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We consider a system of two cavities separated by a reflecting boundary of finite mass that is free to
move and bounded to its equilibrium position by a harmonic potential. This yields an effective mirror-field
interaction, as well as an effective interaction between the field modes mediated by the movable boundary.
Two massless scalar fields are defined in each cavity. We consider the second-order interacting ground state
of the system, that contains virtual excitations of both mirror’s degrees of freedom and of the scalar fields.
We investigate the correlation functions between field observables in the two cavities and find that the
squared scalar fields in the two cavities, in the interacting ground state, are anticorrelated. We discuss the
dependence of the correlation on the distance of the two points considered from the mirror’s average
position and on its mass and oscillation angular frequency. These results show a sort of communication
between the two half-spaces separated by the movable mirror, mediated by its position fluctuations.
Observability of this new phenomenon exploiting two- or many-body dispersion interactions between
polarizable bodies is discussed. The dependence on a cutoff frequency introduced to regularize the
frequency integrations, as well as the case of a real conductor, are also discussed.
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I. INTRODUCTION

In quantum field theory, the presence of a dielectric or
reflecting boundary affects the structure of the field modes
and can change the expectation values of several local field
observables, for example the field energy density, spatial
field correlations or dispersion interactions [1–4]. This has
relevant observable consequences, for example changes in
the spontaneous emission rate of an atom and atom-surface
Casimir-Polder interactions [1,5,6]. In the case of an
infinite flat, perfectly reflecting and static mirror, it is well
known that the boundary separates the space into two
independent half-spaces. In such cases, the mirror is usually
treated as an assigned boundary condition on the field
operators. In this paper, we will show that the situation
significantly changes if the boundary has a finite mass and
it is allowed to move, because correlations between field
quantities evaluated in the two half-spaces exist. Inclusion
of the motion of a boundary is at the basis of quantum
optomechanics [7,8] and dynamical Casimir effect [9–11].
In the context of the dynamical Casimir effect, the mirror’s
motion is prescribed from the outside, and it is usually
included in the formalism in the form of a time-dependent
boundary condition on the relevant field operators; the
mechanical degrees of freedom are not dynamical variables

of the system. On the contrary, another type of systems
investigated in the literature, for example in quantum
optomechanics, treats the mirror as a quantum system with
its mechanical degrees of freedom [12], thus allowing
typical quantum effects such as quantum fluctuations of its
position. As we shall discuss below, in this paper we adopt
this second point of view by including the wall’s mechani-
cal degrees of freedom in the Hamiltonian description of
our system. A model Hamiltonian describing a quantum
field in the presence of a movable boundary of finite mass,
bound to its equilibrium position by a harmonic potential,
has been introduced in Refs. [12,13]. This effective
Hamiltonian has been used to evaluate the field energy
density change near the fluctuating boundary, as well as
corrections to the Casimir force [14,15] and radiation
pressure effects on a two-mirror system [16]. These
quantum effects become more and more relevant the
smaller the mirror mass is [14], and in modern quantum
optomechanical experiments it can be reduced even to
values of the order of 10−21 Kg [8,17]. Also, the changes of
the field energy density, with respect to the fixed-wall case,
are larger in the very proximity of the movable wall since
the virtual quanta emitted by the movable wall are localized
near its position due to the energy-time uncertainty relation
[14]. Internal degrees of freedom of a boundary have
been considered also in the case of a moving dielectric
membrane [18], within microscopic models of the*roberto.passante@unipa.it
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boundary [19,20] and in connection with dissipative
dynamics of a movable particle coupled to a field [21].
In this paper, we consider a system of two cavities

separated by a movable perfectly reflecting wall of a finite
mass and bound to its equilibrium position by a harmonic
potential. Two massless one-dimensional scalar fields are
considered in the two cavities, each of them interacting
with the movable mirror separating the two cavities. Even if
our model is one-dimensional, we expect that the qualita-
tive features of the results obtained should be representative
of what happens in a more realistic three-dimensional case,
similarly to the case of the field energy density studied in
Ref. [15] for the 3D scalar field. We use the names cavity
and wall also for our one-dimensional case, following a
common use in the relevant literature. Our interest is
investigating how the fluctuating motion of the movable
mirror affects local field properties in the two cavities in the
ground state of the system. In Ref. [22] we considered the
dynamical self-dressing of the movable wall starting from a
nonequilibrium state, in particular the time-dependent
energy shift. We found that, up to second order in the
wall-field interaction, the self-dressing process is the same
of the single-cavity case and thus the two cavities do not
influence each other at second order; we argued that the two
half-spaces influence each other starting from fourth order
in the coupling; a change of the Casimir force between the
two fixed walls, mediated by the movable wall, is therefore
expected at the fourth order. Here we address a different
problem; specifically, we investigate the correlation func-
tions between two field observables in the two cavities. We
find that they can start also from the second order, showing
a sort of influence (correlation) between the two half-spaces
mediated by the perfectly reflecting movable wall. We also
discuss how this new effect could be observed exploiting
Casimir-Polder interactions between polarizable bodies.
We first generalize the mirror-field interaction

Hamiltonian mentioned above and first introduced in
Ref. [12] to the present two-cavity case and then evaluate
by second-order perturbation theory the interacting ground
state of the system, that contains virtual excitations of the
fields in the cavities and of the mirror (phonons).
Successively, we compute expectation values on the ground
state of relevant correlation functions of local field observ-
ables in the two cavities. In the frequency integrations, we
introduce an appropriate exponential regularization function
in order to cure ultraviolet divergences. We find that the
correlation between the scalar fields in the two cavities
vanishes, and indeed this happens at any order in the wall-
field coupling, within the limits of our Hamiltonian model
(essentially in the hypothesis of small displacements of the
movable wall). We thus evaluate other correlation functions
between field observables in the two cavities.
We find that a nonvanishing spatial anticorrelation

between the squared fields in the two cavities exists and
explicitly evaluate its distance dependence. This relevant

feature is not present in the case of a fixed wall and sharply
distinguishes our trembling wall case from the usual fixed-
wall case, even for ideal mirrors. The squared field operator
is an important observable, since the field energy density is
for example obtained from the square of the field and of its
derivatives. We discuss the dependence of such correlation
from the relevant physical parameters, in particular mass
and binding frequency of the movable wall, distance of the
two points from the movable wall, as well observability of
this phenomenon through retarded Casimir-Polder inter-
actions between two polarizable bodies placed at the
two sides of the movable wall. We also show that for
the relevant distance scales considered (i.e. larger than the
wavelength associated to the cutoff frequency), our results
are quite independent from the cutoff frequency and that the
contribution of high-frequency modes is negligible. We
also consider, in the case of a movable real wall made of a
metal with a finite plasma frequency, the effect on the
correlation functions considered due to the high-frequency
modes delocalized among the two half-spaces. Possible
relevance of our findings on correlations of observables
evaluated at the two sides of a fluctuating event horizon (as
supposed in quantum gravity theories) is also mentioned.
This paper is organized as follows. In Sec. II we

introduce our two-cavity system and its Hamiltonian,
describing an effective wall-field interaction, and obtain
by perturbation theory the interacting ground state of the
system. In Sec. III we evaluate the expectation value on this
state of relevant field quantities, specifically the spatial
correlation function between points in the two cavities of
the squared field; we find that an anticorrelation exists and
we discuss its main physical features. Section IV is devoted
to our conclusive remarks.

II. THE TWO-CAVITY SYSTEM

Our physical system is constituted by two ideal cavities,
separated by a movable perfectly conducting mirror of
mass m and bounded to its equilibrium position x ¼ L0

by a harmonic potential of frequency ω0. The two fixed
mirrors have positions x ¼ 0 and x ¼ 2L0. Two massless
scalar quantum fields are defined in the two half-spaces
separated by the movable mirror. For simplicity, we here
consider a one-dimensional model. The situation is shown
in Fig. 1. The mechanical degrees of freedom of the
movable mirror are treated quantum mechanically, and
the mirror is described as a quantum harmonic oscillator
of frequency ω0; we label with b and b† its annihilation
and creation operators, respectively. Also, we respectively
label with ap and a†p the bosonic annihilation and creation
operators of the massless scalar field on the left cavity
(0 < x < L0) and with cr and c

†
r those for the cavity on the

right (L0 < x < 2L0); all these operators refer to the field
modes relative to the equilibrium position L0 of the
movable wall. For a single cavity, and in the hypothesis
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of small displacement of the movable wall from its
equilibrium position, the system can be described on the
basis of an effective interaction. This Hamiltonian was first
introduced by Law for a single cavity with a movable
mirror, in terms of field modes relative to the equilibrium
position of the movable boundary [12,13]. The Law
Hamiltonian, describing the effective mirror-field interac-
tion, is linear in the mirror coordinates and bilinear in the
field coordinates and yields an effective wall-field inter-
action, as well as an effective interaction between the field
modes, mediated by the movable mirror. This Hamiltonian
follows from a field quantization with a movable wall,
bounded to an equilibrium position, assuming that it
undergoes small displacements, and it is completely
expressed in terms of bosonic operators relative to its
equilibrium position. It was originally developed for the
one-dimensional case [12], but it can be easily generalized
to the three-dimensional case [15]. In order to avoid
cumbersome calculations involving discrete summations
over the modes in the three dimensions, not essential for
our aims, we limit the present investigation to the one-
dimensional case only, that already contains all the relevant
elements we are interested in.
Our first step is to generalize the Law Hamiltonian to our

two-cavity scenario. This is quite immediate: we quantize
the two scalar fields in the two half-spaces with respect to
the equilibrium position x ¼ L0 of the mobile wall and take
into account that if a movable wall’s displacement in one
direction makes shorter one cavity, it makes longer the
other cavity. For some general preliminary considerations
of this two-cavity system, see also Ref. [22]. Our
Hamiltonian including the effective interaction of the
movable wall with the two scalar fields is then of the form
H ¼ H0 þHI , with the unperturbed term

H0 ¼ ℏω0b†bþ ℏ
X
k

ωka
†
kak þ ℏ

X
k

ωkc
†
kck; ð1Þ

and the interaction term HI ¼ H1
I þH2

I , where H
1
I and H2

I
are, respectively, the effective interaction Hamiltonians
between the movable wall and the scalar field in the left
(1) and right (2) half-spaces. These interaction terms are
given by

H1
I ¼ −ðbþ b†Þ

X
kj

C1
kjN½ðaj þ a†jÞðak þ a†kÞ�;

H2
I ¼ −ðbþ b†Þ

X
kj

C2
kjN½ðcj þ c†jÞðck þ c†kÞ�; ð2Þ

where N is the normal ordering operator and the coupling
constants are given by

C1
kj ¼ ð−1Þjþk

�
ℏ
2

�
3=2 1

L0

ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffi
ωjωk

ω0

r
; ð3Þ

C2
kj ¼ −C1

kj; ð4Þ

with ωk ¼ ck. The coupling constants C1
kj and C2

kj have an
opposite sign since, when the wall moves from its equi-
librium position, the sign of its displacement is opposite for
the two cavities. This Hamiltonian holds for small displace-
ments of the movable wall around its equilibrium position
L0, and it is the immediate generalization to our two-cavity
case of the Hamiltonian introduced in Ref. [12] and
discussed before. It is quadratic in the annihilation and
creation operators relative to the two half-spaces, and its
structure immediately yields an effective interaction
between the field modes (that are independent in the usual
case of fixed cavity walls).
A generic eigenstate of the unperturbed Hamiltonian H0

will be labeled as

jnwall; fn1g; fn2gi; ð5Þ

where the first item nwall denotes the number of excitations
in the mirror (phonons) while fn1g and fn2g denote,
respectively, a complete set of occupation numbers of
the field modes of the first and of the second cavity.
The unperturbed ground state is thus jgi ¼ j0; f0g; f0gi,
with unperturbed energy Eg ¼ 0.
We can now obtain the first- and second-order corrections

to the ground state, due to the mirror-field interaction, by
stationary perturbation theory. The first-order correction is

jgð1Þi ¼
X
jk

C1
kj

ℏðω0 þ ωj þ ωkÞ
j1; f1j1kg; f0gi

þ
X
jk

C2
kj

ℏðω0 þ ωj þ ωkÞ
j1; f0g; f1j1kgi; ð6Þ

FIG. 1. The two-cavity system: two fixed ideal mirrors at x ¼ 0
and x ¼ 2L0, separated by an ideal movable mirror with its
equilibrium position at x ¼ L0. In this paper, we consider a one-
dimensional case for the two cavities.
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which contains stateswith onemirror excitation and a pair of quanta in one of the two cavities. These are virtualmirror and field
excitations, of course.
The second-order correction is given by the sum of several terms, that, for convenience of notation, we arrange in the

following form:

jgð2Þi ¼ jgð2Þ1 i þ jgð2Þ2 i þ jgð2Þ11 i þ jgð2Þ2w i; ð7Þ

jgð2Þ1 i ¼
X
jkl

4

ℏ2ðω0 þ ωj þ ωkÞðωl þ ωjÞ
½C1

jkC
1
lkj0; f1l1jg; f0gi þ C2

jkC
2
lkj0; f0g; f1l1jgi�; ð8Þ

jgð2Þ2 i ¼
X
jklm

1

ℏ2ðω0 þ ωj þ ωkÞðωj þ ωk þ ωl þ ωmÞ
½C1

jkC
1
lmj0; f1j1k1l1mg; f0gi þ C2

jkC
2
lmj0; f0g; f1j1k1l1mgi�; ð9Þ

jgð2Þ11 i ¼
X
jklm

�
C1
jkC

2
lm

ℏ2ðω0 þ ωj þ ωkÞðωj þ ωk þ ωl þ ωmÞ
þ C1

jkC
2
lm

ℏ2ðω0 þ ωl þ ωmÞðωj þ ωk þ ωl þ ωmÞ
�
j0; f1j1kg; f1l1mgi;

ð10Þ

while jgð2Þ2w i are terms with two mirror’s excitations, that do
not contribute to the expectation values we will evaluate in
the next section, and thus we do not explicitly write
them down.
The normalized corrected ground state assumes thus the

form

jg̃i ¼
�
1 −

1

2
Λ2

�
j0; f0g; f0gi þ jgð1Þi þ jgð2Þi; ð11Þ

where Λ is a normalization factor obtained, in second-order
perturbation theory, from

Λ2 ¼
X
jk

ðC1
jkÞ2 þ ðC2

jkÞ2
ℏ2ðω0 þ ωj þ ωkÞ2

: ð12Þ

In the next section, wewill evaluate the expectation value
on the corrected ground state (11) of correlation functions
between field observables evaluated at different points of
the two cavities.

III. CORRELATION FUNCTIONS OF FIELD
OBSERVABLES IN THE TWO CAVITIES

In this section we evaluate, on the corrected ground state,
the correlation functions of field observables in the two
half-spaces and discuss their observability through
dispersion interactions, as well as the role of (delocalized)
high-frequency modes.

A. Correlation functions and regularization

The operators of the massless 1D scalar fields in the two
cavities are

ϕðx1Þ ¼
ffiffiffiffiffiffiffiffi
ℏc2

L0

s X
k

sinðkkx1Þffiffiffiffiffiffi
ωk

p ðak þ a†kÞ; ð13Þ

ϕðx2Þ ¼ −

ffiffiffiffiffiffiffiffi
ℏc2

L0

s X
k

sinðkkx2Þffiffiffiffiffiffi
ωk

p ðck þ c†kÞ; ð14Þ

where x1 is a point in the region ð0; L0Þ (left cavity) and x2
in the region ðL0; 2L0Þ (right cavity). The possible values of
kk are those allowed by the boundary conditions, that is,
kk ¼ nkπ=L0, with nk ¼ 1; 2;…. In Eq. (14), we have
taken into account that sin½kkð2L0 − x2Þ� ¼ − sinðkkx2Þ.
All quantities in Eqs. (13) and (14) are referred to the
equilibrium position of the movable wall [12].
We aim to evaluate relevant correlations between field

observables in the two cavities over the interacting ground
state (11). Using Eqs. (6), (7), and (11) and the expressions
above of the field operators, it is immediate to see that

hg̃jϕðx1Þϕðx2Þjg̃i − hg̃jϕðx1Þjg̃ihg̃jϕðx2Þjg̃i ¼ 0: ð15Þ

It is easy to see that the vanishing of the correlation function
(15) is valid at any order of perturbation theory, as a
consequence of the fact that the effective Hamiltonians (2)
are quadratic in the field annihilation and creation oper-
ators. This means that the field operators in the two cavities
are not correlated.
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We can now evaluate the correlation of the squared
fields, that is a very important local field observable, being
also related to the field energy density and to the interaction
of the field with test bodies (as we will discuss later on in
this section)

Cðx1;x2Þ¼ hg̃jϕ2ðx1Þϕ2ðx2Þjg̃i− hg̃jϕ2ðx1Þjg̃ihg̃jϕ2ðx2Þjg̃i:
ð16Þ

After a lengthy algebraic calculation, we finally find

Cðx1; x2Þ ¼ −
ℏ3c4

L4
0mω0

X
pqrs

ð−1Þpþqþrþs

×

�
sinðkpx1Þ sinðkqx1Þ sinðkrx2Þ sinðksx2Þ

ðω0 þ ωp þ ωqÞðω0 þ ωr þ ωsÞ

þ
�
sinðkpx1Þ sinðkqx1Þ sinðkrx2Þ sinðksx2Þ
ðω0 þ ωp þ ωqÞðωp þ ωq þ ωr þ ωsÞ

þ ðx1 ↔ x2Þ
��

; ð17Þ

where the first term comes from first-order processes with a
pair of virtual photons emitted in one of the two cavities
while the second term (inside square brackets) comes from
second-order processes with two pairs of virtual photons,
one pair in each cavity.
In order to explicitly evaluate the correlation (17), we

now consider the continuum limit by taking L0 → ∞, thus
recovering the case of a single trembling mirror in the
vacuum space separating two infinite half-spaces. In this
limit, the sums over k in Eq. (17) become integrals over the
continuous variables ki ¼ ωi=c (i ¼ p, q, r, s), by usingP

k → ðL0=2πÞ
R
dk; we also rescale these variables with

respect to k0 ¼ ω0=c: kp ¼ p̄k0, kq ¼ q̄k0, kr ¼ r̄k0, and
ks ¼ s̄k0, with p̄, q̄, r̄, and s̄ dimensionless continuous
variables running from 0 to ∞.
In the continuum limit, the sums in Eq. (17) relative to

the first cavity (0 ≤ x1 ≤ L0) yield quantities of the
following form:

X
p

ð−1Þp sinðkpx1ÞfðkpÞ

¼
X
p

cosðkpL0Þ sinðkpx1ÞfðkpÞ; ð18Þ

where fðkpÞ is a regular function and we have used kp ¼
pπ=L0 (p integer). If we then take

P
p → ðL0=2πÞ

R
∞
0 dkp,

the quantity in Eq. (18) becomes

1

2

L0

2π

Z
∞

0

dkpfðkpÞ½sinðkpðx1 þ L0ÞÞ − sinðkpðL0 − x1ÞÞ�:

ð19Þ

Taking into account that the first term in the integral in
Eq. (19) is rapidly oscillating at a finite distance from the
movable wall, while the second term is slowly varying for
x1 ∼ L0, we can neglect the first term and keep only the
second one. Similar considerations apply also for the second
cavity (L0 ≤ x2 ≤ 2L0). We also introduce the two scaled
(dimensionless) distances from the movable wall:

d1 ¼ k0ðL0 − x1Þ; d2 ¼ k0ðx2 − L0Þ: ð20Þ

After some algebra, the correlation function (17) thus
becomes

Cðd1; d2Þ ¼ −
ℏ3ck0

24ð2πÞ4m
�Z Z

dp̄dq̄
sinðp̄d1Þ sinðq̄d1Þ

1þ p̄þ q̄

Z Z
dr̄ds̄

sinðr̄d2Þ sinðs̄d2Þ
1þ r̄þ s̄

þ
�Z Z Z Z

dp̄dq̄dr̄ds̄
sinðp̄d1Þ sinðq̄d1Þ sinðr̄d2Þ sinðs̄d2Þ

ð1þ p̄þ q̄Þðp̄þ q̄þ r̄þ s̄Þ þ ðd1 ↔ d2Þ
��

: ð21Þ

All integrals in Eq. (21) extend from 0 to ∞, and an
appropriate regularization scheme is necessary to deal with
the high-frequency field modes. Also, even if our model
considers the idealized case of a perfectly reflecting
boundary, a regularization of the frequency integrals is
necessary to take into account the properties of a real metal
boundary, that becomes transparent for frequencies larger
than the plasma frequency of the material. From a physical
point of view, we however expect that the contribution of
high-frequency modes becomes negligible at large distan-
ces from the boundary. We will address in more detail this

important point, and its physical consequences in the case
of a real metal, in the subsequent part of this paper.
We now introduce in Eq. (17) a regularization function

for each kv integration (v ¼ p, q, r, s) in the form of an
exponential function e−kv=kM , with kM a regularization
scale factor. For a real metal, it can be set of the order of
ωp=c, with ωp the metal plasma frequency [23]. In the
first term in the right-hand side of Eq. (21), the four
integrals are factorized in two double integrals. Such
integrals are in terms of the scaled variables previously
introduced, and the exponential regularization function
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assumes the form e−μv̄ ðv̄ ¼ p̄; q̄; r̄; s̄Þ for each integration
variable, with μ ¼ ðkM=k0Þ−1; the double integrals take
then the form

IμðdÞ ¼
Z

∞

0

Z
∞

0

drds
sinðrdÞ sinðsdÞ

1þ rþ s
e−μre−μs: ð22Þ

The limit μ → 0 ðωp → ∞Þ restores the case of a perfectly
reflecting boundary. This integral can be evaluated ana-
lytically, and, after some algebra and extensive use on
integral tables [24], we obtain

IμðdÞ ¼
1

4

�
eμ−idE1ðμ− idÞ

�
1

id
þ 1

�

þ eμþidE1ðμþ idÞ
�
−1
id

þ 1

��
−
1

2

μ

μ2 þ d2
; ð23Þ

where E1ðzÞ is related to the analytic continuation of the
exponential integral function to the complex plane, with
E1ðxÞ ¼ −Eið−xÞ for x real [25]. In the limit μ → 0
(kM → ∞, that is a perfect mirror), Eq. (23) reduces to

Iμ¼0ðdÞ ¼
1

2

�
fðdÞ
d

þ gðdÞ
�
; ð24Þ

where fðxÞ ¼ ciðxÞ sinðxÞ þ siðxÞ cosðxÞ and gðxÞ ¼
−ciðxÞ cosðxÞ − siðxÞ sinðxÞ are the auxiliary functions
of the sine-integral and cosine-integral functions, respec-
tively [25].

We are mainly interested in the case d ≫ 1, that is,
distances from the movable wall much larger than c=ω0.
In this limit case, we can approximate Eq. (23) using the
asymptotic expansion of the exponential integral function
[24], taking also into account that μ ¼ ω0=ωM ≪ 1 for
typical values of the mirror’s oscillation frequency
(ω0 ∼ 105 s−1) and of the plasma frequency(ωM ∼ ωp≃
1.4 × 1016 s−1 for gold). For d ≫ 1 and μ ≪ 1, using the
asymptotic relation ezE1ðzÞ ≃ 1

z [25], we get

IμðdÞ ≃
1

2

1

μ2 þ d2
≃

1

2d2
: ð25Þ

Equation (25) also shows that the frequency integration, in
the limits considered, is scarcely dependent from the ultra-
violet cutoff μ and that the contribution of high-frequency
modes to the integral is negligible, as indeed expected from
physical grounds.
The integrals in the second term of Eq. (21) cannot be

factorized, and after some algebraic manipulation the four
frequency integrals, after introducing en exponential cutoff
function, can be cast in the following form:

Iμðd1; d2Þ ¼
Z

∞

0

Z
∞

0

Z
∞

0

Z
∞

0

dpdqdrdse−μðpþqþrþsÞ

×
sinðpd1Þ sinðqd1Þ sinðrd2Þ sinðsd2Þ

ð1þ pþ qÞðpþ qþ rþ sÞ : ð26Þ

After some algebra, we finally obtain

Iμðd1; d2Þ ¼
1

8

Z
∞

0

dv
e−μv

1þ v

�
sinðvd1Þ

d1
− v cosðvd1Þ

��
evðμþid2ÞE1ðvðμþ id2ÞÞ

�
i
d2

þ v

�

þ evðμ−id2ÞE1ðvðμ − id2ÞÞ
�
−i
d2

þ v

��
−
1

4

Z
∞

0

dv
ve−μv

1þ v

�
sinðvd1Þ

d1
− v cosðvd1Þ

�
: ð27Þ

In the limit μ → 0, using gðzÞ � ifðzÞ ¼ E1ð∓izÞe∓iz

[25], Eq. (27) reduces to

Iμ¼0ðd1; d2Þ ¼
1

4

Z
∞

0

dv
v2

1þ v

�
sinðvd1Þ
vd1

− cosðvd1Þ
�

×

�
fðvd2Þ
vd2

þ gðvd2Þ
�
: ð28Þ

The integral (27) must be evaluated numerically. As
before, we consider the case of large distances (compared
to k−10 ) from the movable wall, d1, d2 ≫ 1, and cutoff
frequency much larger than ck0, that is, μ ≪ 1. In this case,
using the same asymptotic expansion of E1ðzÞ used for
Eq. (23), we easily obtain

Iμðd1; d2Þ ≃
1

8

1

μ2 þ d21

1

μ2 þ d22
≃

1

8d21d
2
2

: ð29Þ

Similarly to the previous integral, this shows that, in the
limits considered, the integral is quite independent from the
cutoff frequency, and the contributions of high-frequency
modes are negligible, consistently with our nonrelativistic
treatment. The correlation function between the squared
fields is thus

Cðd1; d2Þ ¼ −
ℏ3ck0

24ð2πÞ4m ðIμðd1ÞIμðd2Þ þ Iμðd1; d2ÞÞ

≃ −
ℏ3ck0

25ð2πÞ4m
1

d21d
2
2

: ð30Þ
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In terms of nonscaled distances from the mobile wall
x̃1;2 ¼ d1;2k−10 ¼ d1;2c=ω0, it becomes

Cðx̃1; x̃2Þ ¼ −
ℏ3c4

25ð2πÞ4
1

mω3
0

1

x̃21x̃
2
2

: ð31Þ

Equation (31) shows that the squared fields at the two
sides of the reflecting mirror are anticorrelated, even if they
are independent fields and there is not any direct interaction
between them. This correlation is entirely ascribable to
their mutual interaction with the movable wall, that allows a
sort of influence between the two half-spaces, even in the
vacuum state. The negative sign of Cðx̃1; x̃2Þ in Eq. (31)
shows that the squared fields are indeed anticorrelated; this
sign can be understood from a physical point of view, by
considering that the two field-mirror coupling constantsC1

kj

and C2
kj have an opposite sign, and thus when the position

of the mirror fluctuates in one direction, the modes of one
cavity are blueshifted while those of the other cavity are
redshifted.
If we take the two points considered at the same distance

from the mirror’s equilibrium position on the opposite side,
x̃1 ¼ x̃2 ¼ x, Eq. (31) yields that at large distance from the
movable wall the (anti)correlation between the squared
field scales with the distance as x−4. It also depends as 1

mω3
0

from the mass and oscillation frequency of the movable
wall. This means that the smaller the mirror’s mass and
oscillation frequency are, the larger the effect we find is. In
modern optomechanics experiments, a typical oscillation
frequency is of the order of 105 Hz, but also higher
frequencies can be obtained, and a mass as low as
10−21 Kg can be achieved [8]. However, we wish to stress
that our results above show that a correlation between the
squared fields at the opposite sides of the movable mirror
exists at any distance from it.
Using Eqs. (22), (23), (26), and (27) in Eq. (21), we

obtain the expression for the correlation function for points
at any distance from the movable mirror, with the only
condition, as discussed later on, x̃1;2 ≫ c=ωpl:

Cμðd1; d2Þ ¼ −
ℏ3ck0

24ð2πÞ4m ½Iμðd1ÞIμðd2Þ

þIμðd1; d2Þ þ Iμðd2; d1Þ�; ð32Þ

where in the left-hand-side term we have explicitly indi-
cated the dependence on the regularization parameter μ.
The integral in Eq. (27) can be obtained numerically.

B. Observability through dispersion interactions

Observability of the spatial correlation of the squared
field could be obtained exploiting the dispersion interaction
of the fluctuating field with a polarizable object A, that in
the far-distance (retarded) regime is usually proportional to

the square of the field at the polarizable-body position rA,
in the form

ΔE ¼ −
1

2
αAhϕ2ðrAÞi; ð33Þ

where the average value is taken on the dressed ground
state of the system and αA is the static polarizability of the
polarizable body A [26]. The relation above can be applied
in our case at a sufficiently large distance from the wall,
where only low-frequency field modes are relevant, as we
have shown; this is totally consistent with the well-known
results for the far-zone (retarded regime) Casimir-Polder
dispersion interaction between atoms or between an atom
and a conducting surface, where the dynamical polar-
izability can be replaced with its static value, because only
low-frequency modes contribute in the far zone. In fact, in
this case for x ≫ c=ωA (with ωA a main transition fre-
quency of the atom or polarizable body), only field modes
with ω ≪ ωA give a significant contribution to the
dispersion interaction energy, while the contribution of
higher-frequency modes is negligible [26,27].
The effect we find should therefore yield a correlation

between the dispersion interaction between the mirror and
two polarizable bodies A and B (ground-state atoms or
molecules, for example, in the electromagnetic case),
placed at the opposite sides of the movable reflecting wall,
as well as an atom-atom dispersion interaction mediated by
the trembling mirror. A joint measurement of the dispersion
force on A and B, and their correlation as a function of the
atom-mirror distance, should allow one to observe the
spatial correlation between the squared field in Eqs. (30)
and (31). This is also motivated by the fact that the movable
mirror acts as a third body interacting with the field, and
thus it is capable of modifying the radiation-mediated
interacting energy between the two polarizable bodies A
and B [28,29]. Another possible experimental observation
could result from three-body effects on the atom-atom
dispersion interaction between two atoms (or, in general,
polarizable bodies) A and B at one side of the wall due to a
third atom C placed on the other side of the wall. In fact, the
three-body component of the dispersion force on one atom,
say atom A, is related to a sort of interference between the
virtual field energy densities due to the two other atoms B
and C [28] or to the virtual field correlation at the location
of A and B, dressed by C [30]. For a fixed wall, atom C
cannot influence the interaction between A and B, while
in the present case of a movable wall it can: thus, a
measurement of the A − B interaction should keep trace of
the presence of C, even if it is placed on the opposite side of
the perfectly reflecting movable wall.

C. Contribution from high-frequency modes

As we mentioned in the introduction, in the case of a
static perfect mirror the two half-spaces are totally
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separated and uncorrelated, while a (anti)correlation
between the squared fields in the two half-spaces arises
if the mirror is allowed to move (even in the ground state).
Even if our main point is the conceptual aspect that the

two half-spaces can influence each other even for an ideal
mirror, if it is allowed to move, we wish to make here some
general considerations about the role of high-frequency
modes for a real static mirror, that becomes partially
transparent at high frequencies (larger than its plasma
frequency). In the case of a real static mirror, there is thus
some influence between the two half-spaces, both for the
field and the squared field, that involves only high-
frequency field modes, specifically those above the metal
plasma frequency ωpl. This effect can add up to the effects
we found for the movable mirror, the latter essentially due
to low-frequency modes. We wish here to discuss the
consequence of this consideration for our new results for
the movable perfect mirror.

For very high-frequency modes, ω ≫ ωpl, the mirror
separating the two cavities becomes transparent and these
modes are delocalized in the two cavities. The scalar field
operator is then approximately

ϕðxÞ ¼
X

k>ωpl=c

�
ℏc2

2Lωk

�
1=2

ðakeikx þ a†ke
−ikxÞ; ð34Þ

where L ¼ 2L0 is the distance between the two fixed cavity
walls and the sum must be taken only over the high-
frequency modes, that is, with frequencies higher than a
typical metal plasma frequency ωpl ¼ ckpl; they must also
satisfy the boundary conditions at the two fixed walls. A
simple calculation yields the following correlation function
on the vacuum state j0i:

Cf−staticðΔx ¼ x − x0Þ ¼ h0jϕðxÞϕðx0Þj0i − h0jϕðxÞj0ih0jϕðx0Þj0i ¼
X

k>ωpl=c

ℏc2

2Lωk
eikðx−x0Þ

¼ ℏc
2π

Z
∞

kpl

dk
cosðkðx − x0ÞÞ

k
¼ −

ℏc
2π

Ciðkplðx − x0ÞÞ; ð35Þ

where in the second line the continuum limit L → ∞ has been taken and CiðzÞ is the cosine integral function [25]. We will
discuss in more detail the meaning of Eq. (35) in the following of this section, after evaluation of the correlation of the
squared fields.
We now evaluate the free-space correlation of the squared field, due to the delocalized high-frequency modes with

ω > ωpl, and compare their role with the result previously obtained when the movable plate is present:

Csf−staticðΔx ¼ x − x0Þ ¼ h0jϕ2ðxÞϕ2ðx0Þj0i − h0jϕ2ðxÞj0ih0jϕ2ðx0Þj0i ¼ 2

�
ℏc2

2L

�
2
� X
k>ωpl=c

1

ωk
eikðx−x0Þ

�
2

: ð36Þ

In the continuum limit L → ∞ (free space), we get

Csf−staticðΔx ¼ x − x0Þ ¼ 2

�
ℏc2

2L

�
2

Ci2ðkplðx − x0ÞÞ: ð37Þ

The integrals (35) and (37) do not contain the cutoff
function because they are relative to an unbounded free
space, and, moreover, it should be noted that they converge,
except for x ¼ x0 [regime not relevant in our case, since we
are interested only in points such that kplðx − x0Þ ≫ 1].
We now analyze the results for the unbounded-space

correlations (35) and (37) (contribution of extremely high-
frequency modes where any real metal becomes trans-
parent), in comparison with our main results (15), (21) and
(31) in the presence of the fluctuating movable wall. Using
the asymptotic expansion of the sine integral function,
CiðyÞ ∼ cosðyÞ=y for y ≫ 1 [25], Eqs. (35) and (37) for
jx − x0j ≫ k−1pl reduce to

Cf−staticðx − x0Þ ≃ −
ℏc
2π

cos½kplðx − x0Þ�
kpljx − x0j ; ð38Þ

Csf−staticðx − x0Þ ≃ 2

�
ℏc
2π

�
2 cos2½kplðx − x0Þ�

½kplðx − x0Þ�2 : ð39Þ

Equation (38) shows that, in the case of an imperfect static
mirror, there is a nonvanishing vacuum correlation between
the fields at the two sides on the mirror, as indeed expected
by simple physical considerations, that however goes to
zero for high cutoff frequency and/or large distance
between the two points considered with fast space oscil-
lations yielding a vanishing average, while the contribution
(15) of the fluctuating motion of the movable mirror is zero,
within our approximations. However, what is more relevant
is the comparison between the correlation of the squared
field at large distances, i.e. Eq. (31) when the movable
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mirror is present and Eq. (39) in the case of a fixed
imperfect mirror. This latter comparison immediately
shows that the two expressions scale with a different power
of the unscaled distance (for large distances), that is, x̃−4

and x̃−2, respectively. Also, they have opposite sign. We
can evaluate their ratio jCðx̃; x̃Þj=Csf−staticð2x̃Þ, for simplic-
ity at two points at the same distance x̃ for the movable
mirror, with typical numerical values of the parameters
involved, m, ω0, and ωpl. From Eqs. (32) and (39), we find
the following expression of the ratio above:

jCðx̃; x̃Þj
Csf−staticð2x̃Þ

≃
ℏωpl

2

24π2mc2ω0

d2½ðIμðdÞÞ2 þ 2Iμðd; dÞ�; ð40Þ

with d ¼ x̃ω0=c, and the values of the functions IμðdÞ and
Iμðd; dÞ can be in general obtained numerically. Its value
depends on themass, oscillation and plasma frequency of the
movablewall, aswell as from the distance. The smallerm and
ω0, the larger the ratio (40) is. As an example, if we set
ω0 ¼ 104 s−1, ωpl ¼ 1.5 × 1016 s−1 (that is, the plasma
frequency of silver), we find that for m ¼ 10−23 Kg there
exists a large range of the scaled distance d, with x̃ ≫ c=ωpl

and x̃ ≪ c=ω0, for which the contribution to the correlation
due to the movable wall is comparable in size with the static
one due to the high-frequency modes for which the movable
wall becomes transparent. Also, the numerical evaluation of
the integrals in IμðdÞ and Iμðd; dÞ shows that these quantities
do not depend significantly from the cutoff frequency ωpl if
ωpl ≫ ω0 and x̃ ≫ c=ωpl, conditionverywell verified in any
realistic setup; thus, the high-frequency field modes have a
negligible role to the correlation Cμðd; dÞ induced by the
movement of thewall, coherentlywith our approach. In other
words, the effect of the trembling wall on the squared field
spatial correlations can exceed that of the modes above the
conductor’s plasma frequency for which the wall becomes
transparent, with appropriate choices of the relevant param-
eters of the movable wall; moreover, the sign of the
correlation function due to the trembling can be negative
(anticorrelation), while the “static” contribution of high-
frequency modes is always positive. However, we wish to
stress the conceptual relevance of our results showing that,
even for a perfect conductor, the wall’s quantum position
fluctuations allow the existence of correlations between
field observables at the opposite sides of the boundary.
Generalization to the more realistic case of the quantum
electromagnetic field in a three-dimensional space will be
considered in a future work.
Finally, we wish to mention that our results have some

resemblance to the case of Hawking radiation from a
fluctuating event horizon due to quantum gravity effects,
where a fuzzy event horizon of a black hole is present and
radiation is emitted by the fluctuating boundary [31,32];
also, our results might indicate the possibility that a
fluctuating event horizon could allow a correlation between

physical observables defined in the internal and external
regions of the horizon or across the cosmological event
horizon for an expanding Universe. We hope to investigate
this intriguing aspect in the near future.

IV. CONCLUSION

We have considered a system of two cavities separated by
a reflecting mirror that can fluctuate around its equilibrium
position, with two massless one-dimensional scalar fields
defined in the two half-spaces separated by themovablewall.
Assuming small displacements of the movable wall from its
equilibrium position, an effective field-mirror interaction
exists, as well an effective interaction between the field
modes mediated by the movable mirror; this generates
changes in global and local field quantities in the interacting
ground state, with respect to the fixed-wall case. A previous
work has shown that some quantities such as time-dependent
energy shifts, as well as field energy densities, do not display
influence between the two cavities up to the second order in
the wall-field effective coupling [22]. In this paper, we have
focused our attention to correlation functions between field
observables in the two cavities. We have calculated the
interacting ground state of this system at the second order of
the field-mirror effective interaction, that contains both field
and mirror virtual excitations. We have shown that although
the ground-state correlation function between the field
operators at opposite sides of the movable wall vanishes, a
nonvanishing anticorrelation between the squared fields
evaluated at the two sides of the mirror exists. We have
evaluated its dependence on the distance from the mirror’s
equilibrium position and its scaling from the mass and
oscillation frequency of the movable mirror. This clearly
shows a sort of communication between the two half-spaces,
mediated by the fluctuating boundary, even in the case of a
perfectly reflectingmirror. Possible observability of this new
effect has been also discussed, showing that in principle it can
measured exploiting the retardedCasimir-Polder interactions
between polarizable bodies placed at the opposite sides of the
movable wall. We have also shown that our results, at large
distances from movable wall, are quite insensitive to the
ultraviolet cutoff frequency and discussed also the case of a
real conductor characterized by its plasma frequency. We
stress that these new results could be relevant also in different
physical systems, such as quantum fields at the two sides of a
fluctuating event horizon of a black hole in quantum gravity
theories. Generalization to the three-dimensional case and to
the quantum electromagnetic field case will be the subject of
future publications.
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