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We study charge diffusion in relativistic resistive second-order dissipative magnetohydrodynamics.
In this theory, charge diffusion is not simply given by the standard Navier-Stokes form of Ohm’s law, but by
an evolution equation which ensures causality and stability. This, in turn, leads to transient effects in the
charge-diffusion current, the nature of which depends on the particular values of the electrical conductivity
and the charge-diffusion relaxation time. The ensuing equations of motion are of so-called stiff character,
which requires special care when solving them numerically. To this end, we specifically develop an
implicit-explicit Runge-Kutta method for solving relativistic resistive second-order dissipative magneto-
hydrodynamics and subject it to various tests. We then study the system’s evolution in a simplified 1þ 1-
dimensional scenario for a heavy-ion collision, where matter and electromagnetic fields are assumed to be
transversely homogeneous, and investigate the cases of an initially nonexpanding fluid and a fluid initially
expanding according to a Bjorken scaling flow. In the latter case, the scale invariance is broken by the
ensuing self-consistent dynamics of matter and electromagnetic fields. However, the breaking becomes
quantitatively important only if the electromagnetic fields are sufficiently strong. The breaking of scale
invariance is larger for smaller values of the conductivity. Aspects of entropy production from charge-
diffusion currents and stability are also discussed.
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I. INTRODUCTION

In heavy-ion collisions, the charges of the moving
nuclei generate strong electromagnetic fields, the magni-
tude of which can reach the order of ∼m2

π ∼ 104 MeV2 ∼
1018G [1–7]. Such fields are among the largest ever
observed in the Universe. The strong electromagnetic
fields present in heavy-ion collisions, in conjunction with
the anomaly of quantum chromodynamics (QCD), give
rise to anomalous transport phenomena such as the chiral
magnetic effect (CME) [8,9]. The CME has been exten-
sively searched for experimentally in recent years [10–14],
but so far without conclusive evidence for its existence.
The main difficulty is that the lifetime of the magnetic field
depends strongly on the electrical conductivity of the
produced medium [15–17] and may be too short for the
proposed observable signatures of the CME to develop.
For other interesting phenomena due to the interplay of
electromagnetic fields and nuclear matter, see the recent
review [18].
The generic framework that couples the dynamics of

electromagnetic fields with that of a relativistic fluid is
called relativistic magnetohydrodynamics (MHD) [19,20].

It is well known that ordinary hydrodynamics, i.e., without
the coupling to gauge fields, can be considered as an
effective theory valid in the low-frequency, large-wave-
length limit. The expansion parameter of this theory is the
Knudsen number, i.e., the ratio of typical microscopic and
macroscopic length scales. While the microscopic length
scale is given by the mean free path of particles or the
interparticle separation, the macroscopic length scale
characterizes the spatiotemporal variations of the hydro-
dynamical fields [21]. At zeroth order in this expansion,
the fluid is assumed to instantaneously reach local
thermodynamical equilibrium everywhere, which corre-
sponds to ideal (nondissipative) hydrodynamics. Navier-
Stokes theory emerges at first order in Knudsen number. In
this theory, dissipative currents are given by the corre-
sponding transport coefficients, such as bulk and shear
viscosity, as well as particle diffusion coefficient, multi-
plied with spatial gradients of the hydrodynamical fields.
Standard MHD appears as a natural extension of Navier-
Stokes theory for a conducting fluid near local thermo-
dynamical equilibrium interacting with electromagnetic
fields [22–25].
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However, first-order Navier-Stokes theory is known to be
acausal and unstable [26].1 Transient, or second-order
dissipative, theories account for terms of second order in
Knudsen number and avoid such problems by introducing
evolution equations for the dissipative currents. These
evolution equations have been derived from kinetic theory
as underlying microscopic theory using the method of
moments in Ref. [28]. In transient hydrodynamical theories,
the dissipative currents typically relax on finite timescales to
their corresponding Navier-Stokes values [29–31], render-
ing the system causal and stable if the relaxation times are
sufficiently long [32]. For nonpolarizable, nonmagnetizable
fluids, second-order dissipative hydrodynamics has recently
been extended to a theory of resistive second-order dis-
sipativeMHD in Refs. [33,34]. Relativistic resistive second-
order dissipative MHD has been also derived in the
relaxation-time approximation in Refs. [35,36].
So far, numerical simulations are mostly based on ideal

MHD, i.e., the nonresistive (infinite-conductivity) limit
[37–39]. In this paper, we perform the first numerical
simulations of resistive second-order dissipative MHD. We
note that, from a numerical perspective, this is a so-called
stiff problem; i.e., it involves physical timescales which can
be much smaller than the timescale on which the fluid-
dynamical variables evolve. Using an explicit time-step-
ping scheme is not feasible in this case, since one would
have to choose a time step which is much smaller than the
spatial grid size, which may increase the calculation time to
an unacceptably long level. Therefore, one solution is to
use an implicit time-stepping scheme. Here, we employ an
implicit-explicit Runge-Kutta (IMEX) scheme, which we
specifically develop for solving resistive second-order
dissipative MHD. We mention that a similar scheme has
been recently employed to solve nonresistive second-order
dissipative MHD in the context of astrophysical scenarios
[40]. Another recent development is a code which solves
resistive first-order dissipative MHD in 3þ 1 dimensions
[41]. As the current paper represents the first step in solving
resistive second-order dissipative MHD, we consider a
simplified geometry where all fields are homogeneous in
two spatial directions, rendering the system effectively
1þ 1 dimensional. We also neglect the effects of bulk and
shear viscosity and exclusively focus on the evolution of
the charge-diffusion current. One motivation for this work
comes from recent results of transport simulations [42–44],
which reveal that the charge-diffusion current needs some
time to reach the value given by the standard Navier-Stokes
form of Ohm’s law. Our goal is to investigate such transient
dynamics via resistive second-order dissipative MHD
calculations.

This paper is organized as follows. In Sec. II we provide a
short review of resistive second-order dissipative MHD for
nonpolarizable, nonmagnetizable fluids, neglecting the
effects of bulk viscous pressure and shear-stress tensor. In
Sec. III we discuss the principles of our numerical imple-
mentation of resistive second-order dissipativeMHD. Then,
in Sec. IV we discuss our simplified setup of a relativistic
heavy-ion collision and present the results of our numerical
simulations. Section V concludes this work with a summary
of our results and an outlook. The Appendices A and B
contains further details of our numerical approach as well as
the study of various test cases.
We use natural Heaviside-Lorentz units in which

ℏ ¼ c ¼ kB ¼ ϵ0 ¼ μ0 ¼ 1. The convention for the metric
tensor is “mostly minus,” i.e., gμν ¼ diagð1;−1;−1;−1Þ.
The comoving derivative of a quantity A is denoted as
_A ≔ uμ∂μA, where uμ is the fluid four-velocity. The pro-
jector onto the three-space orthogonal to the fluid velocity is
defined as Δμν ≔ gμν − uμuν. The projection of a vector Aμ

orthogonal to the fluid velocity is denoted as Ahμi ≔ ΔμνAν.
The covariant spatial gradient is denoted as ∇μ ≔ Δμν

∂ν.
The symmetric, traceless projector of rank-4 is
Δμν

αβ ≔
1
2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ, the application of

which onto a rank-2 tensorAμν is denoted byAhμνi≔Δμν
αβA

αβ.

II. EQUATIONS OF MOTION

The evolution of a relativistic fluid coupled to electro-
magnetic fields is effectively described by the conservation
laws of energy-momentum and conserved charges,
Maxwell’s equations, and, in standard resistive MHD, by
constitutive relations for the dissipative currents. For
instance, the diffusive part of the charge current is given
by the Navier-Stokes form of Ohm’s law, which encodes
the instantaneous response of the fluid’s diffusion current to
an electric field proportional to the electrical conductivity.
The latter depends on the underlying microscopic proper-
ties of the fluid. In resistive second-order dissipative MHD,
the constitutive relations are replaced by evolution equa-
tions for the dissipative currents, and Ohm’s law assumes a
more complex form. In this work, which constitutes the first
attempt at solving resistive second-order dissipative MHD
numerically in a semirealistic setup, we neglect the evo-
lution of bulk viscous pressure and shear-stress tensor and
focus solely on the charge-diffusion current. In this section,
we describe in more detail the three sets of equations,
namely conservation laws, Maxwell’s equations, and the
equation for the charge-diffusion current.

A. Conservation laws

The conservation laws of energy momentum and charge
read

∂μTμν ¼ 0; ð1Þ
1Recently it was shown that these acausalities and instabilities

can be removed by a suitable matching procedure to the local-
equilibrium reference state [27].
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∂μJ
μ
f ¼ 0; ð2Þ

where Tμν is the total energy-momentum tensor of the
system and Jμf is the charge four-current of the fluid. The
energy-momentum tensor is given by

Tμν ¼ Tμν
f þ Tμν

em: ð3Þ

It consists of a fluid part Tμν
f and an electromagnetic part

Tμν
em, which for nonpolarizable, nonmagnetizable fluids

reads [45]

Tμν
em ¼ −FμλFν

λ þ
1

4
gμνFαβFαβ: ð4Þ

Here,

Fμν ¼ Eμuν − Eνuμ þ ϵμναβuαBβ ð5Þ

is the Faraday tensor decomposed in terms of the fluid four-
velocity uμ, as well as the electric- and magnetic-field four-
vectors Eμ ≡ Fμνuν and Bμ ≡ 1

2
ϵμναβFαβuν in the comoving

frame, respectively [46]. Neglecting contributions from
bulk viscous pressure and shear-stress tensor, the energy-
momentum tensor of the fluid reads in the Landau frame

Tμν
f ≡ wuμuν − Pgμν; ð6Þ

where w≡ εþ P is the enthalpy density, with ε being the
energy density and P the pressure, respectively. It should be
noted that, in the presence of an external charge current
Jμext, the divergence of Tμν is given by

∂μTμν ¼ −Fν
λJ

λ
ext; ð7Þ

because external currents induce electromagnetic fields and
thus feed energy and momentum into the system.
For the sake of simplicity we assume that the fluid

consists of particles (and antiparticles) with a single charge
q. The charge current of the fluid is then given by

Jμf ≡ qðnuμ þ VμÞ; ð8Þ

where n is the net particle density in the local rest frame of
the fluid and qVμ ≡ Δμ

νJνf is the charge-diffusion current.
We note that the pressure in Eq. (6) is not an independent
variable, but given by an equation of state (EOS) of the
form Pðε; nÞ.

B. Maxwell’s equations

The evolution of the electric and magnetic fields is given
by Maxwell’s equations,

∂μFμν ¼ Jν; ð9Þ

ϵμναβ∂μFαβ ¼ 0; ð10Þ

where the total charge four-current Jμ ≡ Jμf þ Jμext serves as
the source for the electromagnetic fields.

C. Charge-diffusion current

Ohm’s law, in its simplest covariant Navier-Stokes-type
form, reads [47–49]

qVμ ¼ qκ∇μαþ σEμ: ð11Þ

Here, σ is the electrical conductivity, κ is the particle
diffusion coefficient, and α ≔ μ=T is the ratio of chemical
potential μ to temperature T. The electrical conductivity
and charge-diffusion coefficient satisfy the Wiedemann-
Franz law, σ ¼ q2κ=T. The well-known ideal-MHD limit,
i.e., when σ → ∞, can be obtained from Eq. (11) by
retaining only the second term on the right-hand side and
demanding Eμ ¼ 0 to have a finite Jμf.
As discussed in the Introduction, the Navier-Stokes form

(11) of Ohm’s law is problematic in a relativistic context,
because it allows signals to propagate with infinite speed,
violating causality [50,51]. Furthermore, a modification of
this standard form of Ohm’s law is required on the grounds
that, even when an electric field is already present, the build
up of the corresponding charge-diffusion current needs a
finite time to reach the form given by Eq. (11), as also
recently found in transport simulations [42–44]. In this
work, we use the equation of motion of the charge-diffusion
current as derived in resistive second-order dissipative
magnetohydrodynamics [34,36]. In its most simple form
it reads

τVq _V
hμi þ qVμ ¼ qκ∇μαþ σEμ; ð12Þ

where τV is the charge-diffusion relaxation time. Note that
the charge-diffusion equation (12) represents the simplest
possible way, in the spirit of the Maxwell-Cattaneo con-
struction, to incorporate a causal time lag for the response
of the charge-diffusion current to the dissipative forces on
the right-hand side. Possible generalizations include addi-
tional terms as given in Eq. (25) of Ref. [34]; see also
Ref. [36]. For vanishing bulk viscous pressure and shear-
stress tensor, and for fluids which only move in one spatial
dimension, most of these terms are zero. The other, non-
vanishing ones are not necessarily small, but are omitted
here to keep the discussion as simple as possible.
Equations (1), (2), (9), (10), and (12), together with an
EOS for the fluid and expressions for the charge-diffusion
coefficient, conductivity, and relaxation time, completely
describe the system under consideration provided consis-
tent initial and boundary data are given.
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D. Qualitative features of the resistive
MHD description

At this point, it is useful to discuss some properties of the
coupled system of equations of motion of relativistic
resistive second-order dissipative MHD. To this end, for
the sake of simplicity we neglect particle-density gradients,
such that ∇μα≡ 0, and consider the rest frame of the fluid,
in which case Ohm’s law (12) becomes

τVq _V
i ¼ σEi − qVi; ð13Þ

where i ¼ 1, 2, or 3, and Ei ¼ Fi0 is the electric field.
Furthermore assuming that the conductivity and relax-

ation time are constant in space-time, we take the time
derivative of the above equation and then use Ampere’s law
to obtain the equation of motion of a damped, driven
harmonic oscillator,

V̈i þ 2ω0ζd _V
i þ ω2

0V
i ¼ ω2

0

q
ϵijk∂jBk; ð14Þ

whereω0≔
ffiffiffiffiffiffiffiffiffiffi
σ=τV

p
, ζd≔1=ð2 ffiffiffiffiffiffiffiffi

στV
p Þ, and Bi ¼ − 1

2
ϵijkFjk.

The value of the damping ratio ζd determines the
qualitative behavior of the system. (i) If ζd > 1, the
charge-diffusion current is overdamped and exponentially
decays without oscillations. (ii) The case ζd ¼ 1 corre-
sponds to the critical aperiodic-limit case, where the
charge-diffusion current returns to a steady state as quickly
as possible without oscillating. Finally, (iii) if ζd < 1, the
charge-diffusion current is underdamped and oscillates
with an amplitude which gradually decreases to zero.
For applications in heavy-ion collisions, let us assume

that σ ∼ 0.02T, in accordance with lattice-QCD results
[52]. Then, for case (ii), the relaxation time must be
τV ∼ 10=T. Oscillations only happen if the relaxation time
is larger than this value. For T ∼ 200 MeV, τV ∼ 10 fm,
which is comparable to the lifetime of the fireball. For such
a large relaxation time, the hydrodynamical description (as
considered as an expansion in powers of Knudsen number)
breaks down, since then the microscopic scale τV is no
longer much smaller than the macroscopic scale, in this
case the system’s lifetime.
In Sec. III and Appendix A, we discuss in detail how to

numerically solve the system of Eqs. (1), (2), (9), (10), and
(12). We subject our numerical procedure to various tests,
which are discussed in Appendix B. Applications to heavy-
ion collisions are studied in Sec. IV.

III. NUMERICAL PROCEDURE

In this section, we present the numerical method to solve
the equations of motion of relativistic resistive second-
order dissipative MHD. As already advertised, this poses a
stiff problem, which requires the use of a dedicated method
to obtain a solution which is correct from a mathematical,

and therefore also physical, point of view. In the following
subsections, we first formulate the equations of motion in
a fixed frame, the lab frame, and then discuss hyperbolic
equations with stiff terms in general and then, more
specifically, in the application to relativistic resistive
second-order dissipative MHD.

A. Equations of motion in a fixed frame

In order to numerically solve the system of equations of
motion of relativistic resistive second-order dissipative
MHD one chooses a frame, in the following called the
lab frame. In this frame, the equations of motion (1), (2),
(9), (10), and (12) can be cast into the following
conservative form,

∂tU þ ∂jFjðUÞ ¼ SðUÞ; ð15Þ

where U represents the vector of conserved quantities and
Fj the vector of fluxes,

U ¼

0
BBBBBBBB@

e

Mi

Nf

Vi

Bi

Ei

1
CCCCCCCCA
; FjðUÞ ¼

0
BBBBBBBB@

Fj
e

Fij
M

vjNf

vjVi

ϵijkEk

−ϵijkBk

1
CCCCCCCCA
; ð16Þ

and the vector of sources reads

SðUÞ¼

0
BBBBBBBB@

0

0

−∂ið−viV0þViÞ
ðσEiþqκ∇iα−qViÞ=ðqτVγÞþVi

∂jvj−uiVν _uν
0

−Jif

1
CCCCCCCCA
;

ð17Þ

along with constraint equations

∂iEi ¼ J0f; ð18Þ

∂iBi ¼ 0: ð19Þ

In the lab frame, the fluid four-velocity is uμ ¼ γð1; vÞ,
where γ ¼ ð1 − v2Þ−1=2, and the quantities e, Mi, and Nf

appearing in the vector U are given as

e ¼ 1

2
ðE2 þ B2Þ þ γ2w − P; ð20Þ

Mi ¼ γ2wvi þ ϵijkEjBk; ð21Þ
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Nf ¼ qðnγ þ V0Þ: ð22Þ

Note that in the above equations Ei and Bi are the
electromagnetic fields as measured in the lab frame
whereas Eμ and Bμ are the electromagnetic fields as
measured in the comoving frame of the fluid, respectively.
Similarly, the quantities Fi

e, F
ij
M appearing in the flux vector

FjðUÞ read

Fi
e ¼ Mi; ð23Þ

Fij
M ¼Mivj−Pgij−EiEj−BiBj−

1

2
ðE2þB2Þgij: ð24Þ

B. Hyperbolic equations with stiff terms

While the equations of motion of ideal MHD can be
numerically solved very efficiently, the equations of motion
of relativistic resistive second-order dissipative MHD pose
considerable difficulties for a numerical solution, in par-
ticular when the conductivity in the plasma is large. In
regions with high conductivity, the system will evolve on
timescales which are very different from those in regions of
low conductivity. Mathematically, we have to deal with a
system of hyperbolic equations with stiff relaxation terms,
which requires special care to capture the dynamics in a
stable and accurate manner.
A prototype hyperbolic equation with a stiff source term

RðUÞ=ϵ and a nonstiff source term TðUÞ is given by

∂tU þ ∂jFjðUÞ ¼ 1

ϵ
RðUÞ þ TðUÞ; ð25Þ

where ϵ > 0 is a relaxation time (which is not necessarily
identical to τV).
For example, let us consider the Navier-Stokes form (11)

of Ohm’s law, which can be explicitly written as

Jif ¼ σγðEi þ ϵijkvjBk − viEjvjÞ þ qnvi: ð26Þ

In the fluid rest frame, this reduces to the usual form
Jif ¼ σEi. In this case, there is no equation of motion for
the charge-diffusion current qVμ, and the system (15) of
equation of motion has the reduced set of conserved
variables U ¼ ðe;Mi; Bi; EiÞ and flux variables Fj ¼
ðFj

e; F
ij
M; ϵ

ijkEk;−ϵijkBkÞ, with sources S ¼ ð0; 0; 0;−JifÞ.
Hence, a comparison to the prototype equation (25) reveals
that the relaxation time ϵ can be identified with the
resistivity 1=σ.
In the limit ϵ → ∞, the stiff source term in Eq. (25)

vanishes. In this case, the system is equivalent to a standard
hyperbolic equation. A typical finite-volume method to
numerically solve such a system requires a bound for the
speed ch with which perturbations propagate in the fluid. In
standard fluid dynamics, ch is given by the speed of sound

waves propagating relative to the fluid flow, e.g., for one-
dimensional fluid flow, vx ¼ v, vy ¼ vz ¼ 0 [53],

ch ¼ max

�
vþ cs
1þ vcs

;
v − cs
1 − vcs

�
; ð27Þ

where c2s ≔ ∂P=∂εjs=n (with s being the entropy density of
the fluid) is the speed of sound. The speed ch, together with
the hydrodynamic length scale L defined by the spatio-
temporal variations of the hydrodynamic variables, defines
a characteristic timescale τh ¼ L=ch of the hyperbolic part.
In the opposite limit ϵ → 0, corresponding to infinite

conductivity, the system is stiff, since the timescale ϵ of the
stiff source term RðUÞ is much smaller than τh. In this limit,
the stability of a numerical solution scheme using explicit
time stepping can only be achieved choosing the time step
Δt ≤ ϵ. For small ϵ, such a requirement can considerably
prolong calculation times and thus renders an explicit
integration scheme impractical.
Therefore, to solve a stiff system of hyperbolic equa-

tions, one has to employ a different numerical approach.
Typically, one uses either one of the following methods:
(1) The Strang-splitting method [54], which provides

second-order accuracy if each step is second-order
accurate. However, higher-order accuracy is difficult
to obtain even in nonstiff problems with this kind of
method.

(2) IMEX [55], which represents an effective solution to
the problem when a hierarchy of vastly different
timescales is involved and one does not want to
sacrifice numerical accuracy. The main drawback is
the difficulty of implementation.

We note that the use of the IMEX method in this work
has been crucial to obtain the mathematically correct
solution in the regimes of large conductivity, where the
stiff character of the equations is most evident. Alternative
numerical methods, such as the Strang-splitting method,
have also been tested but can be shown to be inadequate
under the physical conditions explored here. A more
detailed discussion of the numerical implementation of
the IMEX method for relativistic resistive second-order
dissipative MHD is presented in Appendix A, while various
test cases, including a comparison with the Strang-splitting
method, are presented in Appendix B.

IV. SIMPLIFIED SETUP FOR HEAVY-ION
COLLISIONS

In this section, we apply the reduced MHD approach
discussed in Sec. II to a simplified setup for heavy-ion
collisions, where the system is homogeneous in the
directions transverse to the beam axis, while the fluid only
moves in the longitudinal (i.e., beam) direction.
At relativistic energies, the momenta of the colliding

nuclei are so large that the nuclear stopping power is not
sufficient to significantly decelerate them. Therefore, we
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assume that the electromagnetic field is created by
protons moving with rapidity �Ybm, where Ybm ¼
Artanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

N=sNN

p
is the beam rapidity in the

center-of-momentum (C.M.) frame [56] and� corresponds
to the protons moving in the �z-direction. Here, mN is the
mass of the nucleon and

ffiffiffiffiffiffiffiffi
sNN

p
is the C.M. energy per

nucleon pair. We do not distinguish between spectator and
participant protons, i.e., assume that the electromagnetic
field of a nucleus is created by a charge of magnitude Z.
For the sake of simplicity we also assume that charge to be
pointlike. Then, the electromagnetic four-potential in the
Lorenz gauge (see Ref. [57]) can be constructed by
boosting the electrostatic potential of a charge at rest to
the C.M. frame,

Aμ
� ¼

�
ZαEMγ
r�

; 0; 0; v�
ZαEMγ
r�

�
; ð28Þ

where αEM is the fine-structure constant, v� ¼ � tanhYbm

are the velocities of the nuclei, and γ ≔ ð1 − v2�Þ−1=2.
At time t, the distance between the observer at ðx; y; zÞ
and the charge moving with velocity v� is r�ðx; y; z; tÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� b=2Þ2 þ y2 þ γ2ðz − v�tÞ2

p
and points from the

center of the nucleus at ð�b=2; 0; v�tÞ to the observer;
see Fig. 1.
We assume that the system is homogeneous in the

transverse plane, hence consider only the electromagnetic
field near x⊥ ≔ ðx; yÞ ¼ 0. The nonzero components of the
Faraday tensor Fμν ¼ ∂

μAν − ∂
νAμ, where Aμ ¼ Aμ

þ þ Aμ
−,

at x⊥ ¼ 0 are then given by

Byð0; 0; z; tÞ ¼ b
2
ZαEM

�
1

r30;þ
þ 1

r30;−

�
sinhYbm; ð29Þ

Exð0; 0; z; tÞ ¼ b
2
ZαEM

�
1

r30;þ
−

1

r30;−

�
coshYbm; ð30Þ

where r0;� ≔ r�ð0; 0; z; tÞ.

In the following, we will consider two cases. The first
one is an initially nonexpanding fluid; i.e., the fluid is at rest
with a uniform energy-density profile in the z-direction.
This is done in order to compare with previous studies
[15,58], where the authors solve Maxwell’s equations in
conducting media. The second case is a fluid which is
initially expanding in the z-direction according to the
boost-invariant Bjorken-flow scenario, i.e., with velocity
vz ¼ z=t.

A. Initially nonexpanding fluid

We consider Au-Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV with
impact parameter b ¼ 10 fm. The initial pressure is P ¼
18.33 GeV=fm3 and the initial electromagnetic fields are
calculated using Eqs. (29) and (30) at time t ¼ 10−3 fm. All
other fields are initially set to zero, including the initial net
charge density so that the constraint Eq. (18) is identically
satisfied. We use the EOS P ¼ ε=3, i.e., c2s ¼ 1=3.
However, in principle other EOSs can also be taken. The
electrical conductivity σ and relaxation time τV are kept as
free parameters. Varying them we will study the cases
where ζd < 1 or ζd > 1.
Figure 2 shows the z-dependence of the electromagnetic

fields at time t ¼ 2 fm for different values of σ and fixed
τV ¼ 10−2 fm. From the left panel of Fig. 2 one observes
that the magnetic field is even under z → −z. For large σ,
the field deviates only slightly from the initial profile of the
magnetic field. This is due to the frozen-flux theorem,
which tells us that the magnetic field is confined inside the
matter, which is, at least initially, not expanding. For small
σ, the magnetic-field evolution is closer to that in vacuum;
i.e., it is peaked at the positions of the moving charges, with
small diffusive tails which become narrower as σ → 0. The
right panel of Fig. 2 shows that the electric field is an odd
function under z → −z. Apart from this, the electric-field
evolution mirrors that of the magnetic field: For large σ, it is
located close to the origin, with very small magnitude,
while for smaller σ it is peaked near the positions of the
moving charges, and has a larger magnitude.
The left panel of Fig. 3 shows the time evolution of the

charge-diffusion current qVx (solid line) and σEx (dashed
line) at z ¼ −0.006 fm fm2 for different values of σ, but the
same τV ¼ 10−2 fm. We see that, although in both cases the
charge-diffusion current approaches its Navier-Stokes limit
(qVx ¼ σEx) at late times, the transient behavior at inter-
mediate times depends on the damping ratio ζd. For the
blue curves, ζd ≃ 15.81, which corresponds to the over-
damped case. In this case, the charge-diffusion current
more or less follows the electric field without oscillations.
On the other hand, for the red curves, ζd ¼ 1=2, corre-
sponding to the underdamped case. Here, we observe a

FIG. 1. Collision geometry of two Lorentz-contracted nuclei
moving with velocity v�- in the�z-direction at impact parameter
b along the x-axis.

2We use a slight offset from the origin, because by symmetry
the electric field Ex vanishes at that point.

DASH, SHOKRI, REZZOLLA, and RISCHKE PHYS. REV. D 107, 056003 (2023)

056003-6



large phase shift between qVx and σEx, accompanied by an
oscillatory behavior.
The right panel of Fig. 3 shows the time evolution of the

same quantities as in the left panel for two different values
of τV keeping σ ¼ 10−1 fm−1 fixed. In both cases, the
parameters are chosen such that the evolution of the charge-
diffusion current is overdamped: For the red curves,
ζd ≃ 1.58, while for the blue curves ζd ¼ 5. The two
curves for σEx overlap, while the charge-diffusion current
for the larger relaxation time (red curve) takes longer to
approach its Navier-Stokes value. It is also smaller in
magnitude than for the smaller relaxation time, indicating

an incomplete generation of the charge-diffusion current.
Such a phenomenon has also been recently seen in the
transport approach of Ref. [42]. This, in turn, will affect the
rate of decay of the magnetic field in the medium as we will
see next.
The left panel of Fig. 4 shows the time evolution of By

evaluated at z ¼ −0.006 fm for σ ¼ 0 fm−1 (solid black
line) and σ ¼ 10−1 fm−1, for various values of τV . Due to
the induced current generated in a medium with finite
conductivity, the rate of decay of the magnetic field
decreases (solid orange and blue lines). Moreover, as
discussed in the previous paragraph, a longer relaxation

FIG. 2. Left panel: the magnetic-field component By as a function of z for the initially nonexpanding case. The black solid line is the
initial magnetic field, while the other two lines are for two different values of the conductivity at time t ¼ 2 fm. The relaxation time is
fixed to τV ¼ 10−2 fm. Right panel: same as left panel but for the electric-field component Ex.

FIG. 3. Left panel: time evolution of the charge-diffusion current qVx (dashed line) and σEx (solid line) at z ¼ −0.006 fm for two
different values of σ, but for the same τV ¼ 10−2 fm. Right panel: same as left panel but for different values of τV for the same
σ ¼ 10−1 fm−1.

CHARGE DIFFUSION IN RELATIVISTIC RESISTIVE SECOND- … PHYS. REV. D 107, 056003 (2023)

056003-7



time (the solid blue line as compared to the solid orange
line) means an incomplete response of the charge-diffusion
current and hence leads to faster decay of the magnetic field
at early times. However, at late times, for a larger relaxation
time the induced current is still present, even though the
electric field has decayed; see right panel of Fig. 3. This, in
turn, leads to a decrease in the decay rate of the magnetic
field at late times. It can even reverse the decay, leading to
an increase of the magnetic field, as observed for the solid
blue line in the left panel of Fig. 4. The solid green line
shows the solution obtained by solving Maxwell’s equation
in a conducting medium shown previously in Refs. [15,58],
using the Navier-Stokes form (11) of Ohm’s law. The right
panel of Fig. 4 shows the time evolution of Ex evaluated at
z ¼ −0.006 fm, for the same parameters as in the left panel.
Here, the solid blue and orange lines overlap.
Notice that, as soon as one introduces a nonzero

relaxation time τV , no matter how small, the initial
evolution of the electromagnetic fields must follow that
of the vacuum, since the backreaction of the medium needs
some finite amount of time to build up. The solution of
Refs. [15,58] does not account for this, since it uses the
instantaneous Navier-Stokes form (11) of Ohm’s law. The
strong suppression of this solution as compared to the
vacuum one is due to a specific form of the solution; cf.,
e.g., Eq. (2.3) in Ref. [58], which features an exponential
behavior ∼ expð−σb sinhYbm=4Þ ∼ expð−130σ fmÞ for
RHIC energies (Ybm ¼ 5) and an impact parameter
b ¼ 7 fm. Thus, for σ ¼ 10−1 fm−1, the initial electromag-
netic fields will be smaller by several orders of magnitude
as compared to the vacuum solution, as one observes in the
left panel of Fig. 4.
In Fig. 5 we show the solution for the underdamped case,

i.e., for σ ¼ 10 fm−1 and τV ¼ 1 and 3 fm, respectively.

While the evolution is similar to Fig. 4, at late times one
observes oscillations typical for the underdamped case.
Next, we also compute the entropy production due to

Ohmic dissipation. The rate of entropy production is also
proportional to the rate of decrease of electromagnetic
energy in the system [57]. The entropy current Sμ is
given as

Sμ ¼ Pβμ þ Tμν
f βν −

α

q
Jμf þ

δ

2
uμVνVν þO3; ð31Þ

where O3 denotes terms of third order or higher in the
dissipative currents. The coefficient δ is a function of the
temperature and chemical potential of the equilibrium state
and can only be obtained by matching this expansion with
the underlying microscopic theory. Here we keep it as a free
parameter.
Taking the divergence of the above equation and using

the conservation laws (1) we arrive at the following
expression:

∂μSμ ¼ Vμ

�
−
q
T
Eμ −∇μαþ δ _Vμ þ Vμ

∂ν

�
δ

2
uν
��

: ð32Þ

The fourth term on the right-hand side can be neglected if
we restrict the discussion to the simplest possible case, as
has already been done in Eq. (12). Enforcing the positivity
of the second law by requiring

∂μSμ ¼ −
q2

σT
VμVμ ð33Þ

leads to the evolution equation (12) for the charge-diffusion
current. The coefficient δ can then be identified with

FIG. 4. Left panel: the time evolution of By at z ¼ −0.006 fm. The solid black line corresponds to the solution in vacuum, i.e., for
σ ¼ 0 fm−1, whereas the solid green line corresponds to the solution obtained in Refs. [15,58] for σ ¼ 10−1 fm−1. The solid orange and
blue lines correspond to the numerical solution computed for the same value of σ, but using different values for the relaxation time τV .
Right panel: same as left panel but for Ex.
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δ ¼ q2τV=ðσTÞ. The left panel of Fig. 6 shows the grid-
averaged entropy production rate,

h∂μSμi ≔
R
d3x∂μSμR
Pd3x

¼
R
dz∂μSμR
Pdz

ð34Þ

as a function of time with constant conductivity σ ¼
10−1 fm−1. The spatial (z-) integration is taken over the
whole grid. Notice that in case of a longer relaxation time
(solid blue line), the rate of entropy production is delayed
as compared to the case of a shorter relaxation time
(solid orange line). The right panel of Fig. 6 shows the
average entropy production rate for a larger value of the

conductivity, σ ¼ 10 fm−1. For such a large conductivity, a
value of τV ¼ 1 fm for the relaxation time renders the
charge-diffusion current underdamped (as then ζd≃0.158).
Consequently, the entropy production rate oscillates
(solid blue line). If we reduce the relaxation time to
τV¼10−2 fm, for σ ¼ 10 fm−1 the charge-diffusion current
is again in the overdamped region and the entropy
production rate no longer oscillates (solid orange line).
Qualitatively, this case looks like the cases shown in the left
panel of Fig. 6; however, since τV is at least an order of
magnitude smaller, the decrease of the entropy production
rate occurs on a much smaller timescale as well. Naturally,
as expected from Eq. (33), the entropy production is never
negative.

FIG. 6. Left panel: the time evolution of grid-averaged entropy production rate scaled by the pressure, h∂μSμi, as a function of time for
a finite constant conductivity σ ¼ 10−1 fm−1. Solid orange and blue lines correspond to the numerical solution using different relaxation
times τV . Right panel: same as left panel but for σ ¼ 10 fm−1.

FIG. 5. Left panel: the time evolution of By at z ¼ −0.006 fm. The solid black line corresponds to the solution in vacuum, i.e., for
σ ¼ 0 fm−1. The solid orange and blue lines correspond to the numerical solution computed for σ ¼ 10 fm−1, but for different values for
the relaxation time τV . Right panel: same as left panel but for Ex.
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Finally, we remark that, because of a finite Poynting
vector ∼E × B, the electromagnetic field also accelerates
the fluid, giving rise to a nonzero fluid velocity vz.
However, we do not discuss this here but rather move to
the more physical case of a finite initial expansion rate of
the fluid, where we investigate these effects in more detail.

B. Initially expanding fluid

We now consider a system which is initially expanding
according to Bjorken’s scaling-flow scenario [59], i.e., with
initial flow velocity in the z-direction vz ≡ z=t≡ tanh η,
where η ≔ Artanhvz is the space-time rapidity. The trans-
verse velocity is v⊥ ≡ 0. The proper time of a fluid element
moving with vz ¼ tanh η is denoted by τ. For such a flow
profile, it is usually convenient to replace the standard
Minkowski coordinates xμ¼ðt;x;y;zÞ by Milne coordinates
x̃μ¼ðτ;x;y;ηÞ, withmetric tensor gμν¼diagð1;−1;−1;−τ2Þ.

In these coordinates, the equations of motion (15)
acquire some additional source terms; for more details see
Appendix C.
We consider the same colliding system as in Sec. IVA, i.e.,

an Au-Au collision at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV at impact param-
eter b ¼ 10 fm. We initialize the evolution at τ0 ¼ 0.1 fm
with uniform energy density ε ¼ 13.33 GeV=fm3. Since we
also want to investigate the case of a temperature-dependent
conductivity, we need to relate the temperature to a fluid-
dynamical quantity, e.g., the energy density. Assuming the
particles in our system to bemassless spin-1=2 fermions, this
relationship is given by ε≡ 7π2T4=60. The Faraday tensor
F̃μν in Milne coordinates at initial time τ0 ¼ 0.1 fm can be
computed via a coordinate transformation,

F̃μνðτ0;x⊥;ηÞ¼
∂x̃μ

∂xρ
∂x̃ν

∂xσ
Fρσðτ0 coshη;x⊥;τ0 sinhηÞ; ð35Þ

FIG. 7. Top: contour plot of jB̃yj (in units of
ffiffiffiffiffiffiffiffiffi
GeV

p
fm−3=2) in the ðτ; ηÞ-plane for σ ¼ 10−1 fm−1 (left panel) and σ ¼ 10 fm−1 (right

panel). Bottom: same as above, but for a temperature-dependent conductivity σ=T ¼ 8παEM=3. The relaxation time is chosen as
τV ¼ 10−2 fm.
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where the initial Faraday tensor Fρσ in Minkowski coor-
dinates is calculated using Eqs. (29) and (30). Since we
assume homogeneity in the transverse direction, it is suffi-
cient to consider all fields at x⊥ ¼ 0. The further evolution of
the electromagnetic fields is then determined by solving
Maxwell’s equations in Milne coordinates.
Figure 7 shows a contour plot of jB̃yj in the ðτ; ηÞ-plane

for various values of the conductivity. The black vertical
lines indicate beam rapidity �Ybm. One feature to note is
that the magnetic field is positive inside the region jηj <
Ybm and negative outside. For a small value of σ the peak in
the magnetic field remains close to the rapidities �Ybm of
the initial charges, with diffusive tails extending toward the
midrapidity region; cf. also Fig. 2. On the other hand, for a
larger value of σ, the magnetic field remains at midrapidity
as a consequence of the frozen-flux theorem; cf. Fig. 2. For
a temperature-dependent conductivity, which in our case

we take to be σ=T ¼ 8παEM=3 ≃ 0.06 [60,61], the dynam-
ics is nontrivial since the system transits from a conducting
to an insulating medium as it cools down with time.
Nevertheless, for such a small value of σ=T, the evolution
is rather similar to the case with a constant small σ shown in
the upper left panel of Fig. 7. We also note that, as the
conductivity σ increases, the magnetic field at late times
approaches the ideal-MHD scaling limit for Bjorken flow,
i.e., at fixed η, B̃y ∼ 1=τ, as found previously in Ref. [62].
To study the backreaction of the electromagnetic fields

on the fluid, we consider the energy density and the fluid
velocity. For pure Bjorken flow, ε should remain constant
as a function of η and decay with τ as ε ∼ τ−4=3. Moreover,
in pure Bjorken flow ũμ ¼ ð1; 0; 0; 0Þ. The backreaction
should then in principle be visible in violations of this
behavior. Nevertheless, in the ideal-MHD limit and in
the absence of an external charge current, energy and

FIG. 8. Top row: contour plot of the energy density ε in the ðτ; ηÞ-plane for σ ¼ 10−1 fm−1 (left panel) and σ ¼ 10 fm−1 (right panel).
Bottom row: same as top row, but for the fluid velocity in the η-direction, τũη=ũτ. The relaxation time is chosen as τV ¼ 10−2 fm.
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momentum of the fluid are separately conserved (see, e.g.,
Ref. [33]), i.e.,

∂μT
μν
f ¼ 0: ð36Þ

This is because the electric field goes to zero in the ideal-
MHD limit and the magnetic field influences the dynamics
of the fluid only by coupling to the dissipative part of the
charge current qVμ. However, without dissipation, the flow
is adiabatic and the dynamics of the fluid remains unaf-
fected by the magnetic field. Therefore, for large values of σ
we also do not expect any significant deviations from the
Bjorken-flow scenario, and a notable backreaction on the
fluid should only be observable for small values of σ.
These expectations are borne out by our numerical

calculations. In Fig. 8 (top row) we show contour plots

of the energy density scaled by its value at τ0, ε=ε0, in the
ðτ; ηÞ-plane for a small value of σ ¼ 10−1 fm−1 (left panel)
and a large value of σ ¼ 10 fm−1 (right panel), respectively.
For both large and small values of the conductivity, there is
no visible breaking of boost invariance in the energy
density (upper row). We have also checked the scaling
of the energy density with τ around midrapidity and find
that it closely follows the ideal Bjorken-scaling law ∼τ−4=3.
Considering the fluid four-velocity, we show its

η-component (multiplied by τ in order to make it dimen-
sionless, and divided by its τ-component) in the bottom row
of Fig. 8. Deviations from Bjorken flow are visible by the
generation of nonzero values of τũη=ũτ. These deviations
are larger (smaller) for smaller (larger) values of σ, which is
evident from comparing the magnitude of τũη=ũτ in the left
and the right panels of the bottom row of Fig. 8.

FIG. 9. Top row: contour plot of the energy density ε in the ðτ; ηÞ-plane for σ ¼ 10−1 fm−1 (left panel) and σ ¼ 10 fm−1 (right panel).
Bottom row: same as top row, but for the fluid velocity τũη=ũτ. The relaxation time is chosen as τV ¼ 10−2 fm and inverse plasma
β−1 ¼ 8.
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We observe from Fig. 8 that the backreaction of the
magnetic field onto the fluid is quantitatively very small.
The reason for this is that the initial value of the field energy
density is small compared to that of the fluid. This is
quantified by the so-called inverse plasma β-parameter. In
this context, we choose to define it as β−1 ≔ B2

0=ð2P0Þ,
where B2

0=2 is the initial magnetic pressure and P0 the
initial pressure of the fluid at x⊥ ¼ z ¼ 0. For the param-
eters in Fig. 8 we have β−1 ¼ 0.15. If we artificially scale
up the initial value of the electromagnetic fields such that
β−1 ¼ 8, we obtain a different picture; cf. Fig. 9. Such large
values are not entirely unrealistic, in particular in the outer
layers of the collision zone. As one can see from Fig. 9 for
β−1 ¼ 8 the breaking of boost invariance increases sub-
stantially as compared to Fig. 8. Now there are also visible
deviations from Bjorken flow in the energy density, both
for large and small values of the conductivity, and the fluid
velocity can be 2 orders of magnitude larger than in the
previous case. As one observes, the effect is larger for a
smaller value of the conductivity; cf. left and right columns
of Fig. 9.

V. CONCLUSION AND OUTLOOK

We have numerically solved the equations of motion of
relativistic resistive second-order dissipative magnetohy-
drodynamics in a dimensionally reduced setup, which is
nevertheless relevant for heavy-ion collisions. The present
framework is self-consistent, meaning it includes the
backreaction from electromagnetic fields to the fluid and
vice versa. The fluid couples to the electromagnetic field
via the charge diffusion, which is usually treated in the
Navier-Stokes form of Ohm’s law. As this introduces
acausalities and instabilities in the relativistic case, we
generalized the constituent relation for the charge-diffusion
current to an equation of motion including a relaxation term
of Maxwell-Cattaneo form. From the discussion of ordi-
nary second-order dissipative fluid dynamics, such a
constituent relation is known to in principle restore cau-
sality and stability. The equation of motion for the charge-
diffusion current can be derived from kinetic theory using
the Boltzmann-Vlasov equation [33,34]. We showed that,
in the local rest frame of the fluid, such an equation,
coupled to Maxwell’s equations, can be recast into the
equation of motion for a damped harmonic oscillator. The
set of magnetohydrodynamical equations of motion fea-
tures source terms which are stiff when the conductivity is
large (e.g., in the ideal-conducting limit). Therefore, the
solution requires a numerical method which is able to
handle such stiff source terms. Here, we have employed an
IMEX method and checked its validity for various non-
trivial test cases. We have then applied our reduced
magnetohydrodynamical setup to two scenarios: one where
the fluid is initially at rest and one where it initially expands
longitudinally according to the Bjorken scaling flow.

Depending on the choices for conductivity and relaxation
time, we have found qualitatively different solutions. As
expected, if the relaxation time is large, the evolution of the
charge-diffusion current does not follow that of the electric
field, but may considerably lag behind in time and may not
reach the full magnitude expected from the Navier-Stokes
form of Ohm’s law. A large relaxation time leads to a faster
decay of the magnetic field at early times, but the induced
current persists longer, which can then reverse the decay
and lead to an increase of the magnetic field at later times.
Furthermore, when the product of relaxation time and
conductivity is large, the equation of motion for the charge-
diffusion current corresponds to that of an underdamped
harmonic oscillator, which leads to an oscillatory behavior
of the charge-diffusion current. We have also found that, in
the case of an initially expanding fluid, the backreaction of
the magnetic fields onto the fluid crucially depends on
the value of the conductivity and the magnitude of the
inverse plasma β-parameter. For small β−1 ≪ 1, the back-
reaction is negligible, no matter whether we choose a large
or a small conductivity. Only when β−1 ≫ 1, we see a
sizable backreaction, which is larger for a smaller value of
the conductivity.
There are many possible directions for future work. First,

one could relax the assumption of transverse homogeneity
and extend this to a full 3þ 1-dimensional situation to have
a realistic comparison with experimental data. Second, one
could include a finite initial net electric charge distribution
and study the interplay between electromagnetic field and
fluid in the context of net charge fluctuations and their
dissipation. This is important for the Beam Energy Scan
program at the RHIC. Finally, one could extend the present
treatment to allow the matter to have a finite polarization
and magnetization. These and further questions will be
addressed in future work.

ACKNOWLEDGMENTS

We thank G. Inghirami and M. Mayer for fruitful
discussions. A. D. gratefully acknowledges the support of
theAlexander vonHumboldt Foundation through a research
fellowship for postdoctoral researchers. This work is sup-
ported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) through the Collaborative
Research Center CRC-TR 211 “Strong-interaction matter
under extreme conditions”—Project No. 315477589—TRR
211 and by the State of Hesse within the Research Cluster
ELEMENTS (Project ID No. 500/10.006).

APPENDIX A: IMEX SCHEME
FOR RELATIVISTIC RESISTIVE

SECOND-ORDER DISSIPATIVE MHD

In what follows we provide a more detailed discussion
of our numerical implementation of the IMEX method
for relativistic resistive second-order dissipative MHD.
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We start by recalling that, in general, an IMEX scheme
applies an implicit discretization scheme to the stiff terms
and an explicit one to the nonstiff ones. For the system (25),
it takes the form [53,55]

Ūi ¼ Un − Δt
Xi−1
k¼1

ãik½∂jFjðŪkÞ − TðŪkÞ�

þ Δt
Xi

k¼1

aik
1

ϵ
RðŪkÞ; ðA1Þ

Unþ1 ¼ Un − Δt
Xν
i¼1

ω̃i½∂jFjðŪiÞ − TðŪiÞ�

þ Δt
Xν
i¼1

ωi
1

ϵ
RðŪiÞ; ðA2Þ

where Ūi is the vector of conserved quantities at the
intermediate time steps i of the Runge-Kutta (RK) scheme,
i ¼ 1;…; ν, while Un is the vector of conserved quantities
at time step tn, where n is the number of time steps. The
matrices Ã ¼ ðãikÞ and A ¼ ðaikÞ are ν × ν matrices
such that the resulting scheme is explicit in ∂jFj − T
(i.e., ãik ¼ 0 for k ≥ i) and implicit in R (i.e., aik ¼ 0
for k > i). A specific IMEX scheme is characterized by
these two matrices and the coefficient vectors ω̃i and ωi.
A convenient way of describing an IMEX scheme is

offered by the Butcher notation, in which the scheme is
given by two tableaux (one for the explicit and the other for
the implicit time stepping) of the type [53]

c̃ Ã

ω̃T ;
c A

ωT ; ðA3Þ

where the index T indicates transposition and where the
coefficient vectors c̃ and c satisfy the constraints

c̃i ¼
Xi−1
j¼1

ãij; ci ¼
Xi

j¼1

aij: ðA4Þ

A viable numerical scheme maintains so-called strong
stability at the discrete level and is then called strong stability
preserving (SSP); see Ref. [63] for a detailed description of
optimal SSP schemes and their properties. In the present
work we use the SSP3 (3,3,2) scheme for our numerical
solution.3 The Butcher-tableau form corresponding to this
scheme is adopted from Refs. [53,55] and given in Table I.

For the system (15) of equations of motion it is possible
to introduce a natural decomposition of variables in terms
of stiff and nonstiff parts. The vector U can be split into two
subsets: the stiff terms X ¼ ðVi; EiÞT and the nonstiff terms
Y ¼ ðe;Mi; Nf; BiÞT . This choice is natural because the
system has two intrinsic timescales σ and τV . When
τV → 0, we recover the usual Navier-Stokes form of
Ohm’s law and the fields decay according to the timescale
set by the conductivity σ, whereas when τV is finite the
evolution of the system is dictated by the interplay of these
two timescales and can be characterized by the value of
the damping coefficient ζd entering Eq. (14). As a result,
the procedure to compute each intermediate value Ūi of the
IMEX scheme can be performed in two steps:
(1) Perform an explicit time step by computing inter-

mediate values Yi, Xi, where i labels the RK step,

Yi ¼ Yn − Δt
Xi−1
k¼1

ãik½∂jFj
YðŪkÞ − TYðŪkÞ�; ðA5Þ

Xi ¼ Xn − Δt
Xi−1
k¼1

ãik½∂jFj
XðŪkÞ − TXðŪkÞ�

þ Δt
Xi−1
k¼1

aik
ϵk

RXðŪkÞ; ðA6Þ

where Fj
X, F

j
Y are the fluxes pertaining to the stiff

and nonstiff terms, respectively, and TY , TX are the
nonstiff source terms corresponding to the variables
Y and X, respectively. RX is the source term for the
stiff variables, and the relaxation parameter ϵk ≡
ϵðYkÞ is in principle also allowed to depend on the
nonstiff Yk variables at the kth RK step.

(2) Perform an implicit time step, which involves only
X, by solving

Ȳi ¼ Yi; ðA7Þ

X̄i ¼ Xi þ Δt
aii
ϵi

RXðŪiÞ: ðA8Þ

TABLE I. Butcher tableaux for the explicit and implicit SSP3
(3,3,2) scheme.

0 0 0 0
1 1 0 0
1=2 1=4 1=4 0

1=6 1=6 2=3

γ γ 0 0
1 − γ 1 − 2γ γ 0
1=2 1=2 − γ 0 γ

1=6 1=6 2=3

where γ ≡ 1 − 1=
ffiffiffi
2

p

3In this context, the abbreviation SSPk ðs; σ; pÞ means the
following. The index k denotes the order of the SSP scheme. The
triplet of numbers ðs; σ; pÞ indicates with s the number of stages
of the implicit scheme (in our case s ¼ ν), with σ the number of
stages of the explicit scheme (in our case σ ¼ ν), and with p the
order of the IMEX scheme.
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The implicit equation for X̄i ¼ ðV̄i; ĒiÞT can be solved,
yielding

V̄i ¼
�
1þ Δtaii

τVγ

�
−1
�
Vi þ Δtaii

τVγ

σ

q
Ēi

�
ðA9Þ

and

Ēi ¼ Ei − Δtaii½N̄fvi þ qðδij þ vivjÞV̄j�; ðA10Þ

where we have used the identity Vμuμ ¼ 0. Equations (A9)
and (A10) have to be solved iteratively for ðV̄i; ĒiÞ. It is
interesting to note that the implicit solution (A9) is
consistent with the known solutions in the following two
limits. In the limit τV → 0, the term Vi on the right-hand
side can be neglected, yielding the Navier-Stokes form of
Ohm’s law, qV̄i ¼ σĒi. On the other hand, in the limit of
τV → ∞, the implicit step is trivial, V̄i ¼ Vi, and the
charge-diffusion current decouples from the electric field.
One crucial step remains before we arrive at the final

solution of the system (15) of equations of motion. We
describe this in the following. We note that the solution of
the conserved quantities Y ¼ ðe;Mi; Nf; BiÞ at time t ¼
ðnþ 1ÞΔt is obtained by simply evolving Eq. (15) using
the explicit time stepping. However, after the explicit time
step, the diffusion current and electric field only assume an
approximate solution ðVi; EiÞ according to Eq. (A6). The
implicit inversion step, giving rise to Eqs. (A9) and (A10),
depends on the velocity vi, which is not explicitly known,
even after the explicit time step. The way to determine vi, as
well as other variables in the local rest frame, such as the
energy density and particle number density (which are
needed to compute the pressure P via the equation of state),
is similar to the one presented in Refs. [48,64]. It is
essentially a nested fixed-point iteration procedure and
can be summarized by the following steps:
(1) Adopt as an initial guess for the velocity its value at

the previous time step, which we denote by vi⋆. The
diffusion current and electric field ðV̄i; ĒiÞ are then
computed via Eqs. (A9) and (A10) as functions of
ðVi; vi⋆; EiÞ via fixed-point iteration.

(2) Subtract the Poynting flux and the electromagnetic
energy density from the conserved variables, and
define new variables as follows:

M0i ¼ Mi − ϵijkEjBk ≡ γ2wvi; ðA11Þ

e0 ¼ e −
1

2
ðE2 þ B2Þ≡ γ2w − P: ðA12Þ

The variables ðe0;M0iÞ simply correspond to the
conserved variables in ideal relativistic fluid dynam-
ics and the velocity vi is computed by the standard
fixed-point iteration procedure often used in the
literature; see, e.g., Refs. [48,65].

(3) Replace vi⋆ with the velocity vi obtained from step 2,
and repeat steps 1–3, until the variables ðV̄i; vi; ĒiÞ
have converged within a given tolerance limit (in our
case 10−7).

The approach discussed above is a simple procedure that
can be implemented straightforwardly and works well if the
inverse plasma β-parameter B2=ð2PÞ is not too large. In the
cases studied by us, convergence was reached within ten to
50 iterations depending on the values of σ and τV .

APPENDIX B: TEST CASES

In this section, two one-dimensional test cases (see, e.g.,
Refs. [47–49]) are presented. For all results presented here,
the fluxes Fj

X;Y are determined via the Godunov-type
Harten-Lax–van Leer–Einfeldt algorithm [66]. As in ideal
MHD, the numerical calculation implements total-variation-
diminishing methods for the reconstruction of the solution.
We use an ideal equation of state P ¼ ðΓ − 1Þε, where Γ is
the adiabatic index. We use an extreme Γ ¼ 2, which
corresponds to the speed of sound c2s ≡ Γ − 1 ¼ 1. Our
time step is Δt ¼ λCFLΔx, with Courant-Friedrichs-Lewy
number λCFL ¼ 0.1.

1. Shock-tube problem

For the shock-tube problem with discontinuity at x ¼ 0
we take the initial pressure and magnetic field on the left
(L)- and right (R)-hand side (in dimensionless units) as

ðPL; BL
y Þ ¼ ð1.0; 0.1Þ; ðB1Þ

ðPR; BR
y Þ ¼ ð0.1;−0.1Þ; ðB2Þ

while other fields are set to 0. We compare our results to the
exact solution of the ideal-MHD Riemann problem pre-
sented in Ref. [67]. The calculation runs from initial time
t ¼ 0 to the final time t ¼ 0.4. The grid spacing is set
to Δx ¼ 0.002.
In Fig. 10, we take the relaxation time τV ¼ 10−3 to be

small in order to compare the results with the Navier-Stokes
form of Ohm’s law. The electrical conductivity ranges from
σ ¼ 0 corresponding to vacuum to σ ¼ 106, approximately
corresponding to the ideal-MHD case. The top row of
Fig. 10 shows the magnetic field (left panel) and the electric
field (right panel) at time t ¼ 0.4. One notices that for
σ ¼ 0 the solution describes a discontinuity propagating at
the speed of light to the left and the right, corresponding to
the solution of Maxwell’s equations in vacuum. As the
conductivity increases, the solution approaches the ideal-
MHD one. The bottom row of Fig. 10 shows the pressure
(left panel) and the velocity (right panel). Since the inverse
plasma β-parameter for this setup is small, the effect
of the magnetic field on these fluid-dynamical variables
is small, and all curves resemble those from the ideal-MHD
Riemann problem.
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In Fig. 11 the initial conditions are the same as for Fig. 10,
except that we now solve the Riemann problem for a
constant conductivity σ ¼ 102 and different relaxation times
τV . The two cases of small τV ¼ 10−2 and 10−3 yield almost
identical results, but for larger τV we see oscillations
appearing in the solution, which can be traced back to the
fact that in this regime the diffusion current is underdamped,
which then backreacts to the electromagnetic fields.
Further, in Fig. 12 we consider the same initial condition

as in the previous two cases, but now with a nonuniform
conductivity, σ ¼ σ0ρ

δ, where ρ is a solution of the
advection equation ∂tρþ ∂jðρvjÞ ¼ 0 with initial condition
ρL ¼ 1.0, ρR ¼ 0.125. Furthermore, σ0 ¼ 103, τV ¼ 10−3,
and δ ¼ 6. The resulting conductivity σ and By at time
t ¼ 0.4 are shown in Fig. 12. It should be stressed that
because of the functional dependence of σ on ρ, the region
on the left, i.e., x < 0, has a very high conductivity at this
time and, thus, the numerical solution tends to the ideal-
MHD case. The opposite happens in the right region, i.e.,
x > 0, where the conductivity is lower and the solution

tends toward the vacuum one. The results presented in
Fig. 12 show that our algorithm can handle nonuniform
conductivity profiles even in the presence of shocks.
Finally, we also perform a comparison between the

IMEX and the Strang-splitting approaches. In Fig. 13
we show the L1-norm of the difference between the
numerical solution obtained from both schemes with
the ideal-MHD exact solution, for different values of the
conductivity with Δx ¼ 0.003 and τV ¼ 10−3 (in dimen-
sionless units). The L1ðByÞ is defined as

L1ðByÞ ¼ 1

N

XN
i

jByðxiÞ − By
id−MHDðxiÞj; ðB3Þ

where N is the total number of cells. First, the reported
difference between the numerical solution for the resistive
MHD equations and the ideal-MHD equations should not
be interpreted as an error given that the ideal-MHD solution
is not the correct solution of the equations at finite

FIG. 10. Top row: magnetic-field component By (left panel) and electric-field component Ez for the shock-tube problem at t ¼ 0.4.
Different lines refer to different values of the conductivity for τV ¼ 10−3. Bottom row: same as top row, but for the pressure P (left panel)
and the fluid velocity vx (right panel).

DASH, SHOKRI, REZZOLLA, and RISCHKE PHYS. REV. D 107, 056003 (2023)

056003-16



conductivity. This is particularly prominent for the lower
conductivity values and improves as we increase the value
of conductivity. Furthermore, we did not find any numeri-
cal instability in the IMEX method for σ ranging from 0 to
1011 within the above resolution. For the Strang-splitting
technique the solutions become unstable and no numerical
solution could be obtained already for moderately high
values of the conductivity, i.e., beyond σ > 104. Our results
are in agreement with similar conclusions found previously
in Ref. [48]. Also, we note that the difference between the
numerical solution for the IMEX scheme and the exact
ideal-MHD solution saturates between σ ∼ 105–106. This
emphasizes the fact that to gain more accuracy one needs to
increase the resolution.

2. Self-similar current sheet

In this test case, it is assumed that the magnetic pressure
is much smaller than that of the fluid, i.e., B2 ≪ P, so that

the background fluid is not influenced by the evolution of
the magnetic field. We assume that the magnetic field has
the form B ¼ ð0; Byðx; tÞ; 0Þ, with Byðx; 0Þ ¼ B0 sgnðxÞ,
while the fluid pressure is constant. If one assumes that the
conductivity σ is large, one can find an approximate
solution for the magnetic field [47,48]

Byðx; tÞ ¼ B0erf

�
1

2

ffiffiffi
σ

ξ

r �
; ðB4Þ

while the electric field evolves as

Ezðx; tÞ ¼ B0ffiffiffiffiffiffiffi
πσt

p exp

�
−

σ

4ξ

�
; ðB5Þ

where ξ ¼ t=x2. Note that in the derivation of the above
solution one has neglected the displacement current (thus
the evolution equation of the magnetic field is not

FIG. 11. Same as Fig. 10, but now with constant σ ¼ 102 and different τV .

FIG. 12. Left panel: profile of a nonuniform conductivity σ for the shock-tube problem. Right panel: the magnetic-field component By

for the conductivity profile as in the left panel.
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hyperbolic anymore) and one has used the Navier-Stokes
form of Ohm’s law. Although only an approximate sol-
ution, comparing it with the numerical solution will allow
us to discuss various regimes of our resistive MHD
description.
We initialize the electromagnetic fields according to

Eqs. (B4) and (B5) at time t ¼ 10−3 with B0 ¼ 0.1 and
constant fluid pressure P ¼ 40.0, along a spatial grid
ranging from ½−3.5; 3.5� with Δx ¼ 0.001. The left panel
of Fig. 14 shows the magnetic field at time t ¼ 2 for three
values of the damping ratio ζd. Since the solution (B4) is
valid for large values of σ the analytical and numerical

results match very well for ζd < 1. For ζd > 1 and ζd ¼ 1,
the numerical solution is more diffusive and thus not
captured by the analytical solution. The right panel of
Fig. 14 shows the electric field. In the underdamped case
ζd < 1 we observe oscillations at the left and right edges of
the grid. These oscillation die out at late times and the
analytical and numerical results are in perfect agreement.

APPENDIX C: EQUATIONS OF MOTION
IN MILNE COORDINATES

In Milne coordinates, and assuming transverse homo-
geneity, the system of equations of motion (1), (2), (9),
(10), and (12) of relativistic resistive second-order dis-
sipative MHD can be cast into the following form:

∂τðUÞ þ ∂ηðFηðUÞÞ ¼ SðUÞ; ðC1Þ

where U represents the vector of conserved variables and
Fη that of the fluxes,

U ¼

0
BBBBBBBBBBBBBBBBBB@

τe

τMx

τMy

τ3Mη

Nf

Vi

τB̃y

τB̃x

τẼy

τẼx

1
CCCCCCCCCCCCCCCCCCA

; FηðUÞ ¼

0
BBBBBBBBBBBBBBBBBBB@

τFη
e

τFxη
M

τFyη
M

τ3Fηη
M

vηNf

vηVi

Ẽx

−Ẽy

−B̃x

B̃y

1
CCCCCCCCCCCCCCCCCCCA

;

FIG. 13. L1ðByÞ norm of the magnetic-field component By

between the numerical solution computed from the Strang-
splitting technique and the IMEX schemes and the exact solution
of the shock tube in the ideal-MHD limit as a function of
conductivities. The Strang-splitting technique does not yield a
stable solution for conductivities values larger than 104.

FIG. 14. Left panel: the magnetic-field component By at t ¼ 2 for the test case of a self-similar current sheet, for three different values
of the damping ratio ζd ¼ 1=ð2 ffiffiffiffiffiffiffiffi

στV
p Þ. For the underdamped case (ζd < 1) we took σ ¼ 100, for the overdamped case (ζd > 1) we took

σ ¼ 0.5, while for the critical case (ζd ¼ 1) we have σ ¼ 1.25. For all cases τV ¼ 0.2. The black solid line is the analytic solution
discussed in the text. Right panel: same as in the left panel, but for the electric-field component Ez.
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while the sources read

SðUÞ ¼

0
BBBBBBBBBBBBBBBBBBB@

0

0

0

−τ2Fηη
M

−Nf=τ − ∂ið−viV0 þ ViÞ
ðσẼi þ qκ∇iα − qViÞ=ðqτVγÞ þ Vi

∂jvj − uiVν _uν −Gi
n=γ

0

0

−τJyf
−τJxf

1
CCCCCCCCCCCCCCCCCCCA

:

Here, Gi
n ¼ uαΓi

αβV
β are additional geometrical source

terms, where Γμ
αβ are the Christoffel symbols for Milne

coordinates. Additionally, we have the constraint equations

∂ηẼη ¼ 0; ðC2Þ

∂ηB̃η ¼ 0; ðC3Þ

where we have assumed that the system has zero
net charge. The definition of the conserved quantities e,
Mi, and Nf and the fluxes Fi

e and Fij
M are the same

as in Cartesian coordinates. The definition of the
electromagnetic fields with a tilde comes from the
coordinate transformation (35) from Cartesian to Milne
coordinates.
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