð77Þ

Ja;NSgq ¼ Ja;NSgq̃ ¼ 2

v

�
1

2
ðv − lnðAþ 1ÞÞ ln

�
ηj

ð1 − x0Þ2
�
þ vþ 1

4
ln2ð1þ AÞ þ Li2ð−AÞ

�
: ð78Þ

Note that A is evaluated at x ¼ 1 in Eqs. (77) and (78) giving

Að1Þ ¼ 2v
2ηj þ 1 − v

: ð79Þ

The continuum and end point contributions for the case of the splitting process g → qq̄ are

½Jaqq̄ðxÞ�þ ¼
�

1

1 − x

�þ
½x0;1�

1

x2

�
1 −

1

3
RðxÞ2

�
ð80Þ
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Ja;Sqq̄ ðεÞ ¼ −
2

3ε
ð81Þ

Ja;NSqq̄ ¼ −
10

9
þ 2

3
ln ð1 − x0Þ: ð82Þ

Disentangling the infrared poles for massless quarks as well
as gluons in the splittings q → gq and g → gg is more
involved due to the fact that besides the factor 1

ð1−xÞ1þε in

Eqs. (57) and (58) the function I1ð−A; εÞ diverges as well
for x → 1 which corresponds to a soft-collinear divergence.
Since the expansion in ε of I1ð−A; εÞ is not analytic for
x ¼ 1, the hypergeometric function itself has to be placed
inside the ½� � ��þ distribution which is achieved by intro-
ducing the argument of the hypergeometric function as new
integration variable

yAðxÞ ¼
1

AðxÞ ¼ ð1 − xÞAðxÞ ð83Þ

which behaves analogously to x in the singular region. This
factorization is achieved by expanding both the numerator
and the denominator of A as given in Eq. (63) with the term
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wðxÞ2

p
� leading to

AðxÞ ¼ 2ðð1 − ηaÞx − 2Þ
ρð2x − 3 − ρÞ ð84Þ

with the abbreviation

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ηaðx − 1Þx

p
: ð85Þ

In this new variable yA only the integral

I1ðy0; εÞ ¼
Z

y0

0

dy
1

y1þε I1

�
−
1

y
; ε

�
¼ −

1

2ε2
þ π2

12
− Li2

�
−

1

y0

�
þOðεÞ ð86Þ

has to be computed analytically which is outlined in
Appendix C. As we still want to perform the numerical
integration of the ½� � ��þ distribution in terms of x, the
derivative

y0AðxÞ ¼
∂yAðxÞ
∂x

¼ 1

ρ3
ðð3 − 4xÞηa − 1Þ ð87Þ

has to be included inside the plus distribution. For the
special case x ¼ 1 it simply evaluates to

y0Að1Þ ¼ −Að1Þ ¼ −ηa − 1: ð88Þ

The explicit contributions to the decompositions in
Eqs. (70) and (72) read then

½ĴagqðxÞ�þ ¼ 2

x2

�
−
3

4

�
1

1 − x

�þ
½x0;1�

þ ½y0AðxÞAðxÞ ln ð1þ AðxÞÞ�þ½x0;1�
AðxÞ

y0AðxÞRðxÞ
�

ð89Þ

Ĵa;Sgq ðεÞ ¼
1

ε2
þ 1

ε

�
ln ð1þ ηaÞ þ

3

2

�
ð90Þ

Ĵa;NSgq ¼ 1

2
ln2 ð1þ ηaÞ −

3

2
ln ð1 − x0Þ þ 2Li2ð−Aðx0ÞÞ þ

7 − r
2

−
π2

6
ð91Þ

½JaggðxÞ�þ ¼ 1

x2

�
½y0AðxÞAðxÞ ln ð1þ AðxÞÞ�þ½x0;1�

2AðxÞ
y0AðxÞRðxÞ

þ
�

1

1 − x

�þ
½x0;1�

�
RðxÞ2
6

− 2

��
ð92Þ

Ja;Sgg ðεÞ ¼ 1

ε2
þ 1

ε

�
ln ð1þ ηaÞ þ

11

6

�
ð93Þ

Ja;NSgg ¼ 1

2
ln2 ð1þ ηaÞ −

11

6
ln ð1 − x0Þ þ 2Li2ð−Aðx0ÞÞ þ

67

18
−
π2

6
−
r
6
: ð94Þ

E. Final expression

We are now ready to present the explicit form of the
insertion operator I defined in Eq. (4) following the same
notation used by Catani and Seymour in Ref. [12].
Therefore, we consider a process with one colored initial
particle carrying the momentum pa and another not

necessarily colored particle with momentum pb. The
final result for the auxiliary cross section can then be
written asZ
mþ1

dσAa ¼
Z

1

x0

dx
Z
m

�
dσBa ðp̃aðxÞÞ

F ã

F a
⊗ Im;aðx;εÞ

�
ð95Þ
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with the new insertion operator

Im;aðx; ε; μ2; fpi;mig; paÞ ¼ −
αs
2π

ð4πÞε
Γð1 − εÞ

X
j

Tj · Ta

�
μ2

−Q̄2

�
ε 1

T2
j
Vjðx;Q2; mj; εÞ: ð96Þ

The factor F ã=F a in Eq. (95) with

F a ¼ 2λ
1
2ððpa þ pbÞ2; m2

a; m2
bÞ; F ã ¼ 2λ

1
2ððp̃aðxÞ þ pbÞ2; m2

a; m2
bÞ ð97Þ

is responsible for the correct flux factor. The flavor functions Vj already incorporate the correct counting of the symmetry
factors for the transition from mþ 1 particles to m particles:

(i) If j is a massive quark (or antiquark), then

Vqðx;Q2; mq; εÞ ¼ Iagqðx; εÞ: ð98Þ

(ii) If j is a massless quark (or antiquark), then

Vqðx;Q2; 0; εÞ ¼ CF½JagqðxÞ�þ þ δð1 − xÞ
�
CF

�
1

ε2
þ χðQ2Þ − 3

2
ln ð1 − x0Þ

�
þ ΓRS

q ðεÞ þ Kq

	
ð99Þ

with

χðQ2Þ ¼ 1

ε
ln ð1þ ηaÞ þ

1

2
ln2 ð1þ ηaÞ þ 2Li2ð−Aðx0ÞÞ: ð100Þ

(iii) The flavor kernel for a gluon j is

Vgðx;Q2; 0; εÞ ¼ CA½JaggðxÞ�þ þ TFNf½JaQQ̄ðxÞ�þ þ δð1 − xÞ
�
CA

�
1

ε2
þ χðQ2Þ − 11

6
ln ð1 − x0Þ

�
þ 2

3
TFNf ln ð1 − x0Þ þ ΓRS

g ðεÞ þ Kg

	
: ð101Þ

The functions Γj for gluons and massless quarks (antiquarks) are

ΓRS
q ðεÞ ¼ 1

ε
γq − γ̃RSq ; ΓRS

g ðεÞ ¼ 1

ε
γg − γ̃RSg ð102Þ

with the flavor constants

γq ¼
3

2
CF; γg ¼

11

6
CA −

2

3
TFNf ð103Þ

and the regularization scheme dependent terms

γ̃RSg ¼ r
6
CA; γ̃RSq ¼ r

2
CF: ð104Þ

The constants Ka are defined as

Kq ¼
�
7

2
−
π2

6

�
CF; Kg ¼

�
67

18
−
π2

6

�
CA −

10

9
TFNf:

ð105Þ

IV. INITIAL-STATE EMITTER
AND FINAL-STATE SPECTATOR

The dipole Dai
j in Eq. (19) is defined as

Dai
j ¼ −

1

2pa · pi

1

xij;a m;eaiD…; j̃;…; eai;…���Tj · Tai

T2
ai

× Vai
j

���…; j̃;…; eai;…E
m;eai; ð106Þ

where Vai
j describes the splitting process a → iþ eai. The

tree-level matrix element is obtained from the original
matrix element with (mþ 1) particles in the final state by
replacing the momentum pa of the particle a in the tree-
level matrix element by the dipole momentum p̃ai, the
momentum pj of j by p̃j and discarding the final-state
particle i. Similar to the previous section, we consider only
the case where the masses of a and eai are identical.
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A. Kinematics and phase space factorization

The case of an initial-state emitter and final-state spectator
is kinematically identical to the case of a final-state emitter
and an initial-state spectator after switching the roles played
by eij and a. Particle j takes over the role of the spectator and
the associated dipole momenta are relabeled accordingly as
p̃ij → p̃j and p̃a → p̃ai. Therefore, the kinematics from
Sec. III A can be adopted completely.

B. The dipole splitting functions

The function Vai
j in Eq. (106) for the SUSY-QCD

splitting process
(i) q̃ðpaÞ → gðpiÞ þ q̃: mi ¼ 0 and ma ¼ mq̃

in the presence of a massive emitter eai reads
hVq̃g

j i ¼ 8παsCFμ
2ε

�
2

2 − xij;a − zj
− 2 −

m2
axij;a

pa · pi

�
: ð107Þ

The same function holds for the gluino splitting process
g̃ → gþ g̃ as well as for q → gq involving a massive quark
as Eq. (107) only accounts for the soft limit. In the case of
the gluino, it is only necessary to replace the color factorCF
in Eq. (107) by CA.

C. The integrated dipole functions

We define the integral of the spin-averaged dipole
function hVai

j i over the dipole phase space as

αs
2π

1

Γð1 − εÞ
�
4πμ2

−Q̄2

�
ε

Ia;
eai

j ðx; εÞ ¼
Z

½dpiðQ2; x; ziÞ�
1

2pa · pi

1

x
hVai

j i: ð108Þ

In our case, it is not necessary to differentiate between the number of polarizations nsðeaiÞ [nsðaÞ] of eai (a) in contrast to [11]
as we always have the same number of polarizations of a and eai. For the only splitting function considered in this section,
the integral over the dipole phase space can be performed in a straightforward manner through a partial fraction
decomposition and the application of the hypergeometric as well as Euler’s Beta function giving

Iq̃ q̃j ðx; εÞ ¼ 2CF

vRðxÞx2
1

ð1 − xÞ1þ2ε ðηjxþ ð1 − xÞÞ2ε
�
−Q̄2

P2

�
ε

×

�
I1ð−AðxÞ; εÞ − xI1ð−BðxÞ; εÞ þ 2ηax2

ðηj − 1Þxþ 1

1 − vRðxÞ I2ð−BðxÞ; εÞ
�

ð109Þ

Îq̃ q̃j ðx; εÞ ¼ 2CF

RðxÞx2−ε
1

ð1 − xÞ1þε

�
I1ð−AðxÞ; εÞ − xI1ð−BðxÞ; εÞ þ

x
2
ðRðxÞ þ 1ÞI2ð−BðxÞ; εÞ

�
; ð110Þ

where the hat separates again the cases mj ≠ 0 and mj ¼ 0. The variable B is defined as

BðxÞ ¼ zþ − z−
z−

¼ −2
ffiffiffiffiffiffi
λaj

p
RðxÞ

Q̄2 þ ffiffiffiffiffiffi
λaj

p
RðxÞ ð111Þ

and can be written in the massless case as

BðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uðxÞ2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uðxÞ2

p with uðxÞ2 ¼ 4ð1 − xÞxηa: ð112Þ

The variable AðxÞ as well as the function I1ðz; ϵÞ were introduced in Sec. III D. The function

I2ðz; εÞ ¼ z
Z

1

0

dt
ðð1 − tÞtÞ−ε
ð1 − ztÞ2 ¼ zβð1 − ε; 1 − εÞ2F1ð2; 1 − ε; 2 − 2ε; zÞ

¼ z
1 − z

þ ε
2 − z
z − 1

lnð1 − zÞ þOðε2Þ ð113Þ

is defined similarly to I1ðz; ϵÞ but with a different argument set of the hypergeometric function. The extraction of the
divergences proceeds again through the application of plus distribution
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Iq̃ q̃j ðx; εÞ ¼ CFf½Jq̃ q̃j ðxÞ�þ þ δð1 − xÞðJq̃ q̃;Sj ðεÞ þ Jq̃ q̃;NSj Þg þOðεÞ: ð114Þ

Performing this decomposition in the massless case is as peculiar as in the case of the gluon splitting function. However, it is
possible to proceed in the same way. The divergent pieces given by I1ð−AðxÞ; εÞ and I1ð−BðxÞ; εÞ in Eq. (110) lead to the
same integral I1 that already appeared in Sec. III D. The poles that arise through I2ð−B; εÞ can now be disentangled in a
very similar manner by introducing the variable

yBðxÞ ¼
1

BðxÞ ¼ ð1 − xÞBðxÞ ð115Þ

as a new integration variable. This factorization is achieved as in the case of AðxÞ by expanding BðxÞ written as in Eq. (112)
with 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
which yields

BðxÞ ¼ 2ηax
ρ2 þ ρ

; ð116Þ

where ρ was defined in Eq. (85). For the integration of the function I2ð−B; εÞ the integral

I2ðy0; εÞ ¼
Z

y0

0

dy
1

y1þε I2

�
−
1

y
; ε

�
¼ 1

2ε
þ ln

�
1þ 1

y0

�
þOðεÞ ð117Þ

is calculated in Appendix C. Connected to the transition from x to yB the derivative

y0BðxÞ ¼
∂yBðxÞ
∂x

¼ ηa
ρ3

ð1 − 2xÞ ð118Þ

has to be placed inside the ½� � ��þ distribution. It simplifies to

y0Bð1Þ ¼ −Bð1Þ ¼ −ηa ð119Þ

for x ¼ 1. With the knowledge of the integrals I1, I2, I1 and I2 we can give the different contributions to Eq. (114) which
read for the massive case

½Jq̃ q̃j ðxÞ�þ ¼
�

1

1 − x

�þ
½x0;1�

2

vRðxÞx2
�
x lnð1þ BðxÞÞ − lnð1þ AðxÞÞ − 4ηax2

ðηj − 1Þxþ 1

1 − v2RðxÞ2 vRðxÞ
�

ð120Þ

Jq̃ q̃;Sj ðεÞ ¼ 1

ε

�
1 −

1

v
ln

�
1þ B
1þ A

��
ð121Þ

Jq̃ q̃;NSj ¼ 1

v

��
vþ ln

�
1þ A
1þ B

��
ln

�
ηj

ð1 − x0Þ2
�
þ lnð1þ BÞþ 1

2
½ln2ð1þ BÞ − ln2ð1þ AÞ� þ 2Li2ð−BÞ − 2Li2ð−AÞ

�
ð122Þ

and for the massless case

½Ĵq̃ q̃j ðxÞ�þ ¼ 2

RðxÞx
�
½y0BðxÞBðxÞ lnð1þ BðxÞÞ�þ½x0;1�

BðxÞ
y0BðxÞ

− ½y0AðxÞAðxÞ lnð1þ AðxÞÞ�þ½x0;1�
AðxÞ
xy0AðxÞ

−
�
y0BðxÞ

B2ðxÞ
1þ BðxÞ

�þ
½x0;1�

BðxÞ
2y0BðxÞ

ð1þ RðxÞÞ
�

ð123Þ

Ĵq̃ q̃;Sj ðεÞ ¼ 1

ε

�
1 − ln

�
1þ ηa
ηa

��
ð124Þ

Ĵq̃ q̃;NSj ¼ 1

2
ln2ðηaÞ þ lnðηaÞ −

1

2
ln2 ð1þ ηaÞ − 2Li2ð−Aðx0ÞÞ þ 2Li2ð−Bðx0ÞÞ þ 2 ln ð1þ Bðx0ÞÞ: ð125Þ
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Note that A and B in Eq. (121) are evaluated at x ¼ 1, i.e.

Bð1Þ ¼ 2v
1 − v

; ð126Þ

where v was defined in Eq. (31). The corresponding
expression for A is given in Eq. (79).

D. Final expression

By using the same labels as in Sec. III E, the auxiliary
cross section for initial-state singularities with final-state
spectators can be written asZ
mþ1

dσAa ¼
X
a0

Z
1

x0

dx
Z
m

�
dσBa0 ðp̃aðxÞÞ

F ã

F a
⊗ Im;aa0 ðx;εÞ

�
ð127Þ

with the insertion operator

Im;aa0 ðx;ε;μ2;fpi;mig;paÞ

¼−
αs
2π

ð4πÞε
Γð1− εÞ

X
j

Tj ·Ta0

�
μ2

−Q̄2

�
ε 1

T2
a0
Va;a0 ðx;Q2;mj;εÞ:

ð128Þ

The flavor functions Va;a0 are related to the integrated
dipoles defined in Eq. (108) via

Va;a0 ðx;Q2; mj; εÞ ¼ Iaa
0

j ðx; εÞ: ð129Þ

V. INITIAL-STATE EMITTER
AND INITIAL-STATE SPECTATOR

The dipole for emitter and spectator both from the initial
state is defined as

Dai;b ¼ 1

−2pa · pi

1

xi;ab m;ab

D
1̃;…; gmþ 1; eai; b

×

����Tb · Tai

T2
ai

Vai;b

����1̃;…; gmþ 1; eai; bE
m;ab

; ð130Þ

where the m-particle matrix element is obtained by dis-
carding the particle i in the (mþ 1)-particle matrix element
and rescaling the momenta pk of all other final-state
particles to their dipole analogs p̃k as well as pa to p̃ai
while the momentum of the spectator pb remains
unchanged. The operator Vai;b in Eq. (130) describes the
splitting a → eaiþ i.

A. Kinematics and phase space factorization

For the parametrization of the divergences we introduce
the auxiliary variables

xi;ab ¼
pa · pb − pi · pa − pi · pb

pa · pb
; y ¼ pa · pi

pa · pb
ð131Þ

which behave in the soft limit pμ
i → 0 as

xi;ab → 1; y → 0: ð132Þ

The sum of all outgoing momenta pk except for the soft
gluon is denoted by

P ¼ pa þ pb − pi ¼
X
k

pk; ð133Þ

cf. Figs. 4 and 5. Furthermore, it is convenient to define the
abbreviations

λab ¼ λðs;m2
a; m2

bÞ ¼ s̄2 − 4m2
am2

b ð134Þ

s̄ ¼ s −m2
a −m2

b: ð135Þ

The construction of the dipole momenta is different from
the previous two cases. Instead of modifying only the
momenta of emitter and spectator, the momentum of
the spectator pb remains unchanged whereas all other
momenta are modified. The new momenta

p̃μ
ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðP2; m2

a; m2
bÞ

λab

s
pμ
a þ

 
P2 −m2

a −m2
b

2m2
b

−
pa · pb

m2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðP2; m2

a; m2
bÞ

λab

s !
pμ
b ð136Þ

P̃μ ¼ p̃μ
ai þ pμ

b ð137Þ

are then built from the requirement to retain the mass-shell
relations p̃2

ai ¼ m2
ai and P̃2 ¼ P2. The outgoing momenta

pk except for pi are modified by a Lorentz transformation

p̃μ
k ¼ Λμ

νpν
k ð138Þ

with

FIG. 4. Diagrammatic interpretation of the dipole Dai;b and the
associated splitting function Vai;b.
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Λμ
ν ¼ gμν −

ðPþ P̃ÞμðPþ P̃Þν
P2 þ P · P̃

þ 2P̃μPν

P2
: ð139Þ

If follows from direct calculation that Λμ
ν indeed leaves the

Minkowski metric invariant Λρ
μΛρν ¼ gμν such that it can

be verified easily that the new momenta p̃k obey the on-
shell condition p̃2

k ¼ m2
k. The definition of these momenta

coincides with [17]. In order to ensure that λðP2; m2
a; m2

bÞ
remains positive, so that the dipole momenta take only real
values, the kinematical lower bound

xi;ab > x0 ≥ x̂ ¼ 2mamb

s̄
ð140Þ

on xi;ab has to be enforced. For values of xi;ab below x0 the
splitting functions Vai;b are set to zero. The dependence on
the lower bound x0 must cancel out and can therefore
be chosen arbitrarily which offers the possibility to check
whether the implementation of the subtraction procedure
is correct. The factorization of the single-particle phase
space ½dpiðs; x; yÞ� from the (mþ 1)-particle phase space
dϕmþ1ðpi; P;pa þ pbÞ is derived in Appendix B 2. It
corresponds to a convolution over x which plays the role
of xi;ab:Z

dϕmþ1ðpi; P;pa þ pbÞθðxi;ab − x0Þ

¼
Z

1

x0

dx
Z

dϕmðp̃kðxÞ; p̃aiðxÞ þ pbÞ
Z

½dpiðs; x; yÞ�:

ð141Þ

In D ¼ 4 − 2ε dimensions the dipole phase space becomesZ
½dpiðs; x; yÞ� ¼

s̄2−2ε

ð4πÞ2−εΓð1 − εÞ
s−εffiffiffiffiffiffiffi
λab

p
1−2ε

×
Z

yþ

y−

dy½ðy − y−Þðyþ − yÞ�−ε; ð142Þ

where the integration boundaries read

y� ¼ 1 − x
2s

ðs̄þ 2m2
a �

ffiffiffiffiffiffiffi
λab

p
Þ: ð143Þ

From Eq. (137) it can be deduced that the c.m. energy

s̃ ¼ P2 ¼ s̄xþm2
a þm2

b ð144Þ

of the reduced phase space dϕmðp̃kðxÞ; p̃aiðxÞ þ pbÞ is
already determined through x and the original c.m.
energy

ffiffiffi
s

p
.

B. The dipole splitting function

The dipole function Vai;b in Eq. (130) for the SUSY-
QCD process

(i) q̃ðpaÞ → gðpiÞ þ q̃: mi ¼ 0 and mai ¼ ma ¼ mq̃
reads

hVq̃g;bi ¼ 8παsμ
2εCF

�
2

1 − xi;ab
− 2 −

xi;abm2
a

pa · pi

�
: ð145Þ

The dipole splitting functions for the processes involving a
gluino g̃ → gg̃ and a massive quark q → gq are for the pure
soft limit identical to Eq. (145) where only the color factor
CF has to be replaced by CA for the gluino. For this reason,
only the squark splitting function is treated in the following
without losing generality. The same splitting function holds
if the squark is replaced by an antisquark.

C. The integrated dipole functions

In complete analogy to previous cases, the integrated
dipole for the case of emitter and spectator both from the
initial state is defined as

αs
2π

1

Γð1 − εÞ
�
4πμ2

s̄

�
ε

Ia;aie;bðx; εÞ
¼
Z

½dpiðs; x; yÞ�
1

2pa · pi

1

xi;ab
hVai;bi ð146Þ

and the factorized phase space of the gluon can be turned
into the convenient formZ

yþ

y−

dy½ðy − y−Þðyþ − yÞ�−ε

¼ ðyþ − y−Þ1−2ε
Z

1

0

dt½ð1 − tÞt�−ε ð147Þ

FIG. 5. Kinematics for an initial-state emitter and an initial-state spectator in the original momenta (left) and the dipole momenta
(right).
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via the substitution t ¼ y−y−
yþ−y−

. By expressing the denom-

inator in the dipole as 2pa · pi ¼ ys̄ and with the help of the
already known integrals I1ðz; εÞ and I2ðz; εÞ defined in
Eqs. (61) and (113), the integration of the splitting function
in Eq. (145) results in

Iq̃ q̃;bðx; εÞ ¼ CFffiffiffiffiffiffiffi
λab

p 2

ð1 − xÞ1þ2ε

�
s
s̄

�
ε

×

�
2m2

as
d1

I2ð−C; εÞ − s̄I1ð−C; εÞ
�
; ð148Þ

where the new auxiliary variables C and d1 are defined as

C ¼ yþ − y−
y−

¼ 2
ffiffiffiffiffiffiffi
λab

p
d1

ð149Þ

d1 ¼ s̄þ 2m2
a −

ffiffiffiffiffiffiffi
λab

p
: ð150Þ

Since only massive initial states are considered, the argu-
ment −C of the functions I1 and I2 does not diverge and we
are allowed to use their associated expansions in ε. As
explained in Sec. III D, the soft divergence can be disen-
tangled with the help of the ½� � ��þ prescription

Iq̃ q̃;bðx; εÞ ¼ CFf½Jq̃ q̃;bðxÞ�þ þ δð1 − xÞ½Jq̃ q̃;b;SðεÞ
þ Jq̃ q̃;b;NS�g þOðεÞ: ð151Þ

The continuum part of Eq. (151) that contains the plus
distribution is given by

½Jq̃ q̃;bðxÞ�þ ¼ 2

�
1

1 − x

�þ
½x0;1�

ðd2 lnð1þ CÞ − 1Þ: ð152Þ

The end point parts are

Jq̃ q̃;b;SðεÞ ¼ 1

ε
ð1 − d2 lnð1þ CÞÞ ð153Þ

Jq̃ q̃;b;NS ¼ 1

C
lnð1þ CÞðCþ 2Þ þ d2

2
ð4Li2ð−CÞ

þ ln2ð1þ CÞÞ þ ð1 − d2 lnð1þ CÞÞ

× ln

�
s

s̄ð1 − x0Þ2
�

ð154Þ

with

d2 ¼
s̄ffiffiffiffiffiffiffi
λab

p : ð155Þ

D. Final expression

The auxiliary cross section for an emitter and spectator
both from the initial state can be recast into the form

Z
mþ1

dσAab ¼
X
a0

Z
1

x0

dx

×
Z
m

�
dσBabðp̃aðxÞÞ

F ã

F a
⊗ Imþb;aa0 ðx; εÞ

�
ð156Þ

with the insertion operator

Imþb;aa0 ðx; ε; μ2; fpi;mig; pa; pbÞ

¼ −
αs
2π

ð4πÞε
Γð1 − εÞTb · Ta0

�
μ2

s̄

�
ε 1

T2
a0
Va;a0;bðx; εÞ: ð157Þ

There is no sum over all possible spectators b in Eq. (157)
as we only consider two particles in the initial state. The
flavor functions Va;a0;b are given by the integrated dipoles
defined in Eq. (146) via

Va;a0;bðx;ma;mb; εÞ ¼ Iaa
0;bðx; εÞ: ð158Þ

VI. FINAL-STATE EMITTER
AND FINAL-STATE SPECTATOR

Since the mass of the initial particles does not influence
the splitting behavior, the case of final-state emitter and
spectator is already fully covered for the massless and
massive case in Refs. [11,12].

VII. EXAMPLES AND COMPARISON
WITH THE PHASE SPACE SLICING METHOD

In this section, we compare the results of NLO SUSY-
QCD corrections for the processes χ̃01t̃1 → tg and t̃1t̃1 → tt
obtained with the phase space slicing method [16] with the
ones obtained with the extension of the dipole subtraction
method covered in this paper. Both of these processes are
part of the dark matter precision tool DM@NLO which
provides NLO and Coulomb corrections for selected (co)
annihilation processes. For the first process with a top
quark and a gluon in the final state the two-cutoff phase
space slicing method is used. Within this approach the three
particle phase space is split into a hard and a soft part by
imposing a soft cutoff δs on the energy of the radiated
gluon. The hard phase space region is split further into a
hard and collinear and a hard and noncollinear part through
a collinear cutoff δc, if the process contains another
massless particle:

σR ¼ σhardcoll ðδs; δcÞ þ σhardnon-collðδs; δcÞ þ σsoftðδsÞ: ð159Þ

If there occurs no collinear divergence as in the second
process under consideration with two top quarks in the
final state, one soft cutoff is sufficient. In this way the
real emission cross section σR is split into a finite part
σhardnon-collðδs; δcÞ, which is safe for numerical evaluation in
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four dimensions, whereas the two other parts have to be
integrated analytically in D ¼ 4 − 2ε dimensions to isolate
the infrared poles in ε. For the numerical comparison we
use the following set of Standard Model parameters [25]:

mt ¼ 173.2 GeV mbðmbÞ ¼ 4.18 GeV

αemðmZÞ ¼ 0.00781806 αsðmZÞ ¼ 0.1184

mZ ¼ 91.1876 GeV sin θW ¼ 0.481 ð160Þ
along with the example scenario in the phenomenological
MSSM with 19 free parameters (pMSSM-19) displayed
in Table I, where all input parameters are defined at the
scale QSUSY, which is also taken to be the renormalization
scale μR ¼ QSUSY. The associated physical mass spectrum
is computed with the public spectrum generator SPheno 3.3.3
[26,27]. The most relevant masses for the two given
processes such as the mass of the lightest neutralino, the
lightest stop and the gluino are shown in Table I as well. We
emphasize that the parameters in Eq. (160) and Table I
undergo changes through the renormalization scheme
defined in Refs. [4,5,8]. For all considered processes the
integration of the three particle phase space and of the
plus distribution within the dipole subtraction method
is performed with the Vegas algorithm from the CUBA

library [28], whereas the two particle phase space is
integrated with a nonadaptive Gauss-Kronrod-Patterson
integrator adapted from FormCalc [29]. Both algorithms also
provide an estimate on the numerical error. These are
combined to the total numerical error of the NLO correction

εNLO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2plus þ ε2V þ ε2R

q
; ð161Þ

which is computed as the geometric mean of the respective
numerical errors of the plus distribution ðεplusÞ, the virtual
ðεVÞ and the real ðεRÞ contribution. For the PSS approach,
εplus is set to zero.

A. The process χ̃ 01 t̃1 → tg

The OðαsÞ SUSY-QCD corrections to neutralino-stop
coannihilation into a gluon and a top quark have been
discussed in Ref. [5] including a detailed account on the

application of the phase space slicing method with two
cutoffs.1

The process χ̃01t̃1 → tg receives contributions at next-to-
leading order from the two real emission processes

t̃1ðpaÞ þ χ̃01ðpbÞ → tðp1Þ þ gðp2Þ þ gðp3Þ ð162Þ

and

t̃1ðpaÞ þ χ̃01ðpbÞ → tðp1Þ þ qðp2Þ þ q̄ðp3Þ: ð163Þ
The decay of a gluon into a massless quark-antiquark pair
has to be included, since the first four quark flavors Nf ¼ 4

are treated as effectively massless in DM@NLO. For a
process involving only three colored particles, the different
color projections fully factorize in terms of the associated
quadratic Casimirs. Therefore, it is not necessary to
calculate any color-correlated tree amplitudes thanks to
the relation

2T2 · T3j1; 2; 3i ¼ ðT2
1 − T2

2 − T2
3Þj1; 2; 3i; ð164Þ

which holds analogously for T1 · T3 and T1 · T2. The
dipole factorization formula in Eq. (19) yields a total of
ten dipoles to compensate all infrared divergences in the
three-particle phase space for the process with two final-
state gluons

D31;2 ¼
1

2p1 · p3

CA

2CF
hVg3t1;2ijM2ðpa; p̃31; p̃2Þj2 ð165Þ

D21;3 ¼
1

2p1 · p2

CA

2CF
hVg2t1;3ijM2ðpa; p̃21; p̃3Þj2 ð166Þ

D23;1 ¼
1

2p2 · p3

1

2
hμjVg2g3;1jνiT μνðpa; p̃1; p̃23Þ ð167Þ

TABLE I. Reference scenario within the pMSSM-19 and the corresponding physical mass spectrum for the
numerical comparison. All dimensionful quantities are given in GeV.

M1 M2 M3 Ml̃L
Mτ̃L Ml̃R

Mτ̃R Mq̃L Mq̃3L MũR

1278.5 2093.5 1267.2 3134.1 1503.9 2102.5 1780.4 3796.6 2535.1 3995.0

Mt̃R Md̃R
Mb̃R

At Ab Aτ μ mA0 tan β QSUSY

1258.7 3133.2 3303.8 2755.3 2320.9 −1440.3 −3952.6 3624.8 15.5 1784.6

mχ̃0
1

mχ̃0
2

mχ̃�
1

mt̃1 mb̃1
mg̃ mh0 mH0

1279.7 2153.6 2153.5 1301.9 2554.2 1495.5 125.8 3625.6

1Note that the numerical results in the present paper cannot be
directly compared to those in Fig. 10 (lower right) of Ref. [5], as a
term −π2=3 from the expansion of Γð1 − εÞ=Γð1 − 2εÞΓð1þ εÞ
in the (correct) Eq. (2.28) was missing in the numerical
implementation. Replacing Ag→gg

0 → Ag→gg
0 − r

6
CA with r ¼ 1

in Eq. (2.37) as required for dimensional reduction is, however,
numerically insignificant.
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Da
23 ¼

1

2p2 · p3

1

x23;a

1

2
hμjVa

g2g3 jνiT μνðp̃a; p1; p̃23Þ ð168Þ

Da
31 ¼

1

2p1 · p3

1

x31;a

�
1 −

CA

2CF

�
hVa

g3t1ijM2ðp̃a; p̃31; p2Þj2

ð169Þ

Da
21 ¼

1

2p1 · p2

1

x21;a

�
1 −

CA

2CF

�
hVa

g2t1ijM2ðp̃a; p̃21; p3Þj2

ð170Þ

Da3
2 ¼ 1

2pa · p3

1

x32;a

CA

2CF
hV t̃1;ag3

2 ijM2ðp̃a3; p1; p̃2Þj2

ð171Þ

Da2
3 ¼ 1

2pa · p2

1

x23;a

CA

2CF
hV t̃1;ag2

3 ijM2ðp̃a2; p1; p̃3Þj2

ð172Þ

Da3
1 ¼ 1

2pa ·p3

1

x31;a

�
1−

CA

2CF

�
hV t̃1;ag3

1 ijM2ðp̃a3; p̃1;p2Þj2

ð173Þ

Da2
1 ¼ 1

2pa ·p2

1

x21;a

�
1−

CA

2CF

�
hV t̃1;ag2

1 ijM2ðp̃a2; p̃1;p3Þj2

ð174Þ

with the tree-level matrix element squared jM2ðpt̃1 ;
pt; pgÞj2. The tensor T μν corresponds to the leading order
squared amplitude where the polarization vector ϵμλðp̃ijÞ of
the emitter gluon has been amputated. Since both gluons
can become soft in the splittings t̃1 → t̃1g and t → tg, one
dipole is introduced for each individual gluon in the final
state. To cancel the collinear divergences from the pro-
duction of the Nf massless quark-antiquark pairs, the
dipoles

D23;1 ¼
1

2p2 · p3

1

2
hμjVq2q̄3;1jνiT μνðpa; p̃23; p̃1Þ ð175Þ

Da
23¼

1

2p2 ·p3

1

x23;a

1

2
hμjVa

q2q̄3 jνiT μνðp̃a;p1; p̃23Þ ð176Þ

are needed. The auxiliary cross section that cancels the
infrared divergences of the virtual one-loop corrections is
constructed from the three insertion operators

h1; 2; 3jI2ðε; μ2; fpi;migÞj1; 2; 3i ¼
αs
4π

ð4πÞε
Γð1 − εÞ jM2j2

×

�
CA

�
μ2

s12

�
ε
�
2VðSÞðs12; mt; 0; εÞ þ VðNSÞ

g ðs12; 0; mt; κÞ þ VðNSÞ
t ðs12; mt; 0Þ −

2π2

3

�
þ ΓFDH

g ðεÞ þ γg ln

�
μ2

s12

�
þ γg þ Kg þ

CA

CF

�
Γtðμ; mt; εÞ þ γt ln

�
μ2

s12

�
þ γt þ Kt

��
;

ð177Þ

h1; 2; 3jI2;t̃1ðx; ε; μ2; fpi;mig; paÞj1; 2; 3i ¼
αs
4π

ð4πÞε
Γð1 − εÞ jM2j2

��
μ2

−¯̃t

�
ε

Vgðx; t̃; 0; εÞ þ
�
2 −

CA

CF

��
μ2

− ¯̃u

�
ε

Vtðx; ũ; mt; εÞ
�
;

ð178Þ

h1; 2; 3jI2;q̃ q̃ðx; ε; μ2; fpi;mig; paÞj1; 2; 3i ¼
αs
4π

ð4πÞε
Γð1 − εÞ jM2j2

�
CA

CF

�
μ2

−¯̃t

�
ε

V q̃;q̃ðx; t̃; 0; εÞ

þ
�
2 −

CA

CF

��
μ2

− ¯̃u

�
ε

V q̃;q̃ðx; ũ; mt; εÞ
�

ð179Þ

with s12 ¼ s −m2
t , where the first one in Eq. (177) corresponds to emitter and spectator both from the final state, the second

one in Eq. (178) to final-state emitter with a spectator from the initial state and the last one in Eq. (179) to an initial-state
emitter with final-state spectators. The dipole invariants t̃ ¼ ðp̃t̃1 − p̃gÞ2 and ũ ¼ ðp̃t̃1 − p̃tÞ2 correspond to the Mandelstam
variables t ¼ ðpt̃1 − pgÞ2 and u ¼ ðpt − pt̃1Þ2 in the squared Born amplitude and they play the role of Q2. With that, the
“barred variables” ¯̃t and ¯̃u are given by

¯̃t ¼ t̃ −m2
t̃1
; ¯̃u ¼ ũ −m2

t̃1
−m2

t : ð180Þ
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The insertion operator in Eq. (177) for emitter and spectator both from the final state as well as the related flavor functions

VðSÞðs12; mt; 0; εÞ ¼
1

2ε2
þ 1

2ε
ln

�
m2

t

s12

�
−
1

4
ln2
�
m2

t

s12

�
−
π2

12
−
1

2
ln

�
s12
s

��
ln

�
m2

t

s12

�
þ ln

�
m2

t

s

��
ð181Þ

VðNSÞ
g ðs12; 0; mt; κÞ ¼

γg
CA

�
ln

�
s12
s

�
− 2 ln

� ffiffiffi
s

p
−mtffiffiffi
s

p
�
−

2mtffiffiffi
s

p þmt

�
þ π2

6

− Li2

�
s12
s

�
þ
�
κ −

2

3

�
m2

t

s12

��
2Nf

TF

CA
− 1

�
ln
�

2mtffiffiffi
s

p þmt

��
ð182Þ

VðNSÞ
t ðs12; mt; 0Þ ¼

3

2
ln

�
s12
s

�
þ π2

6
− Li2

�
s12
s

�
− 2 ln

�
s12
s

�
−
m2

t

s12
ln

�
m2

t

s

�
ð183Þ

are provided in Ref. [12] where the function Γj for massive quarks reads

Γtðμ; mt; εÞ ¼ CF

�
1

ε
þ 1

2
ln

�
m2

t

μ2

�
− 2

�
: ð184Þ

The value of the variable κ in Eq. (182) can be chosen arbitrarily as its dependence must cancel out between the virtual
and real part. Within the numerical comparison it is set to κ ¼ 0. Note that due to Bose symmetry the dipoles which are
related through the interchange of an emitted gluon result in the same integrated dipole. Therefore, it is sufficient to
incorporate one of the integrated counterparts and weight it with a factor of 2 which gets canceled by the Bose symmetry
factor S3 ¼ 1

2
of the associated real emission cross section. This counting of symmetry factors is already incorporated into

the definition of the flavor functions Vj.
2 In order to perform the convolution in Eq. (34), the well-known parametrization of

the two-particle phase Z
dϕðPðxÞ; pk;pa þ pbÞ ¼

1

ð4πÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðs;m2
a; m2

bÞ
q Z

Q2
þðxÞ

Q2
−ðxÞ

dQ2

Z
2π

0

dφk ð185Þ

is inserted, where φk denotes the azimuthal angle of pk in the center-of-mass system of pa þ pb. Since the integrand is
rotationally invariant, the integration over φk yields a factor of 2π. We still need to determine the integration limits ofQ2 as a
function of x which is achieved by expressing Q2 in the c.m. frame of pb and pk:

Q2 ¼ m2
b þm2

k − 2EbEk þ 2jp⃗bjjp⃗kj cosϑ

¼ m2
b þm2

k −
ðsþm2

b −m2
aÞðsþm2

k − P2Þ
2s

þ cosϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

a; m2
bÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

k; P
2Þ

q
2s

; ð186Þ

where ϑ corresponds to the angle between p⃗b and p⃗k. The x dependence enters by expressing P2 through x andQ2 as given
in Eq. (26) which results in an equation which we can solve for Q2. The integration limits

Q2
�ðxÞ ¼

1

2

αðxÞ � βðxÞ
xsþ ð1 − xÞðm2

b − xm2
aÞ

ð187Þ

with the abbreviations

αðxÞ ¼ x2ðm4
a þ 2m2

aðm2
b þm2

kÞ − ðm2
b − sÞ2Þ þ 2m2

bðm2
a þm2

jÞ
− xðm4

a þm2
að4m2

b þm2
j þm2

k − sÞ − ðm2
b − sÞðm2

b −m2
j −m2

kÞÞ; ð188Þ

2The counting of symmetry factors for the general case of going from mþ 1 to m particles for a gluon and quark as emitter is
discussed extensively in Ref. [11].
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βðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

a; m2
b; sÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

a −m2
bÞ2ð1 − xÞ2 þ ð1 − xÞð2m2

aðm2
j þm2

kð2x − 1Þ − sxÞ
q

−2m2
bðm2

j þm2
k − sxÞÞ þ λðxs;m2

k; m
2
jÞ ð189Þ

are then obtained by setting cosϑ to its extreme values −1 and 1. Within the integration over Q2 two different kinematical
configurations have to be distinguished. The variable t̃ in Eq. (178) and (179) equals Q2 for the cases mj ¼ 0, mk ¼ mt

whereas ũ equalsQ2 formj ¼ mt,mk ¼ 0. After having fixed the values of x andQ2 (ũ and t̃) in the phase space integration,
the squared c.m. energy s̃ of the new initial state with momenta p̃a and pb can be determined as

s̃ ¼ ðp̃a þ pbÞ2 ¼ m2
a þm2

b þ
1

RðxÞ
�
xðs −m2

a −m2
bÞþ

Q̄2 þ 2m2
ax

2Q2
ðm2

b −m2
k þQ2Þ

�
−
Q2 þm2

a −m2
j

2Q2
ðm2

b −m2
k þQ2Þ:

ð190Þ

The remaining “dipole Mandelstam variable” ũ for Q2 ¼ t̃
and vice versa can then be deduced from s̃þ ũþ t̃ ¼
m2

a þm2
b þm2

j þm2
k. As the squared tree-level matrix

element is a function of the usual Mandelstam variables s,
t and u, we only need to substitute those through the dipole
invariants s̃, t̃ and ũ, respectively, in order to formulate the
tree-level matrix element in terms of the dipole momenta.
The independence of the final result on the lower inte-

gration limit x0 is shown in Fig. 6. For the numerical
comparison the value x0 ¼ 0.9 was chosen as it fulfills the
condition in Eq. (35) for all probed c.m. momenta. For the
determination of appropriate values for the soft and collinear
cutoff, the behavior of the NLO correction is examined in
dependence of both,which is shown in Fig. 6. The cutoffs are
chosen to be p0

2; p
0
3 ≥ δs ¼ 3.0 × 10−4

ffiffiffi
s

p
and 2p2 · p3 ≥

δc ¼ 3.0 × 10−6 s such that they are located in the broad
plateau region in the lower right half of the plot.
In Table II and Fig. 7 the total cross section obtained with

the two different methods is given for c.m. momenta pc:m:,
that are typical for dark matter annihilation. Even though all
chosen cutoffs for a momentum of 100 GeV lie in the
plateau region shown in the right plot of Fig. 6, the central
values of the correction for the smallest and largest cutoff

differ by 13%, while the dependence on the artificially
introduced lower integration limit x0 of the dipole method
is completely compensated between the virtual and real
part. Furthermore, the total numerical error of the result
obtained with the phase space slicing method for the NLO
correction increases with decreasing cutoff values which is
expected as the real cross section blows up like lnðδs=sÞ
in the soft region and like lnðδc=sÞ in the collinear one.

FIG. 6. The NLO correction times velocity vΔσNLO subdivided into the virtual part plus the auxiliary cross section σV þ σA and the
real part minus the auxiliary cross section σR − σA for the process χ̃01 t̃1 → tg for different values of the lower integration limit x0 (left) as
well as the dependence of the NLO correction obtained with the slicing method on the soft δs as well as the collinear cutoff δc (right).
Both plots are created for the c.m. momentum pc:m: ¼ 100 GeV.

TABLE II. Results on the correction vΔσNLO of the process
χ̃01 t̃1 → tg for two different c.m. momenta pc:m:. All cross sections
times velocity are given in 10−10 GeV−2.

pc:m: [GeV] vσTree Method δs=
ffiffiffi
s

p
δc=s vΔσNLO

100 4.604596 10−2 10−3 0.915� 0.036
PSS 10−4 10−6 0.974� 0.152

10−6 10−7 1.033� 0.241

Dipole 0.891� 0.002

1200 2.501535 10−2 10−3 0.408� 0.021
PSS 10−4 10−6 0.429� 0.083

10−6 10−7 0.458� 0.135

Dipole 0.385� 0.001
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In addition, the integration error of the dipole method is at
least 1 order of magnitude lower than the one of the slicing
method so that the error of the dipole result is smaller than the
linewidth in the plot. Both of these findings, the cutoff depen-
dence as well as the integration error, show the superiority of
the dipole subtraction method with respect to precision.

B. The process t̃1 t̃1 → tt

As another example, the process

t̃1ðpa; sÞ þ t̃1ðpb; tÞ → tðp1; iÞ þ tðp2; jÞ þ gðp3; aÞ
ð191Þ

is considered where the parentheses contain the particle
momenta pa, pb, p1, p2, p3 and the corresponding color
indices s, t, i, j, a. This process is chosen as it allows to
demonstrate and compare the dipole formalism for sit-
uations with two massive and color charged particles in the
initial state. The next-to-leading order corrections for this
process performed with the slicing method are discussed in
Ref. [8]. The auxiliary squared matrix element receives
contributions from in total twelve dipoles and reads

jMA
3 j2 ¼ D13;2 þD23;1 þDa

13 þDb
13 þDa

23 þDb
23 þDa3

1 þDb3
1 þDa3

2 þDb3
2 þDa3;b þDb3;a; ð192Þ

where the subtraction functions are consistently set to zero for values of x below x0 ¼ 2m2
t

s̄ in conjunction with Eq. (140).
For a process involving four colored particles it is no longer possible to factorize the color charge algebra. However, it

follows from color conservation that four of the six color charge operators TiTj with i ≠ j can be expressed through the
quadratic Casimir invariants and T1T2, T1T3 giving [11]

T3T4j1; 2; 3; 4i ¼
�
1

2
ðC1 þ C2 − C3 − C4Þ þ T1T2

�
j1; 2; 3; 4i ð193Þ

T2T4j1; 2; 3; 4i ¼
�
1

2
ðC1 þ C3 − C2 − C4Þ þ T1T3

�
j1; 2; 3; 4i ð194Þ

T2T3j1; 2; 3; 4i ¼
�
1

2
ðC4 − C1 − C2 − C3Þ − T1T2 − T1T3

�
j1; 2; 3; 4i ð195Þ

T1T4j1; 2; 3; 4i ¼ −ðC1 þ T1T2 þ T1T3Þj1; 2; 3; 4i: ð196Þ

The four color charge operators are associated with the particles in our process as follows:

T1 ¼ Tq̃s ; T2 ¼ Tq̃t ; T3 ¼ Tti ; T4 ¼ Ttj : ð197Þ

For the remaining two operators the color correlations have to be evaluated explicitly:

h1; 2; 3; 4jT1T2j1; 2; 3; 4i ¼ ½Mij;lt
2 ��Tc

slT
c
ktM

ij;sk
2 ; ð198Þ

h1; 2; 3; 4jT1T3j1; 2; 3; 4i ¼ ½Mij;kt
2 ��ð−Tc

skT
c
ilÞMlj;st

2 ð199Þ

FIG. 7. Neutralino-stop coannihilation cross section σv with a
top and a gluon in the final state for the example scenario defined
in Table I. The leading order result is computed with MicrOMEGAs
2.4.1 [30,31] (MO) and DM@NLO (Tree). The NLO results are
calculated with the phase space slicing method (PSS) and the
dipole method (Dipole). The lower panel shows the ratio of the
NLO corrections obtained with the two different approaches.
The uncertainty band in the upper panel corresponds to the total
numerical error εNLO defined in Eq. (161). The gray shaded area
shows the thermal velocity distribution of the neutralino at the
freeze-out temperature in arbitrary units.
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with the tree-level matrix elementMij;st
2 . As the application

of the dipole formulas has already been exemplified in the
previous section for all emitter-spectator pairs besides the
configuration where both are from the initial state, we only
cover the two particle phase space integration in the
convolution in Eq. (141). In order to provide a general
expression for the parametrization of the phase space, the
masses related to the momenta p1 and p2 are labeled as m1

and m2 and we distinguish the masses ma and mb of the
initial particles even though they are identical in this case.
Since the variable x enters the phase space integration only
through the reduced squared c.m. energy s̃ given in
Eq. (144) the well-known parametrization

Z
dϕðp̃kðxÞ; p̃aiðxÞþpbÞ ¼

1

ð4πÞ2 ffiffiffiffi
λs̃

p
Z

q2þðs̃Þ

q2−ðs̃Þ
dq2
Z

2π

0

dφ0

ð200Þ

with the integration limits

q2�ðs̃Þ ¼ m2
a þm2

1 −
ðs̃þm2

a −m2
bÞðs̃þm2

1 −m2
2Þ

2s̃

�
ffiffiffiffi
λs̃

p
2s̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs̃; m2

1; m
2
2Þ

q
ð201Þ

can be employed where q2 ¼ ðp̃a3 − p̃1Þ2 plays the role of
a Mandelstam variable and the abbreviation λs̃ is given by
λs̃ ¼ λðs̃; m2

a; m2
bÞ. The remaining dipole Mandelstam var-

iable that enters the squared Born amplitude is determined
through m2

a þm2
b þm2

1 þm2
2 − s̃ − q2. For the numerical

comparison in Fig. 8, the cutoff for the slicing method is
chosen as p0

3 ≥ δs ¼ 10−5
ffiffiffi
s

p
. In Table III, results on the

NLO corrections for different cutoff values δs and c.m.
momenta are shown in comparison with the result of the
dipole approach. Similar to the previous example, the
integration error of the slicing method increases with
decreasing cutoff values while the errors of dipole method
are at least 1 order of magnitude lower than the ones for

small cutoff values indicating again that the dipole method
is ahead of the slicing approach.

VIII. SUMMARY AND OUTLOOK

In this paper, we have presented an extension of the dipole
subtraction formalism introduced in Refs. [11,12,17] to
massive initial-state particles for NLO (SUSY)-QCD calcu-
lations which allows the analytic cancellation of infrared
singularities between the virtual and real corrections. Our
results are in particular relevant for precision computations of
the darkmatter relic density in SUSYand non-SUSYmodels
and should in the future allow for automated calculations of
the pertinent higher-order corrections.
We reviewed the dipole subtraction method and its under-

lying notation as well as the factorization of real emission
amplitudes in the soft and collinear limit. From there we
constructed the dipole splitting functions for different regu-
larization schemes. Even though it is possible to adopt the
corresponding kinematics from Dittmaier, the factorization
of the (mþ 1)-particle phase space into an m-particle and a
dipole phase space had to be performed again in D
dimensions. Since the integration of the dipole functions
and the extraction of the singular terms with the help of the
plus distribution turned out to be rather cumbersome, the
associated steps were presented in a detailed way. At the end
of each section dedicated to one of the three emitter-spectator
pairs covered in this paper, the results were collected in
effective final formulas for the universal insertion operator
which allows to render the virtual part infrared finite.
In order to illustrate the use of the dipole method, our

results were applied to the dark matter (co)annihilation
processes χ̃01t̃1 → tg and t̃1t̃1 → tt. Therefore, a general
parametrization of the physical two-particle phase space
with arbitrary masses in dependence of the associated
convolution variables was provided. The results of the
dipole method were compared with those obtained with the
phase space slicing method. A significant reduction of
the integration error was found for the dipole approach.
Similar findings were reported by Dittmaier who compared

FIG. 8. Same as Fig. 7 for the annihilation process t̃1 t̃1 → tt.

TABLE III. Results on the correction vΔσNLO of the process
t̃1 t̃1 → tt for two different pc:m:. All cross sections times velocity
are given in 10−9 GeV−2.

pc:m: [GeV] vσTree Method δs=
ffiffiffi
s

p
vΔσNLO

100 5.030288 10−2 −1.392� 0.018
PSS 10−4 −1.407� 0.032

10−6 −1.399� 0.053

Dipole −1.410� 0.007

1200 2.853008 10−2 0.821� 0.016
PSS 10−4 0.810� 0.036

10−6 0.787� 0.062

Dipole 0.802� 0.007
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both methods for electroweak processes and in Ref. [21] for
the process γ� → QQ̄. An application of this method to
the annihilation processes t̃1 t̃�1 → gg and t̃1 t̃�1 → qq̄ is in
preparation.
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APPENDIX A: DIMENSIONAL
REGULARIZATION

AND REDUCTION SCHEMES

There exist two main dimensional schemes for the
calculation of matrix elements at one-loop order, which
are dimensional regularization and dimensional reduction.
Both have in common that the number of dimensions of all
momenta and space-time coordinates is analytically contin-
ued to D ≠ 4 dimensions, whereas there remains some
freedom regarding the dimensionality of “internal” and
“external” vector bosons. Internal gauge bosons are defined
as those that appear in a one-particle irreducible diagram of
the virtual corrections or that become soft or collinear in a
phase space integral related to the real corrections. External
gauge bosons are then defined as all other gauge bosons. In
order to formulate the different treatments of internal and
external gauge fields in a mathematically consistent and
precise way, three different spaces are introduced: the

original four-dimensional space (4S), the quasi-four-dimen-
sional space (Q4S) and the quasi-D-dimensional space
(QDS) as a subspace of Q4S [34]. Following the definitions
in Ref. [35], each of the two main schemes has two
subvariants. These are in the case of dimensional regulari-
zation the conventional dimensional regularization scheme
(CDR), where internal and external gauge bosons are treated
as D-dimensional, and the ’t Hooft-Veltman scheme (HV),
where external gauge bosons live in 4S instead of QDS.
Within the two subvariants of dimensional reduction, internal
gauge bosons are elements of Q4S, whereas external gluons
are strictly four dimensional in the four-dimensional helicity
scheme (FDH) and also D dimensional in the original
dimensional reduction scheme (DRED). In order to guarantee
that the final result for the physical cross section is inde-
pendent of the chosen regularization prescription, the gauge
bosons in the tree-level matrix element Mm have to be
treated like external gauge bosons in the loop amplitude,
whereas the particles in the dipole factor dVdipole have to be
treated as internal particles [24]. The scheme-dependent
terms can thus be parametrized by the number of helicity
states hRSg ¼ 2ð1 − εþ rεÞ of internal gluons, where we
introduced the parameter r defined as

r ¼
�
0; CDR;HV

1; DRED; FDH
ðA1Þ

to distinguish between the different schemes according to the
definitions above.

APPENDIX B: DERIVATION OF THE PHASE
SPACE FACTORIZATION

In this section, we derive the expressions for the dipole
phase space that are used for the analytic integration of the
dipole splitting functions.

1. Final-state emitter and initial-state spectator

We start with the phase space element formþ 1 particles
in the final state in D ¼ 4 − 2ε dimensions which is given
by [36]

dϕmþ1ðpi; pj; pk;pa þ pbÞ ¼ ð2πÞδðDÞ
�
pa þ pb − pi − pj −

X
k

pk

�
dDpi

ð2πÞD−1 δþðp2
i −m2

i Þ

×
dDpj

ð2πÞD−1 δþðp2
j −m2

jÞ
Y
k

dDpk

ð2πÞD−1 δþðp2
k −m2

kÞ; ðB1Þ

where the modified Dirac delta distribution contains the
Heaviside step functionθðxÞ and is defined as δþðp2−m2Þ¼
δðp2−m2Þθðp0Þ. The momentum of the spectator is pa,
while the emitter eij splits into twoparticleswith themomenta

pi andpj. Themomenta of the remaining final-state particles
other than i or j are labeled aspk. The (mþ 1)-particle phase
space is factorized exactly into am-particle phase space and a
two-particle phase space through a convolution of the form
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dϕmþ1ðpi; pj; pk;pa þ pbÞ

¼ dm2
P

2π
dϕmðP; pk;pa þ pbÞdϕ2ðpi; pj;PÞ; ðB2Þ

wherem2
P ¼ P2 acts as the squared invariant mass related to

the momentum P ¼ pi þ pj. As the dipole splitting func-
tions are expressed as functions of x and zi, we replace the
integration over m2

P with an integration over x by using the
relation in Eq. (26) and we turn the integration over the two-
particle phase space

dϕ2ðpi; pj;PÞ ¼ ð2πÞDδðDÞðP − pi − pjÞ
dDpi

ð2πÞD−1

× δþðp2
i −m2

i Þ
dDpj

ð2πÞD−1 δþðp2
j −m2

jÞ

ðB3Þ

into an integration over zi. As a first step towards the
parametrization through zi, two Dirac delta functions are
integrated out which gives

dϕ2ðpi; pj;PÞ ¼
dD−1pi

ð2πÞD−22Ei
δþððP − piÞ2 −m2

jÞ: ðB4Þ

Fromnowon,wewillwork in the c.m. frameofpi andpj, i.e.
in the rest frame of P, which sets the time and spatial
components ofpi andpj to thewell-known expressions [36]

Ei ¼
P2 þm2

i −m2
j

2
ffiffiffiffiffiffi
P2

p ; Ej ¼
P2 þm2

j −m2
i

2
ffiffiffiffiffiffi
P2

p ;

jp⃗ij ¼ jp⃗jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðP2; m2

i ; m
2
jÞ

q
2
ffiffiffiffiffiffi
P2

p : ðB5Þ

For the momentum pa, we get

Ea ¼
pa · Pffiffiffiffiffiffi

P2
p ¼ −Q̄2

2x
ffiffiffiffiffiffi
P2

p ;

jp⃗aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa · PÞ2

P2
−m2

a

r
¼ 1

2
ffiffiffiffiffiffi
P2

p
ffiffiffiffiffiffi
λaj

p
RðxÞ
x

; ðB6Þ

where Eq. (26) was used to replace the product pa · P. The
expressions in Eq. (B5) can be used to write the remaining
delta function in Eq. (B4) as a function of the norm of the
momentum p⃗i:

δþðP2 − 2P · pi þm2
i −m2

jÞ

¼ Ei

2
ffiffiffiffiffiffi
P2

p
jp⃗ij

δþ

�
jp⃗ij −

1

2
ffiffiffiffiffiffi
P2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðP2; m2

i ; m
2
jÞ

q �
: ðB7Þ

Inserting polar coordinates in D − 1 dimensions

dD−1pi ¼ djp⃗ijjp⃗i
D−2jdΩD−2d cos θ sinD−4θ ðB8Þ

allows to integrate out the remaining delta function and the
phase space measure becomes

dϕ2ðpi; pj;PÞ ¼
dΩD−2

ð2πÞD−2 d cos θ sin
D−4 θ

1

2

× ð4P2Þ2−D2 λD−3
2 ðP2; m2

i ; m
2
jÞ; ðB9Þ

where the angle θ is defined as the angle between p⃗a and p⃗i,
so that cos θ is given by

cos θ ¼ EiEa − pi · pa

jp⃗ijjp⃗aj
: ðB10Þ

The integration over cos θ can now be turned easily into an
integration over the desired variable zi asEi,Ea, jp⃗ij and jp⃗aj
do not depend on zi. In order to express sin θ through zi, the
integration limits

z� ¼ EiEa � jp⃗ijjp⃗aj
P · pa

; ðB11Þ

which are given in Eq. (37) in terms of x andQ2 formi ¼ 0,
can be used to write

sin2 θ ¼ ð1 − cos θÞð1þ cos θÞ

¼
�

P · pa

jp⃗ijjp⃗aj
�

2

ðzi − z−Þðzþ − ziÞ: ðB12Þ

As we assume rotational invariance of the squared matrix
element around the axis given by p⃗a, we can already perform
the integration over the solid angle ΩD−2, so that we have

Z
dΩD−2 ¼

2π
D−2
2

ΓðD−2
2
Þ : ðB13Þ

After defining the Jacobian from the transition fromm2
P to x

into the dipole phase space ½dpiðQ2; x; ziÞ�, one arrives at
Eq. (36).

2. Initial-state emitter and initial-state spectator

As in the previous section, the form of the measure
½dpiðs; x; yÞ� is derived by considering a convolution of
the form
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dϕmþ1ðpi; pk;pa þ pbÞ ¼
dm2

P

2π

Y
k

d½D�pk

ð2πÞD−1 δþðp2
k −m2

kÞð2πÞDδðDÞ
�
pa þ pb − pi −

X
k

pk

�
dϕ2ðpi; P;pa þ pbÞ; ðB14Þ

where mP acts as the invariant mass of the momentum P ¼ pa þ pb − pi. By using the facts that the dipole momenta obey
the mass-shell relations p̃k ¼ m2

k and momentum conservation pa þ pb − pi −
P

k pk ¼ p̃ai þ pb −
P

k p̃k by construc-
tion and that a Lorentz transformation p̃μ

k ¼ Λμ
ν pν

k leaves the measure d½D�pk invariant, the remaining momentum
integrations in Eq. (B14) can be expressed through an m-particle phase space with initial momentum p̃ai þ pb and final
momenta p̃k:

dϕmþ1ðpi; pk;pa þ pbÞ ¼
dm2

P

2π
dϕmðp̃k; p̃ai þ pbÞdϕ2ðpi; P;pa þ pbÞ: ðB15Þ

Following the same line of thought as in Appendix B 1 and working in the c.m. frame of pa and pb, the integration over the
two-particle phase space for mi ¼ 0,

dϕ2ðP; pi;pa þ pbÞ ¼
dDpi

ð2πÞD−1 δþðp2
i Þ

dDP
ð2πÞD−1 δþðP2 −m2

PÞð2πÞDδðDÞðpa þ pb − P − piÞ ðB16Þ

can be turned into an integration over y:

dϕ2ðP; pi;pa þ pbÞ ¼
dΩD−2

2ð2πÞD−2 djp⃗ijjp⃗ijD−3d cos θsinD−4θ δþðs − 2jp⃗ij
ffiffiffi
s

p
− P2Þ

¼ dΩD−2

2ð2πÞD−2 ð2
ffiffiffi
s

p Þ2−Dðs − P2ÞD−3d cos θsinD−4θ

¼ s1−2ε

2ð4πÞ2−2ε
ð4sÞ−εffiffiffiffiffiffiffi
λab

p
1−2ε dΩD−2dy½ðyþ − yÞðy − y−Þ�−ε: ðB17Þ

The angle θ is defined as the angle between p⃗i and p⃗a and
therefore determined through

pa · pi ¼ jp⃗ijEa − jp⃗ajjp⃗ij cos θ: ðB18Þ

A simple substitution from m2
P to x via Eq. (144) yields the

dipole phase space ½dpiðs; x; yÞ� given in Eq. (141).

APPENDIX C: INTEGRALS

The expansion in ε of the integrals I1ðz; εÞ and I2ðz; εÞ
up to OðεÞ is obtained by inserting the ansatz

uðzÞ ¼ rðzÞ þ εsðzÞ þOðε2Þ ðC1Þ

into the hypergeometric equation [37]

zð1 − zÞu00ðzÞ þ ðc − ðaþ bþ 1ÞzÞu0ðzÞ − abuðzÞ ¼ 0

ðC2Þ

whose general solution for the initial condition uð0Þ ¼ 1 is
the hypergeometric function u ¼ 2F1ða; b; c; zÞ. Solving
the resulting system of equations order by order while
enforcing the boundary conditions rð0Þ ¼ 1 and sð0Þ ¼ 0
yields the functions rðzÞ and sðzÞ.
For the computation of the integrals I1ðy0; εÞ and

I2ðy0; εÞ, the integral

Z
∞

0

dt tα−12F1ða; b; c;−tÞ ¼
ΓðαÞΓðcÞΓða − αÞΓðb − αÞ

ΓðaÞΓðbÞΓðc − αÞ
ðC3Þ

is used. It can be computed by inserting the integral
representation of the hypergeometric function followed
by factorizing the double integral into two Euler-Beta
functions

Z
∞

0

dt
Z

1

0

dt0tα−1t0b−1ð1 − t0Þc−b−1ð1þ tt0Þ−a ¼
Z

1

0

dxð1 − xÞα−1xa−α−1
Z

1

0

dt0ð1 − t0Þc−b−1t0b−α−1

¼ βðα; a − αÞβðc − b; b − αÞ ðC4Þ
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through the substitution x ¼ 1
1þtt0. The remaining step for the computation of I1ðy0; εÞ is to separate the integral into a part

giving the divergences for y → 0 and a finite part

I1ðy0; εÞ ¼ βð1 − ε; 1 − εÞ
�

1

y1þε
0

Z
1

0

dt tε2F1

�
1; 1 − ε; 2 − 2ε;−

t
y0

�
−
Z

∞

0

dt tε2F1ð1; 1 − ε; 2 − 2ε;−tÞ
�
: ðC5Þ

The last part contains the divergent piece and is evaluated with the help of Eq. (C3):Z
∞

0

dt tε2F1ð1; 1 − ε; 2 − 2ε;−tÞ ¼ 1

2ε2
−
1

ε
þOðεÞ; ðC6Þ

whereas the first integral is finite and can be evaluated for ε ¼ 0:Z
1

0

dt tε2F1

�
1; 1 − ε; 2 − 2ε;−

t
y0

�
¼ −y0Li2

�
−

1

y0

�
þOðεÞ: ðC7Þ

The calculation of I2ðy0; εÞ proceeds in an analogous way.
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