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The exact elementary excitations in a typical U(1) symmetry broken quantum integrable system, that is
the twisted J; —J, spin chain with nearest-neighbor, next nearest neighbor, and chiral three spin

interactions, are studied. The main technique is that we quantify the energy spectrum of the system by the

zero roots of the transfer matrix instead of the traditional Bethe roots. From the numerical calculation and

singularity analysis, we obtain the patterns of zero roots. Based on them, we analytically obtain the ground

state energy and the elementary excitations in the thermodynamic limit. We find that the system also

exhibits the nearly degenerate states in the regime of # € R, where the nearest-neighbor couplings among

the z direction are ferromagnetic. More careful study shows that the competing of interactions can induce

the gapless low-lying excitations and quantum phase transition in the antiferromagnetic regime with

n€R+in.
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I. INTRODUCTION

Understanding the collective behavior in the one-
dimensional quantum many-body systems is a fascinating
and challenging issue. Due to the competition of some
kinds of interactions, many novel physical phenomena
are found, and new physical pictures are developed. The
exact solution can provide the benchmark of these new
theories [ 1-3]. The typical methods of seeking the exact solu-
tion are the coordinate [4] and algebraic Bethe ansatz [5—11],
as well as the T — Q relation [12,13]. These methods are
powerful when studying quantum integrable systems with
U(1) symmetry. However, if the U(1) symmetry is broken, it
is hard to construct a suitable reference state and to apply
these methods. On the other hand, based on the Yang-Baxter
equation and reflection equations, we can prove that there
indeed exist some quantum integrable systems without U(1)
symmetry. The next problem is how to solve them exactly.
Then many interesting methods such as gauge transforma-
tion [14], T — Q relation based on the fusion [15,16],
g-Onsager algebra [17,18], separation of variables [19,20],
modified algebraic Bethe ansatz [21-23], and off diagonal
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Bethe ansatz [24,25] have been developed. We should note
that the exact solutions of quantum integrable systems
without U(1) symmetry have many applications in non-
equilibrium statistical mechanics [26,27], topological phys-
ics [28,29], and high energy physics [30-34].

The next question is how to calculate the exact physical
quantities of the systems in the thermodynamic limit. The
difficulties come from the eigenvalues, and the associated
Bethe ansatz equations (BAEs) are inhomogeneous. Thus,
it is impossible to take the logarithm of BAEs and use the
thermodynamic Bethe ansatz. Recently, a novel Bethe
ansatz scheme has been proposed to calculate the physical
quantities of quantum integrable systems with or without
U(1) symmetry to overcome the obstacles [35,36]. The
main idea is that the eigenvalues of the transfer matrix can
be characterized by their zero roots instead of the traditional
Bethe roots.

In this paper, we study an integrable J; — J, spin chain,
which includes the nearest-neighbor (NN), next-nearest-
neighbor (NNN), and chiral three-spin interactions. The
boundary condition is the antiperiodic one. The twisted
boundaries break the U(1) symmetry of the system. After
the boundary reflection, the spins of quasiparticles are not
conserved. Based on the algebraic analysis, we obtain the
energy spectrum of the system and the homogeneous
BAEs. From the numerical calculation and singularity
analysis of BAEs, we get the distributions of solutions
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in the thermodynamic limit. Then, we compute the ground
state energy and elementary excitations. We also find the
nearly degenerate states in the ferromagnetic regime and
the quantum phase transition in the antiferromagnetic
regime.

The paper is organized as follows. The next section
serves as an introduction to the antiperiodic J; — J, spin
chain and the explanation of its integrability. In Sec. III,
we give the eigenvalues spectrum. In Sec. IV, combined
with the inhomogeneous 7 — Q relation, we analyse the
zero root patterns of the eigenvalue of the transfer matrix.
We study the nearly degenerate states in Sec. V. Then, we
calculate the ground state energy and low-lying excitations
in the thermodynamic limit focusing on the regime of real
in Sec. VL. In Sec. VII, the exact physical properties are
discussed in the regime of 7 € R + iz. Concluding remarks
and discussions are given in Sec. VIIL

II. THE SYSTEM AND INTEGRABILITY

The Hamiltonian of the integrable anisotropic J; — J,
model reads

2N
_ A0~ a~a
H= g g [J{ofol,, + Jr0f0s,,

j=1 a=xy.z
+ (—l)jjg’57+1(3j X 642)%, (2.1)
as shown in Fig. 1. Here, 2N is the number of sites. {o%|j =
1,...,2N} are the 2 x 2 Pauli matrices along the « direction
at the jth site. In this paper, we consider the system (2.1)
with antiperiodic boundary condition,

GgNJrn = anﬂgo'fw n= 17 2’ a=xYy,2, (22)
which gives 63y, = 6}, O3y, = —on, and 65y, = —0%.
J§ quantifies the NN coupling with the form of

J} = J| = cosh(2a), Ji =coshy,  (2.3)

where a is the model parameter and # is the anisotropic
parameter. J, characterizes the NNN isotropic coupling,

_ sinh2(2.a)2coshr/ (2.4)
2 sinh” n

J§ describes the chiral three-spin coupling with the

strength of

. isinh(2a)

=7 =
373 2sinhy

. isinh(4a)

cosh7, Ji= (2.5)

4sinhp

If a = 0, the model (2.1) degenerates into the Heisenberg
spin chain. It is worth mentioning that the Hermitian
operator of Hamiltonian (2.1) requires that @ must be real
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FIG. 1. Illustration of the bulk of twisted J; — J, spin system
with the nearest-neighbor interactions Ji, next-nearest-neighbor
interactions J,, and chiral three-spin interactions (—1)/J5. The
model can be viewed as the zigzag chain. The order of the chiral
three-spin coupling in each triangle is indicated by the red arrows.

if n is imaginary, and a must be imaginary if 5 is real
orn € R+ in

Now, we show that the model (2.1) is integrable, which is
related to the six-vertex R matrix,

sinh(u + #) + sinh u
Ry, () = S0

1
—(65c* + &6
2sinh 7 +3(0j06 + 7500)

sinh(u + 7) — sinh u
2 sinhn

50, (2.6)

where u is the spectral parameter. Throughout this
paper, we adopt the standard notations. For any matrix

A € End(C), A; is an embedding operator in the tensor

space C> ® C? ® - - -, which acts as A on the jth space and
as an identity on the other factor spaces. R, ;(u) is an
embedding operator of R matrix in the tensor space, which
acts as identity on the factor spaces except for the Oth
and jth ones. Here 0 means the auxiliary space and j =
I,...,2N means the physical or quantum space. The R
matrix (2.6) has the following properties:

Initial condition: R, ;(0) = Py, (2.7)

Unitarity relation: Ry ;(u)R;o(—u) = ¢(u) x id,  (2.8)
Crossing relation: Ry ;(u) = VOngj(—u —-n)Vo,

Vo = —ioy, (2.9)

PT symmetry: R ;(u) = R;o(u) = Ry 7 (u). (2.10)

Z, symmetry: o§c?Ry ;(u) = Ry ;(u)ofof,

for a = x,y, z, (2.11)

Quasiperiodicity : Ry ;(u + iz) = =GR, ;(u)og,  (2.12)

Fusion relation: Ry ;(—n) = _2P(().,_j)' (2.13)

Here, ¢(u) = —sinh(u + ;) sinh(u — 5) /sinh?y, id is the
identity operator, R; o(u) = Py ;R ;(u) P, ; with P ; being
the permutation operator, #; denotes transposition in the /th
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space, and P(()_j> is the one-dimensional antisymmetric

projection operator, PE)T].) = (1 =Py ;)/2. Besides, the R
matrix (2.6) satisfies the Yang-Baxter equation,

Ro j(uy — uy) R (uy = uz)R; (uy — uz)
=R (uy — u3)Ro (uy — uz)Ry j(uy — up).  (2.14)
We combine all the R matrices in different sites and
define the monodromy matrix as

To(u) = oyRo 1 (u — 6,)Roo(u—6,)

“Roon-1(u = Oy_1)Roon(u — Ohy), (2.15)
where the {6,[j =1,....2N} are the inhomogeneous
parameters. The transfer matrix is given by tracing the
monodromy matrix in the auxiliary space,

t(u) = trgTo(u). (2.16)
Based on the commutation relation (2.11) and the Yang-
Baxter equation (2.14), one can prove that the transfer
matrices with different spectral parameters commutate with
each other, i.e.,

[#(u), 1(v)] = 0.

Expanding the transfer matrix with respect to the spectral
parameter u, all the expansion coefficients are also commu-
tative. According to the quantum integrable theory, all the
conserved quantities including the model Hamiltonian can be
constructed by these expansion coefficients. Because the
number of independent conserved quantities equals to that of
the degrees of freedom, the system is integrable.

The Hamiltonian (2.1) is generated by the transfer
matrices as

(2.17)

ot
H=¢'""(2a) sinhr]{t(a -n) (1)
du u=a
ot(u
+t(-a—n) (w) } +Ey,  (2.18)
A Nu=-a) Lo, =170}
where the constant Ej is given by
Ey = _ Ncoshpcosh*(2a) — cosh(2;7)] (2.19)

sinh?y

Another interesting conserved quantity is the shift
operator, which is generated by the transfer matrix as [37]

U = ¢~V (2a)1(a)t(~ (2.20)

@)l {o,~(-1y/a)-

One can find that the operator U commutate with the
Hamiltonian. The U characterizes the transition invariance

of the present system. According to the quantum theory, we
can define the topological momentum k as

2N-1

sinh(a + 5
k:—zan——zan (a ZJ )mod{2ﬂ}

sinh(a — z; — 1)

(2.21)

III. THE EIGENVALUES SPECTRUM

From the construction (2.18), we know that the eigene-
nergies of the Hamiltonian (2.1) are related with the
eigenvalues of transfer matrix 7(u). If the eigenvalues of
the transfer matrix are known, the eigenenergies are known.
Thus, we diagonalize the transfer matrix #(u) first. Because
the U(1) symmetry of the system is broken, we calculate
the eigenvalues of transfer matrix based on the polynomial
analysis. The main ideas are as follows. From the defi-
nitions (2.6), (2.15), and (2.16), we know that the transfer
matrix 7(u) is an operator-valued trigonometric polynomial
with degree 2N — 1 due to the existence of twisted matrix
o, and partial trace. According to the algebra analysis
theory, the values of 7(u) can be completely determined by
the 2N — 1 independent constraints. Then, we should seek
these constraints, which can be achieved by using the fusion
technique. At the inhomogeneous point 8;, the R matrix (2.6)
degenerates into the one-dimensional projector operator;
please see Eq. (2.13). By using the properties of projector and
Yang-Baxter equation, we can obtain the transfer matrices
product identities in these one-dimensional subspaces char-
acterized by {6,[j =1,....2N}. At the certain values of
spectral parameter, these identities are closed and can be used
to determine the eigenvalues of #(u). The more detailed
description can be found in Ref. [24] or Chap. 4 in the
book [25].

By using the initial condition (2.7), we have

1(0;) = tro{ogRo, (0, —0,) - Py
Roan-1(0; = 01 )Roon(0; — Oay) }
=R;jj1(0;=0;11) Rjon(0; — Ory)oR; 1 (0; — 0))
R;j-1(0;=0;1); (3.1)

with the help of crossing relation (2.9), the transfer matrix
t(0; —n) can be calculated as

10;—n) = (=1)"'R; ;.1 (=0; +6;_1) - R; 1 (=0; +6))
X 0iR;on(=0; + Oyy) -+ Rjj11(=0; 4+ 011).
(3.2)

Multiplying Eqgs. (3.1) and (3.2), and using the unitarity
relation (2.8), we obtain the following operators product
identities:
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TABLE I. The zero roots and energy spectrum of the system
(2.1) with 2N =4, a =0.2i, and n = 0.8. Here, E, is the
eigenenergy of the nth level, and each level is double degenerate.

21 2 23 E, n
—-0.4614i 0 0.4614i —-4.3679 1
—0.3430i 0.0949i 0.9096i —-3.4531 2
—0.9096i —0.0949i 0.3430i —-3.4531 3
—1.5708i —0.2291i 0.2291i -3.2656 4
—1.0545 — 1.5708i 0 1.0545 - 1.5708; 0.6836 5
—0.8175 + 0.2545i —-0.2764i 0.8175+0.2545; 3.4531 6
—0.8175 — 0.2545i +0.2764i 0.8175 —0.2545i 3.4531 7
—-0.8212 —1.5708i 0.8212 6.9499 8
(3.3)

where

ON
sinh(u — 6;)

du) =a(u—n) =[[—=—">.  (34)

T sinh
Denote the eigenvalue of #(u) as A(u). Acting the

operator identities (3.3) on a common state of #(u#) and

t(u — 1), we obtain the following functional relations:

|

AO)ANO; —n) = —a(0;)d0;—n), j=1,....2N.

(3.5)
The eigenvalue A(u) is a trigonometric polynomial of u
with the degree 2N — 1. Thus, the value of A(u) can be

completely determined by the 2N constraints (3.5).
Besides, the transfer matrix 7(u) satisfies the periodicity,

tu+ir) = (=) t(u), (3.6)
which gives

Au+in) = (1) 1A(u). (3.7)
According to Egs. (3.5) and (3.7), we express A(u) in terms

of its 2N — 1 zero roots {z; —n/2|j = 1,...,2N — 1} and
an overall coefficient A, as

(3.8)

Substituting the parametrization (3.8) into (3.5), we obtain
the constraints among zero roots,

2N-1 2N
A3 ] sinh <91 —zi+ g) sinh <el —z— g) — —sinh~#¥y | [ sinh(6; — 0; + 1) x sinh(6, = 0; =), 1= 1,....2N.

j=1

(3.9)

We note the BAEs (3.9) are homogeneous. From the construction (2.18), we obtain the energy spectrum of Hamiltonian

(2.1) as

OA(u)
ou

E=¢'""N(2a) sinhn{A(a -7)

u=a

2N-1

= $(2a)sinhn > {coth(z; — a —/2) + coth(z; + a = 1/2)} (g, ~(-1ya} + Eo-
=1

J

For the system with finite size, we solve the BAEs (3.9)
and obtain the solutions of zero roots. Substituting the
values into (3.10), we obtain the eigenenergy of the
Hamiltonian (2.1). The results are given in Table I
The eigenenergies can also be obtained by the exact
numerical diagonalization. We find that the analytical
results and numerical ones are consistent with each other
very well. Thus, the energy (3.10) is correct.

IV. THE PATTERNS OF ZERO ROOTS

Now, we seek the general rules of the solutions of
BAEs (3.9). In this paper, we consider the Hermitian

+ A(—a—n)

OA(u)
ou

+ Ey
{0/=(-1Ya}

-

(3.10)

|
Hamiltonian, where the model parameter a is pure imagi-
nary and the crossing parameter 7 is real or n € R + iz. We
fix the imaginary part of the zero roots in the interval
[-7/2,7/2) because of the periodicity property (3.7).
Without losing generality, we set the imaginary parameter
a as a=1ib and b is real. From the construction of
integrable Hamiltonian (2.1), we know that the inhomo-
geneous parameters {¢;} are pure imaginary. In this case,
the crossing relation (2.9) leads to

*T ) ¥ )
Ry} (u—0;) = =Ry ;(-u" —n—0;)op.  (4.1)
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Substituting the above equation into Eq. (2.16), we obtain

() = (=1t =), (4.2)

which gives

A) = (<1 IA (= = ).
Then, we conclude that if the complex number z; is a root
of the BAEs, the —zj- must be another root. Thus, the zero
roots form the pairing solutions which have the same
imaginary part but the real parts are opposite, i.e.,

(4.3)

Re(z;) +Re(z;) =0, Im(z;)
The zero roots are distributed symmetrically about the
imaginary axis.

The more detailed distribution of zero roots could be
obtained with the help of Bethe roots. The functional
identity (3.5) allows us to parametrize the eigenvalue A(u)
as the inhomogeneous 7 — Q relation [25],

Au)Q(u) = e"a(u)Q(u —n) — e d(u)Q(u +n)

—c(u)a(u)d(u), (4.5)
where the Q(u) and c¢(u) are given by
N sinh(u — 1))
0) = Hihn
i
C(u) — o™ 2NV/+Z (0,-4)) u—r/—zgl(ﬂl—ﬂw)’ (46)

and {4} are the Bethe roots, which should satisfy the
BAEs,

eta(A;)Q(4; —n) — e 471d(2;)Q(4; + n)
—c(A))a(2;)d(2)) =0, j=1,...2N.

—n/2 and taking the stagger limit
)f a, We rewrite the above BAEs as

(4.7)

Putting 4,
0;= (-
sinV (u; + b — S in)sin" (u; — b — 3 in)
sin (u; + b + S in)sin™ (u; — b + L in)

eluj

I sin(u; — u; — in) N
—e ’”ng+2l€ N’751n<u —g )
sin (u; + b — S in)sin™ (u; — b — % in)
[T, sin(u; — u; + in)
j=1,....2N.

(4.8)

When 7 is positive real, for a complex u; with a negative
imaginary part, we have

. 1.
s1n(uj:l:b—§u1>

This indicates that the module of the left-hand side of BAEs
(4.8) tends to infinity exponentially when N — oco. To keep
the equality, the denominator of the right-hand side of
BAEs (4.8) must tend to zero in this limit, which gives that
uj —u; +in — 0. From the T — Q relation (4.5), we know
that the zero roots {z; —4} and {iu; —1} of the term
A(u)Q(u) are undistinguishable, so {u;} are symmetric
about the real axis since {z;} are symmetric about the
imaginary axis from (4.4). Therefore, the general complex
solutions of the Bethe roots form strings,

> sin(uj :l:b—l—%in)'. (4.9)

n+1

u; = uj0+i11(T—j> +o(e®), j=1,...,n,

(4.10)

where u, indicates the position of the n string in the real
axis and o(e™°V) stands for a small finite size correction.

Now we can determine the pattern of zero roots {z;}.
Putting z; = ix; and taking the zero root ix; —1 into

J T2
Eq. (4.5), we obtain

sin™ (x; + b — % in)sin

(
sin¥ (x; + b+ 1 )sinN(xj -

N Xj— —%iﬂ)

eUC -
+5in)

b
b
N oW
) sin(x; —in) ) )

=e % | | —L——L + 2ie Misin|( x; —
¢ 111 sm(x —u + in) e (x., ; u,)
sin (x; + b — Lin)sin™ (x; — b — Lin)

N sin(x; — uy + in)

,2N.

9

j=1,... (4.11)
A similar discussion can then proceed. For the x; with a
negative imaginary part, the Eq. (4.11) leads to the
relation between the zero root and Bethe root as x; —
u; +in — 0 when N tends to infinity. One should note
that the two sets of roots could not be equal, and the zero
roots are lower in the complex plane than the Bethe
roots. Combined with the fact that the {x;} are sym-
metric about the real axis from (4.4), we arrive at the
similar statement that, for x; with a positive imaginary
part, x; — uy —in — 0 with N — oo and the correspond-
ing zero roots are higher in the complex plane than the
Bethe roots. Thus, the above analysis determines the
pattern of zero roots {x;} as

1+n

n+o(e®N), n=12.. (412)

= ix;, we obtain

Substituting them into z; i

056005-5
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14+n

Re(z;) =+

; n+o(e®), n=1.2.. (4.13)

The above conclusion also holds for n € R+ iz by
replacing 1 with Re(7).

V. THE NEARLY DEGENERATE STATES

By carefully analyzing the energy spectrum, we find an
interesting phenomenon: some nearly degenerate states
exist in the regime of n € R, where the NN couplings
among the z direction are ferromagnetic. The energy
spectrum is shown in Fig. 2(a). One sees that the energy
levels can be divided into two parts. There is a big gap
between the lower and upper energy levels. Further analysis
gives that the patterns of zero points in these two regimes
are different. In the lower regime, all the zero roots are pure
imaginary and are asymmetric around the origin. The
related states are the nearly degenerate states.

From the numerical results of the system with finite size,
we find that there are 4N sets of zero roots lying on the
imaginary axis, in which two sets correspond to the ground
states. The other 4N —2 sets correspond to the nearly
degenerate states. The degeneracy of the ground state is 2.
In Fig. 2(b), we show the patterns of zero roots in the nearly
degenerate states. Because all the zero roots are located on
the imaginary axis, it is not necessary to show them in the
complex plane. Thus, we choose the lateral axis of Fig. 2(b)
as the energy difference AE = E; — E,, instead of the real
axis, where E is the energy of nearly degenerate state and
E,, is the ground state energy.

To further investigate the physical properties of the
nearly degenerate states, we calculate the spin texture of
these states by the exact numerical diagonalization. Table II
shows that the ground states and the nearly degenerate
states can be regarded as the superpositions of domain
walls or kinks, which are generated by continuously
flipping some spins from the all spin-up state (or the all
spin-down state), while the high excited states can not be.

The low-lying states, i.e., the ground and nearly degenerate
states, have two domain walls. One is fixed between sites
2N and 1 due to the antiperiodic boundary. The other can be
located between sites j and j -+ 1. This in total gives 2 x
2N configurations. Subtracting two degenerated ground
states, we have 4N — 2 nearly degenerate states, which is
consistent with the numerical results.

Now, we consider the relation between the nearly
degenerate states and the interactions. Define AE,,, =
max(E,;) — E;,, where max(E,) is the maximal energy of
the nearly degenerate states and E,, is the ground state
energy. The energy difference AE,,, versus the model
parameter a = ib is shown in Fig. 2(c). From it, we see
that the AE,,,, changes with the changing of NN, NNN,
and chiral three-spin interactions and reaches its minimum
at the point of a = in/4.

Last, we shall note that the gaps among the nearly
degenerate states tend to zero with the increasing of system
size. In the thermodynamic limit, these nearly degenerate
states become the ground state.

VI. THERMODYNAMIC LIMIT WITH n € R

Since we have known the zero roots distribution of
the BAEs, it is now possible to calculate the physical
quantities in the thermodynamic limit. Based on the t — 0
scheme proposed in [35,36], we choose the inhomoge-
neity parameters {6;} as auxiliary ones to calculate the
physical quantities such as the ground state energy and
the elementary excitations of the system. We first con-
sider the regime of # is real. From the previous
derivation, we know that {6;} are imaginary because
that a is imaginary.

A. The ground state

At the ground state, all roots {z,} take imaginary values
for the imaginary {6;}. It is convenient to put §; = i¢; and
zj = ixj, where ¢; and x; take real values. Taking the

2 0.3
c) n=0.6
@ ) ©7
4 °
SEN TR B & 202
= -6 E g i 9
° u g x 0.1
o
8 -m/2 "
0
-10 0.05 0.1 0.15 02 025 0 4 /2
AE b

FIG. 2.

(a) The system’s energy levels with 2N = 8, b = 0.2, and n = 0.8, where we have omitted some levels at high excited states.

(b) The distribution of zero root at the nearly degenerate states for different energy difference AE with 2N = 8, b = 0.2, and = 0.6.
There are 14 nearly degenerate states and 7 energy differences. The set of solutions of zero roots are denoted by different colors. For
example, considering the double degeneracy, there are (4N —2)/2 = 7 sets of different zero roots for the nearly degenerate states at
2N = 8 case. We plot the seven sets of zero roots with different colors in Fig. 2(b) for a clearer explanation. (c) The energy difference
between the highest nearly degenerate state and the ground state AE,,, versus the model parameter a with 2N = 8 and n = 0.6.
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TABLE II. The projections a;; = (F;|y;) and the error § = ||y;) — 35:1 a;;|F;)| with 2N =4, a = 0.2i, and
n = 2.Here, {|w;),i =1, ..., 16} are the eigenstates. Among them, the first two are the ground states, from the third
to the eighth are the nearly degenerate states, and the rest ones are the high excited states. {|F;) =

H{:l Ot ymod(4)+1 M), =1, ..., 8} are the approximate basis vectors of eight-dimensional low-lying states.
The values of § at the low-lying states are much smaller than those at the high excited states.
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aij Jj=1 j=2 j=3 j=4

i=1 0.0087 — 0.0000i 0.4718 — 0.1416i 0.0087 — 0.0000¢ 0.4718 — 0.1416i
i=2 0.4926 + 0.0000¢ —0.0083 + 0.0025: 0.4926 + 0.0000: —0.0083 + 0.0025:
i=3 —0.0000 — 0.0000i 0.1609 + 0.5121: —0.0041 + 0.2356i 0.1343 — 0.3603i
i=4 —0.0000 + 0.0000: 0.0742 — 0.4350i —0.1622 + 0.1233i 0.3358 — 0.3775i
i=5 —0.0003 — 0.0000i 0.0865 — 0.0343i —0.4582 + 0.4296i —0.2278 + 0.1911i
i=6 —0.7011 — 0.0000i —0.0000 + 0.0000i 0.0002 — 0.0002 0.0001 — 0.0001:
i=7 0.0030 + 0.0000i —0.4606 + 0.1871i —0.0030 — 0.0000i 0.4606 — 0.1871i
i=38 0.4972 + 0.0000{ 0.0028 — 0.0011; —0.4972 — 0.0000{ —0.0028 + 0.0011i
i=9 —0.0045 + 0.0000: —0.0826 + 0.0198: —0.0045 + 0.0000i —0.0826 + 0.0198i
i=10 0.0850 + 0.0000i —0.0044 + 0.0011: 0.0850 — 0.0000¢ —0.0044 +0.0011i
i=11 —0.0038 — 0.0000i 0.0210 + 0.0302: 0.0431 — 0.0244 —0.0660 — 0.0173i
i=12 0.0900 + 0.0000i 0.0064 + 0.0065i 0.0139 + 0.0033i 0.0056 + 0.0079i
i=13 0.0191 — 0.0000¢ —0.0258 — 0.0244i —0.0568 — 0.0203i —0.0395 — 0.0406i
i=14 —0.0000 — 0.0000i 0.0715 + 0.0259: —0.0400 + 0.0240i 0.0054 — 0.0222i
i=15 0.0529 + 0.0000i 0.0043 + 0.0003 —0.0529 — 0.0000 —0.0043 — 0.0003:
i=16 —0.0043 — 0.0000i 0.0528 + 0.0034i 0.0043 — 0.0000{ —0.0528 — 0.0034
i=5 =6 =7 =8 5
0.0087 0.4718 — 0.1416i 0.0087 + 0.0000: 0.4718 — 0.1416i 0.1702
0.4926 —0.0083 + 0.0025i 0.4926 — 0.0000{ —0.0083 + 0.0025i 0.1702
0.0000 —0.1609 — 0.5121: 0.0041 — 0.2356i —0.1343 + 0.3603: 0.1302
0.0000 —0.0742 + 0.4350i 0.1622 — 0.1233i —0.3358 + 0.3775i 0.1302
0.0003 —0.0865 + 0.0343i 0.4582 — 0.4296i 0.2278 — 0.1911i 0.1302
0.7011 0.0000 — 0.0000i —0.0002 + 0.0002i —0.0001 + 0.0001: 0.1302
0.0030 —0.4606 + 0.1871i —0.0030 + 0.0000i 0.4606 — 0.1871i 0.1062
0.4972 0.0028 — 0.0011: —0.4972 + 0.0000: —0.0028 + 0.0011: 0.1062
—0.0045 —0.0826 + 0.0198i —0.0045 — 0.0000i —0.0826 + 0.0198: 0.9854
0.0850 —0.0044 + 0.0011: 0.0850 + 0.0000i —0.0044 + 0.0011: 0.9854
0.0038 —0.0210 — 0.0302i —0.0431 + 0.0244i 0.0660 + 0.0173i 0.9915
—0.0900 —0.0064 — 0.0065i —0.0139 —0.0033; —0.0056 — 0.0079i 0.9915
—-0.0191 0.0258 + 0.0244i 0.0568 + 0.0203i 0.0395 + 0.0406i 0.9915
0.0000 —0.0715 — 0.0259i 0.0400 — 0.0240i —0.0054 + 0.0222; 0.9915
0.0529 0.0043 + 0.0003; —0.0529 — 0.0000i —0.0043 — 0.0003 0.9943
—0.0043 0.0528 + 0.0034 0.0043 — 0.0000{ —0.0528 — 0.0034 0.9943

logarithm and considering the thermodynamic limit N — oo
of Eq. (3.9), we obtain

In|A3| + 2N/ﬁ1 (¢ — x)p(x)dx = In|sinh=*" y|
+ 2N/[J’2(¢ —x)o(x)dx, (6.1)
where 3, (x) = In[sin(x — inn/2) sin(x 4 inn/2)], p(x), and

o(x) are the density of {x;} and {¢;}, respectively. Taking
the derivative of Eq. (6.1) with respect to ¢, we have

/_ by — x)p(x)dx = / (- x)o()dx, (62)

2

[S1E]

in which b,(x) = 2sin(2x)/[(cos nny — cos 2x)]. Introduce
the Fourier transformation,

1 &, - z .
f) =1 Y Fwe fo)= [ emeeas

N (6.3)

The Fourier transformation of Eq. (6.2) reads
by (0)p(0) = by(w)5(w). (6.4)
where b, (w) = —i2zsign(w)e~"!*!. Because the total num-

ber for zero roots {z;} is 2N — 1, the normalization of zero
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roots density p(x) should satisfy ﬁ% p(x)dx ==L In
the thermodynamic limit, the density of inhomogeneous
parameters {6; = (—1)/a,j =1,...,2N} becomes o(x) =
118(x = b) + 8(x + b)]. Taking the Fourier transformation
of o(x), we obtain 5(w) = 3 (e*? + ¢~"22%)_Therefore, the
solution of zero roots density is

el cos(Qwb), = =+1,42,..., too,
(@) = (6.5)

1_]

3N > w=0.

Taking the inverse Fourier transformation, we obtain

p(x) =

T

1 1 — e cos(2x + 2b)
{1 —2e7cos(2x + 2b) + e~
N 1 — e cos(2x — 2b) }
1 —2e7"cos(2x — 2b) + e 21

(6.6)

The ground state energy can be calculated as

z

E;, = 2N¢(2a) sinhn/i[coth(ix —ib—-n/2)
+ coth(ix + ib — n/2)]p(x)dx + E,
coshzsin?(2b)
sinh?y
cosh(2#) — cos(4b)
+ :
sinh

= —2Ncoshy — N

. (6.7)

Now, we check the correctness of the result (6.7). For the
system (2.1) with a finite size, we obtain the ground state

0.4

* data
—fitted curvel

03}
on
~ 02F
=
0.1}
0 F T T i A A A ke
6 8 10 12 14 16 18 20
2N
FIG. 3. The finite size scaling behavior of the quantity

OEy, = E;, — E\ 44, where E} is that obtained from the analytic
result (6.7) and E|,; is the ground state energy calculated by the
exact numerical diagonalization with finite system size. The data
of E, can be fitted as 6E;, = 11.86e~"7822N with b = 0.2 and
n = 0.6, which is exponentially decreasing and tends to zero in
the thermodynamic limit.

energy E;,; by using the exact diagonalization method.
Define 6E, = E;, — E; 4, Where E,, is the ground state
energy calculated from the analytic expression (6.7). We note
that both the values of E;,,; and JE}, are dependent on the
system size. Then, we take the finite size scaling analysis, and
the results are shown in Fig. 3. We find that the data of 5E
can be fitted as 6E, = 11.86¢ 722N where b = 0.2 and
n=0.6. Thus 6E;, is exponentially decreasing with the
increasing of system size. 6E,, — 0 if N — co. Therefore,
the analytic expression (6.7) gives the ground state energy in
the thermodynamic limit.

B. Elementary excitation

Now we study the elementary excitation. From the
general constraints of zero roots (4.4), the distribution
of {z;} for the simplest excited state can be described by
2N — 3 imaginary roots plus one conjugate pair. The extra
conjugate paired are

n
N-2 = il +7’7 + 0(6_51\]),

n
ON-1 = iA— _’7 + 0(6_5N),

. (6.8)

where A is real and n > 2. The distribution of zero roots for
such an excitation with 2N = 8 is shown in Fig. 4(a).
Substituting all the zero roots into BAEs (3.9) and con-
sidering the thermodynamic limit, we obtain

In A} + ZN/ﬁl(qﬁ — x)p(x)dx
+ﬁn+1 <¢ - /1) +ﬁn—1 (¢ - /1)

= In(—sinh™*Vy) + 2N //32(45 —x)o(x)dx.  (6.9)
The derivative with respect to ¢ gives

N / b1 (= X)pr (X)dx + by (= 2) + bus (6 — 2)

by(¢p — x)o(x)dx. (6.10)

Il

[\o)

=z
|\Nm

Taking the Fourier transformation of (6.10), we obtain

2]Vbl (a)>lbl ((U) + e_i2wll~7n+1 ((l)) + e_izw/ll;n—l ((l))
(6.11)

With the help of normalization f_g% p(x)dx =2=3 and
o(x) = 3[6(x = b) + 8(x + b)], we obtain the density of

zero roots P () as
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xlO’3
12 16 .
e (b) o -
’ ' 12 —fitted curve 15 (C) )1\,_001.2
g : -
g 0 : g 8 P e
— I A U B )] B o L
4 5 ________________________
-m/2 0 | __—_///
0
-1 05 0 0.5 1 8 10 12 14 16 18 20 01 05 : 2 ]
Re(z) N ;

FIG. 4. (a) The distribution of zero roots at the low-lying excited state with 2N = 8§, b = 0.2, and = 0.6. (b) The finite size scaling
behavior of e; = e; — ey, where e, is the excited energy obtained by the expression (6.14) and e, is that computed by using the exact
numerical diagonalization with finite system size. Here, b = 0.75 and = 1. The data can be fitted as de; = 376.8¢ 12632V " which
tends to zero when N — 0. (c) The excited energies with given values of b versus the anisotropic parameter 7, where n = 2 and 1 = 0.2.

el cos(2wb) — Cort (e=mlo] 4 =(n=2)nlw] , w==1,+£2,...,+c0,
o = {7 ) 5 ) o1

pi(w) =
1—%, w=0.

The inverse Fourier transformation of 5, (w) gives

) 1 { 1 — e cos(2x — 24) 1 — e~ (=20 cos(2x — 24) } 1
P1 = TN

— , 6.13
1 —2e™™ cos(2x — 24) + e~ * 1 —2e= (20 cos(2x — 24) + e~ 22 e px) (6.13)

where p(x) is given by Eq. (6.6). Substituting the density of zero roots into Eq. (3.10), we obtain elementary excitation energy,

e;(4) =2N¢(2a) sinhn/%[coth(lx —ib —n/2) + coth(ix + ib — n/2)][p, (x) — p(x)]dx

2

_1 _1
+ ¢(2a) sinhy {coth (nT” Til- ib) + coth (nT” LAt ib)

1 |
+coth<—%n+ ir— ib> +coth<—%r7+ i/H—ibﬂ

_cosh(2n) — cos(4b) sinh(n — 1)y n sinh(n — 1)y
B cosh(n — 1) — cos(24 4+ 2b) ~ cosh(n — 1)y —cos(24 —2b) |’

14
sinh 7 (6.14)

|
thermodynamic limit, §e; tends to zero. Thus, the analytic result
Now, we check the correctness of Eq. (6.14). Define  (6.14) is correct. The excited energies with given values of b
de| = e; — ey, where e is the excited energy obtained by  versus the anisotropic parameter 7 are plotted in Fig. 4(c). We
the expression (6.14) and e, is that computed by using the  see that the excited energy increases with the increasing of 7.
exact numerical diagonalization with finite system size. The Substituting the distribution of zero roots (6.8) at this
finite size scaling behavior of de; is shown in Fig. 4(b). Wesee  kind of excited state into Eq. (2.21), we obtain the
that the data can be fitted as de; = 376.8¢7120*2N In the = momentum carried by the elementary excitation as
|

5 sinh(a +ix —7%)

sinh(a — ix —7)

sinh(a + il + % —1sinh(a + id -2 - 1)
" sinh((a — iA — 2 — 3 sinh(a — iA + "’7 )

. [p1(x) = p(x)]dx — il mod(2r)
=4 io: sin2a2) cos(2wb)e " cosh(nw)

n(b+A+i%ty)sin(b + 24— i"Hp) i sin(b+24—i"5tn)sin(b + A+ iln)
n
b— A—f—z” n)sin(b — A —i*y) sin(b—A—i%tn)sin(b — A+ i"Hn)

mod(2x). (6.15)

w

=.

=
/\/‘\
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14+n

VII. THERMODYNAMIC LIMIT Re(z;) = £
WITH n € R+in

In this section, we study the physical quantities in  Without losing generality, we suppose b € (0, 7/2).
the regime of # € R + iz. The patterns of zero roots of
BAEs are given by Eq. (4.13) with the replacing #n by

ny +o(e™®), n=1.2,.. (7.1)

A. Ground state and quantum phase transition

Re(n). For simplicity, we define n, =5 — iz, then the At the ground state, the pattern of zero toots {z;} includes
patterns read N — 1 conjugate pairs and one pure imaginary solution, i.e.,
22j-1 :ixzj_1+77++0<€_§N), Zgj:ixzj—ﬂ++0(€_6N), ]: 1,....N—1,
on-1 = I, (7.2)

where {x;} and u are real. Substituting the pattern (7.2) into Eq. (3.9), taking the logarithm and considering the
thermodynamic limit, we obtain

In|A2] + 71(¢h — ) + 2N / 1(8 = x) + 73(6 — Dlpa()dx
= In|sinh™* | + ZN/ﬂz((ﬁ —x)o(x)dz, (7.3)

in which y,(x) = In[cos(x — inn_ /2) cos(x + inn,/2)], and p,(x) and o(x) denote the density of {x;} and {¢,},
respectively. Taking the derivative, we have

—eig =) =2N [ le1§ =) + (6= Olpa()ax = 2N [ b~ iota (7.4
-
where ¢, (x) = tan(x + inn, /2) + tan(x — inn, /2). The Fourier transformation of Eq. (7.4) gives
—e™2E (@) = 2N[2, (@) + &3()]p2 (@) = 2Nbs (0)5(w), (7.5)
where &,(@) = (—=1)“sign(w)2rie~1*!. With the help of normalization ﬁ%’ p(x)dx =} — 55, we obtain the solution of zero

roots density,

1 +e=21+ 0] ’ (76)

_ ﬁe"'z“’”—(—l)“‘e"”“‘" cos(2wh) o — :|:1 :|:2 j:oo
9 EARA ] 9
— =, w=0.

Then, the ground state energy is

E(u) = 2N¢(2a) sinhy /E{Coth(lx +n, —ib—n/2)+ coth(ix —n, —ib—n/2)

2
+ coth(ix 4+, + ib —n/2) + coth(ix — n, + ib —n/2)|p,(x)dx
+ ¢(2a) sinh y[coth(ip — ib — n/2) + coth(iu + ib — n/2)] + E,.
cosh(27,) — cos(4b) cosh(27,) — cos(4b)

= —4N
sinh# sinhn,

Z e~ 21+cos? (2bw) tanh(y, @) + 2
-

a 1
X z —1)?e™+® cos(2bw) cos(2uw) tanh(n, w) + 3 [cosh(277,) — cos(4b)]
w=1

1 N N coshn_ [cos?(2b) — cosh(27.,)]

x .
Losh (n4) + cos2(u + b) cosh(m) +cos2(u—b) sinh?y,

(7.7)
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Some remarks are in order. From Eq. (7.7), we see that
the values of E(u) is dependent on the strength of the
boundary string y. At the ground state , E(u) should take its
minimum. Thus, the boundary string at the ground state is
fixed. We find that E(u) arrives at its minimum at the point
|

5 cosh(217,) — cos(4b) i

sinh#, ‘=

of u=0if b € (0,7/4), and at the point of y = —x/2 if
b € (x/4,7/2). This conclusion can also be achieved as
follows. If 7, — oo, many terms in Eq. (7.7) tend to zero.
Keeping the order of e+, the pu-dependent terms in
Eq. (7.7) can be approximated as

®e~1+ cos(2bw) cos(2uw) tanh(n, @)

1

_cosh(2n,) — cos(4D)
- coshn,

cosh(n,) 4+ cos2(u + b)

[1 —4e™+ cos(2b) cos(2u)],

+ cosh(#n,) + cos2(u — b)

(7.8)

which has the minimum at y = 0 for b € (0, z/4), and aty = —z/2 for b € (x/4, x/2). If n, is finite, we have checked this
conclusion numerically and find that it is true. Therefore, the ground state energy in the regime of b € (0, z/4) (phase I) is

Eyy = —4N
2 sinh7,,
+a cosh(2;1.+) — cos(4b) &
sinhn,

w=

cosh(27,.) — cos(4b)

cosh(2n,) — cos(4h) Z e~ 21+ cos?(2bw) tanh (., w)

N coshn [cos?(2b) — cosh(2r]+)]

> (=1)2e™ cos(2bw) tanh (1, o)

7.9
cosh(r, ) + cos(2b) sinh? 7., (7:9)

The ground state energy in the regime of b € (z/4,7/2) (phase II) is

cosh(2n,.) — cos(4b) o

E;, = —4N Sl-:lthr E:le 21:@ cos? (2bw) tanh (. @)
h(2n,) — cos(4b)
42 ( Z;l)h mcos Z e+ cos(2bw) tanh(n . w)

cosh(2n, ) —cos(4b) N coshn, [cos?(2b) — cosh(2;7+)] (7.10)

cosh(#,) — cos(2b)

Now, we check the correctness of analytical expressions
(7.9) and (7.10). The zero roots distributions with 2N = §
are shown in Fig. 5(a). The finite size scaling behavior of
OE,, = E,, — E5 44 is shown in Fig. 5(b), where E,, is the
analytical result obtained by Eq. (7.9) and E,, is the one
calculated by the exact numerical diagonalization. The data
can be fitted as 6E,, = 4.076 x (2N)~'%32 Thus, 5E,, tends
to zero in the thermodynamic limit. The numerical results
and the analytical ones agree with each other very well. The
ground state energies versus the model parameter b are
shown in Fig. 5(c), where the red dots are the numerical data
with 2N = 18 and the blue solid lines are the analytical data.
The derivative of the ground state energies versus the

sinh? 7,

I
interaction b is shown in Fig. 5(d). From it, we see that
the ground state energies are continuous and their derivatives
are discontinuous. Thus, there exists a first order quantum
phase transition at the critical point b = z/4.

B. Elementary excitation I

In the regime of # € R + iz, the system has two kinds
of elementary excitations. The first kind of excitation is
characterized by the root iu sliding along the imaginary
axis in the interval [—iz/2, iz/2) but away from the points
of 0 and —iz/2. In the regime of b € (0, 7/4), the excited
energy is
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72t (a b * data ]
@)« * 0.6 (b) —fitted curve
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FIG. 5. The distribution of zero roots {z;} at the ground states with 2N = 8, n, = 0.6, and b = 0.2. (b) The finite size scaling
behavior of 6E,, = E», — Epyq with 7, = 0.6 and b = 0.2. Here, E,, is the analytical result obtained by Eq. (7.9) and E,, is the one
calculated by the exact numerical diagonalization. The data can be fitted as 6E,, = 4.076 x (2N )~1032 Thus, OE,, tends to zero in the
thermodynamic limit. (c) The ground state energy versus the interaction b, where the blue solid line is the analytical result and red dots
are the numerical ones with 2N = 18. Comparing the blue solid line and red dots, we see that the finite size scaling effect at 2N = 18 is
small. (d) The derivative of ground state energy against the interaction b. At the point of b = x/4, the derivative is discontinuous.

cosh(2n, ) — cos(4b)
exly) =222 >
=1

sinhn,

1

)?e™+@[cos(2uw) — 1] cos(2bw) tanh(n o)

1 2

1
+ 3 [cosh(277,) — cos(4b)] {
The corresponding momentum is

z cos(b+x—12)cos(b+x—|—lg”+)
i) cos(b — x + i 2Lx)

cos(b—x—

cosh(n,) + cos2(u + b) + cosh(n,) + cos2(u — b)

[P2(p.x) = pa(p = 0,x)]dx —iln

} (7.11)

~ cosh(r,) + cos(2b)

cos(b+pu+i%)

d(2
os(b—y—l—i%)mo (27)

= sin(2wpu i i
:2Z%cos(2a}b)e T+ tanh(n, @) + 3 In

Now, we check the corrections of Eqs. (7.11) and (7.12).
The excited energy e, and the associated momentum k,
versus the boundary string u are demonstrated in Fig. 6(a),
where the blue dash-dotted line and the black dash line are
the analytical results calculated from Eqgs. (7.11) and (7.12),
and the red stars and circles are the numerical data obtained
by exactly diagonalizing the system with 2N = 10. From
them, we see that the analytic expressions are in good
agreement with the numerical results. The finite size
scaling behavior of the energy difference de, = e, — eyy
is shown in Fig. 6(b), where e, is the analytical result

cos(b +p—i%) cos(b +pu+i’%)
((b—ﬂ—l7) _IHCOS(b—u+i’7;)]m0d(2”)‘ (7.12)

|

obtained by Eq. (7.11) and e,, is the numerical one. The
data can be fitted as de, = 0.2658 x e~V which
tends to zero when N tends to infinite. Thus, the result
(7.11) is correct. The excited energies with given values of
interaction b versus the anisotropic parameter 7, are
plotted in Fig. 6(c). We see that if the interaction b is
small, the excited energies are increasing with the increas-
ing of n,. While if b is large, the excited energies have a
maximum at a suitable value of .. The dispersion relations
between e, and k, with give b are shown in Fig. 6(d). From
it, we see that the excitation is gapless.
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FIG. 6. The gapless excitation in the antiferromagnetic phase 1. (a) The excited energy e, and the momentum k, versus the string
strength y. The blue solid line is the excited energy calculated from Eq. (7.11), the black solid line is the momentum obtained from
Eq. (7.12), and the red circles and starts are the numerical results computed by using the exact diagonalization with 2N = 10, where
b = 0.2 and 7, = 0.6. The slight differences are due to the finite size corrections. (b) The finite size scaling behavior of de, = e, — ey
withn, = 1 and b = 0.75. Here, e, is the analytical result obtained by Eq. (7.11), and e,, is the numerical datum with finite system size.
The data can be fitted as de, = 0.2658 x ¢~*125*2¥ ' which tends to zero in the thermodynamic limit. (c) The excited energy e, as a
function of anisotropic parameter 7, with 4 = 0.2 and b = 0.1, 0.4, 0.7. (d) The dispersion relation of the first kind of elementary
excitation in the phase I with n, = 1.5 and b = 0.1, /8, n/4.

In the regime of b € (n/4,7/2), the excited energy is

h(2n, ) — cos(4b)
e3(u) = 2% ( ZTnh mcos Z e +?[(=1)? cos(2uw) — 1] cos(2bw) tanh(n @)
- [cosh(27.,) (40)] 1 + ! 2 (7.13)
—|[cos —cos - - U
2 T+ cosh(n,) 4+ cos2(u + b)  cosh(n,) + cos2(u — b) cosh(n,) — cos(2D)
[
The associated momentum is The correctness of Eq. (7.13) is demonstrated by the finite
size scaling behavior of de; = e; — e3,; shown in Fig. 7(a),
ky(u) = ky(u) + 7 mod(2x). (7.14) where e, is the excited energy obtained from Eq. (7.13) and
0.06 T 1 Y oy (b) 1' 5 -]
* data N n="1 o
Na —fitted curve 6 N * .
e —b=mn/4 R
« 0.04 1 - Ty b=3m T
2 o 4 N, TTbem2
‘Q‘ !,0
2 % 7
0.02 - N
0 >
6 10 14 18 7 0 ”
ON K

FIG.7. The gapless excitation in the antiferromagnetic phase II. (a) The finite size scaling behavior of de; = e3 — e3, withy, = 1 and
b =0.8. Here, e; is the analytical result obtained by Eq. (7.13), and e3, is the numerical one. The data can be fitted as
Sey = 0.1097 x e~%12472N "\which is zero in the thermodynamic limit. (b) The dispersion relation of the first kind of elementary
excitation in the phase II with n, = 1.5 and b = z/4,3x7/8, n/2.
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TABLE LIl The projections f3;; = (N;|y;) and the error & = ||y;) = >°%_, f;j|N;)| with 2N = 4, a = 0.2i, and
ny = 2. Here {|y;),i =1, ..., 16} are the eigenstates. Among them, the first two are the ground states, from the
third to the eighth are the type I low-lying excited states, and the rest ones are the high excited states. {|N j) =

{:] O k= ymod(4) +1 M), j=1,...,8} are the approximate basis vectors of eight-dimensional low-lying states.

The values of  at the low-lying states are much smaller than those at the high excited states.
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Bij Jj=1 Jj=2 Jj=3 j=4

i=1 0.4972 — 0.0000i —0.0000 + 0.0000i 0.4972 —0.0000 + 0.0000i
i=2 0.2300 + 0.1375i 0.4188 + 0.0000i 0.2300 + 0.1375i 0.4188

i=3 —0.1834 — 0.2577i —0.4905 — 0.0000i 0.2971 — 0.2132i 0.1231 — 0.0456i
i=4 —0.2413 — 0.1058i —0.2207 — 0.3389i —0.4955 + 0.0000i 0.1003 — 0.0541i
i=5 0.0703 + 0.0084 —0.0999 — 0.3037i 0.0599 + 0.0260i —0.6164 — 0.0000i
i=6 —0.1425 — 0.1667i 0.2350 + 0.3183i —0.0877 + 0.0745i 0.5231

i=7 —0.4927 + 0.0000i 0.0000 — 0.0000i 0.4927 —0.0000 + 0.0000i
i=8 0.0450 + 0.0186i 0.4903 —0.0450 — 0.0186i —0.4903 — 0.0000i
i=9 —0.0461 — 0.0264i —0.0000 — 0.0000i —0.0461 — 0.0264i 0.0000 + 0.0000i
i=10 0.0003 — 0.0002i —0.0461 + 0.0264i 0.0003 — 0.0002i —0.0461 + 0.0264i
i=11 —0.0120 + 0.0007i 0.0020 — 0.0048i —0.0835 — 0.0366i 0.0014 — 0.0002i
i=12 0.0797 + 0.0350i —0.0159 + 0.0149i —0.0087 —0.0102i —0.0156 — 0.0030i
i=13 0.0102 + 0.0042i —0.0788 + 0.0346i —0.0023 — 0.0046i 0.0299 + 0.0064i
i=14 0.0688 + 0.0302i 0.0270 — 0.0114i —0.0065 — 0.0070i 0.0415 + 0.0130i
i=15 —0.0811 — 0.0257i —0.0000 — 0.0000i 0.0811 + 0.0257i 0.0000 + 0.0000i
i=16 —0.0023 — 0.0001i —0.0811 + 0.0257i 0.0023 + 0.0001: 0.0811 —0.0257i
j=5 j=6 j=1 j=8 o
0.4972 — 0.0000i —0.0000 + 0.0000i 0.4972 + 0.0000i —0.0000 + 0.0000i 0.1062
0.2300 + 0.1375i 0.4188 + 0.0000i 0.2300 + 0.1375i 0.4188 + 0.0000i 0.1062
0.1834 + 0.2577i 0.4905 —0.2971 + 0.2132i —0.1231 + 0.0456i 0.1302
0.2413 + 0.1058i 0.2207 + 0.3389i 0.4955 —0.1003 + 0.0541i 0.1302
—0.0703 — 0.0084i 0.0999 + 0.3037i —0.0599 — 0.0260i 0.6164 0.1302
0.1425 4 0.1667i —0.2350 — 0.3183i 0.0877 — 0.0745i —0.5231 + 0.0000i 0.1302
—0.4927 + 0.0000i —0.0000 — 0.0000i 0.4927 —0.0000 + 0.0000i 0.1702
0.0450 + 0.0186i 0.4903 + 0.0000i —0.0450 — 0.0186i —0.4903 — 0.0000i 0.1702
—0.0461 — 0.0264i —0.0000 — 0.0000i —0.0461 — 0.0264i 0.0000 + 0.0000i 0.9943
0.0003 — 0.0002i —0.0461 + 0.0264i 0.0003 — 0.0002i —0.0461 + 0.0264i 0.9943
0.0120 — 0.0007i —0.0020 + 0.0048i 0.0835 + 0.0366i —0.0014 4 0.0002i 0.9915
—0.0797 — 0.0350i 0.0159 — 0.0149i 0.0087 + 0.0102i 0.0156 + 0.0030i 0.9915
—0.0102 — 0.0042i 0.0788 — 0.0346i 0.0023 + 0.0046i —0.0299 — 0.0064i 0.9915
—0.0688 — 0.0302i —0.0270 + 0.0114i 0.0065 + 0.0070i —0.0415 - 0.0130i 0.9915
—0.0811 — 0.0257i —0.0000 — 0.0000i 0.0811 + 0.0257i 0.0000 + 0.0000i 0.9854
—0.0023 — 0.0001i —0.0811 + 0.0257i 0.0023 + 0.0001i 0.0811 — 0.0257i 0.9854

des is the numerical one. We see that the data can be fitted
as de; = 0.1097 x e~12472N "which is zero in the thermo-
dynamic limit. Based on Eqs. (7.13) and (7.14), the
dispersion relations in phase II are shown in Fig. 7(b).
We see the excitation is also gapless in this regime.

The physical picture of this kind of elementary excitation
is as follows. From Table III, we see that these excited states
can be regarded as the superposition of domain walls,
which are generated by continuously flipping some spins of
antiferromagnetic Neel states |1 --- 1)) or [ 1---11).
We should note that the gaps of this kind of states for the
system with finite size do not tend to zero in the
thermodynamic limit in the regime if # € R + ix; thus,
they are not the nearly degenerate states. If the NN along x
and y direction, NNN and chiral three-spin interactions

vanish, the model (2.1) reduces to the Ising model. For the
Ising model, these low-lying excited states degenerate to
the ground state in the thermodynamic limit. Therefore, the
anisotropic NN, NNN and chiral three-spin interactions
separate those excited state away from each other and
preserve the finite energy difference even in the thermo-
dynamic limit.

The competing of the anisotropic NN, NNN and chiral
three-spin interactions will change these excited energies
and induce the quantum phase transition. In the phase I, the
NN interactions along the x and y directions are ferromag-
netic. With the increasing of interaction parameter b, the
energies for modes of momentum 7 or —x are decreasing and
eventually tend to zero; please see Fig. 6(d). If the value of b is
larger than the critical point z/4, the NN interactions along
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the x- and y-directions become antiferromagnetic, and the
contribution of chiral three-spin interactions along the z
direction also changes. The energy of z mode is lower than
the ground state energy in phase I, and the corresponding state
becomes the new ground state in phase II. From Fig. 6(a), we
also see that the momentum 7 corresponds to u = —x/2,
which determines the ground state in phase II. This result
agrees with that given by Eq. (7.10). Then, we demonstrate
that there exists a quantum phase transition from the phase I to

|

Zyj1 = ixgjoy + 114 +0(e™)
Zon-3 = iy +o(e),

Zn-1 = If,

, 20 = ixp; =4 + 0(e™),

Zon—2 = ik +o(e

the phase II. Thus, the competition have significantly influ-
enced this kind of low-lying gapless excitations and can
induce the phase transition.

C. Elementary excitation II

The second kind of elementary excitations is quantified
by a conjugate pair of z roots turning into two imaginary
ones, 1.e.,

j=1,..
—5N)’

(7.15)

where x;, p;, i, and p are all real. The root patterns of such excitations for the phases I are shown in Fig. 8(a). Using the
similar procedure mentioned above, we obtain the density of zero roots in the thermodynamic limit should satisfy the

integral equation,

—alp=m = -m) = a@=m) =2V [la@ =2+ cld =Dl =2 [ byp-voldr. (110

With the help of Fourier transformation, we obtain the solution as

€
_2N

(e—i20)y+e—12u);41 +e—i2(1}u2 )_(_ 1 )(ue—rpr || COS(Z&)b)

w==1,...

-1
N°

=

1421+l ’

’

We find that the excited energies in phases I and II have the same expression,

T T
e4(pr p2) = E(py, pia, p = 0) = E(u = 0) = E(ul,uz,ﬂ = ——) —E<u = ——>

2 2
= €(u) + e(po). (7.17)
where
() = 2S0(@1) = COSEB) G~ 1yt cos (2pa0) cos(26w) tanh (7, )
e(pn) = —1)%e ™+ 0] [ 0]
H sinh 7, - H N+
+ Neosh(2,) = cos(4)] ! + : (7.18)
—|cos — COS . .
2 T+ cosh(n,) 4+ cos2(u+ b) ~ cosh(n,) + cos2(u — b)
N
ER ) v
*
-m/2 * *
-1 -0.5 0 0.5 1
Re(z)
FIG. 8. The gapped spinon excitations. (a) The pattern of zero roots with 2N = 8,1, = 0.6, and b = 0.2. (b) The dispersion relations

with ., = 1.5 and b = 0.1, /4, z/2.
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The corresponding momentum reads

cos(b + x — i) cos(b + x + i 21x)

ky(py, 1) = —l2N/ In
cos(b—x—i

cos(b + py + i”*)

/R
2

—iIn

) cos(b — x + i )
cos(b + py + i%)

3 (pa. 1, p. x) = o, x)]dx

cos(b —puy + i%
= k(1) + ka(2)  mod(2r).

From Egs. (7.17) and (7.19), we see that both the energy
and the momentum of this kind of elementary excitations
depend on two free parameters. They are the typical spinon
excitations. The dispersion relations with given b are
shown in Fig. 8(b). We see that there always exists an
energy gap and this kind of excitations is gapped.

VIII. CONCLUSIONS

In this paper, we have studied the exact physical properties
of an integrable antiperiodic J; — J, spin chain that includes
the NN, NNN, and chiral three-spin interactions in the
thermodynamic limit. With the help of the inhomogeneous
T — Q relation, we obtain the zero roots distributions of the
transfer matrix focusing on the interaction parameter where a
is imaginary and 7 is real or n € R + iz. Based on the root
patterns, we calculate the ground state energies, elementary
excitations, and dispersion relations. We also discuss the
nearly degenerate states in the ferromagnetic regime with

cos(b—pp +i%y)

mod(2r)

(7.19)

|
n € R and the quantum phase transition in the antiferro-
magnetic regime with n € R 4- iz. We demonstrate the
competing of NN, NNN, and chiral three-spin interactions
can induce many interesting phenomena.
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