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Within the Color Glass Condensate (CGC) effective field theory, considering the violation of boost
invariance of the rapidity distribution, we correct the normalization scheme of the longitudinal rapidity
ridge correlations. After this correction, the large-rapidity ridge correlation rebounds after bottoming,
consistent with the observed data from the CMS detector. It is also found that the correlation rebound
appears around the sum of the saturation momentum of the projectile and target, and moves to larger
rapidities at higher collision energies. These features directly result from the saturation and the quantum
evolution of gluons within the framework of the CGC.
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I. INTRODUCTION

Two-particle correlations are powerful observables in
exploring the underlying mechanisms of particle produc-
tion. The Δη-Δϕ correlation functions for three kinds of
collisions, i.e. proton-proton [1–6], proton-nucleus [7–12]
and nucleus-nucleus collisions [13–18], show similar
structures. There is an enhancement on the near side
(relative azimuthal angle Δϕ ≈ 0) that extends over a wide
range in relative pseudorapidity (jΔηj ≈ 4). In particular, a
rebound at jΔηj ≈ 4 after a plateau within 2 < jΔηj < 3.6 is
observed [2]. Such a long-range near-side correlation is
known as the “ridge.” This ridge like feature has drawn a lot
of attention in both experimental and theoretical sides.
At present, there are two mainstream mechanisms to

explain the ridge in small systems, namely the glasma
correlation in the initial state [19–26] described by the
Color Glass Condensate (CGC) effective field theory
and the final state evolution [27–31] described by
hydrodynamics.
On one hand, hydrodynamics systematically described

azimuthal anisotropies in small systems including p-Au,
d-Au and He-Au collisions at RHIC and p-Pb collisions
at LHC [27–31]. It fails to reproduce multiple-particle
cumulant c2f4g [32] and the elliptic flow of heavy flavor
particles [33]. On the other hand, CGC successfully

explained the mass ordering of v2 [34], multiple-particle
cumulant c2f4g [35], the elliptic flow of heavy flavor
particles [36] and γA process [37], except the ordering
of Fourier harmonics vn with respect to system sizes of
p-Au, d-Au and He-Au [38]. Recent research [39,40]
shows that the azimuthal anisotropy measured in small
systems may be the combined contributions of CGC and
hydrodynamics.
The CGC effective field theory provides a consistent

description for collisions of both hadrons and nuclei [41].
The gluon density inside a colliding hadron or nucleus
grows with the collision energy. Gluon saturation occurs
at high enough energy or small enough Bjorken x. The
colliding hadrons of high gluon density are two sheets of
color glass condensate which can be described by classical
color electric and color magnetic fields. When two sheets
of color glass pass through each other, the high intensity
color fields interact and evolve. After the collision, strong
longitudinal color electric and color magnetic fields are
formed in the region between the colliding hadrons, which
is called glasma [42]. The approximate longitudinal boost
invariant glasma fields produce particles with long range
rapidity correlations.
The glasma field is an equivalent description of dense

gluons in the initial state. The quantum evolution of
projectiles [20] starts from the radiations of valence quarks
and produces gluons. Successive gluon splittings produce
more gluons. Gluon recombination stops the increase of the
gluon density. The gluon density saturates finally.
For a right moving projectile, the Bjorken x of a gluon

reads

x ¼ p⊥ffiffiffi
s

p ey; ð1Þ
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with y representing rapidity, p⊥ transverse momentum andffiffiffi
s

p
center-of-mass energy. At

ffiffiffi
s

p ¼ 7 TeV and intermedi-
ate p⊥, e.g. 2 GeV=c, gluons with y≳ 3.5 has x > 0.01.
They are called source gluons. Gluons with y≲ 1.0 has
x < 0.001, which are descendants of source gluons and are
called radiated gluons. In the central rapidity region, the
small x part of a colliding hadron is probed, while in the
large rapidity region the large x part is probed. A proton is
seen as three valence quarks at large x and dense gluons at
small x. Therefore the physics in different rapidity regions
is essentially different. Correlations of gluons of different
rapidity regions can reflect correlations of different gen-
erations [43–46].
The experimental observable of ridge is per-trigger yield

[2–4,6–8,11,13–15], i.e. the number of particle pairs with
pseudorapidity interval Δη and azimuth interval Δϕ di-
vided by the number of trigger particles. In order to
eliminate the influence of unrelated pairs, mixed events
are usually constructed in experiments. Dividing the yield
in real events by the yield in mixed events gives the final
results reported in experiments.
In the CGC calculation, we propose that the number of

uncorrelated pairs can be exactly represented by the integral
of the product of two real single-particle distributions
within the acceptance, instead of the approximate normali-
zation factor, which is given by simply assuming a boost
invariant rapidity distribution [25]. As we know, the boost
invariance of the rapidity distribution holds only at the
central rapidity region [41], but is violated beyond that
region. The violation of boost invariance should influence
correlations accordingly. Indeed, after this correction, the
ridge correlations at long-range rapidity are well shown.
The correlation rebound in p-p collisions at 7 TeV is
reproduced and described by the CGC.
It is also found that the correlation rebound is most

obvious around the sum of the saturation momentum of
the projectile and target. The rebound happens at even
larger rapidity region for higher colliding energies. These
features of the correlation rebound are closely related to the
mechanism of CGC.
This paper is organized as follows. In Sec. II we

formulate an exact calculation of the normalization factor
of ridge correlations based on real rapidity distributions
of CGC. Results of corrected correlations are presented.
In Sec. III the dependence of the correlation rebound
on p⊥ and

ffiffiffi
s

p
is systematically studied and the origin is

discussed. Section IV is a summary.

II. LONG-RANGE RIDGE CORRELATIONS
FROM CGC

The per-trigger yield is defined as

1

NTrig

d2Npair

dΔydΔϕ
: ð2Þ

It counts the number of particle pairs with rapidity
separation Δy and azimuthal angle separation Δϕ, divided
by the number of trigger particles.
In experiments, the number of uncorrelated pairs is

estimated by the sample of mixed events. Particles of a
mixed event are drawn randomly from different original
events. For a large enough number of original events, in a
single mixed event, the probability of having two particles
from the same original event is close to zero. The particles
in a mixed event are almost independent [47].
The per-trigger yield obtained from the original events

and the mixed events are denoted as

SðΔy;ΔϕÞ ¼ 1

NTrig

d2Nsame

dΔydΔϕ
; ð3Þ

BðΔy;ΔϕÞ ¼ 1

NTrig

d2Nmixed

dΔydΔϕ
; ð4Þ

respectively. The functions SðΔy;ΔϕÞ and BðΔy;ΔϕÞ are
called the signal and background distributions, respectively.
The final yield is normalized as [2–4,6–8,11,13–15]

YðΔy;ΔϕÞ ¼ Bð0; 0Þ SðΔy;ΔϕÞ
BðΔy;ΔϕÞ : ð5Þ

Detector effects, such as tracking inefficiency, largely
cancel in the same-event to mixed-event ratio. The factor
Bð0; 0Þ is the value of BðΔy;ΔϕÞ at Δy ¼ 0 and Δϕ ¼ 0,
representing the mixed-event associated yield for both
particles of the pair going in the same direction. In this
case, the two particles have the maximum pair acceptance
and the normalization factor BðΔy;ΔϕÞ=Bð0; 0Þ equals one.
The signal distribution of the per-trigger yield in CGC is

expressed [23–25] as

SðΔy;ΔϕÞ ¼ 1

NTrig

d2Nassoc

dΔydΔϕ
; ð6Þ

where

d2Nassoc

dΔydΔϕ
¼

Z
ymax

ymin
dyp

Z
ymax

ymin
dyqδðyq − yp − ΔyÞ

×
Z

2π

0

dϕp

Z
2π

0

dϕqδðϕq − ϕp − ΔϕÞ

×
Z

pmax⊥

pmin⊥

dp2⊥
2

Z
qmax⊥

qmin⊥

dq2⊥
2

dNcorr
2

d2p⊥dypd2q⊥dyq
: ð7Þ

The labels “p” and “q” denote the two particles in the pair,
conventionally referred to as “trigger” and “associated”
particles, respectively. The δ function is used to restrict
the phase space interval to a given Δy and Δϕ. The

integrand function dNcorr
2

d2p⊥dypd2q⊥dyq
is equal to the two-particle
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production minus the product of two single-particle pro-
ductions, i.e.

dNcorr
2

d2p⊥dypd2q⊥dyq
¼ dN2

d2p⊥dypd2q⊥dyq
−

dN1

d2p⊥dyp
dN1

d2q⊥dyq
:

ð8Þ

The background in Eq. (4) represents yield of uncorre-
lated pairs. The counterpart in theoretical calculations
should be integrals of the product of two single-particle
productions, i.e.

BðΔy;ΔϕÞ ¼ 1

NTrig

d2Nuncorr

dΔydΔϕ
; ð9Þ

with

d2Nuncorr

dΔydΔϕ
¼

Z
ymax

ymin
dyp

Z
ymax

ymin
dyqδðyq − yp − ΔyÞ

×
Z

2π

0

dϕp

Z
2π

0

dϕqδðϕq − ϕp − ΔϕÞ

×
Z

pmax⊥

pmin⊥

dp2⊥
2

Z
qmax⊥

qmin⊥

dq2⊥
2

dN1

d2p⊥dyp
dN1

d2q⊥dyq
:

ð10Þ

The integration in Eq. (10) depends on the shape of the
single-particle distribution and the acceptance. The CMS,
ALICE and ATLAS experiments at the LHC have a full
azimuthal coverage but a limited rapidity acceptance. When
the single-particle azimuthal distribution is uniform and the
integral range is 0 to 2π, the background distribution does
not depend on Δϕ.
On contrary, the background distribution depends on Δy

due to the limited rapidity acceptance. When the rapidity
distribution is boost invariant, the normalization factor is

BðΔy;ΔϕÞ
Bð0; 0Þ ¼ 1 −

jΔyj
ymax − ymin ; ð11Þ

i.e. Eq. (A.4) in Ref. [25].
As we know, boost invariance of glasma fields only

holds approximately within small x region in the CGC
framework. It is interesting to see how an exact calculation
of the normalization factor affects the correlations. In the
following, the background based on boost invariance, i.e.
Eq. (11), is denoted by B1. The background based on real
single-particle distributions within the CGC is denoted
by B2. The signal distribution S normalized by B1, B2

results in Y1 and Y2, respectively.
The quantum evolution with rapidity is described by the

rcBK equation [48–50]. By solving the rcBK equation at a
given initial condition, the unintegrated gluon distribution
(uGD) can be obtained and the two- and single-gluon
productions are available. More specifically, the leading

order (LO) BK equation with a running coupling kernel,
the Balitsky’s prescription, is employed. Meanwhile, the
Albacete–Armesto–Milhano–Quiroqa–Salgado (AAMQS)
initial condition with the proton’s initial saturation scale
Q2

s0 ¼ 0.168 GeV2 is used. These specifications have
successfully described F2 vs. x [51], single-inclusive pt
spectra [52] and other experimental data [23–25].
To avoid repetition, the formulas of the double-gluon

production and sing-gluon production presented in
Refs. [23–25,43–45] are not shown here. Completing the
integrals in Eqs. (7) and (10) with the transverse momen-
tum range 1 ≤ p⊥ðq⊥Þ ≤ 3 GeV=c and the rapidity range
−0.9 ≤ ypðyqÞ ≤ 0.9 and −2.4 ≤ ypðyqÞ ≤ 2.4, Y1 and Y2

are obtained and shown in Fig. 1. The purpose of using two
different rapidity windows are to distinguish the contribu-
tions of different x components. Yw in the figure is short
for rapidity window.
As Figs. 1(a) and 1(b) show, at the rapidity window of

½−0.9; 0.9� (the ALICE acceptance), Y1 and Y2 have similar
structures. In the Δϕ direction, they both have two peaks of
equal height at Δϕ ¼ 0 and π. The two peaks are called
azimuthal collimation which is intrinsic to glasma dynamics
[23–25]. It contributes to the well-known collectivity in
small systems. In the Δy direction, Y1 and Y2 both show a
downward trend as jΔyj increases. It was stated that glasma
graphs have significant short range rapidity correlations [46].
Due to the short range rapidity correlations, the longitudinal
structure of the two-dimensional distributions is not as flat as
the ALICE data [8], so at the rapidity window of ½−0.9; 0.9�
the results of two-dimensional distributions from CGC are
not directly comparable with data.
Since boost invariance holds approximately within small

x region in the CGC framework, it is understandable that
two normalization schemes have few differences within the
central rapidity region.
At the rapidity window of ½−2.4; 2.4� (the CMS accep-

tance), Y1 and Y2 are shown in Figs. 1(c) and 1(d),
respectively. In Fig. 1(c) correlations at long-range rapidity
(jΔyj≳ 2) show bumps at Δϕ ¼ 0 and π which contribute
to the ridge yield. Integrating the two-dimensional distri-
bution within 2 < jΔyj < 4 produces the ridge yield as a
function of Δϕ, i.e. dN

dΔϕ, which has been shown to be
consistent with the CMS data [23–25].
Of particular interest in this study is the ridge yield as a

function of Δy, which has not been demonstrated within
the CGC framework [23–25]. The near-side yields as a
function of Δη from the CMS data present a rebound at
jΔηj ≈ 4 after a plateau within 2 < jΔηj < 3.6 (see Fig. 2 in
Ref. [2]). By using the background B1, the ridge yield as a
function of Δy, as Fig. 1(c) shows, does not agree with the
data; i.e. the plateau and the rebound in the rapidity
direction are not reproduced.
However, the trend of Y2 is qualitatively different from

Y1, as Fig. 1(d) shows. The difference is mainly in the
rapidity direction. Correlations in Fig. 1(c) decrease with
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jΔyj monotonously. Correlations in Fig. 1(d) first fall and
then rise with jΔyj, indicating a clearer signal of long-range
rapidity correlations. The structure within 2 < jΔyj < 4.4
is qualitatively consistent with the CMS data [2].
In order to compare Y1 and Y2 more clearly, a projection

to Δy axis is made and shown in Figs. 2(a) and 2(b).
In Fig. 2(a), at the rapidity window of ½−0.9; 0.9�, the
red curve (representing Y2) is almost coincident with the
black curve (representing Y1), only having visible
differences at jΔyj > 1. This means that the two back-
grounds are approximately equal and the Y quantity is also
approximately equal when the rapidity window is within

the central rapidity region. This is because the boost
invariance holds approximately in the central rapidity
region, and Y2 almost reduces to Y1.
As the rapidity window increases to ½−2.4; 2.4�, the red

curve in Fig. 2(b) deviates the black curve significantly
at long-range rapidity of jΔyj > 2. The plateau and the
rebound in the rapidity direction in CMS data [2] are
reproduced by the red curve in Fig. 2(b).
The trend of Y1 as a function of Δy does not show

any rebound at all and thus does not match well with data.
Y2 (the red curve) demonstrates a correlation rebound at
long-range rapidity of jΔyj ≈ 4. This may be the first time

FIG. 1. The per-trigger yield in the Δy-Δϕ plane for 7 TeV pp collisions with transverse momentum integrated within 1 ≤ p⊥ðq⊥Þ ≤
3 GeV=c and with rapidity integrated in −0.9 ≤ ypðyqÞ ≤ 0.9 (the upper panels) and −2.4 ≤ ypðyqÞ ≤ 2.4 (the lower panels). The two
columns present quantities Y1 and Y2, respectively.

FIG. 2. The per-trigger yield as a function of Δy at fixed Δϕ ¼ 0 for the rapidity windows of ½−0.9; 0.9� (a) and ½−2.4; 2.4� (b). The
black and the red curves are Y1 and Y2, respectively. (c) The difference of B1 and B2 at the rapidity window of ½−2.4; 2.4�.
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that the rapidity correlation calculated within the CGC
framework agrees with the experimental data in trend. The
better agreement is due to the correction of the normali-
zation scheme of the ridge yield.
The qualitative differences between Y1 and Y2 originate

from the differences in normalization factor B1 and B2,
which are shown in Fig. 2(c). The black curve (representing
B1) and the red curve (representing B2) nearly touch each
other except for minor differences. B2 is a little larger than
B1 at jΔyj < 2 and slightly smaller at jΔyj > 2. The reason
for that is the violation of the boost invariance of the
rapidity distribution at the large-rapidity region.
As mentioned before, the normalization factor appears in

the denominator of Eq. (5). Its tiny differences cause a
qualitative change in Y quantity. That is why an accurate
calculation of the normalization factor is highly important.

III. THE p⊥ AND
ffiffi
s

p
DEPENDENCE OF

LARGE-RAPIDITY RIDGELIKE CORRELATIONS

In the following, it is interesting to see if and how the
rebound of rapidity correlations changes with transverse
momentum and colliding energy.
The ridge yield Y2 at

ffiffiffi
s

p ¼ 7 TeV and 13 TeVare shown
in Fig. 3. The color codes of the surface plots are set to be
the same for the sake of comparison.

The upper panels of Fig. 3 are for a rapidity window of
½−0.9; 0.9�. The red area in Fig. 3(b) seems to be larger than
Fig. 3(a), indicating stronger correlations at Δy ¼ 0 whenffiffiffi
s

p ¼ 13 TeV. Except for this, the trend along the rapidity
direction is nearly identical at

ffiffiffi
s

p ¼ 7 and 13 TeV. When
the rapidity window is narrow, i.e. within small x region,
the ridge correlations do not have much dependence on
colliding energy.
The lower panels of Fig. 3 are for a rapidity window of

½−2.4; 2.4�. As in the previous case, results of 7 TeV and
13 TeV do not show significant differences. However,
compared with a rapidity window of ½−0.9; 0.9�, rebounds
at large jΔyj are significant in this case. In a narrow rapidity
window, only correlations between small x gluons con-
tribute. In a wide rapidity window correlations between
small x gluons and large x gluons contribute. Therefore, the
rebound at large jΔyj results from correlations of source
gluons and radiated gluons.
A projection to Δy axis is made and shown in Fig. 4(a).

The solid lines are the projection of Figs. 3(c) and 3(d),
whose transverse momentum interval is ½1; 3� GeV=c. The
black solid curve (representing 13 TeV) is qualitatively
different from the red solid curve (representing 7 TeV). The
red solid curve first falls and then rises with jΔyj, showing a
plateau and a rebound at long range rapidities. The black
solid curve decreases with jΔyj monotonically. Whether

FIG. 3. The per-trigger yield Y2 for pp collisions with transverse momentum integrated within 1 ≤ p⊥ðq⊥Þ ≤ 3 GeV=c and with
rapidity integrated in −0.9 ≤ ypðyqÞ ≤ 0.9 (the upper panels) and −2.4 ≤ ypðyqÞ ≤ 2.4 (the lower panels). The two columns present
per-trigger yield of 7 TeV and 13 TeV, respectively.
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there is a rebound in the rapidity correlations is the main
difference between the two energies.
In order to study the transverse momentum dependence,

the transverse momentum interval ½1; 3� GeV=c is divided
into two intervals, i.e. ½1; 2� GeV=c and ½2; 3� GeV=c. The
rapidity correlations within ½1; 2� GeV=c (dashed lines)
completely reproduce the trend of the solid lines. The
rebound of the red solid curve at jΔyj ≈ 4.0 is dominated
by the transverse momentum interval ½1; 2� GeV=c. The
correlations at p⊥ ∈ ½2; 3� GeV=c (the dot-dashed line) do
not show any rebound trends. It indicates that the rebound of
rapidity correlations at jΔyj ≈ 4.0 is most obvious at p⊥∼
QsA þQsB ¼ 2Qsp ≈ 1.8 GeV=c, whereQsAðBÞ denotes the
saturation momentum of the projectile or target, and Qsp ≈
0.9 GeV=c at 7 TeV. This is consistent with the existing
experimental result that ridge yield gets the maximum within
½1; 2� GeV=c of particle transverse momentum [1].
This p⊥ dependence of the ridge correlations can be well

explained under the CGC framework. The correlation
function is proportional to the correlated two-gluon pro-
duction, i.e. Eq. (8), which can be expressed by convolu-
tions of four uGDs [23–25,43–45]. One of the integrands is
as follows:

Φ2
Aðyp; k⊥ÞΦBðyp; p⊥ − k⊥ÞΦBðyq; q⊥ − k⊥Þ: ð12Þ

Since the maximum of ΦAðyp; k⊥Þ appears at jk⊥j ∼QsA,
the maximums of ΦBðyp; p⊥ − k⊥Þ and ΦBðyq; q⊥ − k⊥Þ
are located at jp⊥ − k⊥j ∼QsB and jq⊥ − k⊥j ∼QsB; the
strongest correlation requires [21,43,44]

jk⊥j ∼QsA; jp⊥ − k⊥j ∼QsB and jq⊥ − k⊥j ∼QsB:

ð13Þ

Based on Eq. (13) we estimate that the maximum of the
correlation should be near jp⊥j ∼ jq⊥j ∼QsA þQsB. The

correlation function C indeed shows maximums at jp⊥j ∼
jq⊥j ∼Qsp þQsp ¼ 2Qsp ¼ 1.8 GeV=c in pp collisions,
jp⊥j ∼ jq⊥j ∼QsA þQsA ¼ 2QsA ¼ 2.8 GeV=c in AA
collisions, and jp⊥j ∼ jq⊥j ∼Qsp þQsA ¼ 2.3 GeV=c in
pA collisions (see Fig. 3 in Ref. [43]). The strongest
correlation indeed lies near jp⊥j ∼ jq⊥j ∼QsA þQsB.
As we know, CGC has a consistent description for

different colliding systems. The only parameter is the
saturation momentum Qs. Qs is x dependent. As Eq. (1)
demonstrates, when

ffiffiffi
s

p
increases, the rapidity y must

increase to get the same x. We expect the rebound of
rapidity correlations should appear at larger rapidities for
higher colliding energies. One of the variables of per-
trigger yield is Δy, which reflects the rapidity gap rather
than the rapidity location. Correlations with rapidity
location as an independent variable are the differential
correlation function, i.e.

Cðp⊥; yp; q⊥; yqÞ ¼
dN2

d2p⊥dypd2q⊥dyq
dN1

d2p⊥dyp
dN1

d2q⊥dyq

− 1 ¼
dNcorr

2

d2p⊥dypd2q⊥dyq
dN1

d2p⊥dyp
dN1

d2q⊥dyq

:

ð14Þ

Here dN2

d2p⊥dypd2q⊥dyq
and dN1

d2p⊥dyp
are the two-gluon production

and the single-gluon production, respectively, the same
with that in Eq. (8).
Cðp⊥; yp; q⊥; yqÞ as a function of yq, i.e. Δy, for yp ¼ 0,

p⊥ ¼ q⊥ ¼ 1.5 GeV=c, ϕp ¼ ϕq ¼ 0 is shown in Fig. 4(b).
The trigger particle has yp ¼ 0, being at the central rapidity
region. The associated particle has yq. The solid, dashed
and dot-dashed lines denote small x, middle x and large x
regions of the associated particle, respectively. The peak
around Δy ¼ 0 reflects correlations between radiated
gluons. The peak at Δy ≈ 4.0 reflects correlations between
radiated gluons (yp ¼ 0) and source gluons (yq ≈ 4.0), so
the rebound of rapidity correlations at jΔyj ≈ 4.0 is caused

FIG. 4. (a) The per-trigger yield as a function of Δy at Δϕ ¼ 0 for the rapidity window of ½−2.4; 2.4�. The red and the black curves are
for 7 TeVand 13 TeV, respectively. The solid line, dashed line and dot-dashed line represent ridge yield of transverse momentum interval
[1, 3], [1, 2] and ½2; 3� GeV=c, respectively. (b) Differential correlation function as a function of Δy at p⊥ ¼ q⊥ ¼ 1.5 GeV=c and
Δϕ ¼ 0. The red and black curves are for 7 TeV and 13 TeV, respectively.
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by the strong correlations between the radiated gluons and
source gluons.
The red (for 7 TeV) and black (for 13 TeV) curves have

similar large-rapidity ridge correlations. The connection
point of the dashed line and the dot-dashed line represents
xq ¼ 0.01. Its position is yq ≈ 3.84 for 7 TeVand yq ≈ 4.46
for 13 TeV. Figure 4(b) indeed shows the peak of large-
rapidity ridge correlations shifts to higher yq for higher
collision energies, as we expect. This is because the rapidity
y increases with

ffiffiffi
s

p
at fixed x and p⊥, as shown in Eq. (1).

Larger rapidity gluon represents source gluons which has
strong correlations with radiated gluons.
The physics of different rapidity regions represent

different stages of gluon evolution in the CGC framework.
This physics picture may also explain why the v2 and v3 are
different given by the PHENIX and STAR collaborations
[53,54], where their detectors cover forward and central
rapidity regions, respectively.
As Eqs. (7) and (12) demonstrate, YðΔyÞ is an integrated

correlation function while Cðp⊥; yp; q⊥; yqÞ is a differential
correlation function. Figure 4 demonstrates that the rebound
in the integrated correlation function is modest while in the
differential correlation function it is more easily observed.
The patterns of large-rapidity ridge correlations with

respect to
ffiffiffi
s

p
are characteristics of the CGC mechanism.

Identifying this characteristic is a possible way to test the
mechanism of the CGC.

IV. SUMMARY AND DISCUSSION

In this study, within the framework of CGC, we propose
an exact normalization scheme for the longitudinal rapidity
correlations. In this exact scheme, the violation of boost
invariance of the rapidity distribution is taken into account.
The large-rapidity ridge correlation rebounds after bottom-
ing, which is consistent with the observed data at the CMS
detector. We also show that the rebound in the large-
rapidity ridge correlation is more easily observed in the
differential correlation function Cðp⊥; yp; q⊥; yqÞ.
The rebound of large-rapidity ridge correlations is

related to the quantum evolution of gluons. The physics
of different rapidity regions is different within the CGC
framework. Large-rapidity ridge correlations probe strong
correlations between source gluons and radiated gluons.
This physical picture may also understand why the v2 and

v3 given by different rapidity regions, such as the PHENIX
and STAR collaborations, are different.
The correlation rebound is further found to appear around

the sum of the saturation momentum of the projectile and
target. Meanwhile, the rebound moves to larger rapidities at
higher colliding energies. These features are directly caused
by the effect of gluon saturation in the theory of CGC.
In addition, the choice of running coupling kernels and

initial conditions does not influence the qualitative feature of
the results in this study. This is because the rebound of large-
rapidity correlations is caused by the strong correlations
between source gluons and radiated gluons in the mecha-
nism of the CGC. The running coupling kernel only
determines the speed of the small-x evolution, and the initial
condition is constrained by the colliding particles. Neither of
these changes the nature of large-rapidity correlations.
In current work we consider only glasma graph at parton

level. In order to fully describe the experimental data, other
effects should be considered. For instance, Mueller-Navelet
di-jet and jet shower effects also give significant contri-
butions to the two-particle correlations. It is known that
di-jet mainly contributes to the long-range rapidity corre-
lations of the away side and jet shower contributes to short-
range correlations of the near side. When long-range
rapidity correlations of the near side are considered, both
effects are negligible. The fragmentation function presents
the final hadronization. This should not change qualita-
tively the rebound features at parton level [22]. Besides, the
nonperturbative effects specifying the correction to the kT
factorized uGD description is regarded as constant [25].
Although a quantitative comparison of the rebound

structure with the experimental data needs to consider all
above-mentioned factors, a qualitative comparison can be
made by measuring large rapidity correlations from current
data. This would be a direct test of the correlations between
source gluons and radiated gluons in the physical picture of
CGC, and therefore is very meaningful and interesting.
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