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As an alternative but unified and more fundamental description for quantum physics, Feynman path
integrals generalize the classical action principle to a probabilistic perspective, under which the physical
observables’ estimation translates into a weighted sum over all possible paths. The underlying difficulty is
to tackle the whole path manifold from finite samples that can effectively represent the Feynman propagator
dictated probability distribution. Modern generative models in machine learning can handle learning
and representing probability distribution with high computational efficiency. In this study, we propose a
Fourier-flow generative model to simulate the Feynman propagator and generate paths for quantum
systems. As a demonstration, we validate the path generator on the harmonic and anharmonic oscillators.
The latter is a double-well system without analytic solutions. To preserve the periodic condition for
the system, the Fourier transformation is introduced into the flow model to approach a Matsubara
representation. With this novel development, the ground-state wave function and low-lying energy levels
are estimated accurately. Our method offers a new avenue to investigate quantum systems with machine
learning assisted Feynman path integral solving.

DOI: 10.1103/PhysRevD.107.056001

I. INTRODUCTION

Feynman path integrals [1,2] have been proven success-
ful in describing quantum systems, which include contri-
butions from both the classical path and quantum
fluctuations. For physical observables’ estimation of a
quantum system, the functional path integral turns out to
be an ergodic problem, since it requires the summation over
an infinite number of quantum-mechanically possible tra-
jectories. In such a perspective, except for a few analytically
solvable systems, it is routinely needed to generate paths xðtÞ
following distribution eiS½xðtÞ�=ℏ given an action S½xðtÞ�. To
sample probable paths, the Markov Chain Monte Carlo
(MCMC) technique is widely adopted as a traditional
numerical approach [3,4]. However, time-consuming

updates inevitably emerge in MCMC when one attempts
to propose uncorrelated paths for a large system. It thus calls
for effective novel path generation methods, where machine
learning generative algorithms could be introduced [5].
Generative models of machine learning [6,7] have

been shown to be particularly useful in capturing the
underlying probability distributions hidden in data or expli-
citly existing in physical systems [8–10]. Normalizing
flows [11], starting from a plain prior distribution, are
able to evolve to desired distribution through bijective
transformations. These transformations can be constructed
via neural networks, making them flexible enough due to
the universal approximation theorem. Combined with
MCMC, normalizing flows offer a traceable and efficient
way for sampling from a target distribution, which is
currently burgeoning in lattice QFT studies [5,12–15].
To advance the effectiveness of generative models for

physics, introducing corresponding constraints or special
network architectures would be crucial, e.g., embedding
intrinsic symmetries of the system into the model to reduce
redundancy. Similar ideas were validated in many machine
learning models, e.g., convolutional neural networks
(CNNs) [16,17] suits image recognition better since the
respected translation invariance, which also proves efficient
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in data augmentation of physical systems [18–20]; In heavy
ion collisions, the point-net was applied to process
point-type particle readout from detectors, in which the
permutation symmetry was encoded explicitly [21–23]; In
lattice calculations, gauge equivariant flow-based models
were designed to handle gauge field configurations sam-
pling [24–27]. Besides, the gauge equivariant and invariant
neural networks were also proposed for particular quantum
systems [28–30]. Inspired by the renormalization scheme,
the neural network renormalization group was devised and
also applied to improve MCMC calculations [31,32].
In this study, we devised a Fourier flow model (dubbed

as F-flow in the following) for solving imaginary time path
integrals with efficient paths generation, whose periodicity
is satisfied explicitly since the introduction of a Fourier
frequency domain (also known as Matsubara frequency).
The model is demonstrated on quantum harmonic and
anharmonic oscillator systems. In Sec. II, we first briefly
review the Euclidean Feynman path integral and its
periodic condition, which can be tackled with discrete
Fourier transform (DFT). In Sec. III, we describe the F-flow
model in detail. In Sec. IV, we demonstrate the performance
of the proposed F-flow based Feynman path generator on
quantum harmonic and anharmonic oscillators. Ground-
state wave functions and energy levels up to second excited
states are estimated with the F-flow-based path generator.
Merits and drawbacks of the F-flow model and its potential
applications to other general systems are discussed in the
final section.

II. EUCLIDEAN FEYNMAN PATH INTEGRAL

Within the path-integral formulation of quantummechan-
ics, the time evolution of a quantum state, ψðx; tÞ,
can be dictated by the Feynman propagator,

ψðx; tÞ ¼
Z

Dx0ðtÞKðx; t; x0; t0Þψðx0; t0Þ; ð1Þ

where the propagatorKðx; t; x0; t0Þ (also called kernel) is the
sum of all possible paths (or trajectories) connecting the
initial point ðx0; t0Þ and the endpoint ðx; tÞ [2],

Kðx; t; x0; t0Þ ¼ Aðt − t0Þ
X
½xðtÞ�

eiS½xðtÞ�=ℏ: ð2Þ

In this functional integral, besides the normalization factor
Aðt − t0Þ, the classical action S½xðtÞ� appearswhich includes
the kinetic and potential terms. The existence of i=ℏ in
the exponent induces quantum fluctuations varying from
path to path. Dramatic fluctuations will induce cancellation
for paths when taking the real-time formalism, it is thus
convenient to take the Euclidean form of path integrals
where the Wick rotation is introduced, t → iτ, with τ the
imaginary time. The action within a time interval T in
Euclidean space-time derives,

SE½xðτÞ� ¼
Z

T

0

dτfT½xðτÞ� þ V½xðτÞ�g; ð3Þ

including the kinetic term TðxÞ≡ m
2
ðdxdτÞ2 with mass m, and

the potential term VðxÞ. Accordingly, the Euclidean
Feynman propagator is,

KEðx; T; x0; τ0Þ ¼ AE

X
½xðtÞ�

e−SE½xðτÞ�=ℏ; ð4Þ

which shows a resemblance to Boltzmann distribution in
statistical mechanics and permits Monte Carlo techniques
for the evaluation of this integral. From the statistical
probabilistic point of view, one can compute any physical
observable Ô given all possible paths fxðtÞg in probability
explanation,

hÔi ¼
Z

ÔðxÞpðxÞdx ¼
X
x∼pðxÞ

ÔðxÞ; ð5Þ

where the probability pðxÞ for each path xðτÞ reads,

p½xðτÞ� ¼ Z−1e−SE½xðτÞ�=ℏ; ð6Þ

with the partition function Z ¼ P
xðτÞ e−SE½xðτÞ�=ℏ as a nor-

malization factor. To connect it to quantum statistical mec-
hanics, one necessitates the periodicity to the path [2,33],
thus xðτ ¼ 0Þ ¼ xðτ ¼ T Þ, and views the time interval to be
the inverse temperature T ¼ β. Taking natural unit ℏ ¼ 1
and a discrete-time latticewith sizeN, the action accordingly
derives as,

SEðfxngÞ ¼
β

N

XN−1

n¼0

�
mðxnþ1 − xnÞ2

2a2
þ VðxnÞ

�
; ð7Þ

with periodic boundary x0 ¼ xN and a discrete time-step
a ¼ β=N, which is adopted as a physical unit(1=a) for all
following calculations. At low temperatures, the sites of xn
are strongly correlated, corresponding to aN → ∞. In all
following numerical calculations, we use a ¼ 0.1, N ¼ 100
to approach this condition.
When enforcing a boundary condition to path integral on

the discretized paths fxng, invariance under translation
(fn → nþ 1g), inversion (fn → −ng) and periodicity
(fn → nþ Ng) should preserve, where n labels the index
of the site. This motivated us to introduce the discrete
Fourier transformation(DFT) for the path chain fxng, thus
converting the coordinates into Matsubara modes

Xk ¼
XN−1

n¼0

e−i
2π
Nknxn: ð8Þ

In this Matsubara space the action derives (see
Appendix A)
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SðxÞ ≈ β

N2

XN−1

k¼0

�
mð1 − cos 2πkN Þ

a2
jXkj2 þ VðXkÞ

�
; ð9Þ

where the kinetic part does not couple different Matsubara
frequencies.

III. FOURIER-FLOW-BASED PATH GENERATOR

Flow-based model is proven to be useful for density
estimation and interference tasks [5,34–36]. In particular,
normalizing flows provide a novel way of constructing a
flexible probability distribution over continuous random
variables [37]. The main idea of normalizing flow is to
express a complex distribution x ∼ pxðxÞ from a naive
distribution u ∼ puðuÞ via a bijective transformation
T∶ u → x, which could be represented by neural networks
with trainable parameters noted as fθg. The probability
distribution function changes as follows [38],

pxðxÞ ¼ puðuÞj det JTðuÞj−1; ð10Þ

where u ¼ T−1ðxÞ and the Jacobian matrix of the trans-
formation is JT . The key recipe to construct a feasible flow
model is to guarantee the transformation T to be invertible,
differentiable and composable. It usually requires a series
of transformations to link the naive distribution and the
target distribution, denoted as fTig.
To construct the F-flow model, we start from the Real

NVP (real-valued nonvolume preserving) model [39],
where specific affine transformations represented by neural
networks rendering accessible Jacobian determinant are
adopted. The ith affine coupling layer reads

�Xi
1∶k ¼ Xi−1

1∶k

Xi
kþ1∶N ¼ Xi−1

kþ1∶N ⊙ es
i
θðXi−1

1∶kÞ þ tiθðXi−1
1∶kÞ;

ð11Þ

with the subscript labels N nodes at ith layer and “⊙”
represents the element-wise product. The neural networks
are used to construct mappings sθ∶ Rk → RN−k and
tθ∶ Rk → RN−k for scaling and translation transformations
with fθg denoting the network parameters.
Based on the above affine transformation for each cou-

pling layer, one can calculate directly the determinant
of the Jacobian by tracing a lower triangular matrix,
ðdet JiTÞ ¼ ΠN−k

j es
i
θðX1∶kÞj .

Figure 1 depicts the devised F-flow model in this work,
where the DFT [Eq. (8)] is introduced before the first affine
coupling layer, and the inverse DFT (iDFT) is performed
after the last affine coupling layer to convert paths from
frequency space to coordinate space, xn ¼ 1

N

P
N−1
k¼0 e

i2πNknXk.
This ensures that all transformations in the flowmodel are in
frequency space,which onone handpreserves theperiodicity
automatically, and on the other hand explicitly includes all

quantum fluctuations since all the relevant modes are trans-
formed and generated inside the flow.
To approach the desired probability distribution pðxÞ

shown in Eq. (6), one should define a proper loss function
to tune the parameters of the neural networks in the
flow model. Kullback-Leibler (KL) divergence provides
a natural measure for the dissimilarity between two dis-
tributions [40], and thus it is taken to define the loss
function for the F-flow model training,

LðθÞ ¼ DKL½pxðx; θÞjjpðxÞ�
¼ Eu∼puðuÞ½logpuðuÞ − log j det JTðuÞj�
− Ex∼pxðxÞ logpðxÞ; ð12Þ

where pðxÞ≡ pðxÞ is the target distribution [here Eq. (6)],
and qθðxÞ≡ pxðx; θÞ ¼ puðuÞj det JTðuÞj−1 the F-flow
parametrized distribution via x ¼ TðuÞ. Introducing the
path integrals, then the loss function derives as,

LðθÞ ¼ Ex∼qθðxÞ½SEðxÞ þ ln qθðxÞ� þ lnZ: ð13Þ

The partition function contributes as a constant term which
does not bring gradients to trainable parameters. We thus
omit the last term in the training process.

FIG. 1. Structure of the F-flow model with insertion of densely
connected layers. The input of the model contains samples
generated from a naive prior distribution u ∼ puðuÞ, which is
a multivariate normal distribution in our case.
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IV. GENERATING FEYNMAN PATHS
AND ESTIMATING OBSERVABLES

We first demonstrate the proposed F-flow model on the
quantum harmonic oscillator, with analytical solutions
existing. After that, we move to the harmonic oscillator,
where no analytical methods yet are applicable.

A. Harmonic oscillator

The typical harmonic potential reads,

VðxÞ ¼ 1

2
μx2; ð14Þ

with μ the coupling constant. The energy levels can be
analytically solved as En ¼ nþ1

2
μ, in which the ground state

is treated as the zero-point energy E0 ¼ 1
2
μ. Here we set

μ ¼ 1 andm ¼ 1 for demonstration. In the training process,
we set Nsample ¼ 8192 for the model to evaluate the loss
gradient, and set the iteration of each epoch to be Niter ¼
1024 with total Nepoch ¼ 10. Note that the generation of
path is uncorrelated by definition and efficient enough after
the training: 0.0015 seconds for generating 1000 samples
on single game GPU (RTX3090).
From the virial theorem, 2hTi ¼ nhVi holds for each

potential term with n the power of x, and we get the ground
state energy of the harmonic oscillator to be E0 ¼ μ2hx2i.
Since the simulation is under the low temperature limit,
which means the sites are strongly correlated, we could
push our calculation for the two-points and four-points
correlation to obtain the energy of the first and second
excited state,

E1 − E0 ¼ − lim
τ→∞

d logG2ðτÞ
dτ

;

E2 − E0 ¼ − lim
τ→∞

d logG4ðτÞ
dτ

; ð15Þ

with G2 ¼ lim
T→∞

ðhxðτÞxð0Þi − hxðτÞihxð0ÞiÞ and G4 ¼
lim
T→∞

ðhxðτÞ2xð0Þ2i − hxðτÞ2ihxð0Þ2iÞ the two-points and

four-points correlation functions, respectively. In Table I,
we summarize results of F-flow model with a comparison
to analytical results for low-lying energy levels up to the

second excited state. The estimation with F-flow model
agrees very well with the analytical results. For the F-flow
model evaluation, we sampled 200 k and 400 k paths to
estimate the energy level, which clearly indicates that
increasing statistics from F-flow model converge better
to analytical results. The ground state wave function square
jψðxÞj2 can be obtained by evaluating the probability
density for finding a particle in the interval (x ∼ xþ dx)
from the sampled paths. Fig. 2 shows the square of the
wave function evaluated from F-flow model, which
matches perfectly with the analytical result.

B. Anharmonic oscillator

After the above verification, we implement the F-flow
model to anharmonic oscillator. We consider the following
one-dimensional double-well potential [41–43],

VðxÞ ¼ λðx2 − f2Þ2; ð16Þ

which under DFT turns to

VðqÞ ¼ λ
X
k1;k2

1

N2
X−k1X−k2Xk1−qXk2þq

− 2λf2
X
k1

Xk1X−k1þq þ λf4: ð17Þ

After DFT, as shown by Eq. (9), correlation between xn in
the kinetic term disappears. Instead, one has a collection of
modes Xk correlated via potential VðqÞ. It is worth noting
that when removing DFTand iDFT for the model here (i.e.,
degrade to plain normalizing flow), it fails for the path
integral of anharmonic oscillator, which was also observed
recently in the literature [44,45].
For the numerical simulation, we choose a ¼ 0.1, N ¼

100 (for the discrete time lattice), m ¼ 0.5, λ ¼ 1. The
same training hyperparameters as in harmonic oscillator are
taken here for the anharmonic oscillator simulation, and
seven situations with f2 ¼ f5; 4; 3; 2; 1; 0;−1g are simu-
lated with which we estimated the ground state wave

FIG. 2. The ground state wave function squared for harmonic
oscillator, with red dashed curve the analytical results, and the
blue curve evaluated from F-flow model.

TABLE I. Quantum harmonic oscillator energy levels from the
analytical and F-flow model estimation (take N ¼ 100 for the
discrete time lattice). The difference between the two F-flow
model results lies in the number of samples taken.

Energy Analytical F-flow (200k) F-flow (400k)

E0 0.5 0.4997ð� 0.0001Þ 0.4997ð� 0.0001Þ
E1 1.5 1.5171ð� 0.0011Þ 1.4999ð� 0.0004Þ
E2 2.5 2.532ð� 0.037Þ 2.502ð� 0.034Þ

SHILE CHEN et al. PHYS. REV. D 107, 056001 (2023)

056001-4



function and energy levels up to second excited state. The
ground state energy of double-well potential can be derived
from the Virial theorem as,

E0 ¼ 3λhx4i − 4λf2hx2i þ λf4: ð18Þ

Again, Eq. (15) is used for estimating energy levels for
excited states. From Fig. 3 (upper panel), it is obvious that
with increasing f2 the potential deviates farther away from
harmonics, and shows a higher potential barrier between
twowells, where the solution of the system is nontrivial due
to the involved tunneling through the barrier.
Figure 3 (upper panel) also shows the ground state wave

function square estimated from F-flow, to which a double
peak structure due to quantum tunneling appeared. We
found that without the introduction of frequency domain
the flow evaluation easily collapses to single peak wave
function. The explicit operation and inclusion over all
Matsubara modes from Fourier transformation in our model
safely brings in the needed “tunneling” events (see
Appendix C for typical paths sampled from F-flow) for

the double peak wave function, which achieves efficient
multimodal distribution sampling. It is also seen that with
increasing f2 the overlap between the two peaks in the
wave function would decrease, meanwhile each peak in
the wave function shrinks. Figure 3 (lower panel) shows the
correlation between the effective action (i.e., − logqθðxÞ by
the F-flow) and the true action SEðxÞ. We see that the
F-flow captured effective action closely resembles the true
action after accounting for an overall constant shift.
Figure 4 and Table II display the evaluated low-lying

energy levels, including the ground state, first and second
excited state energy for different values of the parameter f2.
Results solely from F-flow model already agree well with
results from MCMC evaluation. In the table the MCMC
results are obtained using the method outlined in [46],
12 × 106 configurations were sampled in total of which
6 × 105 used to calculate energy of the ground and exited
states. F-flow also gives exactly the same tendency across
different states and different values of f2 compared with
MCMC estimations. By taking the trained F-flow model as
a proposal in a Markov Chain process we get closer results
as compared to pure MCMC, while the autocorrelation time

FIG. 3. Upper: the ground state wave function square obtained
from F-flow model for anharmonic oscillator with f2 ¼ 2 (left)
and f2 ¼ 3 (right). And the red lines are the corresponding
potential. Lower: the correlation between the effective action Seff
from F-flow model and the true action.

FIG. 4. The first three energy levels of the anharmonic
oscillator as function of f2. The solid markers are from F-flow
model calculation, and the hollow ones with also dashed curve
are from the continuum theory [41].

TABLE II. Low-lying energy levels from F-flow model (upper), F-flow augmented MCMC (middle), and MCMC (lower).

f2 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

F-flow 2.66ð�0.001Þ 1.06ð�0.001Þ 1.15ð�0.001Þ 2.28ð�0.001Þ 3.14ð�0.002Þ 3.60ð�0.004Þ 4.03ð�0.01Þ
E0 F-flowþMCMC 2.64ð�0.001Þ 1.04ð�0.001Þ 1.11ð�0.001Þ 2.23ð�0.001Þ 3.10ð�0.003Þ 3.60ð�0.004Þ 4.01ð�0.002Þ
MCMC 2.64ð�0.001Þ 1.04ð�0.001Þ 1.11ð�0.001Þ 2.23ð�0.001Þ 3.10ð�0.001Þ 3.60ð�0.001Þ 4.00ð�0.001Þ
F-flow 6.37ð�0.02Þ 3.84ð�0.02Þ 2.96ð�0.01Þ 2.87ð�0.003Þ 3.38ð�0.003Þ 3.74ð�0.004Þ 4.13ð�0.01Þ
E1 F-flowþMCMC 6.35ð�0.02Þ 3.76ð�0.01Þ 2.74ð�0.01Þ 2.82ð�0.004Þ 3.31ð�0.003Þ 3.73ð�0.004Þ 4.10ð�0.003Þ
MCMC 6.35ð�0.008Þ 3.77ð�0.006Þ 2.71ð�0.004Þ 2.82ð�0.003Þ 3.32ð�0.001Þ 3.73ð�0.001Þ 4.09ð�0.001Þ
F-flow 10.70ð�0.05Þ 7.41ð�0.05Þ 5.38ð�0.03Þ 6.36ð�0.02Þ 9.12ð�0.02Þ 10.91ð�0.03Þ 12.30ð�0.03Þ
E2 F-flowþMCMC 10.69ð�0.08Þ 7.44ð�0.03Þ 5.87ð�0.04Þ 6.33ð�0.01Þ 9.11ð�0.03Þ 10.87ð�0.03Þ 12.27ð�0.08Þ
MCMC 10.68ð�0.03Þ 7.41ð�0.02Þ 5.85ð�0.01Þ 6.35ð�0.01Þ 9.07ð�0.01Þ 10.85ð�0.02Þ 12.22ð�0.02Þ
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is significantly reduced (see Appendix B). Note that on
average the acceptance rate using F-flow for proposal in
MCMC is always above 50% since the uncorrelated
sampling from the trained F-flow. These all demonstrate
that the proposed F-flow-based generative model is valid in
constructing a more efficient Feynman path generator for
the quantum system.

V. SUMMARY

Feynman path integral provides an intuitive and the most
fundamental way to represent quantum evolution and
dynamics. It is a crucial yet challenging task to efficiently
generate Feynman’s path according to its probability dis-
tribution derived from the path integral, since all quantum
tracks will be included in such a system. FromMCMC [47]
to VAE [44], there have been many efforts taken trying to
make this process more accurate and efficient. In this work,
we propose a Fourier-flow model involving DFT and
generative real NVP method to render a much less time-
costing and automatic symmetry preserving Feynman’s path
generator, withwhich all the quantum information including
the evolution propagator, ground state wave function and
low-lying energy levels can be evaluated efficaciously.
The demonstration of the proposed F-flow model on

quantum harmonic and anharmonic oscillators shows its
applicability and success for investigating quantum systems
by efficient Feynman’s path generation. Compared to con-
ventional MCMC, the proposed F-flow model gives more
efficient path generation due to the uncorrelation nature and
inherent parallel manner for the sampling inside the model.
Taking the F-flow model as a proposal on a Markov Chain,
we can get a general and effectively augmented MCMC
approach with significantly boosted efficiency, where also
the exact path generator is guaranteed mathematically.
It is worth mentioning that the introduction of the

Fourier-flow model in this work is motivated by observing
the failure of the pure normalizing flow model in achieving
the typical symmetry (boundary condition) for the quantum
system, which is an eternal theme in physics. Many recent
researches have made important contributions to such a
problem like generating gauge field configurations [13,24],
and, our work for the first time from Fourier (Matsubara)
space point of view to pave the way in tackling this
problem, where the affine transformation inside flow model
learn to approach a Matsubara representation instead. We
will explore further the application of the method for
studying other quantum statistics and dynamics problems,
to QFT as well, by a combination of state-of-the-art deep
learning strategies with physics priors.
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APPENDIX A: EUCLIDEAN FEYNMAN PATH
INTEGRAL IN FOURIER SPACE

All the mentioned invariances in the end of Sec. II can be
preserved explicitly when we transform paths from the
coordinate space to the frequency space, and correspond-
ingly the Euclidean action derives as

SE½xðτÞ� ¼
β

N

XN−1

n¼0

�
m
2a2

ðxnþ1 − xnÞ2 þ VðxnÞ
�
; ðA1Þ

with its first term becoming,

XN−1

n¼0

ðxnþ1 − xnÞðxnþ1 − xnÞ�

¼
XN−1

n¼0

ðx2nþ1 þ x2nÞ −
XN−1

n¼0

ðx�nþ1xn þ x�nxnþ1Þ

¼ 2

N

XN−1

k¼0

jXkj2 −
XN−1

n¼0

ðx�nþ1xn þ x�nxnþ1Þ

¼ 2

N

XN−1

k¼0

jXkj2 −
1

N

XN−1

k0¼0

ðei2πNk0 þ e−i
2π
Nk

0 ÞjXk0 j2

¼ 2

N

XN−1

k¼0

jXkj2
�
1 − cos

2πk
N

�
; ðA2Þ

where the unitary of the Fourier transformation is used to
reduce the formula among the first three equations. Take
the last line back to Eq. (A1), one can get,

SE½xðτÞ� ¼
β

N

�
1

N

XN−1

k¼0

mð1 − cos 2πkN Þ
a2

jXkj2 þ
XN−1

n¼0

VðxnÞ
�
;

ðA3Þ

and then after the DFT for the potential term, the action can
be derived as,

SðxÞ ≈ β

N2

XN−1

k¼0

�
mð1 − cos 2πkN Þ

a2
jXkj2 þ VðXkÞ

�
: ðA4Þ

APPENDIX B: AUTOCORRELATION TIME

We calculate the correlation function of variable hXi of
MCMC process based on the F-flow trained configuration
dataset with the final autocorrelation time τ ¼ 0.42. The
result in Fig. 5 shows that the F-flow procedure can
remarkably make the traversing process more efficient.
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APPENDIX C: ANHARMONIC
OSCILLATOR PATHS

Typical Feynman paths from our trained F-flow model
on the anharmonic oscillator are shown in Fig. 6 (upper
left). For exploration, it is interesting to see what if one
mask (i.e., set to zeros) high-frequency modes would

influence the path, since if this would not induce much
difference one could largely reduce the flow transforma-
tion’s parameters in frequency space for the path gener-
ation. In our proposed F-flow model, because we insert the
discrete Fourier transformation before and after the affine
transformation (represented by networks), we wonder
whether the low-frequency modes can dominate the gen-
erated paths. When we mask the high-frequency modes in
frequency space and then reverse via iDFT back to the
coordinate space, as shown in Fig. 6, we find that the
overall shape of paths does not change but just gets
smoothed (i.e., the fluctuation within small areas disap-
pears). Without the high-frequency mode, we can reduce
the training parameters to save time and cost. Note that one
should further investigate in detail the influence on physical
observables from the mask of high-frequency modes,
which is left for future exploration. In principle, we may
not regard this process as an appropriate way to handle the
path integral problem because those high frequency modes
also contribute to the energy of the system. But, this may
be an inspiration to generative tasks in computer vision
problem, like to speed up the generation or for super-
resolution development.

FIG. 5. The correlation function of path configuration versus
discrete time of Markov chain.

FIG. 6. Typical Feynman paths for quantum anharmonic oscillator with f2 ¼ 2 sampled from the trained F-flow model. Upper-left is
the original paths sampled with full frequency modes used. From upper-left to bottom-right is gradually masking more high frequency
modes (0%, 20%, 30%, 40%) after DFT then reverse via iDFT back to path.
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