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The rare decay process of the Higgs boson into a pair of J=Ψ and ϒ particles is studied within the
perturbative Standard Model and the relativistic quark model. The relativistic corrections connected with
the relative motion of quarks are calculated in the production amplitude and the wave functions of the
bound states. Numerical values of the decay widths of the Higgs boson are obtained, which can be used for
comparison with experimental data.
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I. INTRODUCTION

Since the discovery of the Higgs boson [1,2], a period of
detailed study of the various processes connected with this
particle has begun. We can say that the study of the Higgs
sector has become one of the most important areas in
particle physics [3]. The discovery of the Higgs boson
confirmed the electroweak mechanism of symmetry break-
ing, but the nature of this particle remains to be explored.
To do this, it is necessary to create particle colliders, on
which Higgs bosons could be produced in significant
quantities, which would make it possible to proceed to a
precise study of the parameters of the Higgs sector. It is
possible that interaction processes involving the Higgs
boson can provide a transition to a new physics that lies
beyond the Standard Model.
Among the parameters of the Higgs sector, the coupling

constants of the Higgs boson with various bosons
[gðHZZÞ, gðHWWÞ], leptons [gðHττÞ, gðHμμÞ], and
quarks [gðHccÞ, gðHbbÞ], stand out. They determine the
decay processes of the Higgs boson into various particles
[4]. Due to the Higgs boson large mass and the presence of
coupling constants with different particles, the Higgs boson
has numerous decay channels. The decay channel of the
Higgs boson into a pair of heavy quarks is interesting
because it creates the possibility of the production of bound
states of heavy quarks. Thus, rare exclusive decay proc-
esses of the Higgs boson into a pair of charmonium or
bottomonium are of obvious interest both for studying the
decay mechanisms and for studying the properties of bound

states of quarks. Here it is useful to recall that the study of
charmonium pair production in electron-positron annihila-
tion played an important role in its time in explaining the
mechanism of such a reaction, as well as in understanding
the role of various effects in calculating the observed paired
production cross sections [5,6].
The CMS Collaboration began the search for rare Higgs

decays into a pair of heavy vector quarkonia in 2019 [7].
The results of new upper limits on the branching fractions
were obtained in [8],

BðH → J=Ψ; J=ΨÞ < 3.8 × 10−4; ð1Þ

BðH → ϒð1SÞ;ϒð1SÞÞ < 1.7 × 10−3: ð2Þ

Theoretical studies of the production of a pair of heavy
quarkonia in the decays of the Higgs boson began about
40 years ago in [9,10]. In these papers, theoretical formulas
were obtained for estimating the decay widths in the
nonrelativistic approximation for some decay mechanisms;
more recent theoretical studies of these processes were
carried out in [11–14].
In this work we continue the study of relativistic effects

in the exclusive paired charmonium and bottomonium
production in the Higgs boson decay which began in
[12,13] for Bc mesons. Our calculation of the decay widths
is performed on the basis of relativistic-quark model used
previously for the investigation of relativistic corrections in
different reactions in [15–17], including pair production of
mesons and baryons in electron-positron annihilation and
proton-proton interaction. Despite the rare nature of the
Higgs boson decays being studied, one can hope that such
processes can be investigated at the new Higgs boson
factories. The purpose of this paper is to perform a new
analysis of the vector quarkonium pair production proc-
esses in Higgs boson decays in the Standard Model and to
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obtain numerical estimates of the corresponding decay
widths.
In comparison with previous works [11,14] we have

performed a more detailed consideration of various mech-
anisms (quark-gluon, quark-photon, photon-photon and
Z-bosonic mechanisms) of charmonium and bottonium
pair production. Additionally, in our calculation, we take
into account the relativistic corrections connected with the
relative motion of heavy quarks, both in the quark-anti-
quark production amplitude itself and in the wave functions
of bound states.
As a result, new numerical estimations for the Higgs

boson decay rates are obtained. An experimental study of
these rare exclusive decays of the Higgs boson at future
high-luminosity colliders could be useful in testing the
Standard Model with higher accuracy.

II. GENERAL FORMALISM

From the very beginning, it should be emphasized that
there are several groups of amplitudes for the decay of the
Higgs boson with the formation of a pair of charmoniums
J=Ψ (bottomonium ϒ), which contribute the same order of
magnitude to the decay width. We study the amplitudes
which are shown in Figs. 1–5. They represent different
decay mechanisms with pair vector meson production;
quark-gluon, quark-photon, quark-loop, W-boson loop,
and Z-boson. The first group includes quark-gluon ampli-
tudes shown in Fig. 1 (quark-gluon mechanism). The factor
determining the order of contributions can be represented
as αs=M4

H, whereMH is the mass of the Higgs boson. Such
a factor can be distinguished from the very beginning due to
the structure of the interaction vertices and the denomi-
nators of the particle propagators. The second group is
formed by quark-photon amplitudes shown in Fig. 2
(quark-photon mechanism). The order of contribution is
determined here by the factor α=M2

HM
2
QQ̄. The third group

is formed by the amplitudes in Figs. 3 and 4 which contain
the quark or W-boson loop with two photons that create a
pair of J=Ψ (or ϒ) mesons (quark-loop and W-boson loop
mechanisms). The primary common factor in this case

takes the form α2=M4
QQ̄. Finally, the last group of ampli-

tudes in Fig. 5 is determined by the interaction of the Higgs
boson with a pair of Z-bosons (Z-boson mechanism). To
achieve good calculation accuracy, it is necessary to take
into account the contribution of all amplitudes from these
groups.
Let us consider firstly the Higgs boson decay amplitudes

shown in Figs. 1 and 2. For pair production of quarkonia
in the leading order of perturbation theory, it is necessary
to obtain two free quarks and two free antiquarks at the
first stage. Then they can form bound states with some
probability at the next stage. In the quasipotential approach
the decay amplitude can be presented as a convolution of
a perturbative production amplitude of two c-quark and
c̄-antiquark pairs and the quasipotential wave functions of
the final mesons [12,13],

MðP;QÞ ¼ −ið
ffiffiffi
2

p
GFÞ12

2π

3
MQQ̄

Z
dp

ð2πÞ3
Z

dq
ð2πÞ3

× TrfΨVðp; PÞΓν
1ðp; q; P;QÞΨVðq;QÞγν

þΨVðq;QÞΓν
2ðp; q; P;QÞΨVðp;PÞγνg; ð3Þ

where MQQ̄ is the mass of quarkonium. Four-momenta p1

and p2 of c-quark and c̄-antiquark in the pair forming the
first ðQQ̄Þ meson, and four-momenta q2 and q1 for quark
and antiquark in the second meson ðQQ̄Þ are expressed in
terms of relative and total four momenta as follows:

p1;2 ¼
1

2
P� p; ðpPÞ ¼ 0;

q1;2 ¼
1

2
Q� q; ðqQÞ ¼ 0: ð4Þ

A superscript V indicates a vector meson ðQQ̄Þ. The vertex
functions Γ1;2 are presented below in leading order and in
Fig. 1. Heavy quarks c, b, and antiquarks c̄, b̄, are outside
the mass shell in the intermediate state; p2

1;2 ≠ m2, so that
p2
1 −m2 ¼ p2

2 −m2, which means that there is a symmet-
rical exit of particles from the mass shell.

FIG. 1. Quark-gluon mechanism of the pair charmonium production in the Higgs boson decay. Dashed line shows the Higgs boson
and wavy line corresponds to the gluon.
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FIG. 2. Quark-photon mechanism of the pair charmonium production in the Higgs boson decay. Dashed line shows the Higgs boson
and wavy line corresponds to the photon.

FIG. 3. Quark loop mechanism of the pair charmonium production in the Higgs boson decay. Dashed line shows the Higgs boson and
wavy line corresponds to the photon.

FIG. 4. W-boson loop mechanism of the pair charmonium production in the Higgs boson decay. Dashed line shows the Higgs boson
and wavy line corresponds to the photon.
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In Eq. (3) we integrate over the relative three-momenta
of quarks and antiquarks in the final state. The systematic
account of all terms depending on the relative quark
momenta p and q in the decay amplitude is important
for increasing the accuracy of the calculation. p ¼ LPð0;pÞ
and q ¼ LQð0;qÞ are the relative four-momenta obtained
by the Lorentz transformation of four-vectors ð0;pÞ and
ð0;qÞ to the reference frames moving with the four-
momenta P and Q.
The relativistic wave functions of the bound quarks

accounting for the transformation from the rest frame to the
moving one with four momenta P, and Q, are

Ψðp;PÞ¼ Ψ0ðpÞ
½ϵðpÞm

ϵðpÞþm
2m �

�
v̂1−1

2
þ v̂1

p2

2mðϵðpÞþmÞ−
p̂
2m

�

× ε̂ðP;SzÞ

ð1þ v̂1Þ
�
v̂1þ1

2
þ v̂1

p2

2mðϵðpÞþmÞþ
p̂
2m

�
; ð5Þ

Ψðq;QÞ¼ Ψ0ðqÞ
½ϵðqÞm

ϵðqÞþm
2m �

�
v̂2−1

2
þ v̂2

q2

2mðϵðqÞþmÞþ
q̂
2m

�

× ε̂ðQ;SzÞ

ð1þ v̂2Þ
�
v̂2þ1

2
þ v̂2

q2

2mðϵðqÞþmÞ−
q̂
2m

�
; ð6Þ

where the hat symbol means a contraction of the four-
vector with the Dirac gamma matrices; v1 ¼ P=MQQ̄,

v2 ¼ Q=MQQ̄; ϵðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, m is cðbÞ-quark mass,

and MQQ̄ is the mass of charmonium (bottomonium) state.
ελðP; SzÞ is the polarization vector of the J=ΨðϒÞ meson.
Expressions (5) and (6) represent complicated functions

depending on relative momenta p, q including the bound
state wave function in the rest frame Ψ0ðpÞ. The color part
of the meson wave function in the amplitudes (5)–(6) is
taken as δij=

ffiffiffi
3

p
(color indexes i, j, k ¼ 1, 2, 3).

The general structure of expressions (5)–(6) allows us to
say that they are the product of the wave functions of
mesons in the rest frame and special projection operators

resulting from the transformation from the moving refer-
ence frame to the reference frame in which the meson is at
rest. Expressions (5)–(6) make it possible to correctly take
into account the relativistic corrections connected with the
relative momenta of quarks in the final states. It is useful
to note that the expression for the projection operators
was obtained in the framework of nonrelativistic quantum
chromodynamics in [18] in a slightly different form for the
case when the quark momenta lie on the mass shell. The
transformation law of the bound state wave functions of
quarks, which is used in the derivation of equations (5)–(6),
was obtained in the Bethe-Salpeter approach in [19] and in
quasipotential method in [20].
As follows from (5)–(6), when constructing the decay

amplitudes of the Higgs boson, projection operators are
introduced for quark-antiquark pairs onto the spin states
with total spin S ¼ 1 of the following form:

Π̂V ¼ ½v2ð0Þū1ð0Þ�S¼1 ¼ ε̂
1þ γ0

2
ffiffiffi
2

p : ð7Þ

Total amplitude of the Higgs boson decay to paired
vector quarkonium in the case of quark-gluon mechanism
in the leading order in strong coupling constant αs can be
presented in the form,

M ¼ 4π

3
MQQ̄αsΓQ

Z
dp

ð2πÞ3
Z

dq
ð2πÞ3 TrfT 12 þ T 34g;

ð8Þ

T 12 ¼ ΨVðp; PÞ
�

p̂1 − r̂þm
ðr − p1Þ2 −m2

γμ þ γμ
r̂ − q̂1 þm

ðr − q1Þ2 −m2

�

×Dμνðk2ÞΨVðq;QÞγν; ð9Þ

T 34 ¼ ΨVðq;QÞ
�

p̂2 − r̂þm
ðr − p2Þ2 −m2

γμ þ γμ
r̂ − q̂2 þm

ðr − q2Þ2 −m2

�

×Dμνðk1ÞΨVðp; PÞγν; ð10Þ

where αs ¼ αsðM
2
H

4Λ2Þ, ΓQ ¼ mð ffiffiffi
2

p
GFÞ12.

FIG. 5. Z-boson mechanism of the pair charmonium production in the Higgs boson decay. Dashed line shows the Higgs boson and
wavy line corresponds to the Z-boson.
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The four-momentum of the Higgs boson squared is
r2 ¼ M2

H ¼ ðPþQÞ2 ¼ 2M2
QQ̄

þ 2PQ. The gluon four-
momenta are k1 ¼ p1 þ q1, k2 ¼ p2 þ q2. Relative
momenta p, q of heavy quarks enter in the gluon propa-
gators Dμνðk1;2Þ and quark propagators as well as in
relativistic wave functions (5) and (6). Accounting for
the small ratio of relative quark momenta p and q to the
mass of the Higgs boson MH, we can simplify the
denominators of quark and gluon propagators as follows:

1

ðp1 þ q1Þ2
≈

1

ðp2 þ q2Þ2
¼ 4

M2
H
; ð11Þ

1

ðr − q1Þ2 −m2
1

¼ 1

ð−r − p1Þ2 −m2
1

¼ 1

ðr − p2Þ2 −m2
1

¼ 1

ð−r − q2Þ2 −m2
1

¼ 2

M2
H
: ð12Þ

In (11)–(12) we completely neglect corrections of the form
jpj=MH, jqj=MH. At the same time, we keep in the
amplitudes (9) and (10) the second-order correction for
small ratios jpj=m, jqj=m relative to the leading-order
result. Calculating the trace in obtained expression in the
package FORM [21], we find relativistic amplitudes of the
paired meson production in the form:

MVV
ð1Þ ¼ 256π

3M4
H
ð

ffiffiffi
2

p
GFÞ12mMQQ̄αsε

λ
1ε

σ
2F

λσ
1;VV jΨ̃Vð0Þj2;

ð13Þ

where ελ1, ε
σ
2 are the polarization vectors of spin-1 mesons.

The superscript in amplitude designation and subscript in
tensor function Fλσ

1;VV designation denotes the contribution
of the quark-gluon mechanism in Fig. 1. An explicit
expression for the function Fλσ

1;VV is presented in Eq. (19).
The contribution of the amplitudes in Fig. 2MVV

ð2Þ to the
total decay amplitude must also be taken into account,
because these amplitudes have the same order as the previous
ones, despite the replacement αs → α. This is due to the
presence in the denominator of the mass of the meson instead
of the mass of the Higgs boson [22]. The expression for the
production amplitudes of the pair J=Ψ (ϒ) has a similar
structure with slight changes in the common factors,

MVV
ð2Þ ¼ 288π

M2
HMQQ̄

ð
ffiffiffi
2

p
GFÞ12me2Qαε

λ
1ε

σ
2F

λσ
2;VV jΨ̃Vð0Þj2;

ð14Þ

where the function Fλσ
2;VV has the same general form as the

function Fλσ
1;VV [see (19)].

The tensor corresponding to the quark orW-boson loops
in Figs. 3 and 4 has the structure (the subscript denotes the
contribution of the quark or bosonic loop),

Tμν
Q;W ¼ AQ;WðtÞðgμνðv1v2Þ − vν1v

μ
2Þ

þ BQ;WðtÞ½vμ2 − vμ1ðv1v2Þ�½vν1 − vν2ðv1v2Þ�; ð15Þ

where t ¼ M2
h

4m2
Q
or t ¼ M2

h
4m2

W
,mW is the mass ofW boson,mQ is

the mass of heavy quark in the quark loop. The structure
functionsAQ;WðtÞ,BQ;WðtÞ can be obtained using an explicit
expression for a loop integrals (see Appendixes A and B).
The amplitudes in Figs. 3–5 with quark,W-boson loops,

and ZZ in an intermediate state contain the contributions
of direct (left) and crossed (right) diagrams. The direct
diagrams, in which virtual photons or Z-bosons give vector
quarkonia in the final state, are dominant in terms of the
mass factor. However, the structure of the numerators of the
direct and cross amplitudes is different, which can even-
tually lead to numerically close contributions. In what
follows, we present the expressions for these amplitudes
only in the leading order:

MVV
ð3Þ ¼ 2052π2

mQMQQ̄
ð

ffiffiffi
2

p
GFÞ12e2qe2Qα2ελ1εσ2Fλσ

3;VV jΨ̃Vð0Þj2;

ð16Þ

MVV
ð4Þ ¼ 48π2MZMW

M4
QQ̄

ð
ffiffiffi
2

p
GFÞ12e2qα2

× cos θWελ1ε
σ
2F

λσ
4;VV jΨ̃Vð0Þj2; ð17Þ

MVV
ð5Þ ¼ 48πα

M2
Zsin

22θW
ð

ffiffiffi
2

p
GFÞ12ελ1εσ2Fλσ

5;VV jΨ̃Vð0Þj2; ð18Þ

where m is the mass of heavy quark c, b, produced in the
vertex of Higgs boson decay, eq is the charge (in units e) of
heavy quark (c or b) entering in final mesons, eQ is the
charge (in units e) of heavy quark (c,b or t) in the quark loop.
The tensor functions in amplitudes (13)–(18) have the

following form:

Fαβ
i;VV ¼ gðiÞ1 vα1v

β
2 þ gðiÞ2 gαβ; gð1Þ1 ¼ −2þ 2

9
ω2
1; ð19Þ

gð1Þ2 ¼ −1 − 2r2 þ r21 þ
4

3
r2ω1 þ

1

9
ω2
1 þ

2

3
r2ω2

1 −
1

9
r21ω

2
1;

gð2Þ1 ¼ 4 −
4

9
ω2
1; gð2Þ2 ¼ 2þ 4r2 − 2r21 −

8

3
r2ω1 −

2

9
ω2
1 −

4

3
rω2

1 þ
2

9
r21ω

2
1; ð20Þ
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gð3Þ1;Q ¼ −AQðtÞ
�
1þ 2

3
ω1 þ

1

9
ω2
1

�
þ BQðtÞ

�
1þ 2

3
ω1 þ

1

9
ω2
1

�
; ð21Þ

gð3Þ2;Q ¼ AQðtÞ
�
−1 −

2

3
ω1 −

1

9
ω2
1 þ

1

2
r21 þ

1

3
ω1r21 þ

1

18
ω2
1r

2
1

�
;

gð4Þ1 ¼ −AWðtÞ
�
1þ 2

3
ω1 þ

1

9
ω2
1

�
þ BWðtÞ

�
1þ 2

3
ω1 þ

1

9
ω2
1

�
; ð22Þ

gð4Þ2 ¼ AWðtÞ
�
−1 −

2

3
ω1 −

1

9
ω2
1 þ

1

2
r21 þ

1

3
ω1r21 þ

1

18
ω2
1r

2
1

�
; ð23Þ

gð5Þ2 ¼
�
1þ 1

3
ω1

�
2
�
1

2
− az

�
2

−
M4

z

3ðM2
h
4
−M2

ZÞ
2

�
−
1

4
−
1

6
ω1 −

1

36
ω2
1

þ 1

2
az þ

1

3
ω1az þ

1

18
ω2
1az −

1

2
a2z −

1

3
ω1a2z −

1

18
ω2
1a

2
z

�
; gð5Þ1 ¼ 0; ð24Þ

where the parameter r1 ¼ MH
MQQ̄

, r2 ¼ m
MQQ̄

, az ¼ 2jeQj sin2 θW . The superscript of the functions gðiÞ1;2 corresponds to a certain

decay mechanism, shown in Figs. 1–5. Expressions (19)–(24) contain, after all transformations of the Higgs boson decay
amplitudes, a set of relativistic parameters ωn that determine the magnitude of relativistic effects in these amplitudes. Within
the framework of the relativistic quark model, we can find their numerical values. The precise determination of the
parameters ωn and their calculation are discussed in more detail in Sec. III.
The decay widths of the Higgs boson into a pair of vector quarkonia states are determined by the following expressions

(see also [12,13]):

ΓVV ¼ 214
ffiffiffi
2

p
πα2sm2GFjΨ̃Vð0Þj4

ffiffiffiffiffiffiffiffiffiffiffi
r2
1

4
− 1

q
9M5

Hr
5
1

X
λ;σ

jελ1εσ2Fλσ
VV j2; ð25Þ

Fλσ
VV ¼

�
gð1Þ1 þ 9

16
r21
e2qα

αs
gð2Þ1 þ

X
Q

27π

8
r41

e2Qe
2
qα

2m2
Q

αsmMQQ̄
gð3Þ1;Q þ 9πe2qα2r41MZMW

64αsmMQQ̄
gð4Þ1

þ 9M4
Hα

16M2
ZmMQQ̄αs

ð1
2
− 2jeqjsin2θWÞ2

sin22θW
gð5Þ1

�
vσ1v

λ
2 þ

�
gð1Þ2 þ 9

16
r21
e2qα

αs
gð2Þ2 þ

X
Q

27π

8
r41
e2qe2Qα

2m2
Q

αsmMQQ̄
gð3Þ2;Q

þ 9πe2qα2r41MZMW

64αsmMQQ̄
cos θWg

ð4Þ
2 þ 9M4

Hα

16M2
ZmMQQ̄αs

1

sin22θW
gð5Þ2

�
gλσ: ð26Þ

We found it convenient to separate in square brackets in
(26) the coefficients denoting the relative contribution of
different decay mechanisms with respect to the quark-gluon
mechanism in Fig. 1. The common factor in (25)
corresponds to the amplitudes of the quark-gluon decay
mechanism.

III. NUMERICAL RESULTS

General expression for the decay rate (25) contains
numerous parameters. One part of the parameters, such as
quarkmasses or themasses of mesons, are determined within
the framework of quark models as a result of calculating the

observed quantities. The parameters of quark models are
found from the condition of the best agreement with experi-
mental data [4]. Another part of the relativistic parametersωn
can also be found in the quarkmodel as a result of calculating
integrals with wave functions of quark bound states in the
momentum representation. Thus, we can say that the
approach to calculation based on the relativistic quark model
is closed, because it allows to calculate all the necessary
parameters without resorting to additional hypotheses.
To calculate ωn, we assume that the dynamics of quark-

antiquark pairs is determined by the QCD generalization
of the standard Breit-Hamiltonian in the center-of-mass
reference frame [23–29],
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H ¼ H0 þ ΔU1 þ ΔU2; H0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− 2m −

CFα̃s
r

þ Arþ B; ð27Þ

ΔU1ðrÞ ¼ −
CFα

2
s

4πr
½2β0 lnðμrÞ þ a1 þ 2γEβ0�; a1 ¼

31

3
−
10

9
nf; β0 ¼ 11 −

2

3
nf; ð28Þ

ΔU2ðrÞ ¼ −
CFαs
2m2r

�
p2 þ rðrpÞp

r2

�
þ πCFαs

m2
δðrÞ þ 3CFαs

2m2r3
ðSLÞ

−
CFαs
2m2

�
S2

r3
− 3

ðSrÞ2
r5

−
4π

3
ð2S2 − 3ÞδðrÞ

�
−
CACFα

2
s

2mr2
; ð29Þ

whereL ¼ ½r × p�, S ¼ S1 þ S2, nf is the number of flavors, CA ¼ 3 and CF ¼ 4=3 are the color factors of the SU(3) color
group, γE ≈ 0.577216 is the Euler constant. To describe the hyperfine structure of the energy spectrum, the following
confinement potential is usually added to (27) [30–32]:

ΔVhfs
confðrÞ ¼ fV

�
A

2m2r

�
1þ 8

3
S1S2

�
þ 3A
2m2r

LSþ A
3m2r

�
3

r2
ðS1rÞðS2rÞ − S1S2

��
− ð1 − fVÞ

A
2m2r

LS; ð30Þ

where we take the parameter fV ¼ 0.7 for optimal agree-
ment with the experiment. For the dependence of the QCD
coupling constant α̃sðμ2Þ on the renormalization point μ2

we use the three-loop result [33]. The typical momentum
transfer scale in a quarkonium is of the order of the quark
mass, so we set the renormalization scale μ ¼ m and
Λ ¼ 0.168 GeV. The parameters of the linear confinement
potential A ¼ 0.18 GeV2 and B ¼ −0.16 GeV have the
usual values of quark models.
Using this Hamiltonian, we construct an effective model

of the interaction of quarks in a bound state of the
Schrödinger type [23,24,34–36]. The numerical solution
of the Schrödinger equation, taking into account
various corrections in the potential, makes it possible to
find the wave function of the bound state, with the help of
which the relativistic parameters themselves are then
calculated.

The amplitudes of the pair production of vector char-
monium and bottomonium in the decay of the Higgs
boson are expressed in terms of function FVV , that is
presented in the form of an expansion in jpj=m, jqj=m
up to terms of the second order. As a result of alge-
braic transformations, it turns out to be convenient to
express relativistic corrections in terms of relativistic
factors Cn ¼ ðεðpÞ −mÞn=ðεðpÞ þmÞn. As a result of
integrating these relativistic factors with the obtained
wave functions, we find the values of the relativistic
parameters ωn themselves. In the case of S-states ωn are
determined by the momentum integrals In in the form
[23,24]:

IP;Vn ¼
Z

∞

0

p2RP;VðpÞðεðpÞþmÞ
2εðpÞ

�
εðpÞ−m
εðpÞþm

�
n
dp; ð31Þ

R̃ð0Þ ¼
ffiffiffi
2

p
ffiffiffi
π

p
Z

∞

0

ðεðpÞ þmÞ
2εðpÞ p2RðpÞdp; ωP;V

1 ¼ IP;V1

IP;V0

; ωP;V
2 ¼ IP;V2

IP;V0

; ð32Þ

where superscriptsP, V denote pseudoscalar and vector states. In the case of quarks of different masses (for Bc mesons), for
a mass-symmetric representation of the relativistic parameters, the following equality is used:

jpj ¼ 2m1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1 −m1

ε1 þm1

r
þ
�
ε1 −m1

ε1 þm1

�
3=2

þ
�
ε1 −m1

ε1 þm1

�
5=2

þ � � �
�
¼ ð33Þ

2m2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −m2

ε2 þm2

r
þ
�
ε2 −m2

ε2 þm2

�
3=2

þ
�
ε2 −m2

ε2 þm2

�
5=2

þ � � �
�
: ð34Þ
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The Hamiltonian of the system is an important
source of relativistic corrections. It allows one to take
relativistic effects into account when calculating the wave
functions of pseudoscalar and vector mesons (S-states)
[25,27,29,32,34,37,38]. The exact form of the bound state
wave functions Ψ0ðqÞ is important to obtain more reliable
predictions for the decay widths. In the nonrelativistic
approximation the Higgs boson decay width with a
production of a pair of quarkonium contains the fourth
power of the nonrelativistic wave function at the origin for
S-states. The value of the decay width is very sensitive to
small changes of R̃ð0Þ. In the nonrelativistic QCD there
exists the corresponding problem of determining the
magnitude of the color-singlet matrix elements [39].
As a result of the performed transformations, the

relativistic parameters are determined by convergent
momentum integrals. Their calculation was performed
many times for different bound states of quarks in our
works [13,15,16]. The numerical values of the parameters
ω1, ω2 are presented in the Table I. The parameter ω2 is not
included in the decay width, because corrections of the

order Oðq4Þ, Oðp4Þ connected with it, are omitted. Using
our approach, it is possible to calculate relativistic correc-
tions not only of the second, but also of a higher order.
The results of numerical calculations of the decay widths

and parameters AQ, AW , BQ, and BW are presented in
Tables II–IV. Comparing the contributions of different
meson pair production mechanisms, it is important to
emphasize that their relative magnitude in the total result
is determined by such important parameters as α and αs and
the particle mass ratio. So, for example, in the case of the
production of a pair of vector mesons, the decay amplitude
has two contributions from the quark-gluon (Fig. 1) and
quark-photon (Fig. 2) diagrams. On the one hand, the
contribution of photon amplitudes is proportional to α,
which leads to its decrease in comparison with the con-
tribution from quark-gluon amplitudes. But on the other
hand, the quark-photon contribution contains an additional
factor e2Qr

2
1, which leads to an increase in the decay widths.

IV. CONCLUSION

The study of rare exclusive decay processes of the Higgs
boson is an important task, which makes it possible to
refine the values of the interaction parameters of particles in
the Higgs sector. In this paper, we have attempted to present
a complete study of decay processes H → J=ΨJ=Ψ, H →
ϒϒ in the Standard Model by considering the various
decay mechanisms shown in Figs. 1–5. To improve the

TABLE II. Numerical results for the decay widths in the
nonrelativistic approximation and with the account for relativistic
corrections.

Final state
ðQQ̄ÞðQQ̄Þ

Nonrelativistic decay
width Γnr in GeV

Relativistic decay width
Γrel in GeV

J=Ψþ J=Ψ 3.29 × 10−12 0.69 × 10−12

13S1 þ 13S1

ϒþϒ 0.63 × 10−12 0.74 × 10−12

13S1 þ 13S1

TABLE III. Numerical values of parameters A and B for W-boson and quark loop mechanisms.

Parameter H → J=ψ J=ψ H → ϒ ϒ

Ac −2.74 × 10−4 þ 1.07 × 10−4i −3.39 × 10−3 þ 0.99 × 10−3i
Ab −5.68 × 10−5 þ 7.87 × 10−4i −1.53 × 10−3 þ 0.74 × 10−3i
At 7.02 × 10−7 6.54 × 10−6

AW 7.94 × 10−5 7.40 × 10−4

Bc 0.31 × 10−4 þ 0.62 × 10−10i 0.13 × 10−3 þ 0.51 × 10−7i
Bb −0.42 × 10−7 þ 0.42 × 10−10i 0.37 × 10−3 þ 0.35 × 10−7i
Bt 0.12 × 10−14 −0.13 × 10−4

BW 1.42 × 10−11 2.76 × 10−4

TABLE I. Numerical values of the relativistic parameters (25).

n2Sþ1LJ Meson Mexp
QQ̄

, GeV R̃ð0Þ, GeV3=2 ω1 ω2

11S0 ηc 2.9839 0.92 0.20 0.0087
13S1 J=Ψ 3.0969 0.81 0.20 0.0078
11S0 ηb 9.3987 1.95 0.05 0.0044
13S1 ϒ 9.4603 1.88 0.05 0.0044

TABLE IV. The contributions of different mechanisms to the
Higgs boson decay widths in GeV.

The contribution accounting for relativistic corrections

Contribution H → J=ψ J=ψ H → ϒ ϒ

Figure 1 0.36 × 10−15 0.10 × 10−12

Figure 2 0.80 × 10−12 0.16 × 10−12

Figure 3 0.70 × 10−13 0.37 × 10−12

Figure 4 0.74 × 10−13 0.68 × 10−13

Figure 5 0.22 × 10−12 1.45 × 10−12

Total contribution 0.69 × 10−12 0.74 × 10−12
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calculation accuracy, we take into account relativistic
corrections, which were not previously considered
in [11,14]. The numerical contribution of different decay
mechanisms is analyzed and it is shown that in the case of
double production of charmonium, the main decay mecha-
nism is the quark-photon one in Fig. 2, ZZ-mechanism in
Fig. 5. However, it is also necessary to take into account
other mechanisms to achieve high calculation accuracy (see
also [22]). For bottomonium pair production all mecha-
nisms give close contributions to the width, but the ZZ-
mechanism is dominant. Their sum ultimately determines
the full numerical result. The parameters AW , AQ, BW , and
BQ, which determine the numerical values of the contri-
butions of theW-boson loop mechanism and the quark loop
mechanism, are obtained in analytical and numerical form.
They are presented separately in Table III.
In our approach, we distinguish two types of relativistic

corrections. The corrections of the first type are determined
by the relative momenta p and q in the production
amplitude of two quarks and two antiquarks. The correc-
tions of the second type are determined by the trans-
formation law of the meson wave functions, which results
in expressions (5)–(6). The Ψ0ðpÞ wave functions entering
into (5)–(6) in the rest frame of the bound state are found
from the solution of the Schrödinger equation with a
potential that includes relativistic corrections. Having an
exact expression for the decay amplitude (see the example
in Appendix C), we carry out a series of transformations
with it, extracting second-order corrections in p and q. The
model used is described in more detail in [13]. In our
approach, all arising relativistic parametersω1, ω2, R̃ð0Þ are
determined within the framework of the relativistic quark
model (see Table I). Accounting for relativistic corrections
in this work shows that such contributions lead to a
significant change in nonrelativistic results. Here it must
be emphasized that we call nonrelativistic results
such results that are obtained at p ¼ 0, q ¼ 0 and neglect-
ing relativistic corrections in the quark interaction potential.
The main parameter that greatly reduces the nonrelativistic
results is R̃ð0Þ, which enters in the decay width to the
fourth power. Therefore, the difference between the rela-
tivistic and nonrelativistic results in Table II turns out to
be more significant in the case of pair production of
charmonium.
The paper considers various mechanisms for the pro-

duction of a pair of vector mesons in the decay of the Higgs
boson, which are presented in Figs. 1–5. The decay
branchings are equal: BrðH → J=ΨJ=ΨÞ ¼ 2.1 × 10−10,
BrðH → ϒϒÞ ¼ 2.3 × 10−10. There are other amplitudes
for the production of a pair of J=Ψ, ϒ mesons, which are
calculated but not included in detail in the work. So, for
example, there is a pair production mechanism (HH
mechanism), when the original Higgs boson turns into a
HH pair, which then gives a pair of vector mesons in the
final state. In a sense, it is similar to the ZZ mechanism, but

the amplitude structure is different, which results to a
contribution to the decay width that is several orders of
magnitude smaller than those given in Table I. Despite the
obvious difference in the amplitudes in Figs. 1 and 2 in
terms of the mass factorM2=M2

h, we include the amplitudes
of Fig. 1 in the consideration, in contrast to work [14]. We
do not consider amplitudes like those shown in Fig. 3, but
with two gluons. In this case, the direct amplitude [Fig. 3
(left)] vanishes due to the color factor, and the cross
amplitude [Fig. 3 (right)] is suppressed by the mass factor
M2=M2

h. A distinctive feature of our calculations is that
when studying the contributions of the amplitudes in
Figs. 3–4, we take into account two structure functions
Ai and Bi (i ¼ W, Q) (15) in the tensor function of the
triangular loop. They are calculated analytically and
numerically, and the corresponding results are presented
in Table IV and Appendixes A and B. Although the
function Bi initially contains higher powers of the factor
r4 (see Appendixes A and B), which should lead to a
decrease in the numerical values for r4 ≪ 1, nevertheless,
the structure of the coefficient functions in (25) is such that
the function Bi cannot be neglected.
In Table IV, we present separately the numerical values

of the contributions from different decay mechanisms
with an accuracy of two significant figures after the
decimal point. First of all, the problem was to obtain
the main contribution to the decay width. This was the
contribution from the quark-photon mechanism in Fig. 2
and the ZZ mechanism in Fig. 5, which are one order of
magnitude greater than the other contributions in the case
of charmonium production. Its value is due to the structure
of the decay amplitudes, in which small denominators
1=M2 appear from the photon propagators in contrast to
other amplitudes in which there is a factor 1=M2

H. In
addition, the numerator in these amplitudes contains
amplifying factors in powers of a large parameter r1. In
each considered decay mechanism, there are radiative
corrections OðαsÞ that were not taken into account. They
represent a major source of theoretical uncertainty, which
we estimate to be about 30% in αs. Other available errors
connected with the parameters of the Standard Model and
higher-order relativistic corrections do not exceed 10%.
On the whole, our complete numerical estimates of the
decay widths agree in order of magnitude with the
results [14].
The obtained values for the decay width of the Higgs

boson into a pair of charmoniums or bottomonions allow us
to give a numerical estimate of the possible number of such
events in future Higgs boson factories. The parameters of
future colliders (ILC, FFC, etc.) are still under discussion
[40,41]. In the case of pp-colliders at high luminosities, the
production of 4 × 1010 Higgs bosons per year is possible.
Then, taking into account the value of the total Higgs boson
decay width, we can expect about 10 Higgs boson decays
into charmonium pair per year.
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APPENDIX A: THE CALCULATION OF
W-BOSON LOOPS BY THE DISPERSION METHOD

In Appendixes A and B we consider the calculation of
tensors that determine the contributions to the Higgs boson

decay width from the two mechanisms shown in Figs. 3
and 4 (see also [42–52]).
The Higgs boson decay amplitude into two charmonium

states contains the contribution which is determined by
W-boson loop presented in Fig. 4. Generally speaking,
along with W-boson loops, it is also necessary to consider
other many-numbered loop contributions determined by
Goldstone bosons and ghosts. But there is a unitary gauge
convenient for calculation, in which there is only the
contribution of the diagrams presented in Fig. 4.
The tensor corresponding to triangle loop can be written

as follows:

Tμν
1;W ¼ 8παMZMWð

ffiffiffi
2

p
GFÞ1=2 cos θW

Z
d4k
ð2πÞ4

Vμσρðr − k; P;Q − kÞVνωλðQ − k;Q;−kÞ
ðk2 −M2

WÞððr − kÞ2 −M2
WÞððQ − kÞ2 −M2

WÞ

×

�
gρω −

ðQ − kÞρðQ − kÞω
M2

W

��
gλα −

ðr − kÞλðr − kÞα
M2

W

��
gσα −

kσkα

M2
W

�
þ ðμ ↔ ν; P ↔ QÞ: ðA1Þ

The tensor Tμν
2;W of second Feynman amplitude in Fig. 4 has the similar form. Next, we consider the sum of these two

amplitudes.
To calculate the tensor Tμν

W of bosonic loop, we use the dispersion method, keeping in mind that the tensor that defines this
loop has the general structure (15). Then the structure functions AWðtÞ, BWðtÞ can be obtained by performing the following
convolutions over the Lorentz indices:

AWðtÞ ¼ Tμν 1

2

�
gμν

v1v2
−

vν1v
μ
2

ðv1v2Þ2 − 1

�
; BWðtÞ ¼ Tμν 1

2

�
3vν1v

μ
2

ððv1v2Þ2 − 1Þ2 −
gμν

v1v2ððv1v2Þ2 − 1Þ
�
: ðA2Þ

For two structure functions AWðtÞ, BWðtÞ we use the dispersion relation with one subtraction,

AWðtÞ ¼ AWð0Þ þ
t
π

Z
∞

1

ImAðt0Þdt0
t0ðt0 − tþ i0Þ ; BWðtÞ ¼ BWð0Þ þ

t
π

Z
∞

1

ImBðt0Þdt0
t0ðt0 − tþ i0Þ : ðA3Þ

Imaginary parts ImAðtÞ, ImBðtÞ can be calculated using the Mandelstam-Cutkosky rule [53,54]. For example, the
imaginary part of the function AðtÞ is equal,

ImAW ¼ r23
512π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt − 1Þp ð2t − r23Þðt − r23Þ3=2

�
4r23ð1 − tÞðt − r23Þ1=2½r23ð4þ r23 − 2tÞð2tþ 1Þ − 4ð2tþ 3Þ�

þ
ffiffiffiffiffiffiffiffiffiffi
t − 1

p
½8r63 þ 48ð1 − 2tÞtþ r83ð1þ 2tÞ − 4r43ð3þ tÞð3þ 2tÞ þ 16r23ð−3þ tð9þ 2tÞÞ�

× ln
r23 − 2tþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt − 1Þðt − r23Þ
p

r23 − 2t − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r23Þ

p
�
; r3 ¼

M
MW

; M ¼ MQQ̄: ðA4Þ

This expression accurately takes into account the dependence on the meson mass M. Accounting for r3 ≪ 1, we can
perform an expansion in r3,

ImAWðtÞ ¼
1

16π

�
3r23
4

ð2t − 1Þ ln
ffiffi
t

p þ ffiffiffiffiffiffi
t−1

pffiffi
t

p
−

ffiffiffiffiffiffi
t−1

p

t2
þ r43
t3

ffiffiffiffiffiffiffiffiffiffi
t − 1

p
� ffiffi

t
p ð2t2 þ t − 3Þ −

ffiffiffiffiffiffiffiffiffiffi
t − 1

p
ð3 − 3tþ 2t2Þ ln

ffiffi
t

p þ ffiffiffiffiffiffiffiffiffiffi
t − 1

p
ffiffi
t

p
−

ffiffiffiffiffiffiffiffiffiffi
t − 1

p
��

: ðA5Þ
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Calculating the dispersion integral with subtraction, we get,

AWðtÞ ¼
1

16π2
r23ÃWðtÞ ¼

1

16π2
r23

�
3

t2
½tþ ð2t − 1ÞfðtÞ2� − 5

�

þ 1

16π2
2r43
15t4

�
90t − 15t2 þ 7t3 þ 15fðtÞ

�ð2t2 þ t − 3Þffiffiffiffiffiffiffiffiffiffi
t − 1

p
t7=2

þ ð−3þ 3t − 2t2ÞfðtÞ
��

; ðA6Þ

fðtÞ ¼
8<
:

arcsin
ffiffi
t

p
; t ≤ 1;

i
2

�
ln 1þ

ffiffiffiffiffiffiffiffiffi
1−t−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−t−1

p − iπ

�
; t > 1;

ðA7Þ

BWðtÞ ¼
1

16π2
r63

210t9ð1 − tÞ
�
t5ðt − 1Þ½−tð1470þ tð2051þ 1943tÞÞ þ 210 lnð1 − tÞ

× ð−6tð−4þ tð−3þ 2tÞÞÞ þ 4 ln 2ð315þ tð735þ 44tð7þ 16tÞÞÞ� þ 105i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t9ð1 − tÞ

q
ð3þ 5t − 2t2 þ 4t3Þ

×

�
ln 2 ln

1 − 2t − 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞp

1 − 2tþ 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞp þ 2Li2ðt − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞ

p
Þ − 2Li2ðtþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞ

p
Þ

− Li2ð2t − 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞ

p
Þ þ Li2ð2tþ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞ

p
Þ
��

: ðA8Þ

The subtraction constant ÃWð0Þ ¼ 7. Then, in the leading order in r3, the function AWðtÞ is equal to

AWðtÞ ¼
1

16π2
r23

�
2þ 3

t
þ 3

t2
ð2t − 1ÞfðtÞ2

�
: ðA9Þ

The limit MW → 0 within the Goldstone-boson approximation gives ÃW jMW→0 → 2. The numerical value of BWðtÞ is
significantly less than (A6) due to the factor r63.

APPENDIX B: THE CALCULATION OF QUARK LOOPS BY THE DISPERSION METHOD

The calculation of the quark loops contribution to structure functions AQðtÞ, BQðtÞ can be carried out also by dispersion
method. Final expression for imaginary parts of these functions are the following:

ImAQ ¼ −
r24

512π
ffiffi
t

p ð2t − r24Þðt − r24Þ2
�
4r24ðr24 − tÞ

ffiffiffiffiffiffiffiffiffiffi
t − 1

p

þ
ffiffiffiffiffiffiffiffiffiffiffi
t − r24

q
½r44 þ r24ð4 − 6tÞ þ 4tðt − 1Þ� ln r

2
4 − 2tþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r24Þ

p
r24 − 2t − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r24Þ

p
�
; r4 ¼

M
mQ

; ðB1Þ

ImBQ ¼ r64
256πt3=2ð2t − r24Þðt − r24Þ5=2

�
−4ðr24 − 4tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r24Þ

q

þ ½r44 þ 4tð1þ 2tÞ − 2r24ð2þ 3tÞ� ln r
2
4 − 2tþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r24Þ

p
r24 − 2t − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − 1Þðt − r24Þ

p
�
; r4 ¼

M
mQ

; ðB2Þ

where mQ is the mass of heavy quarks in the loop.
In the case of quark loops, we use the dispersion relation without subtractions. The functions AQðtÞ and BQðtÞ have the

following explicit form after expansion in r24:

AQðtÞ ¼ −
1

16π2
r24
32t3

f4t2 þ 4tðt − 1Þf2ðtÞ þ r24½−2tðt − 4Þ − 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − tÞ

p
fðtÞ þ 2ðt − 2Þf2ðtÞ�g; ðB3Þ
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BQðtÞ ¼ −
1

16π2
r64

2520t5

�
2t½−14tð225þ tð45þ 14tÞÞ − r24ð6930þ tð1365þ tð413þ 216tÞÞÞ�

þ 1260

�
9r24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − tÞt

p
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − tÞt3

q �
fðtÞ þ 630ð2tð1þ 2tÞ þ r24ð4þ 9tÞÞf2ðtÞ

�
: ðB4Þ

In the leading order in r24 the expression (B2) coincides with the known expression obtained in [42–51]. Since BðtÞ
contains the factor r4 to a higher degree, its contribution is sometimes neglected.

APPENDIX C: THE AMPLITUDE OF PAIR VECTOR MESONS PRODUCTION
VIA THE ZZ MECHANISM

The amplitude of direct production of vector mesons [Fig. 5 (left)] has the form,

Mdir ¼
48παð ffiffiffi

2
p

GFÞ1=2M2
Z

sin22θW

Z
dp

ð2πÞ3
Ψ0ðpÞ

ϵðpÞ
m

ðϵðpÞþmÞ
2m

Z
dq

ð2πÞ3
Ψ0ðqÞ

ϵðqÞ
m

ðϵðqÞþmÞ
2m

DμαðPÞDναðQÞ

× Tr

��
v̂1 − 1

2
−

v̂1p2

2mðϵðpÞ þmÞ −
p̂
2m

�
ε̂1ðv̂1 þ 1Þ

�
v̂1 − 1

2
−

v̂1p2

2mðϵðpÞ þmÞ þ
p̂
2m

�
γμ

�
1 − γ5
2

− az

��

× Tr

��
v̂2 − 1

2
−

v̂2q2

2mðϵðqÞ þmÞ −
q̂
2m

�
ε̂2ðv̂2 þ 1Þ

�
v̂2 − 1

2
−

v̂2q2

2mðϵðqÞ þmÞ þ
q̂
2m

�
γν

�
1 − γ5
2

− az

��
; ðC1Þ

where ε1;2 are the polarization four-vectors describing vector meson states. DμαðkÞ is the Z-boson propagator.
The amplitude of crossed production of vector mesons (Fig. 5 (right)) has the form:

Mcr ¼
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After all the transformations, the total amplitude of the production of a pair of vector mesons in the ZZmechanism takes the
form (18).
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