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We study the semimetal-insulator phase transition in graphene using a Schwinger-Dyson approach. We
consider various forms of vertexAnsätze to truncate the hierarchy of Schwinger-Dyson equations.We define
a Ball-Chiu-type vertex that truncates the equationswithout violating gauge invariance.We show that there is
a family of these vertices, parametrized by a continuous parameter that we calla, all of which satisfy theWard
identity. We have calculated the critical coupling of the phase transition using different values of a. We have
also tested a common approximation in which only the first term in the Ball-Chiu Ansatz is included. This
vertex is independent of a, and, although it is not gauge invariant, it has been usedmany times in the literature
because of the numerical simplifications it provides.We have found that, with a one-loop photon polarization
tensor, the results obtained for the critical coupling from the truncated vertex and the full vertex with a ¼ 1

agree very well, but other values of a give significantly different results. We have also done a fully self-
consistent calculation, in which the photons are backcoupled to the fermion degrees of freedom, for one
choice a ¼ 1. Our results show that when photon dynamics are correctly taken into account, it is no longer
true that the truncated vertex and the full Ball-Chiu vertex with a ¼ 1 agree well. The conclusion is that
traditional vertex truncations do not really make sense in a system that does not respect Lorentz invariance,
like graphene, and the need to include vertex contributions self-consistently is likely inescapable.

DOI: 10.1103/PhysRevD.107.056012

I. INTRODUCTION

Graphene has been studied by many physicists since its
discovery, in part because of its technological applications
and also because of its interest to theorists. The lattice
structure of graphene produces a fermion dispersion rela-
tion that is linear near the lowest energies, called Dirac
points. The low-energy dynamics is well described by a
continuum quantum field theory called reduced QED in
which the electronic quasiparticles have a linear dispersion
relation and are restricted to move in the two-dimensional
plane of the graphene sheet, while the photons are free to
move in three dimensions [1,2].
The coupling constant in the effective theory is dimen-

sionless and nonperturbatively large, which is part of the
reason that graphene is interesting to theorists. Several
different methods are available to study nonperturbative
systems. In this paper we use Schwinger-Dyson (SD)
equations, one of the most commonly used continuum
nonperturbative approaches, and study some issues that

arise when the method is applied to study graphene.

For a given theory, the SD equations provide a coupled
infinite hierarchy of integral equations for nonperturbative
dressing functions that describe the modification of the bare
theory by the interactions. The set of equations has to be
truncated in a way that respects gauge invariance and
includes the essential physics that is relevant to the problem
at hand. The truncated equations involve a coupled set of
dressing functions, each of which has support on a three- or
four-dimensional momentum phase space. In the case of
graphene, the number of dressing functions is larger than in
standard QED because the condition vF ≠ c breaks Lorentz
invariance. The number of dressing functions increases
further in an anisotropic situation, where the x and y
eigenvalues of the Fermi velocity tensor differ.
SD equations cannot be solved analytically and numeri-

cal solutions are notoriously difficult to obtain. Different
approximations can be introduced to truncate the SD
hierarchy and to reduce the number of dressing functions
that must be included. Another common approach is to
neglect the frequency dependence of some or all dressing
functions. In this paper we are particularly interested in the
choice of the vertex Ansatz that is used to truncate the SD
equations. Some of the early calculations that used bare
vertices include Refs. [3–8]. The authors of Ref. [9] also
used bare vertices but included finite temperature effects.
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In Refs. [10,11] nonperturbative effects were including
using a resummation of ladder graph contributions to
vertices, instead of a SD approach.
The idea to construct an Ansatz for a nonperturbative

vertex in terms of the fermion dressing functions was
introduced 40 years ago [12,13]. The Ball-Chiu (BC)
vertex is constructed to truncate the SD equations in a
covariant gauge theory, without violating gauge invariance.
A simplification that is commonly employed is to take only
the first term in the vertex [see Eq. (11)] which is the easiest
to handle numerically. This Ansatz, which is usually called
the BC1 vertex approximation, can be modified in a
straightforward way for anisotropic theories like graphene
and was used in Refs. [14–16]. There are also components
of the vertex that are transverse (give zero when contracted
with the momentum of the photon line) and cannot be
determined from gauge invariance. Various modifications
of the BC vertex that include transverse contributions have
been used in QED [17–19]. An Ansatz that includes
transverse vertex components was recently used in a SD
calculation in covariant reduced QED [20]. We also
mention that in Ref. [21] it was argued that for disordered
semimetals the vertex function in the SD equation for the
fermion self-energy can be replaced with a Gaussian
function called a disorder correlator.
In this paper we study modifications of the BC vertex,

that go beyond the BC1 approximation, and give gauge-
invariant truncations of a non-Lorentz-invariant theory like
graphene. We show that for the effective theory we use
to describe graphene there is no unique way to construct a
BC-type vertex using only the constraint that the Ward
identity must be satisfied. There is a family of Ansätze,
parametrized by a continuous parameter that we call a, all
of which satisfy the Ward identity.
Wealsoconsider the effect of an anisotropicFermivelocity.

The calculation was formulated in Ref. [22] where the simple
approximation of bare vertices was used. An alternate
formulation that also uses bare vertices can be found in
Ref. [23]. In Refs. [24,25] we discussed how the structure of
the SD equations must be modified when anisotropy is
present, even at the level of the BC1 approximation.
To evaluate the effect of the parameter a on a physical

result we focus on the critical coupling at which graphene
goes through a quantum phase transition from a semimetal
state to an insulating state. The critical coupling is defined
as the value of the coupling for which the dressed electrons
acquire a nonzero mass. The value of this coupling is of
interest because the ability to produce an insulating state
would have enormous significance in the development of
graphene-based electronic devices. Our calculations show
that the value of the critical coupling for the phase transition
depends fairly strongly on the choice of the parameter a.
This result indicates that a correct formulation of the
calculation will likely require self-consistently determined
vertex functions.

We emphasize that the value of the critical coupling
produced by any calculation based on an effective theory is
not expected to be exact, since there are potentially
important screening effects that are necessarily ignored.
The point of this work is to explore the validity of the SD
approach in the context of graphene and determine direc-
tions for future work. We further note that the insulating
state has not been seen experimentally, in spite of the fact
that many theoretical calculations predict that the critical
coupling should be physically realizable. It is interesting
however that a small band gap has been observed at finite
temperature in bilayer graphene [26].
We work in Euclidian space throughout this paper. We

use the notation Pμ ¼ ðp0; p⃗Þ, P2 ¼ p2
0 þ p2, and similarly

for other momentum variables. We define Q ¼ K − P and
use the shorthand dK ¼ dk0dk1dk2=ð2πÞ3. We use natural
units: ℏ ¼ c ¼ 1.

II. NOTATION

We consider monolayer graphene at zero temperature
and zero chemical potential. Close to the critical point, the
system can be described using a low-energy effective
theory with broken Lorentz invariance. The photons move
in three dimensions, while the electrons are restricted to the
two-dimensional plane of the graphene sheet and have
nonrelativistic velocities. The bare Feynman rules (in
covariant gauge) are

Sð0ÞðPÞ ¼ −½iγμMμνPν�−1;

Gð0Þ
μν ðPÞ ¼

�
δμν −

PμPν

P2
ð1 − χÞ

�
1

2
ffiffiffiffiffiffi
P2

p ;

Γð0Þ
μ ¼ Mμνγν; ð1Þ

where M ¼ ð1; vF; vFÞdiag. The photon propagator for
reduced QED is obtained by integrating out momentum
modes perpendicular to the plane of the graphene sheet
[1,2]. It corresponds to a nonlocal action because the
photon propagates outside the plane of the graphene sheet.
Since vF ≪ 1 it is a good approximation to use the
Coulomb approximation, which means to take the static
limit of the bare photon propagator. In our numerical
calculations we make this approximation [see Sec. III
and, in particular, Eq. (9)]. The inverse dressed propagators
are defined as

S−1 ¼ Sð0Þ−1 þ Σ; ð2Þ

G−1 ¼ Gð0Þ−1 þ Πμν; ð3Þ

where Σ and Πμν are the fermion self-energy and photon
polarization tensor, respectively.
These dressing functions can be decomposed using a set

of projection operators, each of which is multiplied by a
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different scalar function. The theory that describes graphene
involves more dressing functions than standard QED,
because the (nonunity) Fermi velocity breaks Lorentz
invariance. In standard QED the fermion self-energy can
be written Σ ¼ −iðA − 1Þ=PþD, where the functions A and
D are momentum-dependent dressing functions that reduce
to A ¼ 1 and D ¼ 0 in a bare massless theory. The photon
polarization tensor can be written as the product of a four-
dimensionally transverse projection operator and one dress-
ing function, as Πμν ¼ ðδμνP2 − PμPνÞΠ̄. To describe
graphene, these expressionsmust bemodified. For electrons
in graphene, the self-energy is defined as

Σ ¼ −iγμMμαðFαν − IανÞPν þD; ð4Þ

where F ¼ ðZ; A; AÞdiag. It is easy to see that in the limit
vF ¼ 1 and Z ¼ A, Eq. (4) reduces to the conventional
covariant expression. The photon polarization tensor in
graphene is written in terms of two dressing functions,
which correspond to coefficients of two projection oper-
ators. These two projectors are transverse and longitudinal
with respect to the momentum three-vector, while both are
four-dimensionally transverse as required by gauge invari-
ance. The three components of the fermion self-energy
[Eq. (4)] satisfy integral equations that are calculated by
taking the appropriate projections of its SD equation. In the
limit vF ≪ 1 the contribution of the three-dimensionally
transverse component of the photon propagator to all three
components of Σ is suppressed by a factor v2F, and the only
component of the photon propagator that is needed to
calculate the fermion dressing functions is

G00 ¼ δμ0δν0Gμν ¼
p2

P2

1

2
ffiffiffiffiffiffi
P2

p
þ P2

p2 Π00

: ð5Þ

This means that only one component of the polarization
tensor needs to be calculated, which leaves a total of four
dressing functions (Z; A;D;Π00).
The effect of an anisotropic Fermi velocity has been

considered by several authors. The motivation is that
anisotropy could reduce the critical coupling and make
the insulating state easier to realize. One introduces an
additional fermion dressing function, so that the function A
gets replaced by two functions A1 and A2. The definition
of the fermion self-energy is obtained from (4) using
M ¼ ð1; v1; v2Þdiag and a nondiagonal definition of the
matrix F of the form

F ¼

2
64
Z 0 0

0 A1 A2

0 −A2 A1

3
75: ð6Þ

We define the Fermi velocity vF ¼ ffiffiffiffiffiffiffiffiffi
v1v2

p
, the anisotropy

parameter η ¼ v1=v2, and the coupling α ¼ e2=ð4πvFÞ.

The naive definition F ¼ ðZ; A1; A2Þdiag does not reproduce
the isotropic result in the limit v1 ¼ v2 ¼ vF; furthermore,
the naive diagonal definition renormalizes the anisotropy,
while the correct form renormalizes the Fermi velocity (and
principle axes) but not the anisotropy [24].
The conclusion to date is that anisotropy likely increases

the critical coupling [22,24,25]. However, the most sophis-
ticated calculations that have so far been done rely on a
vertex Ansatz that is not fully gauge invariant (see dis-
cussion below). One of the goals of this paper is to
determine how reliable this kind of vertex Ansatz is.

III. SCHWINGER-DYSON EQUATIONS

The SD integral equations for the fermion self-energy
and photon polarization tensor are

Σðp0; p⃗Þ ¼ e2
Z

dKGμνðq0; q⃗ÞMμτγτSðk0; k⃗ÞΓν; ð7Þ

Πμνðp0; p⃗Þ ¼ −e2
Z

dKTr½Sðq0; q⃗ÞMμτγτSðk0; k⃗ÞΓν�; ð8Þ

where Γμ is a three-point function that will be discussed
below. As discussed in Sec. II, in the limit vF ≪ 1 we need
only the zero-zero component of the photon propagator
and photon polarization tensor. We discuss below two
further approximations that can be applied to the photon
propagator.
(1) TheCoulombapproximationmeans that the frequency

dependence of the bare propagator is dropped. This is a
very common approximation, especially in the con-
densedmatter community, and ismotivated by the idea
that the photon velocity is much greater than the
fermion velocity. The zero-zero component of the
photon propagator in Eq. (5) becomes

Gcoulomb
00 ¼ 1

2
ffiffiffiffiffi
p2

p
þ Π00

: ð9Þ

(2) The one-loop approximation means that the function
Π00 is replaced by the result of a one-loop calcu-
lation where the integrand is constructed with bare
lines and vertices. This is also a common approxi-
mation and is motivated by the vanishing fermion
density of states at the Dirac points. The one-loop
result for the zero-zero component of the polariza-
tion tensor is

Π1 loop
00 ðp0; p⃗Þ ¼

πα

vF

v2Fp
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PμMμρMρνPν

p : ð10Þ

Next we discuss the vertex function Γμ that appears in
Eqs. (7) and (8). The full hierarchy of SD equations provides
an integral equation for this vertex function in terms of a
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four-point function. As discussed in Sec. I, the coupled nature
of the equations requires that some truncation is introduced.
The equation for the three-vertex is extremely difficult to
solve, and therefore we will use an Ansatz that expresses this
vertex in terms of the fermion dressing functions, so that the
two equations (7) and (8) form a closed set. The BC vertex
[12,13] is constructed to satisfy the Ward identity, which in
our notation is written −iQμΓμðP;KÞ ¼ S−1ðPÞ − S−1ðKÞ,
and truncates the SD equations without violating gauge
invariance. The form of the BC vertex must be modified
when the underlying theory is not Lorentz invariant. The
authors of Ref. [15] used the Ansatz

ΓμðP;KÞ ¼ 1

2
ðFðp0; p⃗ÞTμα þ Fðk0; k⃗ÞTμαÞMαβγβ

þ
�
1

2
ðPþ KÞα½Fðp0; p⃗ÞTαβ − Fðk0; k⃗ÞTαβ�Mβργρ

þ iðDp −DkÞ
� ðPþ KÞμ
P2 − K2

ð11Þ

motivated by the idea that this is the simplest extension of the
BC vertex that satisfies theWard identity. However, it is easy
to see that the Ansatz in (11) will satisfy the Ward identity if
the factor multiplying the square bracket is changed as

ðPþ KÞμ
P2 − K2

→
M̃ðaÞμλM̃ðaÞλνðPþ KÞν
ðPM̃ M̃ P − KM̃ M̃ KÞ ; ð12Þ

where M̃ðaÞμν ¼ ð1; a; aÞdiag and a is any real number,
and we have used the shorthand notation PM̃ M̃ P ¼
PμM̃ðaÞμλM̃ðaÞλνPν (and likewise for K). The original
Ansatz in (11) corresponds to M̃ð1Þ ¼ I. A more natural
choice might be M̃ðvFÞ ¼ M. Any value of a is equally valid
from the point of view of gauge invariance.
In many SD calculations the term in square brackets in

(11) is dropped. This is usually called the BC1 approxi-
mation for the vertex:

ΓShort
μ ðP;KÞ ¼ 1

2
½Fðp0; p⃗ÞTμα þ Fðk0; k⃗ÞTμα�Mαβγβ: ð13Þ

This expression does not satisfy the Ward identity but is
numerically much easier to work with. The point is that the
denominator 1=ðP2 − K2Þ ¼ 1=ðp2

0 þ p2 − k20 − k2Þ has
singularities along a curve in the domain of the integral
over ðk0; kÞ for which P2 − K2 ¼ 0. These singularities are
integrable, but they are difficult to deal with numerically.
We can also see that the square bracket in (11) will go to
zero at ðp0 ¼ k0; p ¼ kÞ and perhaps other places along the
curve defined by the equation P2 ¼ K2. The nonperturba-
tive fermion dressing functions do not have simple sym-
metry properties that would allow us to identify the curves
along which the square bracket in the BC vertex is zero. We
note that in a Lorentz-invariant calculation, where the
fermion dressing functions depended on only one variable,
the cancellation of the zeros in the numerator and denom-
inator occurs at one easily identifiable point in the domain
of the integral. The integrals obtained using a noncovariant
BC vertex are numerically much more difficult to calculate,
and we further expect that some choices of the value of a
could be numerically more stable than others. We point out
that the authors of Ref. [15] (using the value a ¼ 1) found
that dropping the second term in (11) had virtually no effect
on the critical coupling that was obtained from the
calculation. It therefore seems possible that the issue
described above could have no practical significance. In
fact it turns out that results can be strongly dependent on the
value of the parameter a.
The full set of SD equations are calculated by substitut-

ing Eqs. (9)–(12) into (7) and (8), multiplying by the

FIG. 1. The condensate as a function of the coupling, from a
calculation including only one dressing function.

TABLE I. The critical couplings for different values of a,
obtained from the results shown in Fig. 1.

a 1=300 1=100 1=75 1=50

αc (0.74, 0.09) (2.22, 0.17) (2.94, 0.11) (4.41, 0.14)

FIG. 2. The condensate as a function of the coupling using
the vertex in Eqs. (11) and (12). The red (circles) show
ða; ηÞ ¼ ð1; 1Þ, orange (squares) are ða; ηÞ ¼ ð1; 0.3Þ, blue (dia-
monds) are ða; ηÞ ¼ ð1=50; 1Þ, and green (triangles) are ða; ηÞ ¼
ð1=50; 0.3Þ.
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appropriate projection operators, and contracting over all
indices. The procedure is straightforward but very lengthy.
All calculations were done using FORM [27]. The results,
for a ¼ 1, are given in Appendix A.

IV. RESULTS

To explore the dependence of the critical coupling on the
value of a, we begin by adopting a very simple approxi-
mation in which all fermion dressing functions other thanD
are set to their bare values Z ¼ A ¼ 1. We also use the
Coulomb approximation and the one-loop photon polariza-
tion tensor instead of self-consistently solving the photon
SD. These approximations are known to give unrealistically
large values for the critical coupling. The point of these
calculations is only to test the effect of the value of a in the
simplest possible way. Figure 1 shows that reducing a
reduces the critical coupling, and the dependence is fairly
strong. In Table I we give the critical coupling for each value
ofa. The second number in the bracket indicates the error for
each result. The numerical method we use to find a value of
the critical coupling and its error is explained inAppendixB.
Next we solve the coupled set of equations for all three

fermion dressing functions but again using the Coulomb
approximation and the one-loop approximation for the
photon self-energy. In Fig. 2 we show the results for four
choices of the parameters ða; ηÞ. The figure shows once
again that the form of the vertex Ansatz has a significant
effect on the critical coupling, in fact, larger than the shift in
the critical coupling obtained by introducing anisotropy.
This is most clearly demonstrated by comparing sets of
curves with the same value of a and different values of η,
which are (red, orange) and (blue, green), and curves with
different a but the same η (red, blue) and (orange, green).
The results show clearly that a change in anisotropy has less

effect on the critical coupling than a change in the value of
a. It is also interesting that the direction of the a
dependence is the opposite of what is seen in Fig. 1—
reducing a increases the critical coupling. This is not
unexpected since the calculation shown in Fig. 1 does
not include Fermi velocity renormalization, which is known
to have a significant effect on the critical coupling. We also
comment that values of a smaller than 1=50 do not
converge without using a huge number of lattice points
(see Sec. III for a discussion of this point). The corre-
sponding results for the critical coupling are shown in
Table II. The effect of increasing the anisotropy is slightly
greater for the smaller value of a.
Another important thing to check is the effect of using

the one-loop approximation for the polarization tensor. The
polarization tensor should be determined self-consistently
from its integral equation, which is given in the last
equation of Eq. (A3). In Ref. [16] it was found, using
the BC1 vertex in Eq. (13), that the effect of using a self-
consistently determined photon polarization tensor reduced
the coupling fairly dramatically (from 3.19 to 1.99).
Figure 3 shows Dð0Þ versus α for the approximate BC1

vertex, and the full BC vertex with a ¼ 1, in both cases
with and without the one-loop approximation for the
polarization tensor. The figure shows that when the photon
degrees of freedom are backcoupled, the result from the
approximate vertex does not agree well with the full BC
vertex. The corresponding results for the critical coupling
are shown in Table III.

V. CONCLUSIONS

We have studied the semimetal-insulator phase transition
in graphene by solving a set of coupled Schwinger-Dyson
equations. The full set of equations is numerically pro-
hibitively difficult to solve, and for this reason many
different approximations are common in the literature.
We have studied the effect of some of these approxima-
tions, with particular emphasis on possible choices of the
Ansatz for the three-point vertex function, which is intro-
duced to truncate the hierarchy of SD equations. We have
shown that there is no unambiguous way to extend the
definition of the Ball-Chiu vertex for a theory in which
Lorentz invariance is broken, like graphene. There is a
family of vertices, parametrized by a continuous variable
(that we call a), all of which satisfy the Ward identity.
Our calculations show that the value of the critical
coupling depends strongly on the value of a, and the
effect of anisotropy also depends quantitatively on a.

TABLE II. The critical couplings for different values of ða; ηÞ
from the results shown in Fig. 2.

ða; ηÞ (1,1) (1,0.3) (1=50, 1) (1=50, 0.3)

αc (2.999, 0.068) (3.814, 0.073) (4.204, 0.029) (5.361, 0.117)

FIG. 3. The condensate versus the coupling using the BC1

vertex, and the full BC vertex with a ¼ 1, with and without
backcoupling.

TABLE III. The critical couplings for the data shown in Fig. 3.

BC
backcoupled

BC1

backcoupled
BC

one-loop
BC1

one-loop

αc (1.782, 0.065) (2.085, 0.037) (3.19, 0.19) (3.199, 0.092)
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The conclusion is that to predict the critical coupling one
must include a true nonperturbative three-vertex. This could
be done either by truncating the SD equations by introducing
some Ansatz for the four-point function or using a three-
particle reducible (3PI) effective action approach. We note
that one advantage ofworkingwith the 3PI effective action is
that all truncations occur at the level of the action, which
means that gauge invariance is automatically preserved to
the level of the truncation [28,29]. While it is true that
the renormalization of NPI actions is a notoriously difficult
problem [30,31], the issuebecomes largely trivial for a theory
defined in less than four dimensions, like graphene. A 3PI
effective action approach might be a promising method to
study phase transitions in graphene when starting from a
continuum field theory. We also mention that if one is only
interested in finding the critical coupling at which the
condensate goes to zero, then bifurcation theory could be
used (see Ref. [32] for an application of bifurcation theory to
three-dimensional QED).
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APPENDIX A: THE SD EQUATIONS

The SD equations for an anisotropic theory, obtained
with a BC vertex Ansatz, are given in Eq. (A3). These

expressions were calculated from Eqs. (7) and (8) by
defining the appropriate projection operators and con-
tracting over Lorentz and Dirac indices. All calculations
were done using FORM [27]. The denominator of the
fermion propagator is written

Sp ¼ p2
0Z

2
p þ v21ðp1A1 þ p2A2Þ2

þ v22ðp2A1p − p1A2pÞ2 þD2
p: ðA1Þ

The subscript D, for each dressing function, indicates a
difference function defined as, for example,

ZD ¼ ZP − ZK

PμM̃ðaÞμρMð̃aÞρνPν − KμM̃ðaÞμρM̃ðaÞρνKν

ðA2Þ

and similarly for all fermion dressing functions. In the
integral equation for Π00 we used the notation ZQD to
indicate the function in Eq. (A2) with P replaced by Q, and
similarly for the other fermion dressing functions. The
subscript S represents the sum of two dressing functions,
for example, ZS ¼ ZP þ ZK , ZSQ ¼ ZQ þ ZK , etc. We note
that all dependence on the parameter a appears in Eq. (A2),
and all dependence on the anisotropy parameter is in
Eq. (A1). The parameter χ should be set to zero to obtain
the equations that correspond to the truncated vertex in
Eq. (13), and one otherwise. The isotropic limit corre-
sponds to η ¼ 1 and A2 ¼ 0.

ZðPÞ ¼ 1þ 2απvF

Z
dK
Sk

q4ðk0ZKððk0 þ p0Þ2χZD þ ZSÞ þ 2DDχDKðk0 þ p0ÞÞ
2p0ðQ2Þ3=2ð2q2 þ

ffiffiffiffiffiffi
Q2

p
Π00

Q Þ
;

A1ðPÞ ¼ 1 − 2απvF

Z
dK
Sk

q4

2p2ðQ2Þ3=2ð2q2 þ
ffiffiffiffiffiffi
Q2

p
Π00

Q Þ
ðA2Kðk2p1 − k1p2Þððk0 þ p0Þ2χZD þ ZSÞ

þ A1Kk⃗ · p⃗ððk0 þ p0Þ2χZD þ ZSÞ þ k0ð−χÞðk0 þ p0ÞZKðA2Dðk2p1 − k1p2Þ þ A1Dðk⃗ · p⃗þ p2ÞÞÞ;

A2ðPÞ ¼ 2απvF

Z
dK
Sk

q4

2p2ðQ2Þ3=2ð2q2 þ
ffiffiffiffiffiffi
Q2

p
Π00

Q Þ
ðk0ð−χÞðk0 þ p0ÞZKðA2Dðk · pþ p2Þ

− ðk2p1 − k1p2ÞA1DÞ þ A2Kk · pðχZDðk0 þ p0Þ2 þ ZSÞ − ðk2p1 − k1p2ÞA1KðχZDðk0 þ p0Þ2 þ ZSÞÞ;

DðPÞ ¼ 2απvF

Z
dK
Sk

q4ðDKðχZDðk0 þ p0Þ2 þ ZSÞ − 2DDk0χðk0 þ p0ÞZKÞ
4q2ðQ2Þ3=2 þ 2Q4Π00

Q

;

Π00ðPÞ ¼ −16απvF
Z

dK
SkSq

2χDKDQðk0 þ q0Þ2ZDQ − 2k0q0χðk0 þ q0Þ2ZKZQZDQ

− 4k0χDQDDQðk0 þ q0ÞZK − 4q0χDKDDQðk0 þ q0ÞZQ þ 2DKDQZSQ − 2k0q0ZKZQZSQ: ðA3Þ
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APPENDIX B: NUMERICS

In this section we give a brief summary of the main
aspects of our numerical procedure.
All integrations were done using a Gauss-Legendre

method. We used spherical coordinates, so that there are
two independent variables ðp0; jp⃗jÞ and three integration
variables ðk0; jk⃗j; x ¼ p̂ · k̂). The k0 and k integrations were
done on a logarithmic scale to increase sensitivity to the small
momentum part of the phase space where the dressing
functions change most. Interpolations were done using a
combination of linear interpolation, in regions where the
function to be interpolated was fairly flat, and Padé approx-
imates, in regions the function changed more sharply.
Convergencewasobtainedwith ðNp0

¼ 30; Np ¼ 30Þpoints
in the external momentum space and ðNk0 ¼ 100; Nk ¼
100; Nx ¼ 36Þ internal grid points. Adequate computational
speed was achieved by parallelizing the code using Message
Passing Interface (MPI).
To calculate the critical coupling from a given set of data

that gives the value of the condensate Dð0Þ for different
values of the coupling α, we use the following procedure.
We invert the array to obtain a numerical representation of
α½Dð0Þ�, construct an interpolated function, and extrapolate
to find the critical coupling αc ≡ α½0�. In all cases, the data
that we need to interpolate are very smooth, and different
interpolation methods give results for the critical coupling
that agree to very high precision.
It is clear, however, that the accuracy of the result for the

critical coupling does not depend on the accuracy of the
interpolated function. For example, if the last three points

on the blue curve in Fig. 2 were missing, the extrapolated
critical alpha would be much too small. Numerically,
however, the last points are the most difficult to calculate
because of the phenomena called critical slowing down,
which occurs when the solution is very close to the trivial
solution for which the dressing function DðpÞ is zero over
its full domain. One way to quantify the error in the
extrapolated result for the critical coupling would be to
remove the last calculated point and compare with the
previous result. If the data stopped at a point where the
curvature of the data was large, this would give a signifi-
cantly different critical coupling. However, if the last few
points in the data give a line that is fairly straight but not
close to vertical, this procedure will indicate a small error
even though the extrapolated critical alpha will not be very
accurate. An alternative estimate is the absolute difference
between the extrapolated result and the smallest value of α
in the dataset. The error calculated this way is related to the
inverse slope of the data at small α; it will be small if the
curve drops steeply to the horizontal axis and large if
the curve is fairly flat.
In all of the calculations we have done, the absolute

difference of the extrapolated value and the smallest
calculated value is larger than the error obtained by
removing the last point, and all of the errors given in
the results section are absolute difference errors. We also
note that in this calculation the error is always positive,
because the critical coupling produced by the extrapolation
can only be smaller than the true critical coupling.
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