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Augmentations to the Euler-Heisenberg Lagrangian (QED one-loop effective action in homogeneous
electromagnetic fields) under a constant background axial gauge are examined. Two special configurations
admit an exact eigendecomposition, and hence effective action as a spectral sum, of the augmented Dirac
operator: one with a magnetic field with chiral chemical potential, and the other with an electric field with
spatial axial gauge, which resembles an emergent vorticity. An enhancement to Schwinger pair production
is found for the latter, which is more fully analyzed using the worldline instanton formalism. There it is
found the overall enhancement is due to the spatial axial gauge serving as a negative mass shift. Finally, we
remark on the exactly solvable massless case for arbitrary electromagnetic and axial gauges.
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I. INTRODUCTION

The Euler-Heisenberg Lagrangian [1,2] has proved to be
a spectacularly successful theoretical tool with which to
study a wealth of physical phenomena in quantum electro-
dynamics (QED) including but not limited to the following:
Schwinger pair production [1,3], light-by-light scatter-
ing [4], and charge renormalization [5]; see Refs. [6,7]
for reviews. The Lagrangian has been extended to inho-
mogeneous fields [8,9], to include a chemical potential [10],
to encompass higher-order loops [11,12], and to study
under its derivative expansion in [13], and it remains an
active research thread thanks to its all-orders in background
coupling construction, imparting a wealth of physics in a
compact formula. Even so, studies on the Euler-Heisenberg
Lagrangian under a background CP-violating axial gauge
with electromagnetic field are few despite its importance.
We study a background axial gauge field as an effective
theory; let us highlight selected physically significant
phenomenological occurrences for both timelike and space-
like axial gauge fields.
The temporal component of an axial gauge field could

be regarded as an axial chemical potential or the time

derivative of an axionlike particle, which plays an impor-
tant role in pseudoscalar inflation of the early universe
when coupled to the (hyper) gauge fields via an effective
Chern-Simons term. In such a scenario, backreaction from
the Schwinger effect could modify the dynamics of axion
inflatons and the corresponding physics in cosmology [14]
(see also [15] for a brief review and more references
therein). There have been some related studies for the
Schwinger effect with an axial chemical potential. For
example, in [16], it is found that a nonzero A0

5 could assist
the pair production. In contrast, the influence from the
spatial component of Aμ

5 on the Schwinger effect is rarely
studied due to the lack of phenomenological applications.
However, such a background axial gauge field with the

nonvanishing spatial component may be generated from a
mechanical strain in the effective theory of Dirac or Weyl
semimetals [17]. Moreover, the spatial component of a
background axial gauge field may be realized as a vortical
field coming from rotation, while the temporal component is
associated with the fluid helicity [18]. In phenomenology,
the vortical field (or vorticity for brevity) and magnetic field
could lead to similar phenomena such as spin polarization or
anomalous currents in chiral matter, known as the chiral
magnetic effect [19] and chiral vortical effect [20], even
though they are intrinsically different objects. It is thus
intriguing to further explore how a background axial gauge
field as vorticity may affect the Schwinger effect as opposed
to its counterpart with magnetic fields that has been widely
studied in literature [6,21].
To treat the augmentation to the Euler-Heisenberg

Lagrangian we examine, in addition to a classical
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electromagnetic gauge field in (3þ 1) dimensions, a
classical axial gauge field. External field QED arises from
a microscopic treatment wherein the dynamical gauge field
is treated classically [12]; for an axial gauge background
this treatment is marred. Yet, from a phenomenological
standpoint, i.e., by mimicking rotation and torsion and/or
quantifying the strengths of the chiral magnetic effect or
pseudoscalar inflation, there is much value in studying a
QED inspired model with both electromagnetic and axial
gauge minimal background couplings, which we accom-
plish here. However, neither electromagnetic nor axial
gauge dynamical degrees of freedom are treated here.
Accordingly, QED with an axial gauge field later referred
to in this manuscript should always be regarded as an
effective model.
One may define the Euler-Heisenberg Lagrangian,

LEH½A; A5� with axial gauge, from the one-loop effective
action,

Γ½A; A5� ¼ −iTr ln½iγμðDμ þ iγ5A5μÞ −m�; ð1Þ

in homogeneous fields for system spacetime volume, TL3

(where T and L are the system duration and spatial length,
respectively) as Γ½A; A5� ¼ TL3LEH½A; A5� − ΓMaxwell,
including the Maxwell Lagrangian (action). To study the
one-loop QED effective action with an axial gauge we
make use of the proper time method [22] and evaluate using
a spectral decomposition of the fermionic determi-
nant [23,24], as well as theworldline instanton method [25].
The former method relies on expressing the effective action
as a sum over its eigenvalues and provides exact solutions
for, e.g., the case of a homogeneous [9] or Sauter back-
ground [23]. Here we exploit two special cases in which
exact eigenvalues of the Dirac operator can be found by
virtue of the Ritus basis [26]: a magnetic field with chiral
chemical potential and an electric field with spatial axial
gauge. Note that a novel feature here is that we extend the
Ritus basis to an equivalent formulation for electric fields.
What is more, we determine that an enhancement of
Schwinger pair production can be found with a spatial
axial gauge. To support this finding we study it semiclassi-
cally as well using the worldline instanton method [25];
what is novel here as well is that we adopt the method for
the phase-space worldline formalism [27]. The worldline
instanton method has made possible the study of pair
production in otherwise complicated backgrounds, not
limited to dynamically assisting fields [28], under finite
temperature [29], with non-Abelian backgrounds [30], and
in the massive Schwinger model [31]. Euler-Heisenberg
Lagrangians have been studied perturbatively in electro-
magnetic and axial gauge couplings [32], and related
worldline approaches have been put forth that include an
axial gauge field [33].
We first analyze the linear Dirac operator’s eigenvalues

and how they lead to a perturbative in the OðA5Þ definition

of the effective action in Sec. II. Next we take a deeper look
at the Schwinger pair production enhancement for spatial
axial gauges through the worldline instanton method in
Sec. III. Last, we treat the exactly solvable theory for the
massless case, whether xmassive in the massless limit or
purely massless in Sec. IV.
A note on our conventions: We use for our Minkowski

metric ημν ¼ diagð1;−1;−1;−1Þ, and for the completely
antisymmetric tensor, εμναβ, we take ε0123 ¼ 1. Our covar-
iant derivative reads Dμ ¼ ∂μ þ iqAμ. Also we take
γ5 ¼ iγ0γ1γ2γ3 and use Weyl matrices:

γ0¼
�

I2
I2

�
; γi¼

�
σi

−σi

�
; γ5¼

�−I2
I2

�
: ð2Þ

Let us define the spin tensor as σμν ¼ ði=2Þ½γμ; γν�. Finally
where appropriate, we make use of a matrix form in
Lorentz indices, i.e., Fμ

ν ¼ F and xμ ¼ x, with contractions
assumed in place of matrix multiplication.

II. SPECTRAL DECOMPOSITION

We begin our evaluation of the massive spinor one-loop
effective action (alternatively the Euler-Heisenberg
Lagrangian [1] with axial gauge) by remarking that the
argument of the associated functional determinant from the
fermion partition function has a formal eigendecomposition
as follows:

Π̂5jψNi≡ iγμðDμ þ iγ5A5μÞjψNi ¼ λN jψNi; ð3Þ

where λN spans the entire eigenspectrum with quantum
number, N. The eigendecomposition allows for the trans-
formation of the effective action, Eq. (1), as a sum over its
eigenvalues as

Γ½A; A5� ¼ −itr
Z

d4xhxj ln½Π̂5 −m�jxi

¼ −i
X
N

ln½λN −m�: ð4Þ

We have inserted in a complete set of eigenstates,P
N jψNihψN j ¼ 1, and assumed a normalization of

tr
R
d4xhxjψNihψN jxi ¼ 1. The mass m → m − iϵ can

provide convergence for a Schwinger proper time integral;
in this sense the log of operator is understood. By making
use of the fact that γ5 anticommutes with the operator given
in Eq. (3), one may also equally well write

Γ½A; A5� ¼ −iTr ln½γ5Π̂5γ5 −m�
¼ −i

X
N

ln½−λN −m�: ð5Þ

Then averaging over both the above and Eq. (4), and
through the application of Schwinger proper time [3], we
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arrive at an alternative expression of the effective action as
the sum over quadratic eigenvalues as

Γ½A; A5� ¼
i
2

Z
∞

0

dT
T

X
N

e−ið−λ2Nþm2ÞT: ð6Þ

Then determination of the full effective action has been
reduced to the evaluation of eigenvalues, λN , for hxjψNi ¼
ψN where

Π̂5ψN ¼ λNψN: ð7Þ

An intuitive strategy for the evaluation of Eq. (7) in
homogeneous electromagnetic fields is to seek a separable
solution wherein modes for the magnetic (electric) field are
described by their Landau levels (electric equivalent
imaginary Landau levels). However, due to the presence
of the axial gauge this separation is not easily implemented;
in principal Aμ

5 cannot be removed by a field redefinition.
(This is, however, possible in the purely massless case; see
Sec. IV.) Even so, there are two particular background
electromagnetic and axial gauge configurations where
separable solutions are readily found, one for each set of
Landau levels. These cases are the following:
(1) A magnetic field with a chiral chemical potential:

Aμ ¼
B
2
ðδ1μx2 − δ2μx1Þ; Aμ

5 ¼ gμ0μ5: ð8Þ

(2) An electric field with a spatial axial gauge:

Aμ ¼
E
2
ðδ0μx3 − δ3μx0Þ; Aμ

5 ¼ gμ1ω5: ð9Þ

In both cases a Fock-Schwinger gauge has been used,
Aμ ¼ − 1

2
Fμνxν. Let us, however, stress that the eigenvalues

of Eq. (7) are gauge-invariant since the electromagnetic part
of the spectrum is determined by ½Dμ; Dν� ¼ iqFμν; one
may equally well use another electromagnetic gauge, which
is a transform of the above. For case 2, an essential
identification of the spacelike axial gauge is its connection
to vorticity [18]. This identification proceeds along the
lines of vorticity → torsion in spacetime [34] → axial
gauge field [35]; we refer the reader to [18] for a derivation
along with supplementary details. Let us denote for the
strength of vorticity in a local rest frame as ω, where
ω ¼ ∇ × v=2 with v being a rotational velocity of the
system and ω ¼ jωj. It is, however, more convenient for us
to absorb a factor of one-half, i.e., ω ¼ 2ω5 as in Eq. (9) in
this work, and therefore we limit our discussions to ω5. Let
us first proceed with the evaluation of the eigenvalues for
the magnetic field case next.

A. Magnetic field with chiral chemical potential

The selection of a magnetic field with chiral chemical
potential, Eq. (8), we will show benefits from an exactly
solvable setup by virtue of the Ritus basis [26]. Note our
conventions follow those used in [36,37]. To begin our
discussion let us first introduce magnetic field spin pro-
jection operators:

P� ≔
1

2
ð1� σ12sgnðqBÞÞ: ð10Þ

The projection operators satisfy idempotency, complete-
ness, and orthogonality, i.e., P�P� ¼ P�, Pþ þ P− ¼ 1,
and P�P∓ ¼ 0. We also have that γ1;2P� ¼ P∓γ1;2.
Furthermore, the spin projection operators commute with
terms in the eigenvalue equation containing the chiral
chemical potential. The magnetic field spin projection
operators act to diagonalize the spin factor associated with
the magnetic field as qBσ12P� ¼ �jqBjP�.
Before introducing the Ritus basis it is convenient to

highlight the harmonic oscillator parallels of the Dirac
equation in a magnetic field. Notably with the eigenvalue
(Dirac) equation, Eq. (7), in a magnetic field with chiral
chemical potential one has

i½γ0ð∂0 þ γ5μ5Þ − γ1D1 − γ2D2 þ γ3∂3�ψN ¼ λNψN ; ð11Þ

notice that we may introduce the following creation and
annihilation operators:

â ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp ½iD1 − sgnðqBÞD2�; ð12Þ

â† ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2jqBjp ½iD1 þ sgnðqBÞD2� ð13Þ

that satisfy ½â; â†� ¼ 1, ½â; â� ¼ ½â†; â†� ¼ 0. A quantum
harmonic oscillator solution is then available, â†âhxjni ¼
nhxjni ¼ nϕn. One may then write for the magnetic
Hamiltonian, −ðD1Þ2 − ðD2Þ2 ¼ ð2â†âþ 1ÞjqBj. Then it
immediate follows that the eigenvalues are ð2nþ 1ÞjqBj for
n ¼ 0; 1; 2;…, which will lead to the Landau levels. We can
also determine that for the normalized eigenbasis one must
have that âϕn ¼

ffiffiffi
n

p
ϕn−1 and â†ϕn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕnþ1. One

may then rewrite for the argument in the eigenvalue equation

−iγ1D1 − iγ2D2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
2jqBj

p
γ1ðâPþ þ â†P−Þ: ð14Þ

Let us now introduce the Ritus basis to evaluate the
magnetic degrees of freedom in the eigenvalue equation.
The basis is

Rnðx1;2Þ ¼ ϕnðx1;2ÞPþ þ ϕn−1ðx1;2ÞP−; ð15Þ
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which combines the spin degenerate Landau levels. Note
that a lower truncation of ϕ−1 ≡ 0 is assumed. The Ritus
basis acts to diagonalize the quadratic operator as
½−ðD1Þ2 − ðD2Þ2 − σ12qB�Rnðx1;2Þ ¼ 2njqBjRnðx1;2Þ.
Let us also point out that the magnetic eigenvectors also
have a perpendicular canonical momentum dependence
acting to shift the center of the wave packet; we will
introduce the quantum label where necessary. The basis
allows us to evaluate the eigenvalue equation, Eq. (11), for
arbitrary spinor solution, zs, as

ψNðxÞ ¼ e−ip
0x0þip3x3Rnðx1;2Þzs: ð16Þ

Inserting the above into Eq. (11), the following relationship
can be found:

Rn½γ0ðp0 − γ5μ5Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBjn

p
γ1 − γ3p3 − λ�zs ¼ 0: ð17Þ

A nontrivial solution to the above can be had if the
expression in brackets, along with the spinor acting on
it, vanishes. We can see that solutions are simply a modified
Dirac equation in a chiral chemical potential; the chiral
chemical potential lifts the degeneracy of eigenvalues, and
now four independent eigenvalues can be found reading

λN ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 − pk2

n − μ25 þ 2sjμ5jpk
n

q
; ð18Þ

where pk
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBjnþ ðp3Þ2

p
and s ¼ �1 is an eigen-

value of the matrix S ¼ −γ5γ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqBjnp

γ1 þ γ3p3Þ=pk
n. In

the case of the lowest Landau level (LLL), those expres-
sions reduce to λN ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 − ðjp3j − μ5sÞ2

p
and S ¼

−sgnðp3Þiγ1γ2 that is the helicity operator. Since we will be
summing over the squared operator, there will be an overall
degeneracy associated with squaring each eigenvalue
above. Therefore we can conclude based on the above that
the set of good quantum numbers includes

N ¼ fp0; p3; n; sg: ð19Þ

With the above eigenvalues one may determine the
effective action, Eq. (6). It should be noticed that, in
addition to n, there should be another quantum number
so that the number of degrees of freedom remains the same
as in the case without the magnetic field. This quantum
number does not appear in the eigenvalue (18), indicating
energy degeneracy. The density of degenerate states can be
counted conveniently by using the Landau gauge Aμ ¼
δ1μBx2 which can be thought of as the spatial rotation of the
Fock-Schwinger gauge (8) by the use of the gauge. Then,
one finds that one component of the canonical momentum
pc ¼ p1 is a good quantum number. Therefore, the
summation over the quantum numbers is implemented as

X
N

→
T L2

R
dp0;3;c

ð2πÞ3
X
n;s

: ð20Þ

The integration over the modes is unbounded in homo-
geneous magnetic fields, and one can determine the
physical cutoff by considering a closed box of Landau
modes [24]. This leads to

R
dpc ¼ jqBjL. The physics

behind this is that the degeneracy stems from the distri-
bution of cyclotron orbits in the transverse plane and the
conserved canonical momentum serves as the center
coordinate ξ of the orbits via the relation ξ ¼ pc=jqBj,
leading to a constraint 0 ≤ pc ≤ jqBjL. Last, there is an
overall factor of 2 to account for the degeneracy of both the
positive and the negative components of the eigenvalues in
λN after squaring both.
Let us next sum over the Landau levels. A virtue of the

Ritus basis is that it combines the spin degenerate Landau
levels into one value of n, and the lowest Landau level is
accounted for under ϕ−1 ¼ 0. We can see this in the
construction of the basis in Eq. (15), one eigenvector for
n and another n − 1, and both are independent of one
another guaranteed by the spin projectors. The key point
here is that we must have a factor of one-half for n ¼ 0 in
comparison to the higher Landau levels, n > 0, since only
the Pþ factor is present. Gathering everything together,
including the volume and momentum integrals, we find

ΓðB; μ5Þ ¼
i
4π

TL3jqBj
Z

∞

0

dT
T

Z
dp0;3

ð2πÞ2 e
−im2T

×
X
s¼�1

2

�X∞
n¼1

eiðλp0 ;p3 ;n;sÞ
2T þ 1

2
eiðλp0 ;p3 ;0;sÞ

2T
�
:

ð21Þ
Let us furthermore evaluate the p0 integral and take the sum
over s to find

ΓðB; μ5Þ ¼
iTL3jqBj
ð2πÞ3

Z
∞

0

dT
T

ffiffiffiffiffi
πi
T

r Z
dp3e−iðm

2þμ2
5
ÞT

×

�
2
X∞
n¼1

e−ip
k2
n T cosð2μ5pk

nTÞ

þ e−ip
2
3
T cosð2μ5jp3jTÞ

�
: ð22Þ

To proceed let us take a power series expansion of the
cosine terms expressing the arguments as proper time
partials, then integrating over p3, and last summing over
the Landau levels as 2

P∞
n¼1 e

−2inx þ 1 ¼ −i cot x to find

ΓðB;μ5Þ¼
TL3jqBj
8π2

Z
∞

0

dT
T

ffiffiffiffi
1

T

r
e−iðm

2þμ2
5
ÞT

×
X∞
k¼0

ð−1Þ
ð2kÞ!

k
ð2μ5TÞ2kik∂kT

ffiffiffiffi
1

T

r
cotðjqBjTÞ: ð23Þ
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To clarify, ∂0T ≡ 1. In either of the above representations,
whether in integral or summation form, the effective action
is still exact. However, in the above expression one may
perform a convenient perturbation in μ5 analysis. Let us
therefore evaluate Eq. (23) to Oðμ45Þ to find

ΓðB; μ5Þ ≈
TL3jqBj
8π2

Z
∞

0

dT

�
cB
T2

þ 2iμ25jqBjð1þ c2BÞ

þ μ45
4

3
jqBjð1þ c2BÞT½1 − jqBjcBT�

�
e−im

2T;

ð24Þ
where cB ≡ cotðjqBjTÞ.
One can see in Eq. (23), and more readily in Eq. (24), that

poles only reside on the real proper time axis. Therefore we
can conclude that there should not be an imaginary con-
tribution to the effective action with the presence of μ5 (and a
magnetic field) since all poles can be associatedwith a power
of cB, and hence there would not be Schwinger pair
production as in the sole magnetic field case.
Let us evaluate the real part of Eq. (24). First let us

explore the case of a weak magnetic field, to OðjqBj4Þ.
There is a UV divergence as there is in the case without the
chiral chemical potential. Let us treat this with a physical
cutoff at a QED scale of Λ−2 for small Schwinger proper
times. To find the adequate effective representation we first
deform the contour to the imaginary proper time axis and
perform a change of variables as T → −iT, and then we
introduce the cutoff. We find for small magnetic fields,

ΓðB; μ5Þ ¼
TL3

8π2

Z
∞

Λ−2

dT

em
2T

�
−

1

T3
−
jqBj2
3T

þ jqBj4T
45

þ 2μ25

�
−

1

T2
þ jqBj2

3
−
jqBj4T2

15

�

þ 4

9
μ45

�
−jqBj2T þ 2

5
jqBj4T3

��
: ð25Þ

The term proportional to T−3 is independent of the fields and
axial gauge and should be removed by a suitable counterterm
in the effective action, i.e., Γreg:½A; A5� ¼ Γ½A; A5� − Γ½0; 0�.
Let us emphasize that we treat the axial gauge field as a
background field. Sincewe have treated terms to bothOðμ45Þ
andOðjqBj4Þ, we may safely ignore products of μ5 and jqBj
whose combined order is greater than four, e.g.,Oðμ45jqBj2Þ
such as in the last line; wewill find such terms are in any case
not divergent. For later usage let us write out each integral
from T3 to T−3:

Z
∞

Λ−2
TkdTe−m

2T ≈
k!

m2ðkþ1Þ ; k ¼ 0; 1; 2; 3; ð26Þ
Z

∞

Λ−2

dT
T

e−m
2T ≈ − ln

�
m2

Λ2

�
; ð27Þ

Z
∞

Λ−2

dT
T2

e−m
2T ≈ Λ2 þm2 ln

�
m2

Λ2

�
; ð28Þ

Z
∞

Λ−2

dT
T3

e−m
2T ≈

Λ4

2e
m2

Λ2

−
m2

2

�
Λ2 þm2 ln

�
m2

Λ2

��
; ð29Þ

where we have kept only leading order terms in Λ2. Then
one can find that

Γð0; 0Þ ¼ TL3

8π2

�
−
1

2
Λ4 þm2

�
Λ2 þm2

2
ln

�
m2

Λ2

���
: ð30Þ

Moreover, we have for weak magnetic fields and chiral
chemical potential that

Γreg:ðB;μ5Þ¼
TL3

8π2

�jqBj2
3

ln

�
m2

Λ2

�
þ 1

45

jqBj4
m4

þ2μ25

�
−Λ2−m2 ln

�
m2

Λ2

�
þjqBj2

3m2

��
: ð31Þ

One can see that Eq. (31) is dominant in Λ2. Hence we can
tell with the presence of a sole chiral chemical potential the
energy of the system is decreased, indicating stability. Also,
notice that an augmentation of the quadratic jqBj2 term is
present; this suggests that the axial gauge field also aug-
ments the Maxwell electromagnetic Lagrangian, affecting
photon propagation [38].
To extract physically relevant quantities one must define

a renormalization scheme. We follow an approach as
employed for the usual Euler-Heisenberg Lagrangian [39],
however, with the inclusion of an axial gauge field. In
addition to the usual divergence associated with two inser-
tions of themagnetic field to the fermion loop,we also have a
divergence with μ5 as can be seen in (31). Nevertheless, one
can find renormalization of q and B that incorporates μ5. Let
us be more specific. The q and B that have been used so far
are bare (and unphysical) quantities. Let us denote those bare
quantities as q0 and B0 instead, and the renormalized and
physical ones as q and B, respectively, such that B ¼
B0=

ffiffiffiffiffi
Z3

p
and q ¼ q0

ffiffiffiffiffi
Z3

p
, and qB ¼ q0B0. Then one can

find that the Euler-Heisenber Lagrangian under the MS
scheme reads

LEH ¼ −
B2

2
þ 1

8π2

Z
∞

0

dT

eim
2T

�jqBjcB
T2

þ jqBj2
3T

−
1

T3

þ 2iμ25

�
jqBj2ð1þ c2BÞ −

1

T2

��
; ð32Þ

where the renormalization factor is found to be

Z3 ¼ 1þ q20
12π2

Z
∞

Λ−2

dT
T

e−im
2T

�
1 −

6iμ25
ðq0B0Þ2T

�
: ð33Þ
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Alternatively, one can think of the above renormalization
scheme as the subtraction of the vacuum energy with
Γ̄reg:½A; A5� ¼ Γ½A; A5� − Γ½0; A5�. Unlike in (31), the regu-
larized effective Lagrangian no longer has a divergence
associated with μ5 as well as those in (31). Then, we arrive at
the same form of the renormalized effective Lagrangian (32)
by applying theMS scheme to the divergence associatedwith
the two insertions of the magnetic field only. Having
explored the case of a magnetic field with chiral chemical
potential let us turn our attention to the case of an electric field
with spatial axial gauge.

B. Electric field and spatial axial gauge

Let us now address the case of an electric field with
spatial axial gauge as given in Eq. (9). With strong
similarity to the above case with a magnetic field, we
derive a Ritus-like basis for the electric field, whose
eigenvalues, or electriclike Landau levels, are now imagi-
nary. Much of the discussion here parallels the one in
Sec. II A, however, with important subtleties. The final
form of our effective action can be seen in Eq. (43). First,
let us introduce electric field spin projection operators:

P� ≔
1

2
ð1� iσ03sgnðqEÞÞ: ð34Þ

They satisfy as before P�P� ¼ P�, Pþ þ P− ¼ 1, and
P�P∓ ¼ 0. We also have that γ0;3P� ¼ P∓γ0;3.
Furthermore, we have that ½P�; γ1;2� ¼ 0. The operators
have the virtue of projecting eigenvalues of the spin
matrices as −qEσ03P� ¼ �ijqEjP�.
The eigenvalue equation in the electric field with space-

like axial gauge becomes

i½γ0D0 þ γ1ð∂1 þ γ5ω5Þ þ γ2∂2 − γ3D3�ψN ¼ λNψN: ð35Þ
As before we will find that the above differential equation
can be solved through the introduction of creation and
annihilation operators:

ā ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ijqEjp ½D0 − sgnðqEÞD3�; ð36Þ

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ijqEjp ½D0 þ sgnðqEÞD3�; ð37Þ

which satisfy ½a; ā� ¼ 1 and ½a; a� ¼ ½ā; ā� ¼ 0. Note that for
the Ritus basis for the electric field ā ≠ a†. We now have
that ðD0Þ2 − ðD3Þ2 ¼ −ð2āaþ 1ÞijqEj, and to determine
the eigenspectrum let us note that āajni ¼ njni,
āaājni¼ðnþ1Þājni, and āaajni ¼ ðn − 1Þajni. Therefore
we can find the eigenspectrum of ðD0Þ2 − ðD3Þ2 as
the electric field equivalent of the Landau levels:
−ð2nþ 1ÞijqEj∀ n ∈ Z0þ, where we notice the eigenval-
ues are now imaginary. Also as an immediate consequence

for normalization we have that aϕn ¼
ffiffiffi
n

p
ϕn−1 and

āϕn ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕnþ1. Finally we can express the linear

Dirac operator in the following form:

iγ0D0 − iγ3D3 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ijqEj

p
γ0½āP− þ aPþ�: ð38Þ

We may now define the Ritus-like basis for the electric
fields as

Rnðx0;3Þ ¼ ϕnðx0;3ÞPþ þ ϕn−1ðx0;3ÞP−; ð39Þ

where we take that ϕ−1 ≡ 0. As before this basis diago-
nalizes the quadratic Dirac operator with electric fields as
½−ðD0Þ2 þ ðD3Þ2 þ qEσ03�Rnðx0;3Þ ¼ 2ijqEjnRnðx0;3Þ.
One can then determine a solution to the Dirac equation as

ψp1;p2;n;sðxÞ ¼ eip
1x1þip2x2Rnðx0;3Þzs; ð40Þ

for arbitrary spinor zs. From the eigenvalue equation,
Eq. (35), using the above we can now find that the
following expression must be met:

Rn½i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ijqEjm

p
γ0 − γ1ðp1 þ γ5ω5Þ − γ2p2 − λN �zs ¼ 0:

ð41Þ

A nontrivial solution can be found when the expression in
the brackets acting on the spinor vanishes. We find the four
independent eigenvalues are

λN ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk2
n − p2

1 þ ω2
5 þ 2sjω5jpk

n

q
; ð42Þ

where we write pk
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ijqEjn − p2

2

p
, and once again

s ¼ �1.
Using Eq. (6), one may now express the effective action

as a sum over the above eigenvalues in the same way as
before as

ΓðE;ω5Þ ¼
i
4π

T L3jqEj
Z

∞

0

dT
T

Z
dp1;2

ð2πÞ2
X
s¼�1

e−im
2T

× 2

�X∞
n¼1

e
iðλ2

p1 ;p2 ;n;s
ÞT þ 1

2
e
iðλ2

p1 ;p2 ;0;s
ÞT
�
: ð43Þ

The above effective action is exact albeit in integral form.
Let us proceed as before with its perturbative in ω5

evaluation. To do so we integrate out p1 and sum over s
to find
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ΓðE;ω5Þ ¼
iTL3jqEj

8π3

Z
∞

0

dT
T

ffiffiffiffiffi
π

iT

r Z
dp2e−iðm

2−ω2
5
ÞT

×

�
2
X∞
n¼1

eip
k2
n T cosð2ω5p

k
nTÞ

þ e−ip
2
2
T cosð2iω5jp2jTÞ

�
: ð44Þ

Expanding out the cosine terms in a power series
whose argument we express as a proper time partial
derivative, and summing over the electric Landau levels
as 2

P∞
m¼1 e

−2mx þ 1 ¼ cothðxÞ, we find the effective
action is expressible as

ΓðE;ω5Þ ¼
TL3jqEj
8π2

Z
∞

0

dT

T3=2 e
−iðm2−ω2

5
ÞT

×
X∞
k¼0

ð−1Þk
ð2kÞ! ð2ω5TÞ2kð−iÞk∂kT

ffiffiffiffi
1

T

r
cothðjqEjTÞ:

ð45Þ
Let us proceed with the evaluation of the above for its

imaginary part, which we will show one may express in
summation form. The integrand in Eq. (45) has n poles at
T ¼ −inπ=jqEj∀ n ∈ Zþ from the hyperbolic cotangent
function, and hence one may evaluate the imaginary part of
the effective action by deforming the Schwinger proper
time contour to the lower half of the complex T plane and
applying the residue theorem. Summing the contributions
of n poles we may write

ImΓðE;ω5Þ ¼ −π
TL3jqEj
8π2

X∞
n¼1

X∞
k¼0

resk

�
−inπ
jqEj

�
: ð46Þ

We do not include the pole at T ¼ 0 since it has nothing to
do with effects of electromagnetic fields or the axial gauge.
To evaluate the residue, notice that the derivative ∂kT acting
on the hyperbolic cotangent function gives (kþ 1)th order
poles as the highest-order pole of the integrand. Thus, after
application of the Leibniz rule to the derivative operators
one may find

resk

�
−inπ
jqEj

�

¼ dk
k!

Xk
r¼0

Xk
s¼0

kCrkCs

× lim
T→−inπ=jqEj

∂
k−s
T

n
T−3=2e−iðm

2−ω2
5
ÞTT2k

∂
k−r
T

ffiffiffiffiffiffiffiffi
T−1

p o

× ∂
s
T

��
T þ inπ

jqEj
�

kþ1

∂
r
T cothðjqEjTÞ

�
; ð47Þ

where dk ¼ ð−1Þkð2ω5Þ2kð−iÞk=½ð2kÞ!� and aCb is the
binomial coefficient. A key observation here is that only

the OððT þ inπ=jqEjÞ−1Þ term in a power series expansion
of the hyperbolic cotangent term will ultimately remain
after taking the limit. Therefore, under the limit and
differential operators we may take that cothðjqEjTÞ∼
jqEj−1ðT þ inπ=jqEjÞ−1. Then one can find that

resk

�
−inπ
jqEj

�

¼ 1

jqEj
Xk
r¼0

dk
ð−1Þrr!ðk−rÞ!

k!

× lim
T→−inπ=jqEjk

CrkCk−r∂
r
TfT−3=2e−iðm

2−ω2
5
ÞTT2k

∂
k−r
T

ffiffiffiffiffiffiffiffi
T−1

p
g:

ð48Þ

Then taking the innermost partial derivative, applying the
Leibniz rule once more, and taking the limit, one can find

resk

�
−inπ
jqEj

�
¼ e−

ðm2−ω2
5
Þnπ

jqEj

jqEj
Xk
r¼0

Xr

l¼0
kCrkCk−rrCl

× dk
ð−1Þrr!ðk− rÞ!

k!
ð−1Þk−rð2k− 2r− 1Þ!!

2k−r

× ½−iðm2 −ω2
5Þ�r−lβlkþr

�
−inπ
jqEj

�
kþr−2−l

;

ð49Þ

where

βlq ¼

8>><
>>:

ðq−2Þ!
ðq−2−lÞ! q − 2 ≥ q − 2 − l ≥ 0

0 for q − 2 ≥ 0 ≥ q − 2 − l

ð−1Þl jq−1−lj!jq−1j! 0 > q − 2 ≥ q − 2 − l

: ð50Þ

Finally after some manipulations we arrive at

resk

�
−inπ
jqEj

�
¼ −

1

jqEj e
−
ðm2−ω2

5
Þnπ

jqEj
Xk
r¼0

Xr
l¼0

αr;lk

× ω2k
5 ðm2 − ω2

5Þr−l
�

nπ
jqEj

�
kþr−2−l

; ð51Þ

with the coefficient

αr;lk ¼ ð−1Þkþr−l
kCk−rrCl

2kþr

ð2kÞ! β
l
kþrð2k − 2r − 1Þ!!: ð52Þ

Applying Eq. (51) with Eqs. (50) and (52) to Eq. (46) leads
to an exact in summation form of the imaginary part of the
effective action.
Let us consider the ω5 → m limit. While such a scenario

may be difficult to achieve in most physical systems,
including QED, in heavy ion collision experiments recent
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measurements of global spin polarization of Λ hyperons
suggest a large angular momentum is produced in the
collision event and converted to a quark gluon plasma
vortical field whose scale is around 2–20 MeV [40];
this is comparable to the up and down quark mass of
m ∼ 1.8–5.3 MeV. While we treat QED here, extensions
and applicability for quantum chromodynamics hold in
Abelian-projected fields. Even so, let us stress that we do
not treat the finite temperature and chemical potential that
are present in the quark gluon plasma, which may affect our
arguments on vorticity and the Schwinger effect. Then for
our setup of QED plus a constant axial gauge, we find for
ω5 → m that remarkably, the exponential suppression is
reduced by a nonzero ω5 as exp½−ðm2 − ω2

5Þnπ=jqEj� in
Eq. (51). When ω5 → m, the exponential suppression
completely goes away, and the magnitude of the residue
is determined by the polynomial at r ¼ l as

resk

�
−inπ
jqEj

�
¼ −

Xk
r¼0

αr;rk ω2k
5

�
nπ
jqEj

�
k−2

: ð53Þ

A resummation to a simple form is not achievable with
arbitrary parameters; therefore, as before let us examine a
perturbative to Oðω4

5Þ expression. Let us emphasize that
this perturbative scheme is about powers of the dimension-
less ω5=

ffiffiffiffiffiffiffiffiffijqEjp
, and thus here ω5 ≪

ffiffiffiffiffiffiffiffiffijqEjp
. This in turn

implies that one must also have m ≪
ffiffiffiffiffiffiffiffiffijqEjp

for strong
fields or small mass. We find in the perturbative scheme

ImΓðE;ω5Þ ¼ ImΓðE; 0Þ þ TL3

24π

m2ω2
5

jqEj2 sinh
−2
�
πm2

2jqEj
�

×

�
3jqEj2e− πm2

2jqEj sinh

�
πm2

2jqEj
�
− πjqEjω2

5

þ π2m2ω2
5

2
coth

�
πm2

2jqEj
��

: ð54Þ

Here

ImΓðE; 0Þ ¼ TL3jqEj2
8π3

Li2ðe−
m2π
jqEj Þ ð55Þ

is the usual imaginary part of the effective action for an
electric field with no axial gauge coupling. Let us also write
the expression for the leading order pole contribution
truncating the above to an evaluation of the residue for
only T ¼ −i=jqEj, leading to a correction to the familiar
expression of

ImΓðE;ω5Þ ¼
TL3

24π3jqEj2 e
−πm2

jqEj ð3jqEj4 þ 6π2m2jqEj2ω2
5

þ ½2π4m4 − 4π3m2jqEj�ω4
5Þ: ð56Þ

One can clearly see in the above that contributions to the
effective action from the spatial axial gauge are coupled to

the mass. Furthermore, since one has the characteristic
exponential suppression, one finds that the enhancement to
pair production is pronounced for smaller masses. We keep
the exponential expression of quadratic mass suppression,
but let us remind the reader that we treat a small mass or
large electric field in this perturbative scheme. To show the
enhancement, see Fig. 1, which has been produced for
small dimensionless spatial axial gauge and mass

ω̄5 ¼
ω5ffiffiffiffiffiffiffiffiffijqEjp ; m̄ ¼ mffiffiffiffiffiffiffiffiffijqEjp ; ð57Þ

in accordance with the perturbative scheme at all poles
using Eq. (54) (let us stress that such small m̄ are, however,
beyond current capabilities of high-powered lasers to date).
In Fig. 1, one can notice that indeed pair production is
enhanced due to ω5. Moreover, notice as well that lines of
constant ImΓðE;ω5Þ exist for an approximately linear
relationship between m̄ and ω̄5 indicating that for a given
electric field the same pair production threshold can be met
by substituting the mass for the spatial axial gauge. Or in
other words, the spatial axial gauge serves to shift the mass,
which is shown here for small m̄ and ω̄5, as visible in
Eq. (51). One may still find a noticeable enhancement of
pair production at higher ω̄5; however, the enhancement
appears to a polynomial degree, not exponential, in the
above perturbative expansion. It is therefore important to
further discuss the nonperturbative effect on the exponen-
tial found in Eq. (51). For this purpose we use the
semiclassical worldline instanton approach in the next
section. Doing so will also provide us with physical insight
into the enhancement process.
Before introducing the worldline instanton approach,

let us determine the real part of the effective action.

FIG. 1. Imaginary part of the effective action, ImΓðE;ω5Þ, to
Oðω4

5Þ as a function of normalized mass, m̄, and spatial axial
gauge, ω̄5, as given in Eq. (54). Notice for constant m̄, there is an
enhancement of pair production for increasing ω̄5. Also lines of
approximately constant values of the imaginary part are seen for
linear relationships between m̄ and ω̄5.
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Let us proceed as before and write Eq. (45) to Oðω4
5Þ for

cE ≡ cothðjqEjTÞ as

ΓðE;ω5Þ ≈
TL3jqEj
8π2

Z
∞

0

dT
�
cE
T2

þ 2iω2
5jqEjð1 − c2EÞ

−
4

3
ω4
5jqEjTð1 − c2EÞð1 − jqEjcETÞ

�
e−im

2T:

ð58Þ

Also as in the previous case with a magnetic field, one can
introduce a cutoff in Schwinger proper time at a QED scale
of Λ−2, which is applied after a deformation of the proper
time contour to the imaginary axis, and a change of
variables, T → −iT. Furthermore, we restrict our attention
to the case of weak electric fields toOðjqEj4Þ, and then one
can find for the real part of Eq. (58)

ReΓðE;ω5Þ ¼
TL3

8π2

Z
∞

Λ−2

dT

em
2T

�
−

1

T3
þ jqEj2

3T
þ jqEj4T

45

þ 2ω2
5

�
1

T2
þ 1

3
jqEj2 þ 1

15
jqEj4T2

�

þ 4

9
ω4
5jqEj2T

�
1þ 2

5
jqEj2T2

��
: ð59Þ

Then using the integrals in Eqs. (26)–(29) one can find for
Γreg:½A; A5� ¼ Γ½A; A5� − Γ½0; 0� that

ReΓðE;ω5Þreg ¼
TL3

8π2

�
−
jqEj2
3

ln

�
m2

Λ2

�
þ 1

45

jqEj4
m4

þ 2ω2
5

�
Λ2 þm2 ln

�
m2

Λ2

�
þ 1

3

jqEj2
m2

��
;

ð60Þ

where we have as before kept only terms quartic in either
jqEj or ω5, omitting for example terms that go as
Oðω4

5jqEj2Þ. The key difference we see in this expression
compared to Eq. (31) is that whereas the chiral chemical
potential decreased the system energy, we see here that the
spatial axial gauge increases the energy for the dominantΛ2

factor indicating an instability. This is to be expected as we
have observed above that indeed an instability is present in
the form of an imaginary part of the effective action,
whereby the spatial axial gauge further increases the
imaginary part. Γ½0; 0� here is the same as it was for
Eq. (30). It is interesting to investigate non-Abelian
extensions (see, e.g., Refs. [41]) that may capture some
aspects of intertwined dynamics with nonzero topological
configurations of the gauge field.
As before in the case with the magnetic field and chiral

chemical potential, one may define a renormalization
scheme using MS. We have the similar divergences as
well, i.e., a divergence at OðT−1Þ associated with the

electromagnetic coupling constant and the electric field,
and a divergence atOðT−2Þ associated with the spatial axial
gauge field. Let us denote for our bare quantities q0 and E0,
and our renormalized physical quantities as q ¼ q0

ffiffiffiffiffi
Z3

p
and E ¼ E0=

ffiffiffiffiffi
Z3

p
such that qE ¼ q0E0. Then, the Euler-

Heisenberg Lagrangian under the MS scheme becomes

LEH ¼ E2

2
þ 1

8π2

Z
∞

0

dT

eim
2T

�jqEjcE
T2

−
jqEj2
3T

−
1

T3

þ 2iω2
5

�
jqEj2ð1 − c2EÞ þ

1

T2

��
; ð61Þ

with renormalization factor

Z3 ¼ 1þ q20
12π2

Z
∞

Λ−2

dT
T

e−im
2T

�
1 −

6iω2
5

ðq0B0Þ2T
�
: ð62Þ

We emphasize as before that a similar Euler-Heisenberg
augmented Lagrangian could be had with a subtraction of
the vacuum energy with Γ̄reg:½A; A5� ¼ Γ½A; A5� − Γ½0; A5�.

III. WORLDLINE INSTANTON METHOD

Above it was demonstrated that with a spatial axial
gauge background the threshold for Schwinger pair pro-
duction is reduced. Here we analyze its nonperturbative
structure using the semiclassical worldline instanton
method [25]. This has the added benefit of providing
physical insight into the enhancement process. In contrast
to conventional approaches used in applying the worldline
instanton method, here with the addition of the axial gauge,
the quadratic form of the Dirac operator, Eq. (136), is
unnecessarily complicated for our purposes hindering
usage of worldline formalism in configuration space.
Therefore, we elect to use a linear in Dirac operator
phase-space worldline representation [27].
Beginning with the effective action in logarithmic form,

Eq. (1), one can construct a phase-space path integral
representation with spinor degrees of freedom captured in
coherent state form through the use of Barut-Zanghi (BZ)
spinor formalism [42,43]. Since the worldline instanton
method relies on the determination of classical solutions,
usage of a coherent state is valuable in that it provides one
with a well-defined scalar action as opposed to a path-
ordered and matrix weighted action without. For applica-
tion of BZ spinors, we use the approach followed in
Ref. [44]. First, let us write down the effective action in
its path integral form with path ordering and without
coherent states as

Γ½A; A5� ¼ itr
Z

∞

0

dT
T

I
Dx

Z
Dp
2π

PeiSW ; ð63Þ

SW ≔
Z

T

0

dτ½−m − pμ _xμ − qAμ _xμ þ Π5�; ð64Þ
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Π5 ¼ pþ γ5A5: ð65Þ

Here
H
Dx ¼ R

dx0
R
Dx denotes a periodic path integral

with boundary conditions xð0Þ ¼ xðTÞ ¼ x0. Also, note
that we have left implicit the small imaginary component
resolving the causal nature of the propagator and also
providing convergence in the IR into the mass such that
m → m − iϵ. Then, one need only split the path-ordered
expression into a product of infinitesimal proper time
elements, inserting into each the resolution of identity of
the BZ spinors given as

Z
dΩzzaz̄b ≔ Z−1

0 ∂η̄a∂ηbZηjη¼0 ¼ δab; ð66Þ

where Zη ¼
R
dzdz̄expð−z̄zþ z̄ηþ η̄zÞ¼Z0 expðη̄ηÞ with

Z0 ¼
R
dz̄dz expð−z̄zÞ ¼ π4 [44]. After summing the

infinitesimal elements, and also taking a change of vari-
ables such that τ → Tτ, one can finally find for the effective
action the following form:

Γ½A; A5� ¼ i
Z

∞

0

dT
T

I
DxDΩz

Z
Dp
ð2πÞ4 e

iS0W ; ð67Þ

S0W ≔
Z

1

0

dτ½−mT −pμ _xμ−qAμ _xμþ iz̄ _zþTz̄Π5z�; ð68Þ

the “dots” now represent total derivatives with respective to
the integration variable.
In configuration space and in Euclidean spacetime,

worldline instantons represent periodic classical solutions
found at stationary points in xμ and proper time T, which for
simple field configurations are expressible for real coor-
dinates thanks to an inverted time after Wick rotation. Here
in Minkowski spacetime we have complex worldline
instantons [45]; this can be seen in the fact that the stationary
points (poles in the Euler-Heisenberg Lagrangian) lie on the
imaginary proper time axis. An additional unique feature is
that we are in phase space, and worldline instantons can be
found at stationary points in pμ, xμ, and T, whose classical
equations of motion of Eq. (68) are

_xμ ¼ Tz̄γμz; ð69Þ

_pμ ¼ qFμν _xν; ð70Þ

m ¼ z̄Π5z: ð71Þ

Here, we assume that the axial gauge Aμ
5 is independent of

xμ, but can otherwise take a general configuration. Let us
also emphasize that we do not directly treat the configura-
tions presented in Eqs. (8) and (9). Proper time in Eq. (68)
acts as a Lagrangemultiplier, sending the particle on-shell as
can be seen in Eq. (71) above. Let us remark that for non-
Abelian systems coherent state variables extend the phase

space leading to Wong’s equations [46] instead of just the
Lorentz force. And it is instructive that here, too, stationary
points should lie in the entire phase space, including z̄ and z.
However, we already have the mass-shell constraint in
Eq. (71) that will provide solutions in z̄ and z. We must
look for eigenvectors of a Dirac equation in the presence of
an axial gauge background. There are four independent
solutions,

z ∈ ui; vi for i ¼ 1; 2 ð72Þ

that are closely analogous to ordinary Dirac spinors that
satisfy

Π5z ¼ λz; ð73Þ

for eigenvalue λ to be determined. In this waywe findworld-
line instantons can be found for solutions in Eqs. (69)–(71)
that lead to an imaginary part of the effective action; and
according to Eq. (67), we have the periodic boundary
conditions: xμð0Þ ¼ xμð1Þ, z̄ð0Þ ¼ z̄ð1Þ, and zð0Þ ¼ zð1Þ.
Let us remark that there is an ambiguity in the ordering of the
evaluation of the proper time integral,T, and those in z and z̄;
we further remark on their differences and choice of
selection leading to Eqs. (69)–(71) in the Appendix. A
feature of the worldline instanton method is a weak electric
field or large mass approximation. We also further show in
the Appendix that our usage of Eqs. (69)–(71) amounts to
the adiabatic theoremused in findingBerry’s phase [47], and
furthermore that the theorem in fact implies theweak electric
field or large mass approximation is applicable to our
calculation as well.
Since we wish to extract the leading order exponential

suppression, additionally, we neglect prefactor fluctuations
about the worldline instantons [48]. One can then find for
worldline instantons with winding number n that

ImΓ½A; A5� ≈
X

z¼u�;v�

X∞
n¼1

eiSz;n ; ð74Þ

where Sz;n is the worldline action, Eq. (68), evaluated for
the classical worldline instanton solution. Since T is linear
in Eq. (68) and moreover since Eq. (71) holds, there is no
fluctuation term and its evaluation about a given stationary
point only introduces a numerical prefactor.
Let us proceed with the evaluation of the equations of

motion. We begin by determining the eigensystem of Π5

shown in Eq. (73). Its quadratic and quartic forms read

Π2
5 ¼ p2 − A2

5 þ 2iγ5σμνpμAν
5; ð75Þ

Π4
5¼2ðp2−A2

5ÞΠ2
5−4½p2A2

5−ðpμA
μ
5Þ2�−ðp2−A2

5Þ2; ð76Þ

where we have made use of the fact that ðσμνpμAν
5Þ2 ¼

p2A2
5 − ðpμA

μ
5Þ2. We have also assumed implicit identity
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elements where appropriate for the (3þ 1)-dimensional
Clifford group. We can see that this is nothing more than
the characteristic equation leading to the eigenvalues of Π5

according to Cayley-Hamilton’s theorem with Π5 → λ.
Therefore we find the eigenvalues of Π5 are

λ�0�00 ¼ �0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − A2

5 �00 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2A2

5 þ ðpμA
μ
5Þ2

qr
: ð77Þ

One can compare the above to operator eigenvalues that
were determined for the magnetic field case in Eq. (18), and
the electric field case in Eq. (42). However, we caution that
the c-number momentum here represents the kinetic
momentum, whereas above it represents a canonical
momentum. Nevertheless, one can see the similar structure
in Aμ

5 present for all. In the absence of A
μ
5 it can be seen that

the eigenvalues would describe degenerate �
ffiffiffiffiffi
p2

p
. A

novelty here is that with the presence of Aμ
5 the degeneracy

is lifted, which we will later show impacts pair production.
Then to determine the eigenvectors of Π5, let us next

construct projection operators from the above quartic
equation as

Pþ ¼ −iγ5σμνpμAν
5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2A2

5 þ ðpμA
μ
5Þ2

q þ 1

2
; ð78Þ

P− ¼ iγ5σμνpμAν
5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2A2

5 þ ðpμA
μ
5Þ2

q þ 1

2
: ð79Þ

One can confirm that PþP− ¼ 0, that P2
� ¼ P�, and that

Pþ þ P− ¼ 1. The projection operators have the effect of
taking Π2

5P�00 ¼ λ2∓0∓00P�00 . Finally let us construct ortho-
normalized eigenvectors using the projection operators. For
the following eigenvectors corresponding to eigenvalues:

Π5u� ¼ λþ�u�; ū�Π5 ¼ ū�λþ�; ð80Þ

Π5v� ¼ λ−�v�; v̄�Π5 ¼ v̄�λ−�; ð81Þ

one can determine that

u� ¼ Nu
�ðΠ5 − λ−�ÞP∓ξ�; ð82Þ

ū� ≡ Nu
�ξ

T
�γ

0P∓ðΠ5 − λ−�Þ; ð83Þ

v� ¼ Nv
�ðΠ5 − λþ�ÞP∓η�; ð84Þ

v̄� ≡ Nv
�η

T
�γ

0P∓ðΠ5 − λþ�Þ; ð85Þ

where γ0ξi ¼ ξi, γ0ηi ¼ −ηi, and ξTi ξj ¼ ηTi ηj ¼ δij with
other contractions vanishing. Note that in general ū� ¼
u†�γ

0 need not be true and likewise for v̄�. This is because
we will find worldline instantons in Minkowski space are in

general complex. We caution that for strictly real solutions
outside of our treatment of instantons here, for constant but
arbitrary Aμ

5, one could find spacelike pμ pointing to a
potential stability issue; see related arguments in, e.g., [49].
Let us also remark that the above reduce to ordinary Dirac
spinors in the Weyl representation upon carefully taking the
Aμ
5 → �0 limit in a symmetric way. We also take that

ξT1 ¼ ½1; 0; 1; 0�, ξT2 ¼ ½0; 1; 0; 1�, ηT1 ¼ ½1; 0;−1; 0�, and
ηT2 ¼ ½0; 1; 0;−1�. The eigenvectors are normalized such
that ū�u� ¼ −v̄�v� ¼ 1; this entails that

ðNu
�Þ2 ¼ ½−2λ−�ξT�ðΠ5 − λ−�ÞP∓ξ��−1; ð86Þ

ðNv
�Þ2 ¼ ½−2λþ�ηT�ðΠ5 − λþ�ÞP∓η��−1: ð87Þ

Next, taking a partial derivative with respect to pμ—we
denote as ∂pμ—in Eqs. (80) and (81) one can determine that
the velocities, according to Eq. (69), are

ū�γμu� ¼ ∂
p
μλþ�; v̄�γμv� ¼ −∂pμ λ−�: ð88Þ

Note that we acquire a minus sign in v� due to their
normalization

∂
p
μ λ�0�00 ¼ 1

λ�0�00

�
pμ �00 A5μðpνAν

5Þ − pμA2
5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−p2A2
5 þ ðpμA

μ
5Þ2

q
�
: ð89Þ

At this point we must emphasize that there are four separate
solutions, and with each one in general different values of
pμ and xμ such that the three equations of motion,
Eqs. (69)–(71), can be satisfied. To reduce cumbersome
notation, we leave this distinction implicit in pμ and xμ.
This fact is readily apparent for Eq. (71) in which the
on-shell constraint is taken; the four distinct solutions
follow from

ū�Π5u� ¼ λþ� ¼ m; v̄�Π5v� ¼ −λ−� ¼ m: ð90Þ

The above then entails that the following conditions be met
for each set of solutions:

uþ; vþ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2A2

5 þ ðpμA
μ
5Þ2

q
¼ 1

2
½m2 − p2 þ A2

5�; ð91Þ

u−; v−∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p2A2

5 þ ðpμA
μ
5Þ2

q
¼ 1

2
½p2 −m2 − A2

5�: ð92Þ

With application of the above constraint, we can modify
Eq. (88); for example here we turn our attention to just the
uþ solution, whose velocity may now be written as

ūþγμuþ≕
1

m� ðpμ þ CμÞ ¼
1

T
_xμ; ð93Þ
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where we see the momentum has been modified with an
augmented mass term as well as a shift:

m� ¼ m
m2 − p2 þ A2

5

m2 − p2 − A2
5

; ð94Þ

Cμ ¼
2pνAν

5A5μ

m2 − p2 − A2
5

: ð95Þ

One can find similar expressions for u− and v�. With the
addition of an axial gauge field, we will find the usual
constraint p2 ¼ m2 no longer applies. The Lorentz force
equation, Eq. (70), now becomes for uþ

_pμ ¼
qT
m� Fμνðpν þ CνÞ: ð96Þ

According to the constraint given in Eq. (91), we can
determine that the invariants p2 and Aμ

5pμ must be constants
of motion and independent of proper time. Then we
can evaluate the Lorentz force equation as pðτÞ ¼
exp½ðqT=m�ÞFτ�k − C for k ¼ pð0Þ þ C, or rather

pðτÞ ¼ fEðτÞPEkþ fBðτÞPBk − C; ð97Þ

fEðτÞ ¼ cosh

�
qλETτ
m�

�
þ F
λE

sinh

�
qλETτ
m�

�
; ð98Þ

fBðτÞ ¼ cos

�
qλBTτ
m�

�
þ F
λB

sin

�
qλBTτ
m�

�
: ð99Þ

Note that when p2 and Aμ
5pμ are constants, so are Cμ

and m�. Thus, kμ is independent of proper time. Here and
where appropriate we use a matrix form for tensors and
vectors with Lorentz indices, e.g., Fμ

ν ≡ F and pμ ≡ p,
where contractions are assumed. An exact solution to the
Lorentz force is possible with the use of the projection
operators [50]

PE ¼ λ2B þ F2

λ2B þ λ2E
; PB ¼ λ2E − F2

λ2B þ λ2E
; ð100Þ

which satisfy P2
E ¼ PE, P2

B ¼ PB, PEPB ¼ 0, and
PE þ PB ¼ 1, and act to decouple the Lorentz force
equation. Note that we use similar conventions as
employed in [51]. The electric and magnetic field eigen-
value strengths are, respectively,

λE ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2FF þ 4I2

F̃F

q
− IFF

r
; ð101Þ

λB ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2FF þ 4I2

F̃F

q
þ IFF

r
; ð102Þ

where IF̃F ¼ −ð1=8ÞϵμναβFμνFαβ ¼ −ð1=4ÞF̃μνFμν and
IFF ¼ ð1=2ÞFμνFμν are the Lorentz invariants. Then the
coordinate solution follows from Eq. (69) as

xðτÞ ¼ 1

q
F−1½eqT

m�Fτ − 1�kþ xð0Þ; ð103Þ

one can understand the exponential from Eq. (97). Then
we find in order to satisfy the periodicity requirement,
xð0Þ ¼ xð1Þ, using the above we must have that

ðfEð1Þ − 1ÞPEk ¼ 0; ðfBð1Þ − 1ÞPBk ¼ 0: ð104Þ

One may determine a set of stationary points associated
with the electric degrees of freedom as we wish to
evaluate the effects of pair production; these are located
for fEð1Þ ¼ 1 at

T ¼ −
2nπim�

qλE
∀ n ∈ Zþ: ð105Þ

One may then select trivial magneticlike solutions through
the initial condition PBk ¼ 0.
To further search for viable worldline instanton solu-

tions let us examine the constant Lorentz invariant,
Aμ
5pμ. By taking the proper time total derivative one can

find that pμFμνA5ν ¼ 0 must hold, and hence that
Aμ
5½FfEðτÞPE�μνkν ¼ 0 must hold as well. One cannot find

a solution in the proper time independent kμ for all proper
times. Therefore, one is left with an orthogonality con-
straint in the instanton momentum and axial gauge field, or
rather Aμ

5pμ ¼ 0; this in turn requires that Cμ ¼ 0. Since the
magnetic degrees of freedom are trivial, the constraint
implies that

A5μP
μν
E pν ¼ 0: ð106Þ

To further emphasize this point let us take a Lorentz
transformation that will effectively diagonalize our field
strength tensor as (where we have made use of the matrix
form)

Fμ
ν → Λ−1FΛ ¼

0
BBB@

λE

λB

−λB
λE

1
CCCA; ð107Þ

and then the projection operators have the simple form

Pμ
Eν¼PE¼

0
BBB@
1

0

0

1

1
CCCA; PB¼

0
BBB@
0

1

1

0

1
CCCA: ð108Þ
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Solutions to the momenta follow as

p0 ¼ cosh

�
qλETτ
m�

�
k0 þ sinh

�
qλETτ
m�

�
k3; ð109Þ

p3 ¼ cosh

�
qλETτ
m�

�
k3 þ sinh

�
qλETτ
m�

�
k0: ð110Þ

Since PBk ¼ 0, we have that p1 ¼ p2 ¼ 0. Last, let us
assume the axial gauge we are studying is the one after the
unique Lorentz transformation leading to the above, i.e.,
Aμ → ðAμÞ0 ¼ Λμ

νAν. Then according to the axial gauge as
described above, we find that the constraint in Eq. (106)
implies that in order to find worldline instanton solutions
we must have A0

5k
0 − A3

5k
3 ¼ 0 and A0

5k
3 − A3

5k
0 ¼ 0.

However, for A0;3
5 ≠ 0 this constraint would ultimately

imply that k2 ¼ p2ð0Þ ¼ 0, which we will shortly find
would give a trivial worldline instanton solution. Therefore,
we take A0 ¼ A3 ¼ 0 with only A1 and A2 contributing.
This leads us to the following definition for the axial gauge
field invariant:

ω5 ¼
ffiffiffiffiffiffiffiffiffi
−A2

5

q
; ð111Þ

while such a distinction is not in one-to-one correspon-
dence to the definition used for the spectral decomposition
in Eq. (9) (in particular since here we have projected the
electric eigenvalue strength, λE, rather than the background
electric field), the above is useful for comparison purposes.
Let us, however, caution that differences do exist for the
setups and assumptions here in contrast to those used in
Sec. II. Wewill find a similar treatment holds for the u− and
v� solutions as well as leading to Eq. (111) for all cases.
Before further pressing on with the uþ solution, let us

determine the various Berry phase factors for all u� and v�
under the condition pμA

μ
5 ¼ 0. Let us begin by expressing

the Berry phases as

ū� _u� ¼ Nu2
�
2

ξ†�B
u
�ξ�; v̄� _v� ¼ −

Nv2
�
2

η†�B
v
�η�; ð112Þ

with arguments entirely expressible in terms of commuta-
tion relations in

Bu
� ¼

�
P∓ðΠ5 − λ−�Þ;

d
dτ

ðΠ5 − λ−�ÞP∓
�
; ð113Þ

Bv
� ¼

�
P∓ðΠ5 − λþ�Þ;

d
dτ

ðΠ5 − λþ�ÞP∓
�
: ð114Þ

After some lengthy but straightforward manipulations one
can find that the above reduce to

Bu
� ¼ λ−�

p2ω2
5

fω2
5λ−� − ½ω2

5 þ ω5

ffiffiffiffiffi
p2

q
�γ5A5gp _p; ð115Þ

Bv
� ¼ λþ�

p2ω2
5

fω2
5λþ� − ½ω2

5 þ ω5

ffiffiffiffiffi
p2

q
�γ5A5gp _p: ð116Þ

However, with the application of ξ� and η� as given above
Eq. (86) and the application of worldline instanton sol-
utions in momentum space, Eqs. (109) and (110) as well as
the fact that A0

5 ¼ A3
5 ¼ 0, one can confirm for the uþ

solution, the Berry phase disappears, ūþ _uþ ¼ 0. In a
similar way, once worldline instanton solutions are pro-
vided one can also confirm the Berry phases for the
remaining spinor solutions also vanish; all together

ū� _u� ¼ v̄� _v� ¼ 0: ð117Þ

The disappearance of the Berry phase factors for the case of
A1 ¼ A2 ≠ 0 occurs from the decoupling nature of the axial
gauge degrees of freedom with those of the instantons.
Indeed, from a physical standpoint it was determined that a
vanishing Berry phase was present in systems with inver-
sion and time-reversal symmetries present [52], here the
spatial axial gauge does not break parity, and hence the
time-reversal symmetry should also be present. Let us
furthermore note that even for the case of no axial gauge the
Berry phase term is trivial; one can understand this from the
familiar quadratic and in coordinate space expression with
spin factor, there the spin factor, and hence spin degrees of
freedom, does not affect instanton trajectories.
Returning to the evaluation of the uþ solution, by

invoking Cayley-Hamilton’s theorem, Eq. (76), once more
(now under the constraint Aμ

5pμ ¼ 0), and evaluating for the
momentum in terms of the eigenvalue, we can determine
that two solutions for the momentum invariant are possible:
p2 ¼ ðm� ω5Þ2. We need to find which solution is valid
for uþ, and therefore we insert both solutions for p2 into
the constraint given in Eq. (91). Then using the fact that
A2
5 < 0, we can determine that for the uþ solution

p2 ¼ ðm − ω5Þ2: ð118Þ

Furthermore in order to satisfy Eq. (91), we find that
m ≥ ω5 must also hold. Hence, with the addition of the
axial gauge the mass-shell condition has been augmented;
in this way using the above, one can find that the effective
mass, Eq. (94), has also been augmented,

m� ¼ m − ω5; ð119Þ

leading to the augmented stationary point on the imaginary
proper time axis according to Eq. (105). It is in this way that
pair production is enhanced. Let us now determine the
worldline action for the instanton solutions, and to do so
let us select a gauge; we use the Fock-Schwinger gauge,
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i.e., Aμ ¼ −ð1=2ÞFμνxν. Using Eqs. (93) and (96), one
could obtain q

R
1
0 dτAμ _xμ¼

R
1
0 dτ _pμxμ=2¼−

R
1
0 dτpμ _xμ=2

from the integration by parts and cancellation of
surface terms. With Eq. (71) and vanishing Berry
phases, the remaining term in Eq. (68) becomes S0W ¼
−
R
1
0 dτðpμ þ qAμÞ_xμ ¼ −

R
1
0 dτpμ _xμ=2 ¼ −Tp2=ð2m�Þ

based on p2 is constant.
Finally using Eqs. (105), (118), and (119), we can find

that the action for the worldline instanton for the uþ
solution is

Suþ;n ¼
nπiðm − ω5Þ2

qλE
: ð120Þ

The threshold with which the Schwinger mechanism is to
overcome has been effectively reduced in mass by the axial
gauge. However, we still must evaluate the remaining three
other solutions.
Next, we evaluate instanton solutions associated with vþ.

However, notice that the mass-shell constraint leading
to Eq. (91) is the same as it was for uþ. This is not all.
In fact, for vþ, too, one can confirm in analogy to
Eq. (93) that

v̄þγμvþ ¼ 1

m� pμ ¼
1

T
_xμ; ð121Þ

which is the same as for the uþ case. Furthermore, we find
all the equations of motion and constraints are identical to
the uþ case; thus we are led to

Svþ;n ¼ Suþ;n; ð122Þ

since the Berry phases vanish for both.
Let us now last evaluate solutions associated with u− and

v−. In analogy to uþ and vþ we find here too that the
solutions for either u− or v− are identical to the other;
therefore let us just treat u−. The mass-shell constraint here
changes according to Eq. (92). However, because of the
constraint, for ū−γμu− ¼ pμ=m� we find that the definition
of the effective mass is the same as the one given in
Eq. (94); what we find will change is the momentum
invariant. Recall that two solutions are possible for the
momentum invariant: p2 ¼ ðm� ω5Þ2. However, here after
inserting both into Eq. (92) we now find that

p2 ¼ ðmþ ω5Þ2 ð123Þ

[cf. Eq. (118)], and hence also

m� ¼ mþ ω5 ð124Þ

[cf. Eq. (119)]. Last, here our stationary points are now at
Eq. (105) with Eq. (124) above. Again, our equations of
motion are identical to before with the only change being

the mass-shell constraint leading to the above augmented
mass. Therefore, one can confirm in this case that

Su−;n ¼ Sv−;n ¼
nπiðmþ ω5Þ2

qλE
: ð125Þ

Gathering all the solutions one can finally find for the
worldline instanton evaluated imaginary part of the effec-
tive action

ImΓðλE;ω5Þ ≈ 2
X∞
n¼1

fe− nπ
qλE

ðm−ω5Þ2 þ e−
nπ
qλE

ðmþω5Þ2g: ð126Þ

The most important observation in the above is that the
exponential quadratic negative mass shift, found before in
Eq. (51), persists in the semiclassical approach. Therefore
we can see the pair production enhancement from a spatial
axial gauge, or vorticity, is a robust feature. The origin of
the mass shift can be traced back to the augmented Dirac
equation (35). The spatial axial gauge term can be
rearranged as an energy shift by the spin-vorticity coupling
γ0ðD0 þ iγ2γ3ω5Þ, where iγ2γ3 is the spin operator along
ω5 applied there. Even though there is a decreased
probability of pair production for the u− and v− cases,
the overall pair production is favorably enhanced due to the
uþ and vþ cases.
Let us finally mention that the results here agree—or

rather are proportional to, since we are neglecting a
prefactor contribution here—with those found in the
previous section for n ¼ 1 to Oðω2

5Þ, or alternatively in
the m ≫ ω5 limit. The discrepancy at higher orders may be
attributed to fluctuations about the instantons, and/or from
contributions of off-diagonal terms in the Berry phase.
Nevertheless, we most importantly see the overall sub-
traction of the mass in the exponential due to the spatial
axial gauge.

IV. MASSLESS EFFECTIVE ACTION
WITH AXIAL GAUGE

Above we analyzed the one-loop effective action with
massive fields, and alternatively one could arrive at
corresponding observables for the nearly massless case
by carefully taking the massless limit. The effective action
determined from a purely massless case, i.e., a theory
which begins with no mass term, in fact need not be the
same. Namely, even in the case of no axial gauge, i.e.,

lim
m→0

Z
Dψ̄Dψei

R
d4xψ̄ ½iD−m�ψ

≠
Z

Dψ̄Dψei
R

d4xψ̄iDψ ≕ eiΓmassless½A;0�: ð127Þ

With the axial gauge, clarifying the differences between the
two effective actions is important in that we will find
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markedly different physics emerge. Notably, the massless
case possesses an exact and simple solution through an
anomalous phase in the fermion determinant via the
Fujikawa method [53], whereas in the massless limit case
no such term is present (for homogeneous fields). First let
us examine the massive case perturbatively in Aμ

5, as doing
so provides context for the above perturbative results.
Let us begin by writing down the massive effective

action [cf. Eq. (1)] for arbitrary Aμ
5 as

eiΓ½A;A5� ¼
Z

Dψ̄Dψei
R

d4xψ̄ ½Π̂5−m�ψ : ð128Þ

Then to define a perturbative expansion about A5, let us
look at a formal functional expansion [54] of the fermionic
determinant that leads to

Γ½A; A5� ¼ Γ½A; 0� þ
X∞
n¼1

i
n
Tr

�
−1

iD −m
γ5A5

�
n
: ð129Þ

One can then find that to OðA3
5Þ

Γ½A;A5�≈Γ½A;0�þi
Z

d4x lim
x→y

tr½γ5A5Scðx;yÞ�

þ i
2

Z
d4xd4y tr½γ5A5Scðx;yÞγ5A5Scðy;xÞ�; ð130Þ

where the electromagnetic dressed propagator satisfies
ðiDx −mÞScðx; yÞ ¼ −δ4ðx − yÞ. It can be seen that the
effective action admits an expansion whereby the dressed
propagator interacts with any number of interactions of an
external axial gauge field of γ5A5.
For concreteness let us examine homogeneous electro-

magnetic fields; here Sc is well-known [3]. Then for the point
split in-out propagator in the coincidence limit we take
limx→y Scðx; yÞ≔ limϵ→0ð1=2Þ½Scðx; xþ ϵÞ þ Scðxþ ϵ; xÞ�,
which leads to a vanishing axial current, i.e., jμ5 ¼
tr limx→y γ

μγ5Scðx; yÞ ¼ 0. See Ref. [55] for details.
Therefore the OðA5Þ term in the massive effective action,
Eq. (130), vanishes. Higher order terms, as evidenced above,
do not vanish. And importantly, for the purely massless case
we will show that only the OðA5Þ term is present.
Using the Fujikawa method [53] one may determine an

entirely different perturbative scheme about the axial
gauge. Let us take an axial gauge rotation in Eq. (128),
with ψ → expð−iγ5A5μxμÞψ , and then

eiΓ½A;A5� ¼
Z

Dψ̄Dψ expð2iTrγ5A5μxμÞ

× exp

�
i
Z

d4xψ̄ ½iD −me−2iγ5A
μ
5
xμ �ψ

�
; ð131Þ

where we remind the reader that the functional trace of γ5
requires regulation and is in general nonvanishing, this is

more easily recognizable with angle θðxÞ ¼ A5μxμ. The
functional trace term, Trγ5A5μxμ, leads to the anomalous
Chern-Simons term in QED. Let us perform the perturba-
tive expansion as was done before for Eq. (129). One can
eventually find with OðA3

5Þ that

Γ½A;A5�¼Γ½A;0�þ2 Trγ5A5μxμ

þ2im
Z

d4x tr½fiγ5Aμ
5xμþðAμ

5xμÞ2g limx→y
Scðx;yÞ�

−2im2

Z
d4xd4y tr½Scðx;yÞγ5Aμ

5yμS
cðy;xÞγ5Aμ

5xμ�:

ð132Þ

Here we have acquired a new perturbative expansion about
A5 using the Fujikawa method. At OðA5Þ we can then see
that we have a statement of the axial-Ward identity
considering Eq. (130). Therefore we can understand for
massive fermions in homogeneous fields why the OðA5Þ
term vanishes as a consequence of the vanishing axial-Ward
identity [55]. Yet, no such vanishing occurs for the purely
massless case.
The purely massless effective action for an arbitrary field

can be read off of Eq. (132), and is

Γmassless½A; A5� ¼ Γmassless½A; 0� þ 2Trγ5A5μxμ: ð133Þ

The full massless effective action with an axial gauge
potential is augmented only through the anomalous term
arising from the fermion determinant. Let us next evaluate
the functional trace for an arbitrary field. We define the
regularized trace through eigenmodes of the quadratic
form, Π̂5. Even though our starting Lagrangian is aug-
mented with the axial gauge, its zero modes are the same as
the case without an axial gauge since the axial gauge can be
removed by a redefinition, and therefore it is expected that
the index theorem [56] for both QED and QED with an
axial gauge be the same. Let us demonstrate this identi-
fication to OðA2

5Þ. To begin we define for Λ → ∞ with

ICS ≡ Trθγ5 ¼
Z

d4xθ trhxjγ5
Λ2

−Π̂2
5 þ Λ2

jxi; ð134Þ

which agrees with a conventional quadratic in operator
regularization if no axial gauge field were present [57]. Let
us cast the functional trace in Schwinger proper time
(where we have performed a proper time redefinition) as

ICS ¼
Z

d4xθ tr
Z

∞

0

dT iγ5e−iThxje
i
Λ2
Π̂2

5T jxi: ð135Þ

One may express the quadratic operator as [37]

−Π̂2
5 ¼ D2 þ A2

5 þ iγ5½DμA
μ
5 þ 2iσμνA

μ
5D

ν�: ð136Þ
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Then expanding to OðA2
5Þ and treating only the lowest

order terms in the electromagnetic coupling that are non-
vanishing after taking the trace we find that

ICS ¼
Z

d4xθtrhxjγ5
Λ2

D2 þ Λ2
jxi: ð137Þ

Therefore we can see that the functional trace is the same as
the one in QED and hence familiar manipulations lead
to [54]

ICS ¼ −
Z

d4xθ
q2

8π2
F̃μνFμν: ð138Þ

One can see that if we were to have homogeneous fields,
such a term would trivially vanish due to the linear x under
the integrand. However, this does not entail that new
physics does not emerge for the purely massless case.
Indeed, one may calculate the vector current jμ ¼
2δICS=δAμ to find the chiral magnetic effect [19] for
A0
5 ¼ μ5:

j ¼ q2

2π2
μ5B; ð139Þ

and also for A5 ¼ ω5, the vorticity, one can find corrections
to the charge density [58] such that

j0 ¼ q2

2π2
ω5 · B: ð140Þ

However, such terms would not be present for the massive
case in the massless limit according to Eq. (132) since the
Chern-Simons term is matched by the pseudoscalar con-
densate term via the axial-Ward identity.

V. CONCLUSIONS

Augmentations to the one-loop Euler-Heisenberg
Lagrangian with an axial gauge coupling have been
examined. For the massive case (as well as massless limit
of a massive theory) we confined our attention to two
configurations with an exact eigendecomposition: 1. a
magnetic field with chiral chemical potential, and 2. an
electric field with spatial axial gauge field (that has been
argued to resemble a vorticity). In a perturbative expansion
about Aμ

5 for weak fields in Re½LEH�, it was determined in
the absence of electromagnetic fields that an overall
increase (decrease) of the system energy was present for
the chiral chemical potential (spatial axial gauge).
An important feature was observed in Im½LEH� for the

case of the electric field with a spatial axial gauge in that the
spatial axial gauge enhanced the Schwinger pair produc-
tion. This was shown perturbatively in OðA5Þ through the
eigendecomposition approach; an all-orders expression was
also derived. Using a semiclassical worldline instanton

approach, it was determined that the enhancement was
possible from a negative mass shift. The enhancement
occurs at the exponential level and is therefore thought
significant in systems with vorticity.
The massless case (where no mass term is present in the

partition function) had an exact solution thanks to the
Fujikawa method. It was demonstrated that an axial gauge
could be rotated away producing a Chern-Simons term
as a corrective factor to the massless Euler-Heisenberg
Lagrangian.
An important feature not discussed here is the massive

case with simultaneous electric and magnetic fields such
that E · B ≠ 0. Although the two configurations examined
here have exact eigendecompositions, we cannot study the
anomalous features present in the massless case. One
should anticipate such features for the massive case,
because they are present even without an axial gauge,
leading to a description of the axial-Ward identity.
Therefore, it is an important extension to this work to
analyze the case with E · B ≠ 0 under an axial gauge field.
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APPENDIX: STEEPEST DESCENTS IN z AND z̄

It was argued in Sec. III that worldline instantons can be
found from evaluating the coupled equations given in
Eqs. (69)–(71). However, rather than expanding about
stationary points in T and then evaluating Eq. (73) for z
and z̄, one may also expand about stationary points in z and
z̄, and then later evaluate the T integral. Then in the latter
case the equations of motion leading to worldline instan-
tons would be

_xμ ¼ Tz̄γμz; ðA1Þ

_pμ ¼ qFμν _xν; ðA2Þ

_̄z ¼ −iTz̄Π5; ðA3Þ

_z ¼ iTΠ5z: ðA4Þ

In Sec. III we took the approach of expanding about T
primarily for two reasons:
(1) In the case without an axial gauge field it is known

that the spinor degrees of freedom do not affect
worldline instantons in homogeneous fields.

(2) Furthermore, we have found above [e.g., Eq. (46)]
that all poles in the exact expression can be located
independent of the axial gauge field, and for that
matter spin degrees of freedom.
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Nevertheless, let us outline the alternative option of
evaluating Eqs. (A3) and (A4) here, and in so doing
identify their incompatibility with the previous solution.
One may find a general solution to Eq. (A4) in the form

similar to the Wilson loop encountered earlier in Eq. (63) as

zðτÞ ¼ P exp

�
iT

Z
τ

0

Π5

�
zð0Þ; ðA5Þ

and likewise for z̄. Then here, the worldline action after
taking the steepest descents reads

S0W ¼
Z

1

0

½−mT − pμ _xμ − qAμ _xμ�: ðA6Þ

where worldline instantons have T dependence and are now
solutions to Eqs. (A1)–(A4), which need not be the same as
were discovered before. Now, an incompatibility can be
seen if the previous mass-shell constraint is utilized,
namely Eq. (73), leading to the spinorlike solutions. For
then, one would find only a proper time independent
solution to Eq. (A5), leading to a trivial solution consid-
ering the constraint given in Eq. (71).
One caveat of taking the T integral and evaluating for z

and z̄ can be seen in that what would be off-diagonal terms
are neglected in the geometric or Berry [47] phase term,
e.g., ūi _z ∼ 0 for z ≠ ui. Therefore we can see that our
approach is equivalent to the adiabatic theorem wherein
each eigenvector persists and no level jumping between
eigenvectors may occur. To see this connection, one need
only diagonalize the path ordered expression in Eq. (63),
giving rise to a geometric phase whose diagonal entries

then describe our current setup. It is important to ascertain
what precisely the adiabatic approximation entails for our
setup. The adiabatic theorem in the context of Berry’s phase
is typically employed for large times (here Schwinger
proper times) and level separation. For an analogous setup
please see [44]. One may define the adiabatic theorem in
the worldline setting as 2jλjT ≫ 2π, for λ an arbitrary gap
later given by the eigenvalues in Eq. (90). This procedure is
ordinarily marred before having taken the T integral;
however, here we may later treat this inequality with more
rigor since the T integral will be evaluated at specific
points, albeit on the imaginary proper time axis. Since the
adiabatic theorem must hold even after analytic continu-
ation in proper time to the negative imaginary proper time
axis (the Wick rotation is guaranteed because of the iϵ and
quadratic mass prescription), one may equally well state the
adiabatic theorem as 2ijλjT ≫ 2π for T → iT. We discover
through the worldline instanton method in Eq. (90) that the
gap will occur at the mass shell, jλj ¼ m, and on the
stationary points given in Eq. (105) for both m� leading to
the following inequalities:

2nmðm� ω5Þ
qλE

≫ 1; ðA7Þ

for all n instanton. One may recognize the above inequality
as the weak fields/large mass approximation well-known in
the worldline instanton configuration space path inte-
gral [25] for large mass (a factor of π is, however, not
present on the right-hand side). Thus we can see that in the
phase-space path integral the adiabatic theorem ensures the
weak field/large mass approximation.
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