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The master equation for the reduced density matrix of a charged particle interacting with a translation
invariant weakly coupled environment is considered. The electric current is renormalized by the system-
environment interaction, leading to a direct signature of the environment in the bremsstrahlung. The general
solution is given in the absence of the external electromagnetic field, and the spread and the decoherence of
a wave packet are followed. The increased complexity and importance of the boundary conditions for the
density matrix are pointed out.
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I. INTRODUCTION

While we usually follow only a few appropriately chosen
degrees of freedom in our experiments, the theoretical
background is canonical quantization, developed for closed
many-body dynamics with prescribed initial and final
states. The effective theories are supposed to fill the gap,
where the environment degrees of freedom are eliminated
dynamically and their impact on the observed system is
represented by the highly involved effective system
dynamics.
There are two different ways the effective dynamics can

be established, by working in the operator or the path
integral formalism. The projector operator method [1–4]
leads to an effective equation of motion for the reduced
system density matrix, the master equation. The master
equation has already been obtained for a test particle [5] by
including decoherence, and then taking the dissipation into
account followed shortly [6–8]. The more systematic
description based on kinetic theory, the Born approxima-
tion scheme [9–11], and the inclusion of the higher-order
perturbative contributions within the gas [12] was added
later, together with the traditional many-body treatment of
the environment [13]. The master equation, derived within
a simple but generic harmonic model [14–16], offers a
powerful phenomenological treatment, applicable for a
weakly interacting environment.
The direct path integral expression for the reduced

system density matrix [17] can be obtained within the
closed time path (CTP) formalism, introduced in quantum
field theory [18] and condensed matter physics [19–21] and
used later in an ever-widening area [22]. The exact master
equation with memory for the reduced density matrix was
derived in this formalism for harmonic effective dynamics
in Ref. [23], and the master equation employed below
represents a Markovian truncation. The time evolution of
one and two Gaussian wave packets has been investigated
in Refs. [24,25], respectively.

The two schemes are usually applied in a complementary
manner: While the operator approach reproduces directly
the density matrix, summarizing our information about the
system, the path integral formalism is powerful to generate
the Green functions of the coordinate operator. The present
work grew out from an attempt to apply a simple master
equation for the introductory problems to quantum
mechanics, namely, for the spread of the wave packet
and the propagation in the presence of a step function
potential.
The solution of the master equation provides a simple

and efficient way to deal with the quantum Brownian
motion, demonstrated here by the treatment of the spread of
a Gaussian wave packet. A clear fingerprint of the
dissipative forces is found in the electric current of the
wave packet. One encounters two unexpected features of
open dynamics, as well. One is related to the incomplete-
ness of the effective dynamics by deriving the master
equation, namely, the missing auxiliary conditions to assure
the self-adjointness of the momentum operator. Another
surprise is the renormalization of the electric current by
dissipative processes.
Some unusual kinematical features of the mixed state,

present already for closed dynamics, are collected in Sec. II.
The master equation is introduced in Sec. III; its derivation is
based on the most general, translation invariant, harmonic,
localOð∂2t Þ interaction Lagrangian with an environment and
follows the strategy of finding the Fokker-Planck equation.
An important new element of the interactions—the modifi-
cation of the electric current—is shown in Sec. IV. The
solution of the master equation is presented in Sec. V,
followed in Sec. VI by the demonstration of the instanta-
neous and the dynamical decoherence for the linear super-
position of two planewaves. The spread and the decoherence
of a wave packet are worked out in Sec. VII. We collected a
few remarks in Sec. VIII about the role of the spatial
boundary conditions for the solutions of themaster equation.
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The main results are summarized in Sec. IX, and an
Appendix is added for the sake of completeness about the
effective equation of motion in the CTP formalism.

II. CLOSED DYNAMICS OF MIXED STATES

We start with a particle whose closed dynamics is
defined by the Schrödinger equation iℏ∂tψ ¼ Hψ . The
first kinematical step toward the handling of open inter-
action channels, the main topics of this work, is to extend
the closed dynamics for mixed states. One introduces at this
point the Neumann equation ∂tρ ¼ −i½H; ρ�=ℏ for the
density matrix ρ. It is worth commenting on the appearance
of a few novel points of this equation of motion compared
to the Schrödinger equation.

A. Linearity

One can write the Neumann equation in the form
L0ρ ¼ 0, where the Liouville operator L0 acts on the
linear space of operators A corresponding to the Hilbert
space H of pure states, called Liouville space. Since the
Neumann equation acts linearly on the Liouville space,
the linear superposition of solutions remains a solution
as in the case of the Schrödinger equation. However, this
similarity hides a fundamental difference between the
wave function and the density matrix as far as the physical
interpretation is concerned; namely, the expectation
values are quadratic, hψ jAjψi, or linear, Tr½ρA�, in terms
of the wave function or the density matrix, respectively.
As a result, there is no interference between the terms
of the linear superposition in the expectation values,
Tr½Aðρþ ρ0Þ� ¼ Tr½Aρ� þ Tr½Aρ0�.
The linearity of the Schrödinger equation allows us to

construct new solutions by adding up solutions by
conserving the norm hψ jψi during the time evolution.
The same holds for the Neumann equation where the total
probability Tr½ρ� is conserved. The circumstance that the
conserved quantity is linear in the density matrix suggests
the splitting of the solutions into two classes: (i) well-
defined total probability 0 < jTr½ρ�j < ∞, and (ii) ill-
defined total probability Tr½ρ� ¼ 0 or Tr½ρ� ¼ ∞. The
time dependence of solutions of class (ii) is not restricted
by the conservation of the total probability. There are
no such unrestricted components in the solution of the
Schrödinger equation, where each component of the
wave function is restricted by the unitarity of the time
evolution.

B. Auxiliary conditions

One needs auxiliary conditions to make the solution
of the Neumann equation unique. Let us consider the
one-dimensional case for the sake of simplicity, where the
solution can be fixed uniquely by providing ψðt; x0Þ and
∇ψðt; x0Þ for some fixed x0 and for each time t. The
solution of the Neumann equation, a second-order

hyperbolic equation, can be fixed uniquely by prescribing
the density matrix ρðxþ; x−Þ and its normal derivative along
the boundary of some region on the plane ðxþ; x−Þ in a
time-dependent manner. There are pathological regions,
bounded by characteristic lines, where the two functions of
the boundary conditions cannot be freely chosen. The
characteristic curves of Neumann equation are the straight
lines xþ � x− ¼ const. Thus, the presence of the mixed
state contributions increases dramatically the amount of
additional information we have to provide as auxiliary
conditions to identify a unique solution compared to the
pure state.

C. Matching conditions

Let us now assume that there is a potential in the
Hamiltonian UðxÞ ¼ λδðxÞ up to terms with finite discon-
tinuity at x ¼ 0. The continuity of the wave function at
x ¼ 0 is usually taken for granted in closed systems. Apart
from a number of incomplete arguments, the most con-
vincing way to derive this condition for the step function
potential is to replace the Heaviside function by a linearly
rising function within the interval 0 ≤ x ≤ η and showing
by the help of the analytic structure of Airy’s function that
the stationary wave function and its first derivative remain
continuous in the limit η → 0 [26]. It is easy to check that
this argument remains valid for the Neumann equation,
as well.
The integration of the Schrödinger equation across the

singularity yields

Discx∇ψðt; 0Þ ¼ 2mg
ℏ2

ψðt; 0Þ; ð1Þ

where Disczf denotes the discontinuity of the function f in
the variable z. A similar procedure leads to

Discx∇þρðt; 0; x−Þ ¼
2mg
ℏ2

ρðt; 0; x−Þ; x− ≠ 0;

Discx∇−ρðt; xþ; 0Þ ¼
2mg
ℏ2

ρðt; xþ; 0Þ; xþ ≠ 0: ð2Þ

The matching conditions, imposed on a factorizable
density matrix ρðxþ; x−Þ ¼ ψðxþÞψ�ðx−Þ, contain the
same information at any points along the lines xþ ¼ 0
and x− ¼ 0, since the trivial multiplicative factor, depend-
ing on the other variable, x− or xþ, respectively, drops out.
The matching conditions for the Neumann equation
spreads over lines to accommodate the richness of the
mixed states.
The Neumann equation is replaced by a master equation

in the rest of this work. What is the importance of the
above-mentioned peculiarities of the closed dynamics of
mixed states in the presence of open interaction channels?
Recall that the mixed states arise from two different
physical considerations. (a) We have some missing
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classical information about the quantum state, and all we
know is that with probability pn the system is in the
normalized state jψni. The expectation value of observ-
ables can be obtained by the help of the density matrix
ρ ¼ P

n jψnipnhψnj. (b) One splits a full closed system
into the observed subsystem and its environment. The
Hilbert space of pure states form the direct product,
Htot ¼ Hobs ⊗ Henv, and the expectation value of observ-
ables of the observed subsystem is reproduced by the
reduced density matrix ρ ¼ Trenv½ρtot�, by taking the trace
of the full density matrix over the environment Hilbert
space. The nonfactorizability of the density matrix arises
from the nontrivial probability assignment of the pure
state and from the observed subsystem-environment
entanglement in case (a) and (b), respectively. While case
(a) appears already for closed dynamics, the case
(b) belongs to open dynamics.
The Neumann equation is linear in case (a), and each

component of the density matrix is of class (i). The linearity
of the master equation in case (b) requires the factorization
of the initial density matrix into the product where the
factors correspond to the observed subsystem and to its
environment. When this is granted, then solutions of class
(ii) appear and represent decoherence; cf. Secs. VI and VII.
The decoherence is a dynamical process and naturally
occurs even if the initial density matrix is nonfactorizable;
only its manifestation is more involved. The increased
richness of the mixed states represents the classical prob-
ability distribution of the pure states in closed dynamics
and encodes the system-environment entanglement in open
dynamics. The proper handling of this richness requires
more care in defining the Liouville space, to be addressed
in Sec. VIII.

III. EFFECTIVE EQUATION OF MOTION

We consider here a particle propagating on a fixed
electromagnetic field and coupled weakly to its macro-
scopic environment. The macroscopic environment is
supposed to be homogeneous, i.e., translation and rotation
invariant, and is assumed to possess low-lying excitations
with sufficiently large spectral weight to generate dissipa-
tion. The closed dynamics of the particle without taking
into account the interaction with the environment is defined
by the Lagrangian

L0 ¼
m0

2
_x2ðtÞ − eϕðt; xÞ þ e

c
_xðtÞAðt; xÞ; ð3Þ

where Aμ ¼ ðcϕ;−AÞ denotes the vector potential.
The interaction with the environment generates an

open effective dynamics for the particle to be taken into
account within the CTP formalism, outlined briefly in
Appendix A 1. A distinguished feature of the CTP formal-
ism is a formal reduplication of the degrees of freedom, the
use of a pair of coordinates, x → x̂ ¼ ðxþ; x−Þ for a single

particle. The need of the redoubling in the treatment of open
quantum systems can be understood by noting that a mixed
state is represented by the reduced densitymatrix hxþjρjx−i,
having twice asmany variables as thewave function hxjψi of
pure states. While the variables x� are motivated by the
physical origin of the density matrix, the combinations
x ¼ ðxþ þ x−Þ=2 and xd ¼ xþ − x− are more advantageous
to separate the physical coordinate (x) from its quantum
fluctuations (xd), and the density matrix is assumed to be
parametrized as ρðx; xdÞ ¼ hxþ xd=2jρjx − xd=2i below
unless it is stated explicitly otherwise. Such an enrich-
ment of the mathematical formalism allows us to cover
open interactions by the variational principle and the
reduced density matrix in the classical and quantum case,
respectively [27].
The reduplication of the coordinates might formally be

viewed as a reduplication of the degrees of freedom.
However, this is not the case; the true kinematical
origin is the correlation of the quantum fluctuations in
the bra and the ket sector of a mixed state of a single
degree of freedom—cf. Appendix A 1—and makes no
harm to quantities reflecting the number of degrees of
freedom such as thermodynamical potentials. In a similar
manner, the symmetries are not to be redoubled in open
dynamics [28], a principle which becomes important in
dealing with gauge theories. In the present context,
we treat the electromagnetic field as an external, non-
dynamical environment of a charged particle and do not
redouble it.
The equation of motion for the reduced density matrix,

called the master equation, will be derived in two steps
within the Markovian approximation. First, the most
general effective Lagrange function is constructed, where
the homogeneous system-environment interactions are
represented by quadratic terms in the coordinates followed
by the derivation of the master equation.

A. Effective Lagrangian

The Lagrangian (3) generalizes to the CTP formalism

L0 ¼
m0

2
½_x2þðtÞ − _x2−ðtÞ� − eϕðt; xþÞ þ

e
c
_xþðtÞAðt; xþÞ

þ eϕðt; x−Þ −
e
c
_x−ðtÞAðt; x−Þ ð4Þ

and is to be appended by additional terms representing the
interactions with the environment L ¼ L0 þ Linfl, whose
most general translation and rotational invariant Oðx2Þ
form which is local in time is

Linfl ¼ c1x2 −mω2xdxþ
i
2
d0x2d

þ c2x_x −mνxd _x −mνdx_xd − imξxd _xd

þ c3 _x2 þ δm_x_xd þ i
2
d2 _x2d: ð5Þ
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The terms multiplied by the coefficients cj, j ¼ 1, 2, 3, can
be shown to violate the Lindblad condition in the master
equation and will be ignored. Furthermore, the terms with
the coefficient νd and mω2 generate x-dependent terms in
the master equation and will be suppressed owing to the
homogeneity assumption. The Lagrangian is, therefore,
reduced to

L ¼ m_x_xd þ
i
2
d2 _x2d −mνxd _x − imξxd _xd þ

i
2
d0x2d

−Ud þ _xad þ _xda ð6Þ

with

aðx̂Þ ¼ e
c
AðxþÞ þ Aðx−Þ

2
;

adðx̂Þ ¼
e
c
½AðxþÞ − Aðx−Þ�;

Udðx̂Þ ¼
e
c
½ϕðxþÞ − ϕðx−Þ�; ð7Þ

and m ¼ m0 þ δm. Note that the term proportional to
ξ is a total time derivative, and its role is to generate
a time-independent, nondynamical multiplicative factor
exp ξmx2d=2ℏ to the density matrix, a static decoherence
(ξ < 0) or recoherence (ξ > 0) in the coordinate represen-
tation. The classical equation of motion for x sets xd ¼ 0,
and the equation of motion for xd yields the Newton
equation with a friction force −mν_x and the dissipation
timescale τdiss ¼ 1=ν. The imaginary d0- and d2-dependent
part of the Lagrangian controls the decoherence in the
coordinate basis. The effective Lagrangian (6) can be
derived in the case of a test particle interacting with a
homogeneous gas in the leading order of the test par-
ticle and gas interaction. The results, summarized in
Appendix A 3, show that the parameters δm, ν, d0, d2,
and ξ are Oðg2Þ expressions of the coupling constant g of
the test particle-gas interaction.

B. Master equation

The effective Lagrangian (6) yields the master equation

0 ¼ Lρ ð8Þ

containing the Liouville operator

L ¼ −∇Ut þ i
ℏ
m
∇Ax∇Ad þ

ℏd2
2m2

ΔAx

−
d0 þ d2ν2 − 2mνξ

2ℏ
xd2 þ

�
d2
m

ν − ξ

�
ixd∇Ax

− νxd∇Ad: ð9Þ

The partial derivatives

∇x ¼
∂

∂x
¼ ∂

∂xþ
þ ∂

∂x−
;

∇d ¼
∂

∂xd
¼ 1

2

�
∂

∂xþ
−

∂

∂x−

�
ð10Þ

are extended to the covariant derivatives

∇Ut ¼ ∂t þ
i
ℏ
Ud;

∇Ax ¼ ∇x −
i
ℏ
ad;

∇Ad ¼ ∇d −
i
ℏ
aa; ð11Þ

by the help of the minimal coupling. The structure of the
minimal coupling is better seen when the original x�
coordinates are used:

L ¼ −∇Ut þ i
ℏ
2m

ð∇2
Aþ − ∇�2

A−Þ

þ ℏd2
2m2

ð∇2
Aþ þ ∇�2

A− þ 2∇Aþ∇�
A−Þ

−
d0 þ d2ν2 − 2mνξ

2ℏ
xd2

þ xd
��

d2
m

ν − ξ

�
ið∇Aþ þ ∇�

A−Þ −
1

2
νð∇Aþ − ∇�

A−Þ
�

ð12Þ

with the covariant derivatives

∇A� ¼ ∂

∂x�
−

i
ℏ
aðx�Þ: ð13Þ

The derivation of this result is presented briefly in
Appendix A 2. The first two terms in Eq. (9) incorporate
the Neumann equation for a closed system, and the next
term with ΔAx generates a decoherence-induced diffusion
in the coordinate space. The Oðx2dÞ term induces Gaussian
decoherence by suppressing the density matrix for large
jxdj. The parameter ξ multiplies a total time derivative term
in the effective Lagrangian (6); hence, it represents no
dynamical process. The piece containing xd∇Ax couples the
x and the xd dependence, and −νxd∇Ad works against the
decrease of ρ in jxdj.
The Liouville operator L of the master equation is linear,

and the remarks in Sec. II apply. Note that the open
dynamics increases further the set of necessary auxiliary
conditions. In fact, the second derivative ∇2

x needs the
knowledge of a further function, say, ∇xρðx0; xdÞ, to find a
unique solution.
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C. Generic quadratic master equation

It is instructive to compare our master equation with the
most general one-dimensional quadratic master equation of
the Lindblad form [29], which is

∂tρ ¼ −
i
ℏ

�
p2

2m
þmω2

2
x2; ρ

�

−
i
2ℏ

ðλþ μÞ½x; fp; ρg� þ i
2ℏ

ðλ − μÞ½p; fx; ρg�

−
Dpp

ℏ2
½x; ½x; ρ�� −Dxx

ℏ2
½p; ½p; ρ��

− 2
Dpx

ℏ2
½x; ½p; ρ�� ð14Þ

Reference [30]. Our master equation (8) without external
field corresponds to the choice ω ¼ 0:

Dpp ¼ ℏðd0 þ d2ν2 − 2mνξÞ
2

;

Dxx ¼
ℏd2
2m2

;

Dpx ¼
ℏ
2

�
d2ν
m

− ξ

�
;

λ ¼ μ ¼ ν

2
ð15Þ

and preserves the positivity of the density matrix for weak
friction:

ν2 þ 4ξ2 ≤ 2
d0d2
m2

: ð16Þ

The parametrization based on the effective Lagrangian is
more speaking about their physical origin or impact, being
closer to the original full dynamics than the parameters of
the master equation (14). The classical equation of motion
can formally be found by canceling the imaginary part of
the Lagrangian [31], i.e., by performing the limit d0,
d2 → 0. While this limit is excluded by the inequality
(16), the true classical limit induced by strong decoherence
remains within reach.

IV. ELECTRIC CURRENT

It is easy to see that the electric current of the
Schrödinger equation

ðn; jÞ ¼
�
ψ�ψ ;

ℏ
2im

½ψ�∇Aψ − ð∇AψÞ�ψ �
�

ð17Þ

is not conserved by the master equation. It is easy to check
by taking the master equation at xd ¼ 0 that the current

ðn; JÞ ¼
�
ρðx; 0Þ; ℏ

im
∇Adρðx; 0Þ −

ℏd2
2m2

∇xρðx; 0Þ
�

ð18Þ

is conserved by the open dynamics. Note that, while the
gauge field A appears only in the last term in the
Lagrangian (3), the integration (A11) introduces it into
each space derivative of the master equation and makes the
derivatives in Eq. (18) of electromagnetic origin. The first
term of the space component represents the electric current
of the Schrödinger equation, and the additive renormaliza-
tion jenv ¼ J − j, a reminiscent of Fick’s law, is generated
by the decoherence-driven diffusion and represents the
polarization cloud, a background drag, induced by the test
particle in its environment and makes the total probability
conserved by a nonunitary time evolution. While the test
particle is obviously stable, the norm of its state can be
exchanged with the environment.
The electromagnetic origin of the conserved current

suggests that Eq. (17) is actually the electric current. But
the renormalization of the electric current by the environ-
ment is a puzzling point, since the conservation of the
electric current is derived by the help of gauge invariance.
How can a manifestly gauge invariant equation of motion
violate this conservation law? The dressing of the electric
current by the UV modes can be followed in QED by the
method of the renormalization of composite operators, and
it was believed that the electric current is protected against
the cutoff scale UV renormalization by gauge invari-
ance [32]. However, renormalization at a finite scale cannot
be ruled out in such a manner. It has been realized only
recently that massless photons give rise to a further tadpole
counterterm at vanishing energy-momentum transfer and
generate a surface term in the integral version of the
continuity equation for the current [33]. Another known
modification of the electric current, closer to our subject, is
due to the periodic boundary conditions imposed in a finite
quantization box [34]. Here, the periodic boundary con-
ditions generate new gauge invariant degrees of freedom,
the Wilson lines, which appear in the effective theory and
introduce nonminimal coupling.
Let us now return to our problem by noting that the

space-time derivatives, generated by the expansion (A8),
appear as covariant derivatives in Eq. (9), allowing one to
locate the conserved electric current by the help of gauge
transformations

ρðt; x̂Þ → eiαdðt;x̂Þρðt; x̂Þ;
Uðt; x̂Þ → Uðt; x̂Þ − ℏ∂tαðt; x̂Þ;
aðt; x̂Þ → aðt; x̂Þ þ ℏ∇dαdðt; x̂Þ;
adðt; x̂Þ → adðt; x̂Þ þ ℏ∇xαdðt; x̂Þ; ð19Þ

with αdðt; x̂Þ ¼ αðt; xþÞ − αðt; x−Þ, αðt; xÞ being an arbi-
trary phase transformation. The Liouville operator of the
master equation transforms under gauge transformations as
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L½∇Ax;∇Ad� → eiαdLe−iαd ¼ L½∇Ax − i∇sαd;∇Ad − i∇dαd�:
ð20Þ

Let us now take a density matrix ρ which solves the master
equation and consider the equation

0 ¼ Tr½L½∇Ax;∇Ad�ρ�; ð21Þ

which can, therefore, be written as

0 ¼ Tr½e−iαdL½∇Ax − i∇sαd;∇Ad − i∇dαd�eiαdρ� ð22Þ

for arbitrary α. By considering the right-hand side as a
functional of the classical field αðt; xÞ, the Euler-Lagrange
variational equation yields the continuity equation

0 ¼
�
∇x

�
ℏ
im

∇Ad −
ℏd2
2m2

∇x

�
þ ∂t

�
ρðx; 0Þ ð23Þ

for infinitesimal α and establishes that the conserved
electric current is indeed (18).
The argument is reminiscent of the derivation of the

Noether theorem or the Ward identities. The minimal
coupling generated by the expansion (A11) replaces the
partial space-time derivatives with covariant derivatives in
the equation of motion which, in turn, contribute to the
electromagnetic form factors. Among these contributions,
the Oðx0dÞ terms appear in the electric current. In our case,
the second term of the Lagrange function (6), responsible
for the velocity-dependent decoherence-generated diffu-
sion, renormalizes the electric current. It is worthwhile
noting that such a renormalization of the electric current
takes place even if the environment is electrically neutral.

V. TRANSLATION INVARIANT
ELEMENTARY COMPONENTS

The impact of the open interaction channels on the
dynamics is sought in this section by constructing the
solutions of the translation invariant master equation.

A. Translations

The translations x� → x� þ a induce the transformation
ρðx; xdÞ → ρðx − a; xdÞ of the density matrix, and the linear
subspaces Aq consisting of density matrices of the form
ρðx; xdÞ ¼ eiqxχðxdÞ with arbitrary χðxdÞ remain closed
under translation invariant dynamics. This space is irre-
ducible in the sense that it contains no nontrivial subspace
which is left invariant by a generic translation invariant
dynamics.
This is a radical departure from the way translations act

on pure states ψðxÞ → ψðx − aÞ. In fact, the translations
form an Abelian group whose irreducible representations
within the space of pure states are one dimensional. The
translation invariance of xd extends these subspaces to

Aq [28]. The physical origin of this richness of elementary
constituents is the background drag, a nontrivial polariza-
tion cloud induced by the test particle in the environment,
which follows the motion of the particle. The relevance of
the subspaces Aq from the point of view of the present
work is that it is sufficient to solve the master equation
within them.
The solution of the master equation is sought below with

the potential eϕðxÞ ¼ U0 − f x, A ¼ 0 within the space Aq
with an arbitrary initial condition. The translation induces a
phase rotation on pure state vectors which is canceled in
the density matrix. Such a cancellation leads to another
interesting cancellation within the Neumann equation: The
potential U0 drops out, and the homogeneous force is
represented by the term if xd=ℏ, leaving the Neumann
equation translation invariant. This potential, being a pure
gauge potential, generates an x-dependent phase for trans-
lations. The dropping of the constant component U0 makes
the same Neumann equation to cover both the propagating
(U0 < 0) and the tunneling (U0 > 0) states. Our master
equation preserves this property.

B. Solution within an Aq subspace

The solution of the master equation for the coefficient
function χ,

∂tχðt; xdÞ ¼ −
�
ℏq
m

þ xdν

�
∇dχðt; xdÞ

þ
�
−
ℏq2d2
2m2

þ
�
i
f
ℏ
−
qd2
m

νþ qξ

�
xd

−
d0 þ d2ν2 − 2mνξ

2ℏ
x2d

�
χðt; xdÞ; ð24Þ

is the easiest to find by first constructing the characteristic
curve, a trajectory x̄dðtÞ, satisfying the equation of motion

∂tx̄dðtÞ ¼ νx̄dðtÞ þ
ℏq
m

; ð25Þ

together with the initial condition x̄dð0Þ ¼ xd0. The solution

x̄dðtÞ ¼ xd0etν þ
ℏq
mν

ðeνt − 1Þ ð26Þ

is next used to rewrite the master equation as an ordinary
differential equation along the characteristic curve:

d
dt
χðt; x̄dðtÞÞ¼

��
i
f
ℏ
−
qd2
m

νþqξ

�
x̄dðtÞ

−
d0þd2ν2−2mνξ

2ℏ
x̄2dðtÞ−

ℏq2d2
2m2

�
χðt; x̄dðtÞÞ:

ð27Þ
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This is easy to solve with the initial condition
χð0; xdÞ ¼ χiðxdÞ:

ρðt; x; xdÞ ¼ χi

�
xde−νt −

ℏq
mν

ð1 − e−νtÞ
�

× eaqðtÞþΩqtþiqxþikqðtÞxd−dðtÞ
2
x2d ; ð28Þ

where

aqðtÞ ¼ i
qkfℏ

mν
ð1 − e−νtÞ

þ ℏq2

4m2ν3
½d0ðe−2νt − 4e−νt þ 3Þ − d2ν2ð1 − e−2νtÞ�

−
ℏq2ξ
2mν2

ð1 − 2e−νt þ e−2νtÞ;

Ωq ¼ −
qℏ
m

�
ikf þ

d0q
2mν2

�
;

kqðtÞ ¼ ð1 − e−νtÞ
�
kf − iq

ξ

ν
e−νt

�

− i
q

2mν2
½d0ð1 − e−νtÞ2 − d2ν2ð1 − e−2νtÞ�;

dðtÞ ¼ 1 − e−2νt

l2
dec

: ð29Þ

The wave number kf ¼ f=ℏν corresponds to the classical
drift velocity vf ¼ ℏkf=m ¼ f=mν, and

1

l2
dec

¼ d0 þ d2ν2

2ℏν
−
mξ

ℏ
ð30Þ

denotes the asymptotic decoherence length scale. The
dissipation timescale τdiss ¼ 1=ν gives the onset of the
decoherence, too. The linear superposition of the solutions
with an initial condition of the form χiðxdÞ ¼ eixdk allows
us to construct the time dependence for any initial density
matrix obtained from the Hilbert space of square integrable
wave functions.
The solutions (28) can easily be extended. It is easy to

see that the transformation

ρ →

�
1þmν

ℏ
qxd
q2

�
−ΔΩ

ν

ρ ð31Þ

leads to the shift Ωq → Ωq þ ΔΩ, without modifying the
other parameters of the solution. Thus, the asymptotic
frequency spectrum of the master equation is infinitely
degenerate. Such a high degree of degeneracy is a hallmark
of dissipation, an invisible gapless environment. Another
indication of dissipative forces, memory loss, is clearly
visible in the prefactor of the exponential function in
Eq. (28), which determines the long time asymptotic
solution only by the behavior of χiðxdÞ in a small

environment of xd ¼ ℏq=mν. Lowering the frequency of
the solution (28) by ΔΩ ¼ −nν with n being a positive
integer, the density matrix receives an nth-order polynomial
of xd as a multiplicative factor.
Another infinite set of solutions can be obtained by

noting that the wave vector q is arbitrary. Thus, the
transformation ρ → i∇qρ yields another solution of the
linear master equation. This amounts to the family of
nonhomogeneous solutions

ρP ¼ Pði∇qÞρ; ð32Þ

where PðxÞ stands for a polynomial of finite order.

C. Infinitesimal environment interaction

It is instructive to inspect the infinitesimal system-
environment coupling limit g → 0 for f ¼ 0. The depend-
ence of the effective dynamics on the coupling constant g
can be made explicit by performing the change V → g2V
in Eq. (A15), leading to d0 ¼ g2d̃0 þOðg4Þ, d2 ¼
g2d̃2 þOðg4Þ, ν ¼ g2ν̃þOðg4Þ, and ξ ¼ g2ξ̃þOðg4Þ,
where the ignored Oðg4Þ terms come from higher loop
contributions in eliminating the environment.
The lack of a gap in the environment spectrum can be

established only after an infinitely long time observa-
tion [35], leading to the noncommutativity of the limits
t → ∞ and g → 0: On the one hand, the solution of the
time-dependent master equation is a continuous function of
g, and the time evolution of the closed dynamics is
recovered as g → 0 at any finite time. On the other hand,
the relaxed stationary solution is influenced by an infini-
tesimal interaction and develops a noncontinuous limit at
g ¼ 0. In other words, the dynamics converges in a
nonuniform manner in the limit of vanishing system-
environment coupling. The structure recovered in this limit
is universal, as are the laws of statistical mechanics, i.e.,
remains qualitatively the same for weakly open systems,
independently of the details of the infinitesimal system-
environment interactions.
Let us consider the unique relaxed state which is

homogeneous, q ¼ 0. One would expect that the environ-
ment decouples and the closed dynamics is recovered as
g → 0; however, one finds terms containing the ratio of the
typeOðg2Þ=Oðg2Þ ¼ Oðg0Þ for t ≫ 1=g2ν̃, meaning that an
arbitrarily weak environment interaction may have a finite
impact on the relaxed state. In particular, the decoherence

length approaches the nontrivial value l�
dec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏν̃=d̃0

p
.

The discontinuity of the relaxed state when g → 0 indicates
that no isolation can prevent a particle from developing a
universal Oðg0Þ Gaussian decoherence:

ρ ¼ e
−

x2
d

2l�2
dec ½1þOðg2Þ�; ð33Þ
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rendering the application of closed dynamics an unrealistic
approximation for the long time dynamics of real, propa-
gating particles. It is worthwhile noting that the
relaxed translation invariant density matrix is the Gibbs
operator with a quantum-fluctuation-induced temperature
Tq ¼ ℏ2=ml�2

deckB [36]. The discontinuity as g → 0 does
not imply singular dynamics; the time needed to establish
the universal decohered state diverges as g → 0. The
solutions with q ≠ 0 display singular xd dependence in the
limit g → 0, but they are suppressed for t ≫ m2ν̃2g2=ℏd̃0q2

due to decoherence.

VI. INSTANTANEOUS AND DYNAMICAL
DECOHERENCE

The decoherence is a dynamical process, it builds up
during the time evolution, and one can characterize from
different points of view [37]. The suppression of the off-
diagonal density matrix elements is basis dependent and
can be considered in the coordinate or the momentum basis.
The simplest way to measure the instantaneous strength of
the decoherence is to take the quantum state at a fixed time,
to consider the decrease of its matrix elements with
increasing off-diagonality, given by xd in the coordinate
basis, and to identify the characteristic length scale of the
decrease. The time evolution of an initial pure plane wave
state ψ iðxÞ ¼ eikix,

ρðt; x; xdÞ ¼ e
i½kie−νtþ f

ℏνð1−e−νtÞ�xd−1−e−2νt

2l2
dec

xd2

; ð34Þ

yields the instantaneous coordinate decoherence length
scale

linst;decðtÞ ¼
ldecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2νt
p : ð35Þ

The stationary Wigner function at t → ∞,

wðx; kÞ ¼
Z

d3xde−ikxdρðx; xdÞ ¼ e−
l2
dec
2
ðk−kfÞ2 ; ð36Þ

reveals that a particle, dragged by a homogeneous force,
relaxes to a completely decohered wave packet with
Gaussian momentum distribution, centered at the drift
momentum and spread to the inverse asymptotic
decoherence length.
The decoherence in momentum space is important to

understand the suppression of the interference between
macroscopically different states. In such an inquiry, one
chooses a pure initial state as a linear superposition of two
different system states and an observable and looks for
dynamical decoherence, which manifests through the sup-
pression of the interference contribution to the observable.
Let us choose the initial state which is the linear super-
position of two plane waves with wave vectors k1 and
k2, ψ iðxÞ ¼ c1eik1x þ c2eik2x.
The density matrix evolves in time as

ρðt; x; xdÞ ¼ e
−1−e−2νt

2l2
dec

x2d
n
jc1j2ei½k1e−νtþkfð1−e−νtÞ�xd þ jc2j2eiðk2e−νtþkfð1−e−νtÞÞxd

þ c1c�2e
iðk1−k2Þxþi

2
ðk1þk2Þ½xde−νt−ðk1−k2Þℏ

2mν ð1−e−νtÞ�þak1−k2þΩk1−k2 tþikk1−k2xd

þ c�1c2e
iðk2−k1Þxþi

2
ðk1þk2Þ½xde−νt−ðk2−k1Þℏ

2mν ð1−e−νtÞ�þak2−k1þΩk2−k1 tþikk2−k1xd �
o
: ð37Þ

The first, common multiplicative factor describes instanta-
neous decoherence in the coordinate space, and the two
terms in the first line belong to the diagonal contribution in
the momentum basis. The next two lines contain the off-
diagonal contribution of the momentum basis whose
weight decreases exponentially in time with the dynamical
decoherence timescale

τdyn;dec ¼ −
1

ReΩk2−k1
¼ 2m2ν2

d0ℏðk2 − k1Þ2
: ð38Þ

One finds that the decoherence builds up faster at larger off-
diagonality in momentum space. The decrease of the
weight in Eq. (37) with the increase of the off-diagonality
yields the dynamical decoherence momentum scale

pdyn;decðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ν2ℏ
d0t

s
: ð39Þ

The dynamical decoherence length in coordinate
space [37],

ldyn;decðtÞ ¼
ffiffiffiffiffiffiffi
ℏ
d0t

s
; ð40Þ

suggests the existence of a basis-independent dynamical
decoherence mechanism, pdyn;decðtÞ=m ¼ νldyn;decðtÞ.

VII. WAVE PACKETS

The simplest generalization of the case of few plane
waves is the propagation of a wave packet. This problem
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has been addressed by using the master equation
ν ¼ d2 ¼ ξ ¼ f ¼ 0 [24] and by the help of a harmonic
oscillator model of the environment [25]. We consider this
problem by allowing all parameters of the master equa-
tion (8) to be present.
We take a pure Gaussian wave packet as initial state

at t ¼ 0:

ψðxÞ ¼ ð4πσ2Þ34
Z

d3k
ð2πÞ3 e

−σ2

2
ðk−k0Þ2þikx: ð41Þ

The closed dynamics generates the density matrix

ρðt; x; xdÞ ¼ ðπΔx20Þ−
3
2e

ik0xd−
x2
d

2l2
eff;0

−ðx−X0Þ2
Δx2

0

þiκ2
0
ðx−X0Þxd ð42Þ

with time-dependent parameters. The center of the wave
packet follows a free motion, X0 ¼ ðℏk0=mÞt; the second

moment assumes the well-known quadratic expression in
timeΔx20 ¼ σ2 þ ℏ2t2=m2σ2 and l2

eff;0 ¼ 2Δx20. The role of
the OðxxdÞ term of the exponent with κ20 ¼ ℏmt=ðm2σ4 þ
ℏ2t2Þ can be seen in the probability flux:

j ¼ ℏ
im

∇dρðt; x; 0Þ

¼ ℏ
m
½k0 þ κ20ðx − X0Þ�ðπΔx20Þ−

3
2e

−ðx−X0Þ2
Δx2

0 : ð43Þ

The first term describes the homogeneous motion of the
center, and the spread of the wave packet is reflected in
the second term, a comoving flux pointing outward from
the center of the wave packet.
The initial density matrix

ρiðx; xdÞ ¼ ð4πσ2Þ32
Z

d3kþd3k−
ð2πÞ6 e−

σ2

2
½ðkþ−k0Þ2þðk−−k0Þ2�þiðkþ−k−Þxþikþþk−

2
xd ð44Þ

evolves as

ρðt; x; xdÞ ¼ ð4πσ2Þ32
Z

d3kþd3k−
ð2πÞ6 exp

�
−
σ2

2
½ðkþ − k0Þ2 þ ðk− − k0Þ2� þ akþ−k−ðtÞ þΩkþ−k−tþ i

ℏq
2mν

ðkþ þ k−Þðe−νt − 1Þ

þ iðkþ − k−Þxþ i

�
kþ þ k−

2
e−νt þ kkþ−k−ðtÞ

�
xd −

dðtÞ
2

x2d

�
ð45Þ

in the open dynamics, and the uniform convergence of the integrals assures positivity. The integration is straightforward and
results in

ρðt; x; xdÞ ¼ ðπΔx2Þ−3
2e

ikeffxd−
x2
d

2l2
eff

−ðx−XÞ2
Δx2

þiκ2ðx−XÞxd
; ð46Þ

with the time depending on parameters

X ¼ ℏk0
mν

ð1 − e−νtÞ þ vf

�
t −

1 − e−νt

ν

�
;

Δx2 ¼ N
m2ν3σ2

;

keff ¼ k0e−νt þ kfð1 − e−νtÞ;
1

l2
eff

¼ 1

2Nℏν
fℏm2σ2ν4 þ d2ð1 − e−2νtÞν3ðℏ2 þm2σ4ν2Þ

þ d0½ð1 − e−2νtÞm2σ4ν3 þ ℏ2νð1 − 4e−νt þ e−2νtð2νtþ 3Þ�
þ 2d0d2ð1 − e−2νtÞℏσ2tν3 þ 2d20d2ℏσ

2ð1 − e−νtÞ½tν − 2þ e−νtðtνþ 2Þ�
− 2mνξ½ℏ2νð1 − e−μtÞ2 þm2σ4ν3ð1 − e−2νtÞ
þ 2d0ℏσ2ð1 − e−μtÞ½tν − 2þ e−μtðtνþ 2Þ� − 4ξ2ℏm2σ2ν2ð1 − e−μtÞ2�g;

κ2 ¼ mν

N
ð1 − e−νtÞ½d0σ2ð1 − e−νtÞ − d2ν2σ2ð1þ e−νtÞ þ 2mξνσ2e−μt þ ℏνe−νt�; ð47Þ
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where

N¼m2σ4ν3þℏ2νð1−e−νtÞ2
þℏσ2d0½ð2νt−3þ4e−νt−e−2νtÞþℏσ2d2ν2ð1−e−2νtÞ�
þ2ð1−e−νtÞ2ℏσ2mξν: ð48Þ

The corresponding conserved probability flux is

J ¼ ℏ
m
½keff þQ2ðx − XÞ�ðπΔx2Þ−3

2e−
ðx−XÞ2
Δx2 ; ð49Þ

with

Q2 ¼ κ2 þ d2
mΔx2

: ð50Þ

The limits g → 0 with vf ¼ ṽfg2, t → 0, and t → ∞ of the
parameters are detailed in Table I.

A. Irreversibility

The coefficients of x in the exponent, a time-independent
vector for a single plane wave, now depend on time owing
to the interference between the pure plane waves. The
gradual suppression of the x dependence, the spread of the
wave packet, takes place already in closed dynamics,
governed by the time reversal Schrödinger equation and
is not a genuine irreversible process; it is due to the smooth
phase relations between the plane waves in the initial state.
Were we able to prepare a state with highly irregular phases
between the plane waves, we might observe its shrinking
during the time evolution. However, the decoherence of the
open dynamics is a genuine irreversible process. In fact, the
master equation (8) breaks time reversal invariance,
because this transformation does not act on the invisible
environment [35]. Hence, one expects that the spread of the
wave packet will be different in open dynamics.

B. Decoherence

The Gaussian decoherence strength 1=l2
eff starts with the

initial value 1=2σ2, which is a relic of the spread of the pure
state and becomes saturated after the full establishment of
the decoherence in agreement with kinetic theory [5].

C. Center

The probability distribution ρðt; x; 0Þ displays a Gaussian
wave packet following the trajectory X. Though the relaxed
motion is a trivial result of Newton’s equation, its micro-
scopical, short time details offer a more detailed picture: The
motion startswith the initialwave packet velocityℏk0=m and
a constant acceleration af ¼ f=m, since it takes approxi-
mately τdiss delay to establish the stationary energy loss to the
environment. By the time the dissipation is stabilized,
the motion is delayed by τdiss, in a manner reminiscent of
the phase shift in the scattering processes, that is to say, the
rearrangement of the particle state by the external forces.

D. Width

The spread speeds up before and slows after the
dissipation and decoherence are established compared with
the closed dynamics. The speedup comes from the Oðd2Þ
velocity-dependent decoherence term of the influence
Lagrangian which directly suppresses the interference
between the pure components of the wave packet with
different momentum. This effect is present from the very
beginning. The slowing down can be understood by
recalling that the spread of the wave packet is due to the
irregular phases arising from the interference between
different plane wave components in the probability dis-
tribution. Both the decoherence and the friction suppress
these contributions; thereby, they delay the spread.

E. Discontinuity of g → 0

On the one hand, the spread and leff of the closed
dynamics are recovered at any finite time when g → 0. On
the other hand, the spread is slower and the time-independent
ldec is reached for infinitesimal g, by letting g → 0 after the
limit t → ∞. In particular, the relaxed density matrix
belonging to a canonical ensemble is reached in the latter
case only, by letting the weak but finite system-environment
interactions act for an arbitrary long time.

F. Probability flux

The first term in the square brackets on the right-hand
side in Eq. (49) contains the wave number keff reflecting the
loss of the initial velocity and the classical buildup of the
drift velocity. The second term of the particle flux displays

TABLE I. The parameters are given for g → 0, small t ≪ 1, and t ≫ 1 up to terms Oðg2Þ, Oðt2Þ (except Q2), and Oðe−μtÞ,
respectively.

Limits X Δx2 keff
1
l2eff κ Q2

g → 0 ℏk0
m t σ2 þ ℏ2t2

m2σ2
k0 1

2ðσ2þ ℏ2 t2

m2σ2
Þ

mtℏ
m2σ4þℏ2t2

ℏmt
m2σ4þℏ2t2

νt ≪ 1 ℏk0
m t σ2 þ 2ℏd2

m2 t k0ð1 − νtÞ þ νkf 1
2σ2

þ 2σ2−l2
dec

l2decσ
2 νt ℏσ2þ2ðmξ−d2νÞ

mσ4
t

d2
mσ2

þOðtÞ
νt ≫ 1 vfðt − 1

νÞ 2ℏd0
m2ν2

t kf 1
l2dec

mðd0−d2ν2Þ
2ℏd0

1
t

m
2ℏt
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flux of the amplitude Q2 away from the center of the wave
packet. The short time effect of the current renormalization
is the emergence of a nonvanishing value of the amplitude.
The long time impact of the renormalization is the
reduction of the amplitude by a factor half compared to
the closed dynamics.

G. Phase transformation

The term iκ2xxd in the exponent of the density matrix
performs a gauge transformation on the state: ψðxÞ →
eiκ

2x2ψðxÞ. This is not a symmetry, because the trans-
formation acts on the state only, leaving the observables
unchanged, and generates the drift velocity.

H. Charged particle

Let us now suppose that the test particle is charged and
look into its bremsstrahlung. The induced electromagnetic
field is proportional to Q2, a rather involved function of the
parameters of the master equation and the time. However,
the asymptotic values of Q2 for short and long time are
remarkably simple and show a clear difference compared to
the closed dynamics. Rather than increasing from zero in
time, Q2 starts with a finite value generated by the
decoherence-induced diffusion already before the dissipa-
tion builds up. After the full buildup of the dissipation, the
current becomes ν independent again, and the induced
electromagnetic field is reduced by a factor 1=2 compared
to the closed dynamics.

VIII. BOUNDARY CONDITIONS

It has been mentioned in Sec. II that the Neumann
equation and the master equation (8) and (9) need signifi-
cantly more auxiliary conditions than the Schrödinger
equation to encode our uncertainty about the actual pure
state of the system. To underline the importance of this
question, we note that the issue of auxiliary conditions is
problematic already in the general strategy of using the
master equation to describe open interactions. In fact, there
are two ways of deriving effective, open interactions for a
subsystem of a full, closed system. One is the CTP path
integral representation of the reduced density matrix, and it
provides unique results. Another procedure is to derive the
equation of motion for the reduced density matrix by
making an infinitesimal time step in the effective dynamics.
However, the equation of motion, a differential equation in
the Markovian approximation, produces a unique solution
only if some auxiliary conditions are specified. How can we
recover these auxiliary conditions in the master equation
approach?
There is yet another problem in using the master

equations (8) and (9) which turns out to be related to
the auxiliary conditions. The master equation possesses a
Lindblad structure, and its solution is supposed to preserve
the total probability. But the solution (28) and (29) violates

this conservation law. In fact, let consider a one-dimen-
sional particle in the interval 0 < x < L with the density
matrix ρ ¼ ρq þ ρ−q, where ρq is a solution with the wave
number q. It is easy to see that the total probability

P ¼ 2χi

�
−
ℏq
mν

ð1 − eνtÞ
�
eaqðtÞþΩqt

sin qL
q

ð51Þ

is time dependent. Actually, this is the interference term in
Secs. VI and VII, and decoherence consists of its decrease
in time. Furthermore, the solutions with imaginary wave
number ρiq give an exponentially decreasing probability
density in the coordinate, a throughflux of particles moving
to the right with exponentially increasing total probability
in time. We shall see that these problems can be cured by
paying more attention to the auxiliary conditions to define
the Hilbert space of pure states, H.
The issue of the boundary conditions is explored from

two different angles below. First, in the context of a
piecewise constant one-dimensional potential, the non-
trivial interactions are represented by the matching con-
ditions, auxiliary conditions for the solutions of the free
equation of motion in a restricted spatial region. Such a
simple problem already shows the increased importance of
the boundary conditions compared to the closed dynamics.
The second view on the role of the auxiliary conditions is
the identification of the boundary conditions needed to
keep the operators occurring in the master equation self-
adjoint. This procedure can, in certain cases, replace the
missing information of the effective equation of motion
method, mentioned above.

A. Piecewise constant potential

The solutions of the Schrödinger equation can easily be
obtained for the sum of a piecewise constant and Dirac
delta potential. However, a similar, simple extension of the
homogeneous open dynamics is not available owing to two
kinds of physical complications, the use of a mixed state,
and the renormalization of the electric current. We dem-
onstrate the problem by following the traditional strategy,
namely, first working out the solution of the equation of
motion with constant potential and then matching them at
the discontinuities. We set f ¼ 0 in this calculation for the
sake of simplicity.
Let us start with a potential which is the sum of the Dirac

delta λδðxÞ and another piecewise constant term with finite
discontinuity at x ¼ 0. The integration through the singu-
larity along x and xd axes yields the matching conditions

i
ℏ
λρðx; xdÞjx¼�xd

2
¼ �DiscxJðx; xdÞjx¼�xd

2
;

2
i
ℏ
λρðx; xdÞjx¼�xd

2
¼ ∓Discxdjðx; xdÞjx¼�xd

2
; ð52Þ

in terms of the currents (17) and (18).
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In the next step, one solves the master equation with
different constant potentials in different coordinate inter-
vals and matches the solutions by Eq. (52). It is easy to
control the Hermiticity and the positivity of the probability
density of the coordinate of the full solution; however, to
assure the positivity of the density matrix becomes difficult.
Hence, one starts with a pure stationary state of the closed
dynamics at t ¼ 0 that turns the open interaction channels
on and follows the time evolution of the density matrix for
t > 0. The trivial positivity of the initial pure state is then
expected to be preserved due to the Lindblad structure
of Eq. (9).
One encounters a difficulty in this procedure for

unbounded potential like the Dirac delta, because the first
equation of Eq. (52) changes the density matrix in an
instantaneous manner along the full coordinate axis x�
when the open parameters of the master equations jump to a
nonvanishing value. Since one expects that the density
matrix remains continuous in time during a sudden turning
on of interactions of finite strength, an unbounded potential
cannot be realized as the limit of a large but finite potential.
Hence, we restrict our attention to potentials with finite
discontinuity, where the density matrix and its first deriv-
atives remain continuous.
Let us consider the case of a potential well UðxÞ ¼

U0Θðjxj − aÞ when the discontinuities are along the dotted
lines in Fig. 1 and look for a symmetrical bound state
solution ρðx; xdÞ ¼ ρð−x;−xdÞ. The initial state at t ¼ 0 is
chosen to be

ψðxÞ ¼ Θðjxj − aÞe−qjxj þ Θða − jxjÞc cos kx; ð53Þ

where ℏk¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
, ℏq¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðU0−EÞp
with 0 < E < U0,

and c ¼ ðq=kÞ cot ka. The initial density matrix in the
regions A, B, C, and D is

ρjA ¼ ρ2iq;0;

ρjB ¼ c
2

�
ρkþiq;−kþiq

2
þ ρ−kþiq;−kþiq

2

�
;

ρjC ¼ ρ0;iq;

ρjD ¼ c2

4
ðρ2k;0 þ ρ−2k;0 þ ρ0;k þ ρ0;−kÞ; ð54Þ

where ρq;kðx; xdÞ ¼ eiqxþikxd . The density matrix in the
remaining regions is given by ρjZP

ðx; xdÞ ¼ ρjZð−x;−xdÞ,
ρjZ� ðx; xdÞ ¼ ρ�jZðx; xdÞ, and ρjZ�

P
ðx; xdÞ ¼ ρ�jZð−x;−xdÞ,

where Z ¼ A, B, or C.
The master equation generates the time dependence (28)

and (29) for such a patchwork of initial conditions except
ρjB → ρjBe−

i
ℏU0t. However, the matching conditions are

violated by such a solution. This is easiest to see by noting
that the exponential decrease in time of Eq. (28) owing to
Ωq < 0, the decoherence of the propagating modes, is
turned into an exponential increase Ωiq > 0 of the tunnel-
ing modes and the density matrix becomes discontinuous.
In other words, the renormalization of the electric current
drives the solution away from the trivial patchwork of
homogeneous solutions by generating a nontrivial change
around the discontinuity of the potential. The solution of
the step function potential, therefore, requires the knowl-
edge of some nontrivial boundary conditions which already
contains the fingerprint of the open interaction channels.
A possible source of these auxiliary conditions is worked
out in the next subsection.

B. Self-adjoint extensions

We found that the density matrix explodes exponentially
in time in a certain region of the ðx; xdÞ plane and the total
probability is not conserved despite the apparent Lindblad
structure of the master equation. This problem is due to an
actual violation of the Lindblad structure; namely, the
momentum operator in Eq. (14) should be self-adjoint.
The self-adjointness of the momentum operator is a

fragile point, and it is assured in the infinite coordinate
interval −∞ < x < ∞ without boundary by using square
integrable wave functions. However, one encounters prob-
lems when the wave function is either non-normalizable
or is sought in a region with a boundary, because the
momentum-dependent observables are self-adjoint only
with a certain extension of their domain of definition
realized by appropriate boundary conditions on the wave
functions in coordinate space [38]. This problem can be
treated in the path integral formalism by the proper
definition of functional space of the paths; however, this
setting is not transferred by the expansion (A11) to the
equation of motion.
The momentum operator is self-adjoint on a finite

interval only within the Hilbert space consisting of square
integrable wave functions which are periodic up to a fixed

C

d
xC

P

x

A

B

B
P B*

B*
P

D

P

A

−a

2a

−2a

a

FIG. 1. The discontinuity of the potential on the plane ðx; xdÞ.
The density matrix in the regions with an index P or a star can be
obtained by spatial inversion, x → −x, xd → −xd, or complex
conjugation, respectively.

JANOS POLONYI and INÈS RACHID PHYS. REV. D 107, 056010 (2023)

056010-12



phase. While there are boundary conditions which make the
square of the momentum operator self-adjoint on a semi-
infinite interval, this cannot be reached by the momentum
operator itself. The situation is slightly different for mixed
states. Here, the lack of interference between the additive
terms of the density matrix allows that these terms belong to
different Hilbert spaces. However, each dyadic product
jψihψ 0j must contain bra and kets from the same
Hilbert space.
The problems about the self-adjoint extension of the

momentum operator can superficially be swept under the
rug for the Neumann equation as long as the free
Hamiltonian is self-adjoint, allowing us to construct a
basis set of stationary states. However, the open inter-
actions generate linear terms in the momentum in the
master equation (12) and make a careful treatment of the
problem unavoidable.
To understand the formal origin of the exponential

growth of the solution with imaginary q, let us suppose
that the particle tunnels under a potential in a closed
dynamics within a finite coordinate interval where the
wave function preserves its phase. The probability flux of
the Schrödinger equation is vanishing in this case, and the
norm of the solution is preserved. The open interactions
modify the conserved current by the additive flux

jenv ¼ −
ℏd2
2m2

e−qx; ð55Þ

which moves more probability inward than outward.
Hence, the total probability corresponding to any coordi-
nate interval increases in time due to the lacking self-
adjointness of the momentum operator in a coordinate
interval with a finite end point.
To recover a physically acceptable dynamics, one has

to restrict the pure states into a Hilbert space with self-
adjoint extension of the momentum operator. This amounts
to the use of the Hilbert space Hθ ¼ fψðxÞjψðxþ LÞ ¼
eiθψðx − LÞg in the coordinate interval −L ≤ x ≤ L and
the density matrices which satisfy the boundary conditions
ρðx; xdÞ ¼ ρðxþ 2L; xdÞ ¼ e−2iθρðx; xd þ 4LÞ. When the
regions with nonoscillatory probability density are
embedded into the interval −L < x < L, the total proba-
bility remains time independent. In fact, the total proba-
bility is trivially preserved in Hθ, where the allowed wave
vectors have a discrete spectrum q ¼ πðnþ θ=2πÞ=L with
integer n. One may make the limit L → ∞ with θ ¼ 0
leading to the Hilbert space consisting of square integrable
wave functions. The usual textbook examples dealing
with the stationary states of piecewise constant potential
should be treated by embedding the problem into one
such Hilbert space [38]. However, the construction of the
proper extension for the master equation remains an open
problem.

IX. SUMMARY

The solutions of the free Schrödinger equation is the
simplest source of our intuition about closed quantum
systems. A similar strategy is followed in this work for
open systems by working out a few simple solutions of the
most general translation invariant harmonic master equa-
tion. The summary of the more important conclusions is the
following.

A. Kinematics

The space of mixed states is far more rich than in the case
of a pure state; namely, the specification of the former
requires more information than the latter. This issue comes
up in this work in three different contexts. (a) The Neumann
equation for the mixed state of a closed dynamics requires
more auxiliary conditions than the Schrödinger equation.
(b) The matching conditions, emerging in the case of
piecewise constant potential, are more restrictive for mixed
than for pure states. (c) The mixed states of translation
invariant dynamics form infinite-dimensional irreducible
subspaces as opposed to the one-dimensional irreducible
subspaces of the pure states. These complexities arise
already in closed dynamics.

B. Effective dynamics

Special care is needed in deriving the effective dynamics
in a space with a boundary to assure the self-adjointness of
the momentum operator. There are several self-adjoint
extensions, and the choice of the actual Hilbert space to
represent the physical system is nontrivial. There are two
different strategies to follow. When the effective action is
sought within the path integral formalism, then the domain
of integration, the functional space of the trajectories, has to
be carefully defined. When the master equation is sought,
then the spatial boundary conditions have to be specified.

C. Electric current

The environment contributes to the conserved electric
current by generating form factors to the observed particle.
Thereby, the observation of the motion of a charged particle
reveals the presence of an environment even if the latter is
electrically neutral. In particular, the asymptotic brems-
strahlung of a quantum Brownian motion is halved.

D. Relaxation

The general solution of the master equation within
the space of square integrable wave functions is obtained.
The dynamics relaxes to a translation invariant mixed
state corresponding to the canonical Gibbs density
matrix providing a dynamical example of the eigenstate
thermalization scenario [39–51]. This remains valid for
infinitesimal system-environment interactions reflecting
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the noncommutativity of the weak coupling and the long
time limits.
The approach followed in this work opens several further

questions; we mention some of them only. How to general-
ize the patchwork solution of the master equation for
piecewise constant potential? A bound state in an attractive
potential of a closed dynamics can be viewed as the result
of the balance between two coherent processes, the spread
of a wave packet and the reflection of the plane waves on
the binding potential. But the coherence is reduced in the
presence of open interaction channels. To what extent is
the coherent structure of a bound state modified by
decoherence? Are there other effects of infinitesimal
system-environment interactions than the generation of
thermal fluctuations? How do non-Markovian memory
effects of the time evolution of the reduced density matrix
influence the electric current?
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APPENDIX: EFFECTIVE EQUATION
OF MOTION

A local Markovian dynamics is described by an effective
Lagrangian, which, in turn, can be used to derive the
equation of motion for the reduced density matrix. These
steps are briefly reviewed in this appendix for a test particle.

1. CTP formalism

The observed system and its environment are supposed
to be described by the coordinates x and y, respectively, and
we assume that the closed dynamics for the full system,
including the observed subsystem and the environment, is
defined in the path integral formalism by the help of the
action S½x; y� ¼ Ss½x� þ Se½x; y�. The time evolution of the
density matrix is given by the path integral expression

ρðxþ; yþ; x−; y−; tfÞ

¼
� ffiffiffiffiffiffiffiffiffiffiffi

msme
p
2πiΔtℏ

�
3Nþ3YN

n¼0

Z
d3x̂nd3ŷn

× e
i
ℏS½xþ;yþ�− i

ℏS
�½x−;y−�ρðxþ;0; yþ;0; x−;0; y−;0; tiÞ; ðA1Þ

over the pair of trajectories x̂ ¼ ðxþ; x−Þ and ŷ ¼ ðyþ; y−Þ.
This expression can be obtained by following the usual
derivation of the path integral formula for the time
evolution operator U and U†, appearing in the full density
matrix ρ ¼ UρiU†, by means of the trajectories xþ; yþ and
x−; y−. This scheme might be called the open time path
formalism, because the pair of paths have freely chosen
final points.

The time evolution of the full density matrix (A1)
preserves the factorizability and can be split into the
trivial product of the matrix elements of U and U†. The
power of the CTP formalism becomes evident in calculat-
ing the reduced density matrix ρs ¼ Treρ. In fact, the
trace operation closes the environment trajectories
yþðtfÞ ¼ y−ðtfÞ, thereby establishing correlations between
the system trajectories x�ðtÞ, which encode the system-
environment entanglement and dissipative forces [31].
Let us choose the initial state at time ti factorizable
for the sake of simplicity: ρðxþ; yþ; x−; y−; tiÞ ¼
ρsðxþ; x−; tiÞρeðyþ; y−; tiÞ. The reduced density matrix
can be written in the form

ρsðxþ; x−; tfÞ

¼
�

ms

2πiΔtℏ

�
3Nþ3YN

n¼0

Z
d3x̂ne

i
ℏSeff ½x̂�ρsðxþ;0; x−;0; tiÞ;

ðA2Þ

involving the effective action Seff ½x̂� ¼ Ss½xþ� − S�s ½x−� þ
Sinfl½x̂� and the influence functional [17]

e
i
ℏSinfl½x̂� ¼

�
me

2πiΔtℏ

�
3Nþ3YN

n¼0

Z
d3ŷne

i
ℏSe½xþ;yþ�− i

ℏS
�
e½x−;y−�

× ρeðyþ;0; y−;0; tiÞ; ðA3Þ

where the pair of paths have the same final point
yþ;Nþ1 ¼ y−;Nþ1. This is the closed time path formalism.
Note the difference in the handling way of the observed and
the nonobserved coordinates; they are part of the open and
closed time path schemes, respectively.
The final time has been identical for the system and its

environment in the previous expressions. Such a restriction
can be relaxed by exploiting the unitarity of the time
evolution of a closed system, which amounts to causality,
namely, the possibility that the final time can be chosen
arbitrarily after the observation:

hAðtoÞi ¼ TrAUðto; tiÞρðtiÞU†ðto; tiÞ
¼ TrUðtf; toÞAUðto; tiÞρðtiÞU†ðto; tiÞU†ðtf; toÞ;

ðA4Þ

with tf ≥ to. We take Uðtf; toÞ and U†ðtf; toÞ in this
expression as the time evolution operator of the environ-
ment in the absence of the system, allowing the set to and tf
as the final time in Eqs. (A2) and (A3), respectively. The
possibility of having tf ≥ to is especially important for
dissipative systems where the environment has a continu-
ous spectrum, requiring tf → ∞ for to < ∞.
The distinguishing feature of the CTP formalism is

the reduplication of the degrees of freedom and the
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representation of the classical dissipative forces and the
system-environment entanglement as a coupling between
the members of the CTP doublets. While this is an unusual
procedure in classical physics, its origin is rather obvious in
the quantum case: The expectation value of an observable A
in a pure state jψi of unit norm,

hAi ¼
X
nm

hψ jnihnjAjmihmjψi; ðA5Þ

fjnig being a basis set, contains two independent sums over
the components which represent the quantum fluctuations
of the state jψi. Two probability variables x1 and x2 are
independent in probability theory if their joint probability
distribution is factorizable: pðx1; x2Þ ¼ p1ðx1Þp2ðx2Þ.
Quantum fluctuations are represented by the probability
amplitude in quantum mechanics, and the quantum fluc-
tuations of the coordinates of two degrees of freedom can
be called independent if the joint probability amplitude, the
wave function, is factorizable: ψðx1; x2Þ ¼ ψ1ðx1Þψ2ðx2Þ.
In a similar manner, the quantum fluctuations within the bra
and the ket, treated in the basis fjnig with the factorizable
distribution ρmn ¼ hmjψihnjψi� in Eq. (A5), can be called
independent. Thus, quantum mechanics represents a pure
state by two independent sets of quantum fluctuations, an
obvious statement in view of the factorizable density matrix
of a pure state. The two sets of fluctuations are time
reversed of each other; hence, the pure state dynamics can
be described exclusively in terms of kets jψi.
The factorizability of the quantum fluctuations in the bra

and the ket sectors is lost in the mixed state, and the
correlated fluctuations for the bra and the ket require the
use of the ket-bra direct product states jψihψ 0j in the density
matrix. In a pure state of a closed dynamics, the Hermiticity

of the initial density matrix relates the fluctuations in the
bra and the ket by complex conjugation, time reversal. The
interaction with the environment in an open dynamics
introduces correlations during the time evolution as well,
requiring the simultaneous treatment of the bra and ket
fluctuations.
The comparison of the derivation of the master equation

in Sec. III with the derivation of the Schrödinger equation
shows that the “wave function” for the redoubled coor-
dinate is actually the density matrix. The independent
variation of the two CTP trajectory pair gives rise to the
semiholonomic forces in the variational principle of
classical mechanics [31], and the equation of motion makes
the two trajectories identical.
The space of the CTP dynamics is larger than the space

where the physical motion takes place. The former is
defined by the help of the reduplicated variables, and the
latter is its subset, selected by the initial conditions. The
initial conditions are time reversed of each other, and one
member of the CTP doublet, x− (bra) in the classical
(quantum) case, is time reversed, as well; hence, the
physical space contains each degree of freedom only once.
This is reminiscent of gauge theory, where the physical
states cover a subspace of the full Fock space, and some
insight into the dynamics can be gained in both cases by
regarding the full, nonphysical space.

2. Effective equation of motion

It is worthwhile to recall that the Schrödinger equation
appears as a “Fokker-Planck equation” in the framework of
the path integral formalism. In fact, the Lagrangian (3)
yields the time evolution for the wave function:

ψðx; tÞ ¼
�

m
2πiΔtℏ

�3
2
ðNþ1ÞYN

n¼0

Z
dxne

i
ℏΔt

P
n
½m
2
ðxnþ1−xn

2
Þ2−Uðxnþ1Þþxnþ1−xn

Δt aðxnþ1þxn
2

Þ�ψðx0; tiÞ; ðA6Þ

where the scalar potential is U ¼ eϕ, the vector potential
a ¼ eA=c is used with the midpoint prescription, and
x ¼ xNþ1, Δt ¼ ðt − tiÞ=ðN þ 1Þ as N → ∞. The deriva-
tion of a local differential equation in time needs the last
time step only [52]:

ψðx;tþΔtÞ

¼
�

m
2πiΔtℏ

�3
2

Z
d3x0e

im
2ℏΔtðx−x0Þ2−iΔtℏUðxÞþ i

ℏðx−x0Þaðxþx0
2
Þψðx0;tÞ;

ðA7Þ

with a small jump in space, u ¼ x − x0 ¼ Oð ffiffiffiffiffiffi
Δt

p Þ. The
expansion in u up to OðΔtÞ,

ψðx; tþ ΔtÞ ¼
�

m
2πiΔtℏ

�3
2

Z
d3ue

im
2ℏΔtujðδjk−Δt

m∂kajÞyk

×

�
1 −

i
ℏ
UðxÞ þ i

ℏ
uaðxÞ − 1

2ℏ2
½yaðxÞ�2

�

×

�
1 − y∂þ 1

2
ðy∂Þ2

�
ψðx; tÞ

¼
�
1þ Δt

2m
∂aþ i

ℏΔt
2m

Δ −
i
ℏ
ΔtU

þ Δt
m

a∂ − i
Δt
2mℏ

a2
�
ψðx; tÞ; ðA8Þ

reproduces
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iℏ∂tψ ¼
�
−
ℏ2

2m

�
∂ −

i
ℏ
a

�
2

þU

�
ψ : ðA9Þ

The expression (A6) is to be compared with a particular
Markov process in imaginary time, and Eq. (A7) describes
the last time step. The leading term of the expansion for
small jump u which gives the Fokker-Planck equation for
Markov processes is (A8) and (A9) in the present case.
The generalization of the derivation of the equation of

motion for the density matrix is straightforward. Since the
derivative coupling to the vector potential and in the friction
terms have different origins, one should allow different
types of point splitting in these terms. Thus, we introduce
the dimensionless parameters of the regularization η, ην, ηd,
and ηξ and write the sum of the Lagrangian (4) and (5)
with c1 ¼ c2 ¼ c3 ¼ 0 for two consecutive coordinates
xðtþ ΔtÞ ¼ x and xðtÞ ¼ x0 for finite cutoff Δt as

L ¼ m
Δx
Δt

Δxd
Δt

−mω2xxd − UðxþÞ þUðx−Þ

−mνxðηνÞd
Δx
Δt

−mνdxðηdÞ
Δxd
Δt

þ
�
Δx
Δt

þ 1

2

Δxd
Δt

�
a

�
xðηÞ þ xðηÞd

2

�

−
�
Δx
Δt

−
1

2

Δxd
Δt

�
a

�
xðηÞ −

xðηÞd

2

�

− imξxðηÞd
Δxd
Δt

þ i
d0
2
xd2 þ i

d2
2

�
Δxd
Δt

�
2

ðA10Þ

by the help of the intermediate points xðηÞ ¼ð1−ηÞxþηx0.
The use of the notation f� ¼ fðx�Þ, f ¼ ðfþ þ f−Þ=2,
fd ¼ fþ − f−, and ∇� ¼ ∂=∂x� leads to the single time
step evolution for the reduced density matrix:

ρðx̂; tþ ΔtÞ ¼
�

m
2πΔtℏ

�
3

e−
Δt
ℏ ðimω2xxdþd0

2
xd2þiUdÞ

Z
d3yd3yd exp

	
i
ℏ

�
m
Δt

yyd

þmνðxd þ ηνydÞyþmνdðxd þ ηdydÞyþ imξðxd þ ηξydÞyd þ i
d2
2Δt

yd2

−
�
yþ yd

2

�
a

�
xþ ηyþ xd þ ηyd

2

�
þ
�
y −

yd
2

�
a

�
xþ ηy −

xd þ ηyd
2

��


×

�
1þ

X
σ¼�

yσ∇σ þ
1

2

�X
σ¼�

yσ∇σ

�
2
�
ρðx̂; tÞ: ðA11Þ

The Gaussian integral is easy to carry out, yielding

∇Utρ ¼
	
i
ℏ
m
∇Ax∇Ad þ

��
d2
m

ν − ξ

�
ixd − νdx

�
∇Ax − νxd∇Ad þ

ℏd2
2m2

ΔAx þ U


ρ

U ¼ −
d0 þ d2ν2 − 2mνξ

2ℏ
xd2 −

i
ℏ
mðω2 þ ννdÞxdx − ηdνd − ηννþ

�
1 −

η

2

��
i
d2
2m2

∇xad −
1

m
∇xa

�
ðA12Þ

in the continuum limit Δt → 0, where the covariant deriv-
atives are defined by Eq. (11). Gauge invariance requires the
suppression of the last term, leading to the midpoint
prescription for the gauge field η ¼ 1=2, the conservation
of the total probability imposes the condition ην ¼ ηd ¼ 0,
leaving ηξ arbitrary, and, finally, translation invariance of the
environment sets ω ¼ νd ¼ 0, resulting in Eq. (8).

3. Ideal gas environment

In the case of a large, many-body environment, the
coordinate y is replaced by a field, and it is easy to find the
perturbative series for the influence functional by expand-
ing in the system-environment and the internal environment
interactions. The former is spelled out in Ref. [53], where
the effective action of a test particle interacting with a
nonrelativistic ideal gas is considered, and the latter can be

taken into account by the standard perturbation expansion
within the environment. Such a perturbative scheme is
especially well suited to a large environment which remains
in equilibrium during the interaction with a small system.
The general argument leading to the effective Lagrangian

(6) can be realized in a simple model, namely, a test particle
moving in an arbitrary potential UðxÞ and interacting with
an ideal gas,

Ss½x� ¼
Z

dt

�
m
2
_x2ðtÞ − UðxÞ

�
;

Se½x;ψ†;ψ � ¼
Z

dtd3yψ†ðt; yÞ
�
iℏ∂t þ

ℏ2

2m
Δy

þ μþ Vðy − xðtÞÞ
�
ψðt; yÞ; ðA13Þ
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where μ denotes the chemical potential, and the static
potential

VðxÞ ¼
Z

d3q
ð2πÞ3 e

iqxV jqj ðA14Þ

describes the test particle-gas interaction. The OðVÞ and
Oð∂2t Þ influence functional yields Eq. (6) [53] with

δm ¼ 1

12π2

Z
∞

0

dqq4V2
q∂

2
iωD

n
0;q;

k ¼ −
1

6π2

Z
∞

0

dqq4V4
q∂iωD

f
0;q;

d0 ¼ −
1

6π2

Z
∞

0

dqq4V2
qDi

0;q;

d2 ¼
1

12π2

Z
∞

0

dqq4V2
q∂

2
iωD

i
0;q; ðA15Þ

in terms of the propagatorDσ;σ0 ðx;yÞ¼−iℏTr½ψσðxÞψ†
σ0 ðyÞρ�

of the gas particles, yielding Dn
ω;k ¼ P1=ðω − ϵkÞ, where

P stands for the principal value prescription, Df
ω;k ¼

−iπδðω − ϵkÞ, and Di
ω;k ¼ −iπδðω − ϵkÞð1þ 2ξnkÞ in

the momentum space, where ϵk ¼ ℏ2k2=2mg, nk ¼
ξ=ðeβðϵk−μÞ − ξÞ for a gas of temperature Te ¼ 1=kBβ and
exchange statistics ξ ¼ �1.
The quantum-fluctuation-induced temperature [36]

reduces to kBTq ¼ ℏd0=2mν in the universal, infinitesimal
system-environment interaction limit. The ratio

ℏd0
2mν

¼ ℏ
R∞
0 dqq4jVqj2Gi

0q

2
R∞
0 dqq4jVqj2∂iωGf

0q

ðA16Þ

can easily be calculated:

ℏd0
2mν

¼
m2

πℏ3β

R
∞
0 dqjVqj2 q3

1þeβð
ℏ2q2

8m −μÞ

m2

πℏ3
R∞
0 dqjVqj2 q3

1þeβð
ℏ2q2

8m −μÞ

ðA17Þ

and indicates kBTq ¼ 1=β. We find thereby a thermal
equilibrium between the relaxed state of the test particle
and the infinitely large environment, providing a simple,
generic model of thermalization in closed quantum
systems.
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