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Wegeneralize the vacuum-Unruh effect to arbitrary excited states in the Fock space and find that theUnruh
mode at the horizon induces coherent excitation on the canonical background ensemble measured by an
accelerated observer. When there is only one type of Unruh mode in the system, for example, the ones
outgoing from a black hole horizon, themapping from an arbitrary densitymatrix on themaximal foliation to
a vector space spanned by the pseudothermal density matrix on the partitioned spacetime wedge is one-to-
one. Hence, we propose that the information of the particles that is inside a collapsing shell; thus, inside the
asymptotic black hole horizon is at least partially retrievable by measuring the deviation of the Hawking
radiation from the blackbody radiation spectrum. This work shows that the long-standing black hole
information confusion might come from overlooking the possibility that the information could be preserved
much better than we have expected in a seemingly nonunitary process when the partitions of the system are
strongly entangled.
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I. INTRODUCTION

In Ref. [1], W. G. Unruh first demonstrated a mechanism
now called the Unruh effect, which states that a uniformly
accelerating observer would detect a thermal bath from
expressing the stationary vacuum state in terms of a different
set of generator/annihilation basis defined along the timelike
killing vector in their relatively accelerating coordinate
system. The Unruh effect is a direct result of the nonunique
canonical quantization of a field living in a Riemannian
spacetime [2]. Following the original derivation on a vacuum
state, the Unruh effect has beenmainly quoted and discussed
in the originally proposed scenario of a vacuum state, in the
past decades [3–5]. Most famously, the Unruh effect has
helped understanding the Hawking radiation [6,7] and is
sometimes quoted as an alternative way for interpreting the
black hole radiation/evaporation phenomenon. In recent
years, the field has seen a growing number of works utilizing
the Unruh effect to understand the entanglement generation
and degradation in curved spacetime [8–14].
Schematically, the Unruh effect prescribes that under a

Bougoliubov basis transformation, the Minkowski vacuum
is transferred into a thermal ensemble on left for a right
Rindler wedge; likewise, the Kruskal vacuum is transferred
into a thermal ensemble living outside or inside the horizon
of a Schwartzschild black hole metric. However, when we
scrutinize what lies in the core of the derivation of the

Unruh effect, we can easily see how it can be applied to
much more general scenarios. First of all, the mixture of
positive and negative frequency modes is not only happen-
ing in Minkowski-Rindler observer pairs and Kruskal-
Schwarzschild observer pairs. Although a unified theory
has not been developed, in recent decades, we have seen
many examples of positive and negative frequency modes
mixing in noninertial frames, usually investigated by a tool
called Bogoliubov transformation [15]. A common feature
those scenarios share is the local partition of the spacetime
manifold by a particle horizon, which could be induced by
acceleration, gravitation, or inflation [16–18]. The second
direction of generalizing the Unruh effect is that
Bogoliubov basis transformation is essentially a basis
transformation that can be applied to arbitrary states in
the Hilbert space, not just the vacuum state. In fact, given
that in quantum field theory in curved spacetime framework
the vacuum is defined based on the local timelike Killing
vector, it is not that special from the point of view of
quantum field theory in the curved spacetime. Vacuum is
just one among infinitely many other states in the Fock
states. The calculation in this paper is mainly dedicated to
the generalization of the Unruh effect onto nonvacuum
states. We start from Minkowski metric, then further into
asymptotic Schwarzschild black hole scenarios depicted by
collapsing shell metric. By the end of this paper, as we go
into a discussion of the wider application of the generalized
Unruh effect from the perspective of view of the first point
made in this paragraph, we will see that a new definition of*anqi.chen@ipmu.jp
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vacuum modulo any canonical ensemble might be in call
for further development of quantum field theory in curved
spacetime, and possibly for an inclusive description of
quantum gravity.
Unruh effect calculations are usually done in these

three steps:
(i) Firstly, we secure two complete sets of orthonormal

modes for the solution of classical field theory on a
four-dimensional Lorentzian manifold. They each
correspond to a maximal Cauchy surface foliation of
the complete Lorentzian manifold. Each one of the
orthonormal basis modes sets gives a complete
expression of the solutions to the classical field
equation of motion. Their positive and negative
frequency modes would be mixed, in the mutual
transformation due to different time foliations that
only coincide on one slice.

(ii) Secondly,we canonically quantize the field andobtain
the creation and annihilation operators corresponding
to the two sets of modes, which are the equation of
motion solutions secured in the previous step. For a
given state in the Fock space of one type of the
quantized equation of motion eigenmodes, we carry
out Bougoliubov transformation to map the state onto
another set of the basis of the quantum field.

(iii) Lastly, due to the existence of a horizon, for an
observer living on one of the partial foliations of the
spacetime manifold, we contract out the states living
on the other partition of the spacetime manifold.

Notice that the last step by its nature breaks the unitarity:
we partition an entangled quantum system into two parts
separated by a horizon then trace out one of them. However,
information is not necessarily lost, at least might not be at an
as severe extent as thought before, in this nonunitary process,
thanks to the strong entanglement across the horizon. This
point has been made previously in the series of works by
Lochan and Padmanabhan [19,20].We formulate this idea in
a more explicitly quantum mechanical way by adopting the
density matrix representation of countably infinite dimen-
sional Hilbert space of the scalar field eigenmodes. We also
would like to point out a more radical implication of this
phenomenon on the approach to quantum gravity/unification
of general relativity and quantum field theory.
The above summarymight seem too abstract as a starting

point. In the main body of this paper, we actually begin
with this rather concrete question: given a pure state in the
Fock space of Minkowski metric, what an observer accel-
erating along a parabolic worldline on a Rindler wedge
would see. The answer is seemingly simple and has been
treated straightforwardly so far, that they will see particles
accelerating in the opposite direction, sitting in a thermal
bath. Such approximation is adopted in, for example, [21]
in relative scenarios. This straightforward picture works
well in most cases, but this paper may reveal more of the
story through a deeper contemplation and more detailed
calculation.

One of the highly intriguing interpretations of the
generalized Unruh effect is its application to the “Black
Hole Information Paradox” [22–24]. By scrutinizing the
evolution of plane wave modes inside the shell of a
collapsing shell metric, we found a nontrivial mapping
between arbitrary density matrix generated by the in shell
plane wave Fock states and the pseudothermal density
matrix generated by the positive frequency modes living at
the asymptotically flat region outside the Schwarzschild
black hole horizon. We thus draw the following implication
from our calculations: we may restore the information of
the amplitudes and frequencies of the infalling particles
collapsed into a black hole event horizon, that exists only
for a finite time due to Hawking radiation, by measuring the
deviation of the Hawking radiation spectrum from the
perfect blackbody radiation spectrum. Here, we continue to
refer to the generally featured black hole emission from the
horizon as Hawking radiation. The concept of “stimulated
Hawking radiation” has been studied for a long time [25–
29]. Just like the original Unruh effect can be regarded as an
alternative interpretation of the Hawking radiation without
localized wave packet assumption, the stimulated Hawking
radiation could be seen as a similar precursor of the
generalized Unruh effect in this work.
This paper is organized in the following way. In Sec. II,

we go through the well-established prerequisite for this
work, formatting the definitions and conventions. They
include the specification of spacetime metric, equation of
motion of the field, and canonical quantizations. In Sec. III,
the calculation of a single Unruh particle state contracting
R − ðRþÞ states out to an Rþ ðR−Þ density matrix is
presented. In Sec. IV, we generalize the results from the
previous section to an arbitrary eigenstate with two types of
Unruh modes. Up to this point, we work in Minkowski ↔
Rindler scenario. Starting from Sec. V, we explore the
Kruskal ↔ Schwarzschild scenario. We investigate the
evolution of an in-going mode living on a collapsing shell
metric, its behavior at the horizon, and its density matrix
measured by a future observer outside. In Sec. VI, we
calculate the energy spectrum corresponding to the pseu-
dothermal density matrices we obtained from Secs. III
and IV. In Sec. VII, we discuss the assumptions, caveats,
and further implications of this work. The conclusion is in
Sec. VIII.

II. SPECIFICATION OF THE SYSTEM

We start from Minkowski spacetime with ðþ − −−Þ
signature,

ds2 ¼ dt2 − dx2 − dy2 − dz2: ð1Þ

After coordinate transformation,

t ¼ 2
ffiffiffi
ρ

p
sinh

1

2
τ; z ¼ 2

ffiffiffi
ρ

p
cosh

1

2
τ ðRþÞ ð2Þ
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t ¼ −2
ffiffiffi
ρ

p
sinh

1

2
τ; z ¼ −2

ffiffiffi
ρ

p
cosh

1

2
τ ðR−Þ ð3Þ

t ¼ 2
ffiffiffi
ρ

p
cosh

1

2
τ; z ¼ 2

ffiffiffi
ρ

p
sinh

1

2
τ ðFÞ ð4Þ

t ¼ −2
ffiffiffi
ρ

p
cosh

1

2
τ; z ¼ −2

ffiffiffi
ρ

p
sinh

1

2
τ ðPÞ: ð5Þ

We get the Rindler metric,

ds2 ¼ ρdτ2 −
dρ2

ρ
− dx2 − dy2 ðR�Þ ð6Þ

ds2 ¼ −ρdτ2 þ dρ2

ρ
− dx2 − dy2 ðF;PÞ: ð7Þ

The four wedges above cover the full Minkowski
spacetime.
The constant proper acceleration worldlines in

Minkowski spacetime are expressed by the hyperbola,

z2 − t2 ¼ 4ρ ¼ 1

α2
; ð8Þ

where α is the constant proper acceleration. Hence, for any
modes expressed in terms of τ, we can get the correspond-
ing mode for dτ0 ¼ ffiffiffi

ρ
p

dτ ¼ 1
2α dτ by multiplying the

frequency with 2α and deform the ρ dependent part of
the solution accordingly.
Next, we set up a free scalar field obeying the equation of

motion,

ð∇2 − μ2Þϕ ¼ 0; ð9Þ

where∇ is the covariant derivative. The Hamiltonian of this
scalar field only has the dynamical and the mass terms, with
no interactions of any sort. Hence, thermalization does not
happen in this system except through gravitation. This
massive real scalar field could serve as a minimal toy model
for the investigation of the collapsing shell and asymptoti-
cally black hole metric later in Sec. V.
Now we quantize the fieldΦ defined on the full manifold

that can be charted by the Minkowski metric or the Rindler
metric. First, we solve the equation of motion (9) for the
classical field ϕ, and find two sets of positive frequency
basis for the solutions [1],

ϕM
ω;k⃗

ðxÞ ¼ e−iωt

½ð2πÞ32ω�1=2 e
ik⃗·x⃗ ð10Þ

ϕR
ω̃;q⃗ðx̃Þ ¼

e−iω̃τ

½ð2πÞ32ω̃�1=2 gðρÞe
iðqxxþqyyÞ; ð11Þ

where gðρÞ satisfies

�
ρ
d
dρ

ρ
d
dρ

þ ω̃2 − ðμ2 þ q2x þ q2yÞρ
�
gðρÞ ¼ 0 ð12Þ

and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k⃗2

q
.

Notice that, by its physical definition ρ is positive, and
we can duplicate ϕR

ω̃;q⃗ðx̃Þ to cover the modes on Rþ and R−.
On future and past wedges, things are more complicated.
Because d

dρ is the timelike direction there, and it is not a
killing vector, we do not have solution modes that can be
expressed as constant frequency waves in terms of the time
(ρ). However, we can analytically continue the solutions
ϕRþ
ω̃;q⃗ðx̃Þ to a future wedge, and ϕR−

ω̃;q⃗ðx̃Þ to past wedges. This
way of continuation can label the equation of motion
solutions on F, P with ω̃; q⃗, as a complete set. Because
the combination of ϕRþ

ω̃;q⃗ðx̃Þ and ϕR−
ω̃;q⃗ðx̃Þ on the spacelike

surface t ¼ 0 can fully represent ϕM
ω;k⃗

ðxÞ, and as long as a

field is fully determined by the initial condition on certain
spacelike slice, the decomposition of that field on this
specific slice can be applied to the full foliated spacetime
even if the explicit analytical form of the solution remains
unknown, as the time evolution of the field is completely
unitary.
In the following text, ϕRþ

ω̃;q⃗ðx̃Þ is by definition nonzero on
Rþ; F, and ϕR−

ω̃;q⃗ðx̃Þ is by definition nonzero on R−; P (even
though we have saved exploring the analytical expression
of them on P, F). Combining the two, we can get a full
piece of ϕMðt0; x⃗Þ on any t0 slice. Thus we define the
creation and annihilation operators through the integral of
each solution mode with the quantum field Φ, both living
on the spacetime manifold charted by certain coordinate
systems,

aω;k⃗ ¼
�
ϕM
ω;k⃗

ðxÞ;ΦðxÞ
�

ð13Þ

a†
ω;k⃗

¼
�
ϕ�M
ω;k⃗

ðxÞ;ΦðxÞ
�

ð14Þ

bω̃;q⃗ ¼
�
ϕRþ
ω̃;q⃗ðx̃Þ;Φðx̃Þ

�
ð15Þ

b†ω̃;q⃗ ¼
�
ϕ�Rþ
ω̃;q⃗ ðx̃Þ;Φðx̃Þ

�
ð16Þ

dω̃;q⃗ ¼
�
ϕR−
ω̃;q⃗ðx̃Þ;Φðx̃Þ

�
ð17Þ

d†ω̃;q⃗ ¼
�
ϕ�R−
ω̃;q⃗ ðx̃Þ;Φðx̃Þ

�
: ð18Þ

Remark.—Quantum field ΦðxÞ, or Φðx̃Þ, is a scalar field
defined on the full spacetime manifold M that is an
identical collection of Lorentzian manifold points for
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Minkowski or Rindler coordinate system. When there is a
boundary of M, ∂M is transferred accordingly under two
coordinate systems. We assume in our setup the boundary
terms are vanishing.
Minkowski and Rindler foliation structures have a shared

Cauchy surface t ¼ τ ¼ 0. The canonical quantization
should be done on this specific shared time slice because
only this hypersurface sets the initial condition along every
time-flow (forward or backward) direction. So the bracket
in the above creator/annihilator definitions should be an
integral either on the shared Cauchy surface t ¼ τ ¼ 0, or
by default over the full chart of 4D spacetime manifold if
the shared time slice was not identified. Doing otherwise
will obtain an incomplete set of creator/annihilator to
represent the quantum field states living on the entire
manifold, under one of the reference frames in the pair that
we are concern about for the problem.
The quantum field can thus be decomposed in two ways,

ΦðxÞ ¼
Z

dk3
�
aω;k⃗ϕ

M
ω;k⃗

ðxÞ þ a†
ω;k⃗

ϕ�M
ω;k⃗

ðxÞ
�

ð19Þ

¼
Z

dq3
�
bω̃;q⃗ϕ

Rþ
ω̃;q⃗ðx̃Þ þ d†ω̃;q⃗ϕ

R−
ω̃;q⃗ðx̃Þ ð20Þ

þdω̃;q⃗ϕ�R−
ω̃;q⃗ ðx̃Þ þ b†ω̃;q⃗ϕ

�Rþ
ω̃;q⃗ ðx̃Þ

�
ð21Þ

with canonical quantization [30],

�
aω;k⃗; a

†
ω0;k⃗0

�
¼ δ3ðk⃗ − k⃗0Þ ð22Þ

�
bω;q⃗; b

†
ω0;q⃗0

�
¼ δ3ðq⃗ − q⃗0Þ ð23Þ

�
dω;q⃗; d

†
ω0;q⃗0

�
¼ δ3ðq⃗ − q⃗0Þ: ð24Þ

All other a or b, d commutators are zero. a; a† does not
necessarily commute with the Rindler creating and anni-
hilating operators.1

In the following sections, we will first calculate how a
single frequency mixed Unruh mode is observed by an Rþ
or R− observer, then proceed to the multiparticle case.

III. UNRUH EFFECT GENERALIZED TO SINGLE
POSITIVE MINKOWSKI FREQUENCY STATE

We now carry out a quantum mechanical way of
calculation from a single particle state generated by
Unruh mode to a density matrix tracing out one of the
Rindler wedges. This process has been done in [1] for a
Minkowski vacuum, and we do it for an Unruh wave packet
excited state jω̃ðq⃗ÞiU.

A. An Unruh wave packet excited
on Minkowski vacuum

Skipping the standard Bogoliubov transformation of the
classical field solutions in Minkowski/Rindler metrics, we
start from Eq. (2.19a) in [1]. It gives the relationship
between creation and annihilation operators as the result of
the Bogoliubov transformation of the classical field modes,

�
eπω̃bω̃;q⃗ − e−πω̃d†ω̃;q⃗

�
j0iM ¼ 0 ð25Þ

�
e−πω̃b†ω̃;q⃗ − eπω̃dω̃;q⃗

�
j0iM ¼ 0: ð26Þ

Let us define the following annihilators for Minkowski
vacuum:

uω̃;q⃗ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh 2πω̃
p

�
eπω̃bω̃;q⃗ − e−πω̃d†ω̃;q⃗

�
ð27Þ

vω̃;q⃗ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh 2πω̃
p

�
e−πω̃b†ω̃;q⃗ − eπω̃dω̃;q⃗

�
ð28Þ

that satisfies the normal commutating relationships,

�
uω;q⃗; u

†
ω0;q⃗0

�
¼ δ3ðq⃗ − q⃗0Þ; ð29Þ

�
vω;q⃗; v

†
ω0;q⃗0

�
¼ δ3ðq⃗ − q⃗0Þ; ð30Þ

with all other commutators in the above operators set equal
to zero. We call these operators Unruh creators and
annihilators type I and II, and call the mode they generate
Unruh mode/excitation.

B. A single Unruh excitation viewed by a Rindler
observer, on R+ and R−

Given the transformation between creators and annihi-
lators, in principle, we have obtained a transformation
between the Fock states under two basis. To investigate
how a single Unruh excitation on a Minkowski vacuum is
viewed by a Rindler observer on Rþ or R−, we will act u†ω̃;q⃗
on both sides of the equation connecting Minkowski and

1Here we referred to Srednicki equations (3.19) and (3.29).
The normalization of ΦðxÞ and Minknowski modes here should
give the same result as (3.19) in Srednicki, just moving the ω
normalizing factor into aω;k⃗ and ϕ

M
ω;k⃗

ðxÞ. As for the normalization
of the Rindler modes, we swipe them under the definition of gðρÞ.
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Fulling-Rindler vacuum, then trace out the Hilbert space for
the states confined on R− or Rþ. We are expected to obtain
a highly stochastic density matrix due to the entanglement
between two wedges, and it is distinguishable from the
canonical thermal density matrix that a Minkowski vacuum
would resolve into. By measuring the observables of this
density matrix, for example, the energy spectrum, an
observer on either Rþ or R− could resume the Unruh
mode generated on the Minkowski vacuum that we started
from. This result applies for both type I and type II Unruh
modes, and they each are detectable on either Rþ or R−.
The traditional Unruh effect for Minkowski vacuum is

formally expressed by Eq. (2.19b) in [1],

j0iM ¼ Z

�Y
q

exp ðe−2πω̃b†ω̃;q⃗d†ω̃;q⃗Þ
�
j0iF; ð31Þ

where j0iF is the Fulling-Rindler vacuum vanished by b, d
annihilators, and the normalization constant Z−2 ¼P

N e−4πEtot is the canonical ensemble partition function.
N are all the possible configurations of the eigenmodes,
which will be explained further in Eq. (41), and Etot ¼P

i niω̃i is the total energy corresponding to the
eigenmode.
Acting a type-I and type-II combined Unruh creator

AIu
†
ω̃;q⃗ þ AIIv

†
ω̃;q⃗, where A2

I þ A2
II ¼ 1, on both side of

Eq. (31),

jω̃ðq⃗ÞiU ¼ ZAI

�
eπω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh 2πω̃
p b†ω̃;q⃗Ŝ −

e−πω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh 2πω̃

p dω̃;q⃗Ŝ

�

ð32Þ

þZAII

�
eπω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sinh2πω̃
p d†ω̃;q⃗Ŝ−

e−πω̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sinh2πω̃

p bω̃;q⃗Ŝ

�
;

ð33Þ

where

Ŝ ¼
�Y

q

exp

�
e−2πω̃b†ω̃;q⃗d

†
ω̃;q⃗

��
: ð34Þ

Using

½b†ω̃;q⃗; Ŝ� ¼ ½d†ω̃;q⃗; Ŝ� ¼ 0; ð35Þ

½dω̃;q⃗; Ŝ� ¼ e−2πω̃Ŝb†ω̃;q⃗; ð36Þ

½bω̃;q⃗; Ŝ� ¼ e−2πω̃Ŝd†ω̃;q⃗; ð37Þ

we get

jω̃ðq⃗ÞiU ¼ Ze−πω̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh 2πω̃

p
ð38Þ

×

�
AIb

†
ω̃;q⃗ þ AIId

†
ω̃;q⃗

�
Ŝj0iF: ð39Þ

Next, we trace out the states generated by the R−
creators, d†, acting on j0iF, to get the density matrix on
Rþ, ρRþU ðqÞ. The result consists of four terms,

ρRþU ðqÞ ¼ jAIj2ρ̂b†b þ jAIIj2ρ̂d†d þ AIA�
II ρ̂

b†d þ A�
IAII ρ̂

d†b;

ð40Þ

where q has energy component ω̃, and ρ̂d
†b ¼ ρ̂b

†d†. All four
terms have q dependence through b=d creator/annihilators.
Before we demonstrate the detailed expressions of ρ̂ in

the above equation, let us introduce some convenient
notations. We denote the configuration of momentum q
of an eigenstate in the following way:

jN i ¼ fq1; n1;…qi; nig; ni ¼ 0; 1; 2;…; ð41Þ

where q is the four momentum, including ω̃ as a compo-
nent. With respect to the configuration jN i, a state missing
one particle of momentum q is denoted by

jN ; nq − 1i; ð42Þ

and similarly, for other number modifications of nq. The
states in this notation are normalized, in the sense that

jN ; nq − 1i ¼ aω;qffiffiffiffiffinq
p jN i; ð43Þ

jN ; nq þ 1i ¼ a†ω;qffiffiffiffiffiffiffiffiffiffiffiffiffi
nq þ 1

p jN i: ð44Þ

This notation can be applied to any set of eigenstates and
corresponding creators and annihilators. The vacuum that
jN i corresponds to will be labeled in the subscripts
later on.
With jN i notation, we can denote

Ŝj0iF ¼
�Y

q

exp ðe−2πω̃b†ω̃;q⃗d†ω̃;q⃗Þ
�
j0iF ð45Þ

¼
X
N

e−2πEtot jN iRþjN iR−; ð46Þ

where Etot ¼
P

i ω̃ini, and N runs over all the possible
configurations of the eigenstates of Φ generated by
the quantization of Eq. (11) as indicated by Rþ =R−
subscripts.
We start from the calculation of ρ̂b

†b,

ρ̂b
†bðqÞ ¼ Z2e−2πω̃2 sinh 2πω̃ ð47Þ
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×
X
N

X
N 0

e−2πE
0
tot
R−hN jN 0iR−b†qjN 0iRþ ð48Þ

⊗
X
N 00

e−2πE
00
tot
RþhN 00jbqR−hN 00jN iR− ð49Þ

¼ Z2e−2πω̃2 sinh 2πω̃ ð50Þ

×
X
N

e−4πEtotðnqþ1ÞjN ;nqþ1iRþRþhN ;nqþ1j:

ð51Þ

Next, the result for ρ̂d
†d is

ρ̂d
†dðqÞ ¼ Z2e−2πω̃2 sinh 2πω̃ ð52Þ

×
X
N

X
N 0

e−2πE
0
tot
R−hN jd†qjN 0iR−jN 0iRþ ð53Þ

⊗
X
N 00

e−2πE
00
tot
RþhN 00jR−hN 00jdqjN iR− ð54Þ

¼ Z2e−2πω̃2 sinh 2πω̃ ð55Þ

×
X
N

e−4πEtotðnq þ 1ÞjN iRþ RþhN j: ð56Þ

Lastly, the result for ρ̂b
†d is

ρ̂b
†dðqÞ ¼ Z2e−2πω̃2 sinh 2πω̃ ð57Þ

×
X
N

X
N 0

e−2πE
0
tot
R−hN jN 0iR−b†qjN 0iRþ ð58Þ

⊗
X
N 00

e−2πE
00
tot
RþhN 00jR−hN 00jdqjN iR− ð59Þ

¼ Z2e−2πω̃2 sinh 2πω̃ ð60Þ

×
X
N

e−2πω̃e−4πEtot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnq þ 2Þðnq þ 1Þ

q
ð61Þ

×jN ; nq þ 2iRþ RþhN j: ð62Þ

Substituting the above terms back to Eq. (40), we get

ρRþU ðqÞ ¼ Z2e−2πω̃2 sinh 2πω̃

�
jAIj2

X
N

e−4πEtotðnq þ 1ÞjN ; nq þ 1iRþ RþhN ; nq þ 1j ð63Þ

þjAIIj2
X
N

e−4πEtotðnq þ 1ÞjN iRþ RþhN j ð64Þ

þ
�
AIA�

II

X
N

e−2πω̃e−4πEtot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnq þ 2Þðnq þ 1Þ

q
jN ; nq þ 2iRþ RþhN j þ H:c:

��
ð65Þ

For an R− observer, ρR−U ðqÞ switches AI and AII , and changes the subscript Rþ to R− for the states.

The first thing we would notice is that ρ̂b
†b and ρ̂d

†d only
involves diagonal terms, while ρ̂b

†d only has nondiagonal
terms. Remembering that Z−2 is partition function, we find
that Trðρ̂b†bÞ ¼ 1 and ρ̂b

†b ≥ 0. Namely, both diagonal
matrices ρ̂b

†b and ρ̂d
†d could be normalized density matri-

ces, assuming such notation can be applied to infinite
dimensional Hilbert space. As a result, the trace of ρRþU ðqÞ
is also safely equal to 1.
When the Unruh mode is purely type I, ρRþU ðqÞ only have

ρ̂b
†b term, and ρR−U ðqÞ only have ρ̂d†d term. Comparing ρ̂b

†b

and ρ̂d
†d, we notice that although the normalized states have

different labels, the matrix components are equal to each
other term by term. Hence, the Von-Neumann entropy S ¼
−trρ log ρ of ρRþU ðqÞ and ρR−U ðqÞ for type I Unruh mode

must be the same. It is expected because jω̃ðq⃗ÞiU is a pure
state. The bipartite of a pure state must have equal
entropy [31].
Our notation in this section has already implicitly

assumed the quantum mechanical linear algebraic repre-
sentation of the infinite-dimensional Hilbert space in QFT.
Tracing back to the origin where this assumption is
introduced, the notation jN i in Eq. (41) is actually not
as innocent as it seems—at this step, we implicitly assumed
countability of the momentum defined with the eigenmodes
of the field equation of motion solutions. It means that
throughout this paper, the maximal spacetime manifold we
consider should be bounded, or equivalently, we should
have a lower cutoff on the acceleration α (minimum
deviation from the inertial frame) so that the energy levels
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of the scalar field are discrete. Without losing generality, we
assume the minimal interval between energy levels to be a
constant h0. The set of Fock states spanning the Hilbert
space of this QFT system thus could be countably infinite.
One of the strategies to count the states is to continuously
increase Etot from minimum possible value μ and to
attribute a natural number to each eigenstate in ascending
Etot sequence.

IV. BEYOND SINGLE UNRUH EXCITATION

Now we generalize the calculation in the above section
into the full Fock space generated by the Unruh creators
fu†; v†g. This Unruh Fock space should be a basis trans-
formation with respect to the one generated by the
Minkowski Klein-Gordon wave creators a† since they
share the same vacuum. Actually, the classical field
solutions have shown that the Unruh modes are plane
wave decomposition of the field in logU space, instead of
in the natural light cone coordinate, U ¼ t − x space.
Without proof here, we quote the results from [1,3] that
the transformation between plane wave modes and the
Unruh modes is positive frequency to positive frequency.
Thus, our conclusion in this section for the Unruh Fock
space is in general applicable to the original Minkowski

plane wave Fock space, with a basis transformation from
the plane waves to the plane waves in log x space.
A general Fock state generated by the Unruh modes

above Minkowski vacuum can be expressed by

jN IN IIiU ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1!…αN!β1!…βN!

p

× u†;α1q1 …u†;αNqN v†;β1q1 …v†;βNqN Ŝj0iF; ð66Þ

where αi, βi are the number counts for certain momentum
modes, and they can be zero.
Utilizing the commutators between b; d; b†; d†, and Ŝ in

Eqs. (23), (24), and (35)–(37), we notice that

jN IN IIiU ¼
Y
qi

X
m

Bðω̃ijmþ αi − βi; mÞ

× b†;mþαi−βi
qi d†;mqi Ŝj0iF: ð67Þ

Here, assuming αi > βi, m ¼ 0;…βi, and Bðω̃ijmþ
αi − βi; mÞ are positive coefficients that can be analytically
calculated from the commutators between Ŝ; b; d; b†; d†.
Thus, for an arbitrary eigenstate in the Minkowski vacuum
Unruh mode Fock space, the building block for the density
matrix on ρRþ or ρR− is given by

ρ̂b
†;ld†;mbnds

Rþ ðqÞ ¼ Bðω̃jl; mÞB�ðω̃jn; sÞ
X
N

X
N 0

e−2πE
0
tot
R−hN jd†;mjN 0iR−b†;lq jN 0iRþ

X
N 00

e−2πE
00
tot
RþhN 00jbnqR−hN 00jdsjN iR−

ð68Þ

¼ Bðω̃jl; mÞB�ðω̃jn; sÞ
X
N ;nmin

q

e−4πEtote2πðmþsÞω̃ nq!

ðnq −mÞ!ðnq − sÞ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnq −mþ lÞ!ðnq − sþ nÞ!

q
ð69Þ

×jN ; nq −mþ liRþ RþhN ; nq − sþ nj; ð70Þ

where the configuration runs over N , with the minimum
number of q momentum modes nmin

q ¼ max ½m; s�.
l; m; n; s runs over non-negative integers. The normaliza-
tion factor Bðω̃ijl; mÞ ensures the traces of diagonal
matrices ρ̂b

†;ld†;mbldm
Rþ ðqÞ equal one. An arbitrary ρRþðΩÞ

tracing out R− states can be expressed by a linear
combination of ρ̂b

†;ld†;mbnds
Rþ , with the modulation of diagonal

components ρ̂b
†;ld†;mbldm

Rþ ðqÞ being unity.
The expression above is only for a single Unruh mode

frequency; because the creators and annihilators of different
momentum commute with each other, the generalization to
multiple momenta is straightforward. We just need to
manipulate nqi with respect to the mode number eigenvalue
configuration N , for each momentum qi. Notice that the
choice of N is meaningful and nontrivial under the

relabeling of nq, because the Boltzmann factor e−4πEtot

nontrivially weighs a specific block jN ; nq −mþ
liRþ RþhN ; nq − sþ nj in the density matrix.
Equation (70) is all one needs to calculate the contracted

density matrix on a partitioned spacetime wedge from an
original density matrix living on the fully accessible
spacetime. Thus, we have a nontrivial mapping from the
Minkowski-Unruh Fock states2 to the pseudothermal den-
sity matrix on Rþ and R−. We give the name “pseudo-
thermal” density matrix to those infinite term density
matrices like ρ̂b

†;ld†;mbnds
Rþ ðqÞ, that slightly deviates from

2They stand for the Fock states of the Unruh wave modes
number eigenstates excited on Minkowski vacuum. Similarly, we
would have Minkowski-Plane wave Fock states, etc.
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the canonical ensemble. Also, notice that the pseudother-
mal density matrix cannot be constructed as the linear
combination of a canonical ensemble and the excitation of
the required number of certain momentum. The physical
meaning of this fact is that the pseudothermal density
matrix originated from the entanglement of excited states
across the event horizon is distinguishable from the
excitation on one of the Rindler wedges backlighted by
the thermal bath generated by the vacuum at the horizon.
In Sec. III B, we calculated the special cases for

lmns ¼ 1010, 0101, and 1001. They each agree with the
general form Eq. (70).
It is obvious that the matrices ρ̂b

†;ld†;mbnds
Rþ ðqÞ are linearly

independent in terms of the matrix summation algebra.What
is more, it is impossible for different Fock states, i.e., the
eigenstates corresponding to Klein-Gordon equation solu-
tions, jN IN IIiU to be mapped into the same ρ̂b

†;ld†;mbnds
Rþ ðqÞ

linear combination because the lmns maximum coefficient
term for certain configuration jN IN IIiU is given by
l ¼ n ¼ α; m ¼ s ¼ β. With the always positive coefficient
Bðω̃jl; mÞ, the ρ̂b

†;ld†;mbnds
Rþ ðqÞ linear combination obtained

from a distinct jN IN IIiU state is guaranteed to be different
from the pseudothermal density matrices linear combination
corresponding to other Unruh mode eigenstates.
However, it needs further discussion to clarify

whether each unique density matrix of the formP
i;j AijjN i

IN
i
IIiU UhN j

IN
j
IIj would be contracted into a

unique ρ̂b
†;ld†;mbnds

Rþ ðqÞ linear combination. The answer is
likely yes, but we leave it as an open question without
carrying out a concrete mathematical proof in the scope
of this paper. The complication comes from the contribu-
tion to the same ρ̂b

†;ld†;mbnds
Rþ ðqÞ term from different

jN i
IN

i
IIiU UhN j

IN
j
IIj terms, when two types of Unruh

modes exist simultaneously.
The toy model of our massive scalar experiences no

interaction other than gravity. Hence, in principle, any
slight deviation from the canonical ensemble in the density
matrix would be preserved during its propagation on a
Rindler wedge, without further thermalization from colli-
sions. An observer sitting away from the horizon on a
Rindler wedge can then measure the observables of this
density matrix, then infer the original state living across the
horizon on the Minkowski vacuum. When the acceleration
is small, we asymptotically go back to the inertial frame
case, where the pseudothermal density matrix is dominated
by a peak corresponding to the Minkowski vacuum
Unruh mode.
We are skipping the formal setups of the detectors and

the formal definitions of the observable operators here.3 We
believe the measurement can be done in a fairly standard

way in the asymptotically flat region far from the Rindler
horizons. The measurement in the asymptotically flat
region is sufficient for learning the property of the
ensemble on any equal-time slice, because in our non-
interacting massive scalar field toy model, the density
matrix evolves trivially in energy-momentum eigenstates.
Remark.—The Boltzmann factor e−4πEtot should be

treated exactly, carefully, without any approximation in
the rest of this paper, where Etot is the total energy for the
configurationN , not the physical total energy of the energy
eigenstate. Relabeling nq will only change the reference
zero energy point for every component in the density matrix
ρ̂b

†;ld†;mbnds
Rþ ðqÞ. In some previous work, for example, the
Horowitz-Maldacena conjecture [32] paper, people
regarded this seemingly boring factor as an insignificant
algebraic label without tracking the details in it. This might
exactly be the approximation erasing all the information
that a contracted Rindler density matrix carries. Etot
depends on everything in the number eigenvalue configu-
ration N . The coherent mismatch between the Boltzmann
factor of N and the physical state jN ; nq − 1ihN ; nq − 1j,
for example, is telling the stories about the Minkowski pure
state before contracting a Rindler wedge out.
For an arbitrary Unruh mode eigenstate simultaneously

generated by both types of the creators, u† and v†, those
three observations hold:

(i) The relationship between R− and Rþ observer
density matrix is

ρ̂b
†;ld†;mbnds

Rþ ðqÞ ¼ ρ̂b
†;md†;lbsdn

R− ðqÞ: ð71Þ

(ii) All the ρ̂b
†;ld†;mbnds

Rþ ðqÞ components that appear in
the representation of a Rindler wedge contraction
for Unruh mode eigenstate obey the identity l −m ¼
n − s≡ δ. Thus, ρR� is always diagonal for Unruh
mode eigenstates.

(iii) Regardless of the Hilbert space on which they are
built, pseudothermal matrices have component-level
symmetry,

ρ̂b
†;ld†;mbnds

ii ðqÞ ¼ ρ̂b
†;md†;lbsdn

iþδ;iþδ ðqÞ; ð72Þ

when the identity l −m ¼ n − s holds. Without
losing generality i starts from 0, and the components
with indices smaller than δ of the matrix on the right-
hand side vanish. An illustration of this symmetry is
ρ̂b

†bðqÞ and ρ̂d
†dðqÞ in the single particle case in

Sec. III.
The above features of the pseudothermal density matrices

grant us the same conclusion as the single particle case in
Sec. III, for an arbitrary Unruh mode eigenstate: The Von-
Neumann entropy S ¼ −trðρ log ρÞ on Rþ or R− wedge
partition of an Unruh mode eigenstate has equal value.
However, the true physical implication of pseudothermal

density matrix features on the amount of entanglement and

3Something way more complicated than Unruh-DeWitt de-
tector is required to measure the frequency space details of the
density matrix.
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information might need more careful calculation with well-
defined metrics like negativity, relative entropy defined for
QFT, etc. [33,34], applied to the countably infinite dimen-
sional density matrix representation here. We leave it to
future works due to a lack of expertise on these topics.
Given the preemptive statements about the information

and entanglement metrics above, it is still useful to remind
ourselves that metrics are only handy algebraic compres-
sion of the information carried by the specific quantum
state or ensemble. The symmetry between partially traced
ρRþ and ρR− of Unruh eigenstates, at least, strongly implies
the equal measurability of a mode excited on maximal
foliation on both partitions separated by an event horizon.

Only the mode generated on a Rindler vacuum, namely
the particle defined with respect to the proper time of the
accelerated observer, is absolutely not detectable on the
complementaryRindlerwedge.The representationof amode
generated by different types of creators is summarized in
Table I. The foliation structures of the Minkowski ↔ Rþ,
R− spacetime are illustrated in Fig. 1.

V. A POTENTIAL SOLUTION TO THE BLACK
HOLE INFORMATION PARADOX WITHOUT

QUANTUM GRAVITY

In this section, we will explore the applicability of the
results in Secs. III and IV on the Kruskal-Schwarzschild
relative noninertial frames pair. To analogously find the
mapping like (Minkowski-Unruh Fock space density matrix
↔ R� pseudothermal density matrix) in the previous
section for the (infalling, black-hole-forming star density
matrix↔ Schwarzschild outside/inside pseudothermal den-
sity matrix) duality, we need two conditions to be satisfied:

(i) Condition 1: A positive frequency mode under
Kruskal foliation consists of a mixture of positive
and negative frequency modes under Schwarzschild
inner and outer foliation.

(ii) Condition 2: The infalling positive frequency plane
waves inside the collapsing shells are imprinted as
Kruskal positive frequency boundary conditions on
the past event horizon, which is an effective extrapo-
lation of the collapsing shell metric toward infin-
ite past.

Why do we need (but possibly, not only need) these two
conditions for the purpose of extracting information from a
black hole using the generalized Unruh effect? The
importance of the first condition is plain to see, as it is
the trigger of any generalized Unruh effect discussed in
Sec. I. The mixture of positive and negative frequency
modes results in the mixture of creation and annihilation
operators thus leading to the informative entanglement
between two partitions of the manifold, Rþ =R− or
outside/inside the event horizon.
The second condition echoes an existing type of view

that the information of a collapsed black hole is imprinted

FIG. 1. The foliation structure of Minkowski metric and
Rindler metric. Blue horizontal lines are the equal time slices
under Minkowski foliation, and the inclined straight lines going
through the origin from green to orange are the equal time slices
under Rindler foliation. The flow of time is forward for Rþ and
backward for R− observer, with respect to the time flow for a
Minkowski observer.

TABLE I. Creators and their visibility under different bases of the quantum field modes. Their definitions are
specified in Eqs. (13)–(18). Minkowski plane waves and Minkowski Unruh modes are generated on the same
vacuum with different classical waveform decompositions, while Rindler observers’ creator and annihilation
operators are mixed in the Bogoliubov transformations from the former two. “Not visible” in the table means that a
generator or annihilator on one subspace of the manifold is not affecting the states excited on the other subspace of
the manifold.

Creators Minkowski plane waves Minkowski Unruh modes Rþ R−

u†, v† a† � � � ðb†; dÞ or ðd†; bÞ
a† � � � u†, v† ðb†; dÞ or ðd†; bÞ
b† ða†; aÞ ðu†; vÞ � � � Not visible
d† ða†; aÞ ðu; v†Þ Not visible � � �
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on its event horizon, or some deformation/stretching of that
surface [35,36]. They are largely stimulated by the holog-
raphy, AdS=CFT line of thoughts [37,38]. This work shares
many common grounds with them, with one obvious
difference. We take a look at the postulates of Susskind
et al.’s work [36] as an example. Their postulate 2 and 3, the
semiclassical field equations and discrete energy level of
the field living on black hole metric, are adopted in this
work as well. However, we deliberately break the unitarity
from their postulate 1 in the process of formation and
evaporation of the black hole. The mapping we investigate
is between the density matrix generated by maximal
foliation eigenstates and the pseudothermal density matrix
subset in the full density matrix set generated by the
partitioned spacetime manifold eigenstates. A pure state
in the former is mapped into a highly stochastic pseudo-
thermal ensemble in the latter, but we will see that the
information imprinted on the past horizon should still be
retrievable to a certain extent due to the coherent excitation
on the stochastic background.
A chronicle way to understand the relationship between

these two conditions is that condition 2 resolves an ingoing
field mode living on an evolving astrophysical black hole
metric into an approximated boundary condition, at the past
event horizon, which is an extrapolation of collapsing shell
metric to the infinite past. Condition 1 secures the solution
of outgoing ensemble under the boundary condition
granted by condition 2.
Remark.—One potential strategy to connect our result to

those previous works postulating unitarity is to define the
thermal ensemble modulo the temperature as the vacuum
state, and any pseudothermal ensemble that deviates from the
thermal ensemble as excited states. Such a new formalism
should redefine the unitarity on the basis of a thermal and
pseudothermal ensemble instead of the old-fashioned pure
states, which could be regarded as a special case of T ¼ 0.
More discussion towards the end of Sec. V B.
Since the two conditions are fairly standard in previous

literature on the black hole information problem topic, it is
an option for experienced readers to treat them as standard
postulates and jump ahead to Sec. V B. The following
Secs. VA and VA 1 are dedicated to arguing the validity of
the two conditions by painting more details on the original
arguments made by [1], which demonstrated the feasibility
of approximating the collapsing shell information by the
positive Kruskal frequency boundary conditions living on
the past horizon of the Schwarzschild black hole. The
improvements here are that our calculations will be in 4D
spacetime and that we will try to amend some minor errors
in [1] along the road.
In any case, once the two conditions above hold, the

calculations and arguments for the generalized Unruh
effect in Minkowski/Rindler case after Eq. (25) naturally
follow. Because the explicit expression of the metric or the
Klein-Gordon equation solutions is not used anywhere in the

derivation about the quantum mechanical aspect of the
problem, after canonical quantization.
Now let us start from the Schwarzschild and Kruskal

metrics, using the conventions in [1] Eqs. (2.20) and (2.25).

A. Mixture of positive and negative frequency modes
across the asymptotic event horizon

The Schwarzschild metric,

ds2 ¼ ð1 − 2M=rÞdt2 − ð1 − 2M=rÞ−1dr2
− r2ðdθ2 þ sin2 θdϕ2Þ: ð73Þ

Under a coordinate transformation, it can be written as
Kruskal metric [39],

ds2 ¼ 2M
e−r=2M

r
dUdV − r2ðdθ2 þ sin2 θdϕ2Þ ð74Þ

U ¼ −4Me−
1
4Mðt−r−2M ln ð r

2M−1ÞÞ; for r ≥ 2M ð75Þ

U ¼ 4Me−
1
4Mðt−r−2M ln ð1− r

2MÞÞ; for r < 2M ð76Þ

V ¼ 4Me
1
4Mðtþrþ2M ln ð r

2M−1ÞÞ; for r ≥ 2M ð77Þ

V ¼ 4Me
1
4Mðtþrþ2M ln ð1− r

2MÞÞ; for r < 2M: ð78Þ

There are multiple ways to write down the Kruskal coor-
dinates, and our expression here is consistent with the
Kruskal diagram with Schwarzschild chart as shown
in Fig. 2.
The relationship,

U ¼ T − X ð79Þ

V ¼ T þ X ð80Þ

is always satisfied, for region I,

T ¼ 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2M

− 1

r
er=4M sinh t=4M ð81Þ

X ¼ 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2M

− 1

r
er=4M cosh t=4M; ð82Þ

and region II,

T ¼ 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r
2M

r
er=4M cosh t=4M ð83Þ

X ¼ 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r
2M

r
er=4M sinh t=4M: ð84Þ

Here, we do not extend the original Schwarzschild
spacetime; instead, we glue together the past outgoing
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horizon and the future outgoing horizon so that the two
regions are connected through the surface t → −∞;
r ¼ 2M. Without losing generality, it can be done by
enforcing boundary condition ϕðU→þ∞Þ¼ϕðU→−∞Þ.
For an astrophysical black hole, regions I and II are
sufficient to describe the physics we care about. Such an
eternally existing Kruskal manifold exactly expressed by
Eq. (74) is only a far field ideal approximation of the
collapsing shell metric that we will consider in the next
subsection, so we do not need to worry too much about the
singularity at r ¼ 0 and the artificially exerted periodicity
at infinitely far past and future outgoing event horizons.
Remark.—Considering the bounded distance in the light

cone coordinate where asymptotic Schwarzschild approxi-
mation is valid, as an evaporating black hole only exists in
finite time, the outgoing light cone coordinate boundary
conditions at far past and future outgoing horizon should be
at finite extremals ϕðU ¼ UmaxÞ ¼ ϕðU ¼ UminÞ. The
finiteness of the astrophysical black hole naturally dis-
cretizes the energy levels ω of the system. The argument
here does not remove the assumption of discrete energy
levels; instead, it is just a self-consistency check.
Since confining to the regions I and II of the Kruskal

metric grants us only one outgoing/past horizon and
ingoing/future horizon, we will use each pair of the words
interchangeably in the following text.
In Kruskal metric, the covariant vector ∂

∂U is Killing on
the past horizon V ¼ 0, and ∂

∂V is Killing on the future
horizon U ¼ 0. The proof is briefly shown as follows.

Labeling the coordinates ðU;V; θ;ψÞ, we can check the
Killing vector conditions for covariant vectors ξUμ ¼
ð1; 0; 0; 0Þ and ξVμ ¼ ð0; 1; 0; 0Þ,

∇μξ
U
ν þ∇νξ

U
μ ¼ −2Γ0

μν ¼ δμ0δν02g01g10;r
∂r
∂U

¼ 0: ð85Þ

Substituting Eqs. (75)–(78) in, we get [40]

r ¼ 2M

�
1þW0

�
UV

16M2e

��
; ð86Þ

where W0ðzÞ is the positive branch of Lambert W function
[40]. On both future and past horizons, UV ¼ 0, and the
derivative of Lambert W function W0

0ð0Þ ¼ 1. On past
horizon, V ¼ 0, hence ∂r

∂U ¼ 0 and ∂

∂U is killing, vice versa.
Hence, on the past horizon H−; V ¼ 0, the solutions to

the Klein-Gordon equation for a scalar field in Kruskal
coordinates are featured by the modes e−iωU. The positive
frequency modes are those analytic and bound in the lower
half complex plane of ImðUÞ < 0. Similarly, the decom-
position of Kruskal modes at the future horizon is repre-
sented by e−iωV due to the killing of the timelike vector
field ∂

∂V in that region.
After discussing the eigenmodes on the maximal foli-

ation in the Kruskal metric, we now look into the field
equation solutions in the Schwarzschild metric. [1] showed
that the semiclassical field solutions in Schwarzschild

FIG. 2. Kruskal metric with Schwarzschild coordinates charted. Green arrows are local timelike killing directions.
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metric near the horizon are representable by a set of
eigenmodes e�iωte�iωr� , where r� ¼ rþ 2M lnð r

2M − 1Þ
outside the horizon and r� ¼ rþ 2M lnð1 − r

2MÞ inside
the horizon. We can denote the inner and outer near-
horizon solutions by

ϕin
ωðr�; tÞ ¼

	
e2πMωe�iωte�iωr� ; for r ≤ 2M

0; for r > 2M;
ð87Þ

ϕout
ω ðt; r�Þ ¼

	
e−2πMωe�iωte�iωr� ; for r ≥ 2M

0; for r < 2M;
ð88Þ

with the same mathematical expression modulo a normali-
zation factor, but vanish on the complementary side. We
also assume a normalization factor difference e�2πMω

between inside and outside modes possibly due to the
volume difference between two partitions of the 4D
subspacetime.
By observing Eqs. (75)–(78), we notice that

�
U
4M

�
i4Mω

¼ e−iωðt−r�Þ; U > 0; ð89Þ
�
−

U
4M

�
i4Mω

¼ e−iωðt−r�Þ; U < 0; ð90Þ

on the real axis of U. Inside the horizon, r� is the timelike
direction; hence, the expression above implies the mixture
of the positive frequency t modes outside the horizon and
negative frequency r� modes inside the horizon, with the
same frequency amplitude.
The left-hand side expression in Eqs. (89) and (90)

satisfies the condition of being bound in the lower half
complex plane for U. Next, we combine them in a way that
secures analyticity along the fullU real axis. Notice that the
Kruskal-Unruh mode ϕωðUÞ should be continuous across
U ¼ 0, and the first derivative is nonzero (those Kruskal-
Unruh modes are supposed to be the free-falling fields that
actually travel across the horizon, i.e., nonzero flux there).
A relatively opposite sign between U > 0 and U < 0
regimes in the above expressions is then necessary.
Otherwise, they are out of phase across U ¼ 0.
Combining our knowledge about the positive frequency

Kruskal U modes and their relation with Schwarzschild
eigenmodes, we can write down the decomposition,

ϕωðUÞ ∝ ðe2πMωϕout
ω ðt; r�Þ − e−2πMωϕin;�

ω ðr�; tÞÞ

∝

8>><
>>:



− U

4M

�
i4Mω

; U < 0

−



U
4M

�
i4Mω

; U > 0
; ð91Þ

when constrained to the real axis of U, as illustrated in
Fig. 3. ϕout=in

ω ðt; r�Þ are the positive frequency modes

corresponding to each of their own timelike coordinates.
ϕout
ω ðt; r�Þ is outgoing from the horizon, and ϕin

ωðr�; tÞ is
also departing from the horizon on the other side.4

By observing the mathematical expression of the Unruh
modes in Eq. (91), we notice that the Unruh modes are
basically the plane waves in − logU space, instead of the
normal plane waves in U space (e−iωU). And it is these
Unruh mode frequencies in − logU space, not the plane
waves with respect to the Kruskal lightcone coordinate U,
that determines the Schwarzschild plane wave frequencies
corresponding to the t foliation infinitely far way from the
horizon. This point can be clearly seen from the Eq. (90),
where the equality is connecting a Kruskal-Unruh mode on
the left-hand side and a Schwarzschild plane wave mode
outside/inside the horizon on the right-hand side.
Before we depart from this section, we would like to

stress again that the neat eternal black hole considered here
is only an asymptotic approximation of the collapsing shell
metric representing an astrophysical black hole, in its most
condensed limit. It is well known that an observer outside a
Schwarzschild radius will never witness the exact accretion
of an ingoing particle onto the event horizon, in the sense
that such an event is not on any of the equal-time Cauchy
surfaces of the outside observer. On the other hand,
Schwarzschild metric is always a valid local approximation
of the metric near an observer, outside a sphere enclosing a
bulk of mass. From this perspective of view, all massive
objects are gravitationally thermalized and evaporating.
The formation of an event horizon exactly at rs corre-
sponding to the enclosed mass is never accomplished
before the evaporation of the asymptotic black hole, from
the perspective of view of any observer outside the sphere.
In other words, quite intuitively, singularity does not

FIG. 3. A Kruskal Unruh mode expressed in Eq. (91) modulo
normalization factor. ω ¼ 5π

4MΔ logðjUjÞ.

4Falling inward might be a confusing way to put it, although
people are used to saying so. Let us not be fooled by the letter
label, and remember that r is timelike inside the horizon. t
increase with increasing r� (along the time flow) is the most
accurate description for mode ϕin

ω ðr�; tÞ.
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emerge in the collapse of an astrophysical black hole, no
matter how seemingly close it is to an exact event horizon;
the existence of a global event horizon is equivalent to the
existence of a singularity, or a defect of the spacetime
manifold from the first place.
On this note, the question “what if a particle falls into the

black hole event horizon” is actually a problematic, even if
not completely wrong question to be asked by an observer
outside the horizon, because it is incompatible with the
locality of physics rules. In general relativity, the physics
rules, represented by some equations of motion for the
fields, are the same in different reference frames. Such
consistency is known to be broken when the measurements
from different reference frames are used in a single set of
equations.5 We often confusingly find ourselves in the
paradox of infinite redshift or diverging energy-momentum
density at the black hole horizon, or information loss after
reaching the exact event horizon. It is likely only because
we were carrying out illegal maths that simultaneously
admit the measurements by different observers. An
observer that has appeared outside the horizon far past,
at the exact event horizon, and outside the horizon far future
does not exist.
A reasonable speculation is that an eternal black hole

with an event horizon can only exist as a conceptual
approximation, not in the real physical world. It is in the
stance of an infinitely extending metal plate in the electro-
dynamic problems when we concern about physics instead
of maths.
Remark.—In two special cases, (Minkowski ↔ Rindler)

and (Schwarzschild ↔ Kruskal) noninertial frame pairs,
we found the opposite time-flow phenomena on a shared
Cauchy surface in those diffeomorphism connected metric
pairs of the same (þ;−;−;−) pseudo-Riemannian mani-
fold. Inertial frame pairs, connected by special diffeo-
morphisms generated by Poincaré groups, do not have
opposite time flows. To be more specific, in the
(Minkowski ↔ Rindler) case, for a flat manifold with
no singularity, as shown in Fig. 1, on t ¼ τ ¼ 0 Cauchy
surface ð ∂

∂t ;
∂

∂τÞjRþ > 0 while ð ∂
∂t ;

∂

∂τÞjR− < 0. Similarly, in
the (Schwarzschild ↔ Kruskal) case for a flat manifold
with a singularity, on the Cauchy surface, the past horizon
H−, that is shared by both foliation structures,
ð ∂

∂U ;
∂

∂tÞjout > 0, while ð ∂

∂U ;
∂

∂r�
Þjin < 0. Notice that the

time-flow direction is not specified by being labeled by
some letter related to “t,” but is determined as the killing
direction with non-negative signature. We suspect that this
kind of spacetime foliation structure is what truly underlies
the Unruh effects; yet, the differential manifold knowledge
required to unveil the fundamentals of such phenomena in

general noninertial frame pairs is beyond our reach in
this paper.
The outcome of the above opposite foliation structure

after quantization manifests as follows. In noninertial frame
problems, the Hilbert spaces of advanced (one-way) time-
evolving states do not coincide entirely in two ways of
foliation. When we write down the exact equality between
the states in two relatively accelerating frames, formally it
is done in a more inclusive Hilbert space that incorporates
both advanced and retarded field solutions, or states, after
quantization. Those retarded states vanish soon enough into
the investigation under the lower-bounded algebra we
defined, aj0i ¼ 0.

1. Ingoing modes inside the shell
of a collapsing shell metric

In this section, we will move on to the discussion of
astrophysical black holes that form and evaporate in a finite
lifetime. The goal is to verify the condition 2, which helps
argue that the infalling positive frequency modes can be
represented by the Kruskal outgoing horizon positive
frequency modes. The Penrose diagram of such a finite-
lifetime black hole is illustrated in Fig. 4.
The scalar field modes that start evolving from the past

Cauchy surface i− for μ ¼ 0 or I− for μ ≠ 0 can be
classified into two types: one never travels near the black
hole horizon during the finite lifetime of an astrophysical
black hole, and the other has substantial amplitude near the
horizon [ϕðrs < r < rs þ δÞ > ϵ, for t during τBH]. We call
them transmitted and reflected modes, respectively. The
transmitted modes are those matters floating around the
black hole and never get close enough to them, thus are not
plagued by the black hole information problem; they
unitarily evolve from the past before black hole formation
to the future after black hole evaporation. The reflected
modes travel through the horizon, and they are the main
investigation objects in any black hole information
problems.
The four-dimensional collapsing shell metric, general-

ized from the 2D collapse from [1], can be written as

ds2 ¼
8<
:

dτ2 − dr2; r < R̂ðτÞ

1 − 2M

r

�
dt2 − dr2

1−2M=r ; r > R̂ðτÞ: ð92Þ

The shell radius is given by

R̂ðτÞ ¼
	
R0; τ < 0

R0 − ντ; τ > 0:
ð93Þ

The collapsing shell approximately describes such a
physical system, where a shell of matter shrinks its size
at velocity ν. The collapsing of a bulky distribution of the
matter, or the additional matter accreting onto an existing

5For example, Einstein equations are bound to be broken if we
use the Ricci curvature expressed Newtonian gauge and energy-
momentum tensor expressed in synchronous gauge.
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black hole could be decomposed by layers of collapsing
shells with the in shell metric modified from the completely
flat Minkowski one. We do not consider the backreaction of
the field on the metric. Hence, strictly speaking, the
retrieval of the information calculation in the following
subsection based on the current subsection is only for the
perturbative part of the whole chunk of collapsed mass. A
complete, nonlinear level analysis is not available until the

puzzle of curved spacetime and quantum field theory
unification is fully resolved, i.e., the inclusive formulation
of gravitational and particle interactions.
It is assumed that ν is fast enough 1 − ν < 4M

R0þ2M ≪ 1 for
simplicity in the later calculations. Using light cone
coordinates,

U ¼ τ − rþ R0; V̄ ¼ τ þ r − R0 ð94Þ

ū ¼ t − r� þ R0�; v̄ ¼ tþ r� − R0�; ð95Þ

we can rewrite the collapsing shell metric as

ds2 ¼
	
dŪdV̄ − r2dΩ2; inside the shell

ð1 − 2M=rÞdūdv̄ − r2dΩ2 outside the shell
:

ð96Þ

ū; v̄; Ū; V̄ are related by the condition that the ds on the
shell match each other expressed by in shell or out shell
coordinates [1],

du
dU

¼

8>>>>>><
>>>>>>:



1 − 2M

R0

�
−1
2; ū; Ū < 0

R̂ð Ū
1þνÞ

ð1þνÞ


R̂



Ū
1þν

�
−2M

�
�
νþ

�
1 − 2Mð1−ν2Þ

R̂



Ū
1þν

�
�

1=2
�
;

ū; Ū > 0

ð97Þ

dv
dV

¼

8>>>>>><
>>>>>>:



1− 2M

R0

�
−1
2; v̄; V̄ < 0

R̂



V̄

1þν

�

ð1þνÞ


R̂



V̄

1þν

�
−2M

�
��

1− 2Mð1−ν2Þ
R̂



V̄

1þν

�
�
1=2

−ν

�

v̄; V̄ > 0

: ð98Þ

We put a bar on these light cone coordinates to
distinguish them from the Kruskal metric ones in the
previous subsection.

The Klein-Gordon equation for the massive scalar in this collapsing shell coordinate becomes

r2
∂

∂Ū
∂

∂V̄
ϕþ r

�
∂r
∂Ū

∂ϕ

∂V̄
þ ∂r
∂V̄

∂ϕ

∂Ū

�
−

1

sin θ
∂

∂θ

�
sin θ

∂

∂θ
ϕ

�
−

1

sin2θ
∂
2

∂
2ψ

ϕ − μ2r2ϕ ¼ 0 in shell ð99Þ

r2
�
1−

2M
r

�
−1 ∂

∂ū
∂

∂v̄
ϕþ r

�
1−

2M
r

�
−1
�
∂r
∂ū

∂ϕ

∂v̄
þ ∂r
∂v̄

∂ϕ

∂ū

�
−

1

sinθ
∂

∂θ

�
sinθ

∂

∂θ
ϕ

�
−

1

sin2θ
∂
2

∂
2ψ

ϕ− μ2r2ϕ¼ 0 out shell:

ð100Þ

The angular part of the scalar field can be solved by spherical harmonics. The remaining light cone coordinate dependent
part of the scalar field ϕðU;VÞ resolves into

FIG. 4. A finite-lifetime black hole. The blue arrow denotes the
transmitted scalar field modes that have negligible amplitude near
the horizon; They are the matters floating around and never get
absorbed into the black hole. The red arrow denotes the modes
reflected by the event horizon.
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r2
∂

∂Ū
∂

∂V̄
ϕþ r

∂ϕ

∂r
þ lðlþ 1Þϕ − μ2r2ϕ ¼ 0 in shell ð101Þ

r2
�
1 −

2M
r

�
−1 ∂

∂ū
∂

∂v̄
ϕþ r

�
1 −

2M
r

�
−1
�
∂r
∂ū

∂ϕ

∂v̄
þ ∂r
∂v̄

∂ϕ

∂ū

�
þ lðlþ 1Þϕ − μ2r2ϕ ¼ 0 out shell: ð102Þ

Even for a nonspinning Schwarzschild black hole, the
scalar field solution in general does not have l exactly equal
to zero. The non-exact-zero of the angular momentum for
most of the scalar field modes forms a centrifugal barrier
that leads to the ϕðr ¼ 0Þ ¼ 0 solution for the in shell
equation of motion (101).
We are interested in the ϕ modes behavior near the

horizon when the shell approaches the horizon. This
condition specifies the final stage of the collapse
τ → R0−2M

ν ; t → þ∞. The approaching to infinity of the
out-shell time t when R̂ðτÞ indefinitely approaches 2M
demonstrates that for an observer outside the shell (dtdτ
diverges ∼ 1

R̂−2M), the black hole event horizon only forms
asymptotically. Outside the shell, near the horizon, as ð1 −
2M=rÞ−1 diverges and ∂r

∂ū ∼
∂r
∂v̄ ∼ 0, the first term of the

equation of motion dominates, and the equation of motion
simplifies to

∂

∂ū
∂

∂v̄
ϕ ¼ 0; Out shell; t → þ∞; r → 2M: ð103Þ

This equation is solved by

ϕðū; v̄Þ ¼ fðv̄Þ þ gðūÞ; Out shell; t → þ∞; r → 2M:

ð104Þ

We assume the continuity of the scalar field across the
shell, and we know that according to Eqs. (97) and (98),
ū ¼ ÛðŪÞ and v̄ ¼ V̂ðV̄Þ, where ˆ denotes a single variable
function. Namely, out/ingoing light cone coordinates do not
mix from the ds matching at the shell. Thus, we can adopt
the ansatz for in shell equation of motion solution near the
horizon with the same form,

ϕðŪ; V̄Þ ¼FðV̄ÞþGðŪÞ; In shell;τ→
R0− 2M

ν
; r→ 2M:

ð105Þ

The continuum of ϕ across the shell near the horizon
further implies

fðv̄Þ ¼ FðV̂ðv̄ÞÞ; gðūÞ ¼ GðÛðūÞÞ: ð106Þ

The ūðŪÞ and v̄ðV̄Þ dependent functions are outgoing and
ingoing modes, respectively.

The centrifugal barrier effect discussed in the previous
paragraphs tells us ϕðr ¼ 0Þ ¼ FðV̄Þ þGðŪÞ ¼ 0. Strictly
speaking, the separable ansatz is only justified near
r ¼ 2M; thus, the possible oscillatory motion between 0 <
r < 2M might modify this condition by a phase shift, but it
is unimportant for the following derivations. Inside the
shell, along r ¼ 0 worldline, we have the relationship
U − V ¼ 2R0. Thus, the 1D functions FðxÞ and GðxÞ
has the following relationship:

GðxÞ ¼ −Fðx − 2R0Þ: ð107Þ

Combining Eqs. (106) and (107), we get

gðūÞ ¼ −FðÛðūÞ − 2R0Þ: ð108Þ

Remember that the metric, thus the equation of motion
inside the shell, is simply of flat spacetime. Hence, the
collapsing modes whose wavefronts evolve with decreasing
r as τ increases could be represented by the positive
frequency modes FðV̄Þ ∼ e−iΩV̄ just inside the shell.6

These modes, when leaving the past horizon of Kruskal
spacetime, are reflected into gðūÞ in the form,

gðūÞ ∼ −e−iΩðÛðūÞ−2R0Þ: ð109Þ

A physics interpretation is that the infalling mode is
bounced back by the centrifugal barrier at r ¼ 0 (possibly
with a phase shift).
We use ∼ symbol to waive the careful treatment of

normalization factors, only focusing on the spacetime
coordinates dependence of a mode.
By integrating Eq. (97), at Oð1 − νÞ order, we have [1]

ûðŪÞ ¼

8>><
>>:

ð1− 2M=R0Þ−1=2Ū; Ū < 0

−4M ln ð1− νŪ=½ð1þ νÞðR0 − 2MÞ�Þ
þŪþOð1− νÞ; Ū > 0

:

ð110Þ

6Whether μ ¼ 0 or not is unimportant here; the positive
frequency modes solution for massive or massless particles have
the same form.
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Here, ν is the collapsing rate, which we assumed to be close
to 1, thus a rapid collapse. In the final stage of collapse
near horizon, we have τ → R0−2M

ν ; r → 2M; hence, Ū →
ðR0 − 2MÞðνþ 1Þ=ν. In this region, Ū is positive, and the
log term dominates over the linear term. Thus, at the past
horizon of Kruskal metric, we have

ÛðūÞ ≈ 1þ ν

ν
ðR0 − 2MÞ½1 − e−ū=ð4MÞ�: ð111Þ

Now we proceed to connect the collapsing shell picture
with the black hole picture discussed in the previous
subsection. Imagine that we have an observer sitting at
ro ≫ R0. The scalar field perturbative part has negligible
backreaction on the metric, so this observer does not need
to know the exact dynamics inside the shell to figure out the
evolution of the scalar field local at ro. An eternal black
hole and a collapsing shell have the same effective metric
locally near ro. Thus, the evolution of the scalar field near
the region of a distant observer in a collapsing shell metric
is representable by the evolution of the scalar field in an
eternal black hole metric. The dynamics of the scalar field
happening inside the shell are imprinted as the boundary
conditions at the asymptotic black hole event horizon
extrapolated to t → −∞.
Matching the r and t coordinates of the collapsing shell

metric and the imaginary eternal Schwarzschild black hole
metric, the eternal black hole Kruskal metric light cone
coordinate U defined in Eq. (78) is related to the collapsing
shell light cone coordinate outside the shell by
U ¼ −e−ðū−R0−2M lnðR0−2MÞÞ=4M. Such matching should be
asymptotically exact out shell in the far future, towards the
final stage of the collapse.
Thus, we see an in shell ingoing mode ϕðV̄Þ ∼ e−iΩV̄

eventually evolves into

ϕðUÞ ∼ e−iΩξU; ð112Þ

on the asymptotic event horizon, which is effectively a
boundary condition for far observers. ξ is a redshift factor

ξ ¼ 1þν
ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − 2M

p
e−

R0
4M, always positive. Thus, each pos-

itive frequency e−iΩV̄ mode is mapped into a positive
frequency e−iΩ

0U mode after a long time of evolution, and
they each could be decomposed into the Schwarzschild
positive and negative frequency modes mixture outside and
inside the asymptotic event horizon.
Remark.—The approach in this note could be regarded as

a realization of the Horowitz-Maldacena conjecture [32] in
some sense. There, they assumed the infalling state is
entangled with the vacuum (perfectly thermal after tracing
out the external part) Unruh state inside the horizon. This
note shows that this extra entanglement is redundant—the
Unruh state itself can be richer than a pure vacuum and sets
up the boundary conditions.

B. The one-to-one mapping between infalling
physical states and outside-horizon

pseudothermal physical states

We have seen in Sec. IV that, when there are two types
of Unruh modes generated simultaneously in a spacetime,
it was quite difficult to identify the invertible mapping
between the density matrix space generated by the Unruh
Fock space and the ρ̂lmns vectors. Because when we have
both the type I and the type II Unruh modes, even for a
basis Fock state, there are multiple ρ̂lmns terms due to the
necessity to commute b† and b coming from u† and v†.
Things are more approachable in the Kruskal-
Schwarzschild duality where we only have one type of
Unruh mode moving outwards. In this section, we will try
to identify the invertible mapping from an arbitrary
density matrix in the Kruskal-Unruh eigenmodes Fock
space to the ρ̂lmns-basis-spanned subspace of the density
matrices generated by the Schwarzschild outside-horizon
eigenmodes Fock space. We will be focusing on the states
for a single momentum q in the rest of this section, as the
proof of the invertible mapping in this section can be
trivially generalized given the commutativeness of the
operators with different momenta.
Canonically quantizing the Eq. (91), we get the expres-

sion of the Unruh creator in terms of the outside creator and
the inside annihilator,

u†q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh 4πMω

p ðe2πMωb†q − e−2πMωdqÞ; ð113Þ

where u† is the Unruh creator which generates a positive
frequency mode on the past horizon of Kruskal spacetime.
b†, d† are the Schwarzschild creators outside and inside the
horizon. As usual, they each do nothing on the comple-
mentary side.
A most general Hermitian density matrix built on

the Unruh Fock space with a fixed momentum q⃗0;ω0 is
given by

ρK ¼
X
α1;α2

Aα1α2 jα1ihα2j; ð114Þ

where A�
α1α2 ¼ Aα2α1 , trðAα1α2Þ ¼ 1 and the matrix is

positive semidefinite. α1, α2 are the non-negative integers,
and jαi is the normalized state with α Unruh particles of
momentum q0,

jαi ¼ 1ffiffiffiffiffi
α!

p u†;αj0iK

¼ 1ffiffiffiffiffi
α!

p e−2πMαωð2 sinh 4πMωÞα=2b†;αŜj0iS; ð115Þ
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where we used the commutation relations ½b†; d� ¼ 0,
½d; Ŝ� ¼ e−4πMωŜb†. The index K means Kruskal, S
Schwarzschild, O outside the Schwarzschild horizon,
and I inside the Schwarzschild horizon.
The general ρK above should be able to describe any

possible infalling states/ensembles at the perturbative level.
We contract out the states inside the Schwarzschild horizon
to find the density matrix outside the horizon,

ρOðAα1α2Þ ¼
X
N

IhN jρKjN iI ð116Þ

¼
X
α1α2

Aα1α2 ρ̂
b†;α1bα2 ; ð117Þ

where the basis matrices ρ̂b
†;α1bα2 are the special cases of

Eq. (70) with l ¼ α1; m ¼ 0; n ¼ α2; s ¼ 0,

ρ̂b
†;α1bα2 ¼ Z2e−2πMðα1þα2Þωð2 sinh4πMωÞα1þα2

2

X∞
N ;nq¼0

e−8πMEtot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðnq þ α1;α1ÞCðnq þ α2;α2Þ

q
jN ; nq þ α1iO OhN ; nq þ α2j

ð118Þ

Cðnq þ α1; α1Þ ¼ ðnqþα1Þ!
nq!α1!

is the binomial coefficient, and

Z−2 is the partition function.
As discussed in Sec. IV, we call ρ̂b

†;α1bα2 a set of basis
matrices for the outside-horizon physics, just like ρ̂K ¼
jα1ihα2j on the Kruskal side, because they are linearly
independent of each other in terms of matrix summation
algebra. The diagonal ones ρ̂b

†;αbα are also properly nor-
malized; hence, a normalized, positive semidefinite, and
Hermitian density matrix ρ̂b

†;α1bα2 is safely traced into a
normalized, positive semidefinite, and Hermitian density
matrix ρO. The expression of ρO ¼ P

α1α2
Aα1α2 ρ̂

b†;α1bα2 is
unique, and we have built a one-to-one mapping between
the set of arbitrary Kruskal positive frequency modes
density matrices and a subset of the outside-horizon density
matrices spanned by the normalized linear combination of
pseudothermal density matrices ρ̂b

†;α1bα2 .
The space of ρOðAα1α2Þ, or the subspace of the density

matrices being a normalized linear combination of the
pseudothermal density matrices, apparently is not the full
density matrix space for the physical ensembles living
outside the horizon, and it should not be. For example,
ρO ¼ jαiO Ohαj, a pure state living outside the horizon,
cannot be decomposed into ρ̂b

†α1bα2 basis at nonzero
temperature T. One might wonder how we mapped a full
density matrix space into a subspace of density matrices,
but it is not mysterious at all for infinite element groups—
consider how one-to-one mapping can be easily built
between integers and positive integers. The surface gravity
with respect to a specific observer raises the ground state of
that observer by a thermal ensemble at the temperature
corresponding to the surface gravity. Such a gravitational
thermalization could have memorizing feature; i.e., the
original Kruskal density matrix ρK could be a thermal/
pseudothermal density matrix itself, at a different temper-
ature. We will encounter such a scenario when approxi-
mating the collapsing astrophysical black hole by layers of
collapsing shell metrics, which we leave for future works.

A relativistic perspective of view is helpful to understand
such a phenomenon. The stance of inertial and noninertial
frames are always interchangeable. The dimensionality of
their Hilbert space and density matrix space are infinity;
their density matrices have this one-to-one mapping that
could preserve the information from one space in the
subspace at a certain temperature of the other; their
Hilbert spaces are different spaces by definition, only with
isomorphic representation structure.
Given the particle state/density matrix describing the

collapsing history, one could analytically calculate the Page
curve; i.e., the information Ir ¼ Stherm þ Trðρr log ρrÞ from
the density matrix at each stage of the evaporation, using
the pseudothermal density matrices in Eq. (118). On a
rather loose end, the one-to-one mapping between density
matrices itself might be sufficient for us to use the degrees
of freedom counting argument in the original proof of Page
curve [41]. Without validation on the details here, we notice
that a recent work [42] starting from the same point as our
paper; i.e., the Unruh effect on excited states has already
presented a calculation of the Page curve in their
framework.
Remark.—As first mentioned in the remark block in

Sec. V, although the mapping from a pure state density
matrix to a mixed one is not unitary from a traditional
quantum mechanics point of view, the unitarity could be
“resumed” by redefining the states basis matrices labeled
by ρ̂b

†;α1bα2 quantum numbers modulo temperature in this
supposedly nonunitary contracting operation. As long as
the one-to-one mapping holds, such formalism should be
feasible. The speculation is that we should probably change
the definition of the vacuum in our relativistic QFT theory.
We suspect that in an advanced representation of the
physical states living on certain curved spacetime manifold,
the vacuum should be defined as degenerating with any
thermal ensemble, and by acting creators on the traditional
vacuum or a thermal ensemble density matrix, instead of
state vector representation, we get a spectrum of excita-
tions. Actually, simple algebra shows that the hierarchy of
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ρ̂b
†;α1bα2 is connected by acting corresponding numbers of

creators and annihilators on both sides of a canonical
density matrix, multiplied by a normalization factor, in the
high-frequency/low-temperature limit. What is more, by
acting annihilator b on the ground state in this formalism,
the canonical ensemble, we obtain the first excitation on the
opposite side ρ̂d

†d.

VI. CASE STUDY: SPECTRUM UNDER
DIFFERENT BASIS

We intuitively have a rough picture of the physics that
the pseudothermal density matrix represents. As briefly
mentioned in Sec. IV, ρ̂ has a bump around specific
frequency sitting on top of a thermal ensemble.
However, it is still very elucidating to see the detailed
number counting and energy spectrum that an observer
would measure in the asymptotically flat regime. We will
go through the detailed calculation in this section.
Before we start, we would like to first specify several

presumptions and approximations. The first thing to stress is
again, that we are going to apply some quantum information
and computation techniques well-established for finite-
dimensional Hilbert space on the infinite-dimensional
Hilbert space. Specifically, in this section, we need to use
the concept of positive operator-valued measures (POVM)
for number/energy measurements. Secondly, we ignore the
gray-body factor, which causes a frequency dependent < 1
transmission rate across the potential barrier extended in the
intermediate region away from the black hole horizon. The
gray-body factor is well-studied in the particle packet
perspective of view for Hawking flux [43], and in our scalar
field eigenmode scenario, this effect originates from the
complicated form of the eigenmodes in the transition region
between the near horizon and asymptotically flat regions.
Recall that (only) in those two extreme regimes the Klein-
Gordon equation solutions have simple plane-wave-like
expressions in terms of t, r or r�, and they have ≤ 1
transmission rates in between captured by the gray-body
factor. We argue that since the gray-body factor is related to
the physics not in the immediate vicinity of the horizon, it
could be mounted separately later in the standard way from
previous literature. The result we present in this section are
not considering the gray-body factor and assume the trans-
mission rate T ¼ 1.
To find the energy spectrum of a density matrix, we need

to calculate the expectation value hEðωÞi as a function of
the frequency ω. In quantum mechanics, the expectation
value of a positive operator-valued measure (POVM) for a
density matrix can be calculated as [44]

hEi ¼ TrðρEÞ ¼ Tr

�X
α

AαραE

�
¼

X
α

AαhEiα; ð119Þ

where
P

α Aα ¼ 1 and TrðραÞ ¼ 1. The energy in a certain
frequency Eω is a POVM of our system, and we calculate

the expectation value using the above equation, as a
function of frequency, to obtain the energy spectrum.
We start with a wave packet of Unruh modes living on

the outgoing horizon of the Schwarzschild black hole. We
express this Unruh wave packet of the quantized real scalar
field as follows:

jΓiK ¼
Z

∞

0

dωgðωÞu†ωj0iK; ð120Þ

where gðωÞ is the shape of an arbitrary wave packet, which
is normalized to unity,

Z
∞

0

dωjgðωÞj2 ¼ 1: ð121Þ

The density matrix living outside the Schwarzschild
black hole horizon contracting out the inner physical states
is given by

ρO ¼
X
N

IhN jΓiK KhΓjN iI ð122Þ

¼
Z

∞

0

Z
∞

0

dω1dω2gðω1Þg�ðω2Þρ̂11ðω1;ω2Þ; ð123Þ

where ρ̂11ðω1;ω2Þ is as in the Eq. (118).
Among all the ρ̂11ðω1;ω2Þ terms, only the terms with

equal frequency ω1 ¼ ω2 ¼ ω are contributing to the
diagonal terms in density matrix ρ—“diagonal” means
that a component is expressed as the direct product of two
identical states jN ihN j. With ω1 ≠ ω2, the two states of a
density matrix component, jN ; nω1

þ 1i and jN ; nω2
þ 1i,

are never identical throughout all the configurationsN . For
the purpose of calculating the expectation value of a
POVM, we focus on the diagonal terms in the density
matrix from now on,

diagðρOÞ ¼
Z

∞

0

dωjgðωÞj2ρ̂11ðωÞ: ð124Þ

ρ̂11ðωÞ are the normalized density matrix components, with
Trðρ̂11ðωÞÞ ¼ 1. Thus, for the measurement of energy
distributed to a specific frequency,

EωjN i ¼ nωω; ð125Þ

the energy expectation value over the full density ρO in dω
band can be decomposed into

hEωi ¼ TrðEωρ
OÞ ð126Þ

¼
Z

∞

0

dω0jgðω0Þj2hEωðω0Þi; ð127Þ

where
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hEωðω0Þi ¼ TrðEωρ̂
11ðω0ÞÞ ð128Þ

is the energy spectrum for a specific single Unruh mode
contracted normalized pseudothermal density matrix
ρ̂11ðω0Þ.
Next, we refer to the traditional derivation of the Planck

formula to calculate hEωðω0Þi [45,46]. Because ρ̂11ðω0Þ is
normalized and the distribution of the occupation number
of a frequency is uncorrelated with other frequencies
(multiplicative coefficients for each frequency in all the
density matrix elements), we can calculate the expectation
of the energy of a frequency ω as

hEωiω0 ¼
P

nωpω0 ðω; nωÞϵωP
nωpω0 ðω; nωÞ

; ð129Þ

where pω0 ðω; nωÞ is the probability of we finding nω of a
frequency in the configuration N , in a system prepared
with density matrix ρ̂11ðω0Þ. nω always run from 0 to ∞.
When ω ≠ ω0, the distribution of hEωðω0Þi is plainly

Bose-Einstein for our massive scalar field, as pω0 ðω; nωÞ ∝
e−nωω=T , ϵω ¼ nωω, where T ¼ 1

8πM.

hEωðω0 ≠ ωÞi ¼
P∞

n¼0 nωe
−nω=TP∞

n¼0 e
−nω=T ð130Þ

¼
ω
P∞

n¼0
de−nω=T
dð−ω=TÞP∞

n¼0 e
−nω=T ð131Þ

¼
ω d

dð−ω=TÞ


1 − e−ω=T

�
−1



1 − e−ω=T

�
−1 ð132Þ

¼ ω

eω=T − 1
ð133Þ

For ω ¼ ω0, according to Eq. (118) with α1 ¼ α2 ¼ 1,
pω0 ðω0; nω0 Þ ∝ ðnω0 þ 1Þe−nω0ω0=T , ϵω0 ¼ ðnω0 þ 1Þω0. This
distribution is manifestly different from the canonical one
for other frequencies, especially with the number counting
in frequency ω ¼ ω0 starting from 1, instead of 0. It is this
relative difference, of ω ¼ ω0 compared with other canoni-
cally occupied frequencies, recording the information of ω0
corresponding to the original Unruh mode. Such difference
is nontrivial, i.e., cannot be eliminated by some sort of
relabeling of the number counting. The energy expectation
value of ω ¼ ω0 frequency is given by

hEωðω0 ¼ ωÞi ¼
P∞

n¼0 ωðnþ 1Þ2e−nω=TP∞
n¼0ðnþ 1Þe−nω=T ð134Þ

¼ ω

P∞
n¼0ðnþ 1Þne−nω=T þP∞

n¼0ðnþ 1Þe−nω=TP∞
n¼0

d
dðe−ω=TÞ e

−ðnþ1Þω=T ð135Þ

¼ ω
e−ω=T

P∞
n¼0

d2

dðe−ω=TÞ2 e
−ðnþ2Þω=T þ d

dðe−ω=TÞ ðð1 − e−ω=TÞ−1 − 1Þ
d

dðe−ω=TÞ ðð1 − e−ω=TÞ−1 − 1Þ ð136Þ

¼ ω
e−ω=T d2

dðe−ω=TÞ2 ðð1 − e−ω=TÞ−1 − 1 − e−ω=TÞ þ ð1 − e−ω=TÞ−2
ð1 − e−ω=TÞ−2 ð137Þ

¼ ω
2e−ω=Tð1 − e−ω=TÞ−3 þ ð1 − e−ω=TÞ−2

ð1 − e−ω=TÞ−2 ð138Þ

¼ ω
eω=T þ 1

eω=T − 1
: ð139Þ

Supposing that the discrete energy levels labeled byω and
ω0 are distinguishable at discretization unit h0, we can
combine the expression of hEωðω0≠ωÞi and hEωðω0¼ωÞi
into a delta function,

hEωðω0Þi ¼ ω

eω=T − 1
þ δðω0 − ωÞh0ω0 eω

0=T

eω
0=T − 1

: ð140Þ

Similarly, the number counting spectrum,
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hnωðω0Þi ¼ 1

eω=T − 1
þ δðω0 − ωÞh0

eω
0=T

eω
0=T − 1

: ð141Þ

Substituting hEωðω0Þi back to Eq. (127), the integration
gives us,

hEωi ¼
ω

eω=T − 1
þ h0jgðωÞj2

ωeω=T

eω=T − 1
: ð142Þ

The delta function δðω0 − ωÞ for each individual ρ̂11ω0
ensures us the simple convolution with the Unruh wave

FIG. 5. Left panels: the Gaussian wave packets of type-I Unruh modes. Right panels: the energy spectrum on Rþ (or outside the
horizon), after tracing out the states on R− (or inside the horizon).
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packet in the pseudothermal spectrum. The first term gives
us a blackbody radiation spectrum, while the second term
enhances the power by a factor of h0jgðωÞj2eω=T . This
result echoes the stimulated Hawking radiation by Jürgen
Audretsch and Rainer Müller in 1992 [27], with a focus on

showing how the deviation of the Hawking radiation from a
perfect blackbody spectrum incorporates the information of
the waveform of the specific in-going excitation. Notice
that the low-temperature limit T → 0 of Eq. (142) goes
back to the inertial frame result,

FIG. 6. Left panels: the energy spectrum on R− (or inside the horizon), after tracing out the states on Rþ (or outside the horizon).
Right panels: the energy spectrum on Rþ (or outside the horizon), after tracing out the states on R− (or inside the horizon). The parity is
broken by the asymptotic direction of the initial Unruh mode.
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hEωijT→0 ¼ jgðωÞj2h0ω: ð143Þ

In Fig. 5, we illustrate several Gaussian gðωÞ ¼
1

ð2πσ2Þ1=4 e
−ðω−ω0Þ2

4σ2 wave packets and their corresponding

energy spectrum hEωi measured by an observer infinitely
far away outside the horizon. We multiply Eq. (142) by ω2,
which is achievable by assuming a uniform angular modes
distribution, to compare with the blackbody radiation
spectrum depicted by the orange curves. We set the
frequency discretization constant h0 ¼ 1 for illustration
purposes. Actually, changing the excitation number in
Eq. (120) to α multiplies the second term in Eq. (142)
by α, so Fig. 5 could be physically achieved by a large
number of excitations setting αh0 ¼ 1. The subtlety is that
by contributing a nontrivial amount of energy into the
energy spectrum, the Unruh modes at the horizon presumed
to be perturbative might break the assumption of no
backreaction. Such complexity can be ignored for now
as the illustration here is only dedicated to showing that
there will be a featured deviation from the blackbody
spectrum in Hawking radiation, considering the generalized
Unruh effect.
The applicability of the above calculation of the pseu-

dothermal ensemble spectrum is wide, for example, we
could calculate the spectrum for higher number excitation,
realistic Unruh wave packets at the horizon, angular
distribution, fermion generalized Unruh effect, etc. The
technique in this section can be fairly straightforwardly
applied those further investigations into the collapsing
history of a black hole. In any case, hopefully, the amazing
bottom line has been illustrated by those plots in Fig. 5
clearly, that by observing the offset of the Hawking
radiation spectrum from the blackbody spectrum, we could
infer the information of the particles that have fallen into
the black hole. Again, our result is only valid at the
perturbative level.
Although we assumed a uniform angular distribution of

the infalling modes in our illustration, it is useful to notice
that the angular distribution of the infalling modes will be
preserved when they propagate out as Hawking radiations
for nonrotating Schwarzschild black holes. Because the
scalar field eigenmodes in Kruskal and Schwarzschild
metrics have the same angular dependent part. In reality,
the Hawking radiation for cosmological black holes is at
temperatures so low that it has never been observed. The
results obtained here might need to be tested in some other
laboratories like asteroidal mass primordial black holes,
which are still in the open window to take all the dark
matter [47], or at the particle horizons that could be
produced by accelerations or simulated systems in the
lab. The inflation and reheating research can also poten-
tially investigate the effect of the particle horizon formed
from the rapid expansion of the Universe using the
generalized Unruh effect as a tool.

Remark.—Back to the Rindler-Minkowski case. The
results shown by Fig. 5 are also representable for the ρ̂bb

on Rþ wedge starting from an excitation on the Minkowski
vacuum. The energy-frequency spectrum is very intuitive
here: The observer on Rþ measures a peak on top of the
thermal bath whose temperature is proportional to the
acceleration; when the particle has very high energy com-
pared to the background temperature, the observation goes
back to Minkowski case; And when the acceleration is high,
the low-energy particle is buried under the hot thermal bath.
This serves as a decent sanity check of our result. The
implication for an R− observer coming after that is rather
counterintuitive. The spectrum of ρ̂dd calculated in the
similar way as ρ̂bb is shown in Fig. 6. Although at a much
lower amplitude, the same frequency bump caused byCðnþ
1; 1Þ ¼ nþ 1 factor is always present in the spectrum
observed by an R− observer, just as implied by the equal
Von-Neumann entropy of ρbb and ρdd. Remember that the
Unruhmodewe start from is a purely type-Imode in this case,
whose propagation asymptotically align with the trajectory
of an Rþ observer. At the theoretical level, it seems that the
information of this oppositely traveling particle is not
completely lost on the R− wedge. The engraving of a piece
of information on a horizon seems to be equally observable
by both sides no matter which direction it is traveling.

VII. DISCUSSIONS

A. Assumptions and caveats

We would like to preemptively summarize the price for
the neat implication of this work. We could not exhaust the
potential problems, but we try our best to list the assump-
tions and caveats that come in at different steps of our
derivation in this paper here.
(1) The infinite dimensionality of the Hilbert space of a

quantum field theory system. By postulating the
scalar field energy levels (equation ofmotion solution
eigenvalues) to be discrete, we obtain an infinite but
countable dimension of the Hilbert space, thus the
density matrices. However, as far as we know, many
of the quantum information techniques under the
densitymatrix formalism used in this paper have only
been well-established for finite-dimensional quan-
tum systems. Since most of the pseudothermal
density matrices are well-behaved (diagonalizable),
the main concern is the normalizability of the density
matrix.We verify the normalization of Eq. (118) with
α1 ¼ α2 by explicitly calculating the series summa-
tion backstage, and speculate that the consistent
physics interpretation should not be spoiled for no
reason. But truth be told, strictly speaking, the
normalization of pseudothermal density matrices ρ̂
is speculation at this point. Even if the normalization
has no problem, the direct applicability of quantum
information concepts likeVon-Neumann entropy and
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POVM on infinite dimensional Hilbert space is still
an open question.

(2) The transformation between plane wave modes and
Unruh modes. As mentioned before, it takes a
transformation from e−iωx and x−iω basis to go from
one way of quantization to another. The exponential
relationships between the Fourier transform variable
here could cause severe blue- and redshifts. When
considering the discrete eigenvalues, such log-space
transformation poses a question of the energy level
structures that can truly span mutually complete
basis modes.

(3) The practical measurability of the pseudothermal
spectrum. The one-to-one mapping between an
arbitrary Unruh mode density matrix and the pseu-
dothermal density matrix vector only ensures the
conceptual invertibility of the operation. Due to the
high stochasticity of the pseudothermal ensemble,
the story could be stated in another way that the
information will indeed be buried under the thermal
bath. Even though there is coherent excitation on the
whole ensemble, it might be too weak to be detected.

(4) Enhanced emission from the black holes. An ob-
vious risk presents for the generally enhanced
Hawking radiation. In extreme cases, excitation
peaks could even potentially make a black hole
no longer black, when gðωÞ spectrum deposits its
energy in high frequencies. However, there is a
possibility that high-frequency emission spectra are
indeed allowed by the realistic black holes depend-
ing on their collapsing history: We could have
already observed them but could not distinguish
them from the bright accretion disc emissions, or
have attributed them to the unexplained diffuse
cosmic ray excess [48,49]. The enhanced Hawking
radiation will also accelerate the evaporation, which
brings in problems or opportunities depending on
the masses of the primordial black holes.

B. Generalized Unruh effect on other particle horizons

The general Unurh effect technique is in principle
applicable to any particle horizon, regardless of the cause
of it being the acceleration, massive objects, or inflation.
The Bogoliubov transformation approach has been

explored for particle production during inflation for a long
time. A recent paper by Kaneta et al. [50] have carried out
an instance of comparing Boltzmann and Bogoliubov ways
of dark matter production during inflation, and they
reached a great agreement. It is an encouraging work
unveiling the alternativeness of the gravitational thermal-
ization picture and the direct quantization of the graviton
picture. One major merit of the Bogoliubov over the
Boltzmann approach though, is that it can make analytical
predictions at very low-k regimes, which is not something
that can be done with the Boltzmann approach by carrying

out conventional particle theory calculation at the pertur-
bative level for the quantized gravitons. The reason is that at
the low-k regime, the scalar field stops being localized
enough and loses its particle property. It is in analogy to the
stretch of the waveform near the asymptotic Schwarzschild
black hole in our work.
Despite the advantage at the low-k regime, the

Bogoliubov approach has an obvious disadvantage in the
traditional vacuum initial state treatment. The method to
incorporate other nongravitational particle productions has
been unknown in the Bogoliubov approach. The general-
ized Unruh effect working with the excitation at the horizon
as initial conditions could fill this gap and give an inclusive
description of different particle production mechanisms
through a differentiated Bogoliubov approach.
Asymptotic horizons are always formed when an

observer accelerates with respect to the surrounding sys-
tem. We could break down a smooth geodesic into a series
of short hyperbolas, then use the Minkowski ↔ Rindler
generalized Unruh effect to investigate how a bunch of
information restored in local field operators ϕðOÞ in an
element volume O is passed from upstream to downstream
of a bundle of geodesics. Of course, there is arbitrariness in
the definition of upstream/downstream, i.e., the direction of
the time flow. Suppose at a certain world point Pi the
geodesic is represented by the local hyperbola segment
with acceleration αi between two successive moments. The
local field operators ϕðPiÞ passed its information to the
local field operators at the next moment ϕðPiþ1Þ, with a
slight thermalization due to αi, according to generalized
Unruh effect.
We remember that there is arbitrariness in the definition of

the time arrow in the first place. However, going in any
arbitrary direction of time flow always add a thermal
ensemble to the initial state, thus presumably increasing
the entropy.We do not knowwhich one leads to the other, but
from the argument above it seems that there is a connection
between the second law of thermodynamics and the simple
law of causality, which forbids looping geodesics.

C. Emergent gravity from the stochasticity
of quantum fields

The ubiquitousness of the local particle horizon and thus
the local Unruh effects as described in the previous
subsection intrigues us with this conceptual speculation:

gravity≡ spacetime curvature

≡ temperature of the quantum fields

Each of these equivalences is supposedly revertible, and
those quantities are completely local. By this proposed
relationship we could derive the former from the latter or
the other way around. Namely, it falls into the emergent
gravity category of ideas. To the best of our knowledge, the
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thermodynamics interpretation of general relativity was
first discussed in [51], proposing the connections like
T ↔ κ, dt ↔ dS that have been repetitively appearing
throughout our paper. People have been reluctant to take
it further than an interpretation since then. We think the way
to go a step forward along their path could be to come up
with a formal way to replace Ricci curvature in the
Einstein-Hilbert action with a heat reservoir of the fields.
By solving for the temperature of the fields from this
refined action with a heat reservoir, if feasible, we can
accordingly solve the metric of the spacetime.
We are going to briefly comment on these thought

experiments that are dedicated to proving the quantum
nature of gravity as a closing remark to the far-fetched
discussion in this section. To the best of our knowledge,
most, if not all, of those quantum gravity experiments’
setups, are indistinguishable between a quantized gravita-
tional field (metric) and the local application of the Unruh
effect, namely the gravity emergent from the stochasticity
of quantum fields—they both render the gravitational
phenomena quantum natures. Usually, such experiments
intend to prove the quantum nature of gravity by measuring
the entanglement introduced or mediated by gravitational
interaction. For example, the Gedankenexperiment, which
is essentially a gravitational version of the Stern-Gerlach
experiment [52] and Marletto and Vedral’s proposal of
double mass interferometer experiment [53]. What lies as
the fundamental to these experiments is usually a perturbed
gravitational field whose propagation is semiclassically
describable, and the experiments are designed to show that
such perturbed gravitational fields serve as the quantum
entanglement messenger between two already well-
established quantum systems. However, in a stochastic
quantum field description of gravity, we do not need to
introduce this additional quantum of graviton to mediate
the entanglement—the ubiquitous quantum field of the two
presumed quantum systems spread out in spacetime is
already a mediator of the entanglement. The entanglement
is passed on by local Unruh effects. In principle, no
experiment can distinguish between the picture of “the
graviton hμν mediated the entanglement between Q1 and
Q2” and “Q1 interact withQi distributed ubiquitously in the
spacetime spanned until Q2; thus, the two eventually
brought into entanglement.” They are just two alternative
ways of telling the same story.
For the reasons presented in this section, we figure that

emergent gravity from the stochasticity of the quantum
fields might be a competitive way toward the incorporation
of gravity into the quantum picture. This approach, as

illustrated in the calculation in this paper, has the potential
to produce calculable and testable predictions.

VIII. CONCLUSIONS

We practice a straightforward idea, that generalizes the
Unruh effect applied usually on the vacuum state to
arbitrary excited states in this paper. The result shows that
the positive frequency excitation at the horizon induces a
coherent excitation on each of the configurations of a
canonical ensemble measured by an accelerating observer,
thus illustrating itself as a featured peak on top of the
featureless blackbody radiation spectrum. We call such an
ensemble pseudothermal, which in principle (in terms of
density matrix representation) is distinguishable from the
linear combination of a canonical ensemble and a pure
excitation state.
We apply our generalized Unruh effect result on a system

with massive real scalar field in the collapsing shell metric,
asymptotically a Schwarzschild black hole. We find that the
particles inside the shell could be represented by the
boundary condition of the Kruskal positive frequency
modes living on the outgoing horizon, thus we could
retrieve that information, at least partially, through the
strong entanglement across the horizon. The Hawking
radiation has a featured enhancement based on the col-
lapsing history and the initial excitation inside the shell of
the black hole.
There are numerous open questions extending both

bottom-ward and up-ward from this work, as discussed
in Sec. VII. Both theoretically and observationally, the
generalized Unruh effect implies intriguing conclusions
and speculations to be confronted in the future.
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