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We investigate whether the seven-loop beta function of the λϕ4
4 theory exhibits evidence for an ultraviolet

zero. In addition to a direct analysis of the beta function, we calculate and study Padé approximants and
discuss effects of scheme transformations on the results. Confirming and extending our earlier studies of the
five-loop and six-loop beta functions, we find that in the range of λwhere the perturbative calculation of the
seven-loop beta function is reliable, the theory does not exhibit evidence for an ultraviolet zero.
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I. INTRODUCTION

In this paper we consider the renormalization-group
(RG) behavior of the λϕ4 field theory in d ¼ 4 spacetime
dimensions, where ϕ is a real scalar field. This theory,
commonly denoted ϕ4

4, is described by the Lagrangian

L ¼ 1

2
ð∂νϕÞð∂νϕÞ −

m2

2
ϕ2 −

λ

4!
ϕ4: ð1:1Þ

The Lagrangian (1.1) is invariant under the global discrete
Z2 symmetry ϕ → −ϕ. Quantum loop corrections lead to a
dependence of the physical quartic coupling λ ¼ λðμÞ on
the Euclidean energy/momentum scale μ at which this
coupling is measured. The dependence of λðμÞ on μ is
described by the RG beta function of the theory,
βλ ¼ dλ=dt, or equivalently, βa ¼ da=dt, where dt ¼
d ln μ [1] and

a≡ λ

ð4πÞ2 : ð1:2Þ

(The argument μ will often be suppressed in the notation.)
Since we will investigate the properties of the theory for
large μ in the ultraviolet (UV), the value ofm2 will not play
an important role in our analysis. For technical conven-
ience, we assume that m2 is positive. At a reference scale
μ0, the quartic coupling λðμ0Þ is taken to be positive for the
stability of the theory. The one-loop term in this beta
function has a positive coefficient, so that for small λ,

βλ > 0, and hence as μ → 0, the coupling λðμÞ → 0, i.e., the
theory is infrared (IR)-free. This perturbative result is in
agreement with nonperturbative approaches [2]; some
reviews include [3,4].
The beta function βa has the series expansion

βa ¼ a
X∞
l¼1

blal: ð1:3Þ

The n-loop (nl) beta function, denoted βa;nl, is given by
Eq. (1.3) with the upper limit of the loop summation index
l ¼ n instead of l ¼ ∞. The one-loop and two-loop terms
in βa are independent of the scheme used for regularization
and renormalization, while terms of loop order l ≥ 3 are
scheme-dependent [5,6]. For the OðNÞ λjϕ⃗j4 theory with an
N-component field, ϕ⃗ ¼ ðϕ1;…;ϕNÞ, the coefficients b1,
b2, and b3 were calculated in [5]. Higher-loop coefficients
bl with l ≥ 3 have been computed using the MS minimal
subtraction scheme [7,8]. A calculation of b5 and discus-
sion of earlier computations of b4 and b5 (e.g., [9–11]) were
given in [4,12]. The coefficient b6 was calculated forN ¼ 1
in [13] and for general N in [14]. Most recently, the seven-
loop coefficient b7 was calculated in [15]. In analyzing the
series expansion (1.3), one recalls that it is an asymptotic
expansion, and the large-order behavior has been the
subject of extensive study [16], including [17] and refer-
ences therein.
An interesting question is whether, for the region of λ

where a perturbative calculation of βλ is reliable, this beta
function exhibits evidence for a zero at some (positive)
value of the quartic coupling. This would be an ultraviolet
fixed point (UVFP) of the renormalization group; i.e., as
μ → ∞, λðμÞ would approach this value (from below). In
previous work we have investigated this question up to the
five-loop order for the OðNÞ λjϕ⃗j4 theory in [18] and up to
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the six-loop order for the real λϕ4 theory in [19] and the
OðNÞ λjϕ⃗j4 theory in [20], finding evidence against such a
UVFP. In the present paper, using the results of [15], we
extend our analysis to the seven-loop level. Our analysis in
[20] covered a large range of specific N values and also
included an argument for the absence of a UV zero in the
(rescaled) n-loop beta function at large N [see Eqs. (3.12)
and (3.13) in [20]]. Indeed, in the N → ∞ limit, the
(rescaled) beta function of this OðNÞ λjϕ⃗j44 theory is
one-loop exact [3], and hence obviously has no UV zero.
We will focus on the N ¼ 1 theory here.
In view of this previous evidence against a UV zero in βλ

and associated UVFP in the OðNÞ λjϕ⃗j4 theory, it is
worthwhile to mention one case where an IR-free quantum
field theory is known to have a UVFP, namely, the
nonlinear OðNÞ σ model in d ¼ 2þ ϵ spacetime dimen-
sions. In this theory, an exact solution was obtained in the
limit N → ∞ with λðμÞN ¼ xðμÞ a fixed function of μ and
yielded the beta function

βx ¼
dx
dt

¼ ϵx

�
1 −

x
xUV

�
ð1:4Þ

for small ϵ, where xUV ¼ 2πϵ is a UV fixed point of the
renormalization group [21]. Since the leading term in βx is
positive for ϵ > 0, this theory is IR-free. Thus, in this
nonlinear OðNÞ σ model in d ¼ 2þ ϵ dimensions, the
coupling xðμÞ flows (monotonically) from x ¼ 0 at μ ¼ 0
to x ¼ xUV as μ → ∞. Note that by making ϵ ≪ 1 one can
arrange that the UVFP at xUV ¼ 2πϵ occurs at an arbitrarily
small value of the scaled coupling x.
This paper is organized as follows. In Sec. II we review

some relevant background. In Sec. III we present the results
of our analysis of the seven-loop beta function. Section IV
contains a further analysis of this question of aUVzero using
Padé approximants, while Sec. V discusses effects of scheme
transformations. Our conclusions are given in Sec. VI.

II. BETA FUNCTION

The n-loop truncation of (1.3), denoted βa;nl, is a
polynomial in a of degree nþ 1 having an overall factor
of a2. We may extract this factor and define a reduced beta
function

βa;r ¼
βa
βa;1l

¼ βa
b1a2

¼ 1þ 1

b1

X∞
l¼2

blal−1: ð2:1Þ

The n-loop truncation of βa;r, denoted βa;r;nl ≡ Rn, is
defined by taking the upper limit of the sum in (2.1) to be
l ¼ n rather than l ¼ ∞.
The first two coefficients in the beta function of this

theory are b1 ¼ 3 and b2 ¼ −17=3 [5]. The coefficients bl
with 3 ≤ l ≤ 7 and the resultant higher-loop beta function
discussed below are calculated in the MS scheme. The
coefficients up to the five-loop level are [4,5,9,12]

b3 ¼
145

8
þ 12ζ3 ¼ 32.5497; ð2:2Þ

b4 ¼ −
3499

48
− 78ζ3 þ 18ζ4 − 120ζ5 ¼ −271.606; ð2:3Þ

and

b5 ¼
764621

2304
þ 7965

16
ζ3 −

1189

8
ζ4 þ 987ζ5 þ 45ζ23

−
675

2
ζ6 þ 1323ζ7 ¼ 2848.57; ð2:4Þ

where the floating-point values are given to the indicated
accuracy and

ζs ¼
X∞
n¼1

1

ns
ð2:5Þ

is the Riemann zeta function. If s ¼ 2r is even, then ζs
can be expressed as a rational number times π2r, namely
ζ2r ¼ ð−1Þrþ1B2rð2πÞ2r=½2ð2rÞ!�, where Bn are the
Bernoulli numbers; however, we leave these ζ2r in their
generic form here and below. The six-loop coefficient is
[13,14]

b6 ¼ −
18841427

11520
−
779603

240
ζ3 þ

16989

16
ζ4 −

63723

10
ζ5

−
8678

5
ζ23 þ

6691

2
ζ6 þ 162ζ3ζ4 −

63627

5
ζ7

− 4704ζ3ζ5 þ
264543

25
ζ8 −

51984

25
ζ3;5 − 768ζ33

−
46112

3
ζ9 ¼ −34776.13; ð2:6Þ

where [22]

ζ3;5 ¼
X

m>n≥1

1

n3m5
: ð2:7Þ

The seven-loop coefficient is considerably more compli-
cated than b6, and we refer the reader to [15] for the
analytic expression. The numerical value is

b7 ¼ 474651.0: ð2:8Þ

Thus, in summary, the seven-loop beta function of the λϕ4

theory (calculated in the MS scheme) is

βa;7l ¼ a2
�
3 −

17

3
aþ 32.5497a2 − 271.606a3

þ 2848.57a4 − 34776.1a5 þ 474651a6
�
: ð2:9Þ
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III. ZEROS OF THE n-LOOP BETA FUNCTION UP
TO LOOP ORDER n= 7

In this section we investigate a possible UV zero, denoted
aUV;nl, of the n-loop beta function, βa;nl. The double zero of
βa;nl at a ¼ 0 is always present (independent of n); this is an
infrared zero and hence will not be of interest here.
A necessary condition for there to be robust evidence for

a UV zero in the beta function of an IR-free theory is that
the values calculated at successive loop orders should be
close to each other. Although the two-loop beta function
βa;2l does have a UV zero, at aUV;2l ¼ 9=17 ¼ 0.52941,
we found that the three-loop beta function βa;3l has no UV
zero and, while a UV zero is present in βa;4l, it occurs at a
considerably smaller value, namely aUV;4l ¼ 0.23332. At
the five-loop level, βa;5l has no UV zero, while at the six-
loop level, although βa;6l has a UV zero, it occurs at a still
smaller value, aUV;6l ¼ 0.16041 [18,19]. Thus, the results
of this analysis show that the necessary condition that the
beta function calculated to successively higher loop order
should exhibit values of aUV;nl that are close to each other
is not satisfied by this theory. At seven-loop order, using
βa;7l from [15], we find that this function has no physical
UV zero. Instead, the zeros are comprised of three com-
plex-conjugate pairs, −0.102135�0.079848i, 0.0142348�
0.136854i, and 0.124533� 0.0659940i. Summarizing,

aUV;2l ¼ 0.52941; aUV;4l ¼ 0.23332;

aUV;6l ¼ 0.16041 no aUV;nl for n ¼ 3; 5; 7: ð3:1Þ
The calculations up to seven loops show a pattern, namely
that for even n ¼ 2, 4, 6, βa;nl has a zero, aUV;nl, but the
values for different n are not close to each other, while for
odd n ¼ 1, 3, 5, 7, βa;nl has no UV zero.
In Fig. 1 we plot the n-loop beta functions for 2 ≤ n ≤ 7

loops. Another way to show this information is via the
n-loop reduced beta function, βa;r;nl ¼ Rn. We plot Rn in
Fig. 2 for 2 ≤ n ≤ 7. The results discussed above are

evident in these figures. First, one may inquire how large
the interval is in a over which the calculations of βa;nl to
the respective n-loop orders are in mutual agreement. As
one can see from Figs. 1 and 2, the n-loop beta functions
βa;nl with 2 ≤ n ≤ 7 only agree with each other well over
the small interval of couplings 0 ≤ a≲ 0.05. As shown in
Fig. 1, the βa;nl with even n ¼ 2, 4, 6 reach maxima and
then decrease, crossing the (positive) real axis at different
values listed in Eq. (3.1), while the βa;nl with odd n
increase monotonically with a. This seven-loop analysis
confirms and extends our conclusions in [19,20] at the
six-loop level that the zero in the two-loop beta function of
the λϕ4 theory occurs at too large a value of a for the
perturbative calculation to be reliable.

IV. ANALYSIS WITH PADÉ APPROXIMANTS

One can gain further insight into the behavior of the beta
function by the use of Padé approximants (PAs). We carried
out this analysis up to the six-loop level in [19,20], finding no
indication of a physical UV zero, and herewe extend it to the
seven-loop level. Since the double zero in βa;nl at a ¼ 0 is
not relevant to the question of a UV zero, we use the reduced
beta function βa;r;nl for this Padé analysis. The ½p; q� Padé
approximant to βa;r;nl is the rational function [23]

½p; q�βa;r;nl ¼
1þPp

j¼1 rja
j

1þPq
k¼1 ska

k ð4:1Þ

with pþ q ¼ n − 1, where the coefficients rj and sj are
independent of a. At seven-loop order, we can calculate the
Padé approximants ½p; q�βa;r;7l with ½p; q� taking on thevalues
[6,0], [5,1], [4,2], [3,3], [2,4], [1,5], and [0,6]. Since the loop
order is understood, we write ½p; q�βa;r;7l ≡ ½p; q� for brevity
of notation. The PA [6,0] is equivalent to βa;r;7l itself, which
we have already analyzed, and the PA [0,6] has no zeros;
thus,we focus here on the remaining five Padé approximants.

0.1 0.2 0.3 0.4 0.5 0.6
a

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

0.5
beta

FIG. 1. Plot of the n-loop β function βa;nl as a function of a for
(i) n ¼ 2 (red, solid), (ii) n ¼ 3 (green, dashed), (iii) n ¼ 4 (blue,
dotted), (iv) n ¼ 5 (black, dot-dashed), (v) n ¼ 6 (cyan, solid),
and (vi) n ¼ 7 (brown, solid). At a ¼ 0.16, going from bottom
to top, the curves are for n ¼ 6, n ¼ 4, n ¼ 2, n ¼ 3,
n ¼ 5, and n ¼ 7.

0.1 0.2 0.3 0.4 0.5 0.6
a0.0

0.5

1.0

1.5

R_n

FIG. 2. Plot of the ratio Rn of the n-loop beta function βa;nl
divided by βa;1l, as a function of a for (i) n ¼ 2 (red, solid),
(ii) n ¼ 3 (green, dashed), (iii) n ¼ 4 (blue, dotted), (iv) n ¼ 5
(black, dot-dashed), (v) n ¼ 6 (cyan, solid), and (vi) n ¼ 7
(brown, solid). At a ¼ 0.16, going from bottom to top, the
curves are for n ¼ 6, n ¼ 4, n ¼ 2, n ¼ 3, n ¼ 5, and n ¼ 7.
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We list our results for these Padé approximants to βa;r;7l below:

½5; 1� ¼ 1þ 11.760a − 14.931a2 þ 57.552a3 − 286.17a4 þ 1367.8a5

1þ 13.649a
; ð4:2Þ

½4; 2� ¼ 1þ 20.541aþ 75.687a2 − 49.670a3 þ 81.973a4

1þ 22.430aþ 107.21a2
; ð4:3Þ

½3; 3� ¼ 1þ 25.073aþ 152.81a2 þ 155.99a3

1þ 26.962aþ 192.89a2 þ 318.33a3
; ð4:4Þ

½2; 4� ¼ 1þ 22.314aþ 103.55a2

1þ 24.203aþ 138.42a2 þ 89.390a3 − 91.252a4
; ð4:5Þ

½1; 5� ¼ 1þ 14.023a
1þ 15.912aþ 19.205a2 − 45.828a3 þ 196.10a4 − 910.03a5

: ð4:6Þ

We recall some necessary requirements for a zero of a
½p; q� Padé approximant to be physically relevant. These
include the requirement that this zero should occur on the
positive real axis in the complex a plane and the require-
ment that this zero of the PA should be closer to the origin
a ¼ 0 than any pole on the real positive a axis since
otherwise the pole would dominate the IR to UV flow
starting at the origin. If a Padé approximant were to exhibit
such a zero, then one would proceed to inquire how close it
is to any of the aUV;nl in Eq. (3.1). However, we find that
none of these Padé approximants (4.2)–(4.6) has a zero
on the positive real a axis. Explicitly, the [5,1] PA has
two complex-conjugate pairs of zeros at a ¼ −0.12719�
0.26046i and a ¼ 0.26922� 0.20930i, together with a real
zero at a ¼ −0.074837. This real zero is part of a nearly
coincident pole-zero pair, with the pole of the [5,1]
PA being located at a ¼ −0.073267. The appearance of
a nearly coincident pole-zero pair close to a point a0 in a
½p; q� Padé approximant is typically an indication that the
function that the PA is fitting has neither a pole nor a zero in
the local neighborhood of a0 since, as the locations of the
nearly coincident pole-zero pair approach each other,
they simply divide out in the ratio (4.1). Each of the
Padé approximants that we calculate here has a pole-
zero pair. The [4,2] PA has zeros at the complex-conjugate
pair a ¼ 0.42009� 0.96575i, together with the real
values a ¼ f−0.16929;−0.064970g and poles at a ¼
f−0.14481;−0.064414g. The [3,3] PA has zeros at a ¼
f−0.78531;−0.13282;−0.061458g and poles at a ¼
f−0.42342;−0.12140;−0.061112g. The [2,4] PA has
zeros at a ¼ f−0.15193;−0.063563g and poles at
a ¼ f−0.69186;−0.13432;−0.063100; 1.8689g. Finally,
the [1,5] PA has a zero at a ¼ −0.071313 and poles at a ¼
f−0.22780 ;−0.070185; 0.44160; 0.035937 � 0.39287ig.
Thus, our analysis with Padé approximants of the seven-
loop beta function yields the same conclusion as our
analysis of the beta function itself, namely that there is

no evidence for a stable, reliably perturbatively calculable
UV zero up to this seven-loop level.

V. EFFECTS OF SCHEME TRANSFORMATIONS

Since the terms in the beta function at loop order n ≥ 3 are
scheme-dependent, it is necessary to assess the effect of
scheme transformations in an analysis of zeros of a higher-
loopbeta function.A scheme transformationcanbeexpressed
as a mapping between a and a transformed coupling a0,

a ¼ a0fða0Þ; ð5:1Þ
where fða0Þ is the scheme transformation function. Since this
transformation has no effect in the free theory, one has
fð0Þ ¼ 1. We consider fða0Þ functions that are analytic
about a ¼ a0 ¼ 0 and hence can be expanded in the form

fða0Þ ¼ 1þ
Xsmax
s¼1

ksða0Þs; ð5:2Þ

where the ks are constants and smax may be finite or infinite.
The beta function in the transformed scheme, βa0 ¼
da0=d ln μ, has the expansion

βa0 ¼ a0
X∞
l¼1

b0lða0Þl: ð5:3Þ

In [24], formulaswerederived for theb0l in termsofbl and the
ks. In addition to b01 ¼ b1 and b02 ¼ b2, these are

b03 ¼ b3 þ k1b2 þ ðk21 − k2Þb1; ð5:4Þ
b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð−2k31 þ 4k1k2 − 2k3Þb1;

ð5:5Þ
and so forth for higher l. These results are applicable to the
study of both an IR zero in the beta function of an
asymptotically free theory and a possible UV zero in the
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beta function of an IR-free theory. They were extensively
applied to assess scheme dependence in higher-loop studies
of an IR fixed point in asymptotically free non-Abelian gauge
theories [24–28].
For the present λϕ4 theory, a study of scheme dependence

was carried out in [18]. It was shown that even when one
shifts to a scheme different from the usual MS scheme,
the beta function still does not satisfy a requisite condition
for a physical UV zero, namely that the value of this zero
(in a given scheme) should not change strongly when it is
calculated to successive loop orders. This result from [18]
also holds in the sameway in the present seven-loop context.

VI. CONCLUSIONS

In this paper we have investigated whether the real scalar
field theory with a λϕ4 interaction exhibits evidence of an

ultraviolet zero in the beta function. Using the seven-loop
coefficient b7 from [15], our present study extends our
previous six-loop study in [19,20] to the seven-loop level.
Our work includes a study of the seven-loop beta function
itself, together with an analysis of Padé approximants.
We conclude that, for the range of couplings where the
perturbative calculation of this beta function may be
reliable, it does not exhibit robust evidence for an ultra-
violet zero.
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Press, New York, 1975).

[24] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032
(2012); 86, 085005 (2012).

[25] R. Shrock, Phys. Rev. D 88, 036003 (2013); 90, 045011
(2014).

[26] T. A. Ryttov, Phys. Rev. D 89, 016013 (2014); 89, 056001
(2014); 90, 056007 (2014).

[27] G. Choi and R. Shrock, Phys. Rev. D 90, 125029
(2014).

[28] J. A. Gracey and R. M. Simms, Phys. Rev. D 91, 085037
(2015).

SEARCH FOR AN ULTRAVIOLET ZERO IN THE SEVEN-LOOP … PHYS. REV. D 107, 056018 (2023)

056018-5

https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1007/BF01649434
https://doi.org/10.1007/BF01649434
https://doi.org/10.1103/PhysRevD.3.1818
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0550-3213(82)90088-8
https://doi.org/10.1016/0550-3213(82)90088-8
https://doi.org/10.1103/PhysRevLett.50.1897
https://doi.org/10.1103/PhysRevLett.50.1897
https://doi.org/10.1016/0550-3213(84)90246-3
https://doi.org/10.1016/0550-3213(84)90246-3
https://doi.org/10.1103/PhysRevLett.61.678
https://doi.org/10.1103/PhysRevLett.61.678
https://doi.org/10.1016/0550-3213(87)90177-5
https://doi.org/10.1103/PhysRevD.9.1121
https://doi.org/10.1103/PhysRevD.9.1121
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/
https://doi.org/
https://doi.org/10.1016/0370-2693(83)90324-6
https://doi.org/10.1016/0375-9601(84)90503-6
https://doi.org/10.1016/0375-9601(84)90503-6
https://doi.org/10.1016/0370-2693(91)91009-K
https://arXiv.org/abs/1606.09210
https://arXiv.org/abs/1705.0648
https://doi.org/10.1103/PhysRevD.97.085018
https://doi.org/10.1103/PhysRevD.15.1544
https://doi.org/10.1103/PhysRevD.105.025019
https://doi.org/10.1103/PhysRevD.105.025019
https://doi.org/10.1103/PhysRevD.90.065023
https://doi.org/10.1103/PhysRevD.94.125026
https://doi.org/10.1103/PhysRevD.96.056010
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevD.14.985
https://doi.org/10.1016/j.cpc.2009.11.007
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.88.036003
https://doi.org/10.1103/PhysRevD.90.045011
https://doi.org/10.1103/PhysRevD.90.045011
https://doi.org/10.1103/PhysRevD.89.016013
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.90.056007
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1103/PhysRevD.91.085037

