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We investigate the possibility of explanation for the muon anomalous magnetic moment gμ − 2 in a
left-right model with an inverse seesaw mechanism. We emphasize that the observed deviation from the
Standard Model predictions can be accommodated in a large part of the parameter space of this class of
models, where loops with massive neutrinos and charged Higgs boson as well as the weak W boson
contribute significantly to gμ − 2. Stringent constraints due to lepton flavor violation μ → eγ, μ-e
conversion and the electron anomalous magnetic moment ge − 2 are considered, and the results are
compatible.
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I. INTRODUCTION

Non-vanishing neutrino masses inferred from neutrino
oscillation experiments [1–5], provided strong evidence
for new physics beyond the standard model (BSM). The
extensions of the SM to account for neutrino masses and
mixing imply new sources of lepton flavor violation (LFV),
which could explain the long-standing discrepancy between
the SM prediction for the muon anomalous magnetic
moment aμ¼ðgμ−2Þ=2 and its experimental measurement.
Recent experimental results indicate a possible 4.2σ

difference between the measured value of the anomalous
magnetic moments of muons aμ and the SM expectations
[6–9], namely

δaμ ¼ aexpμ − aSMμ ¼ ð2.51� 0.59Þ × 10−9: ð1Þ

We consider the explanation of the aμ anomaly in the
left-right (LR) model with inverse seesaw mechanism
(LRIS) to generate light neutrino masses and mixing at
low energy scale. The salient feature of this class of models
is the large neutrino Yukawa couplings, which allow for
significant nonuniversal leptonic contributions to the aμ

anomaly via diagrams mediated by charged Higgs bosons
and right-handed neutrinos (RHNs). As constraints, we
impose the experimental limits of the lepton flavor viola-
tion μ → eγ, μ-e conversion, and the electron anomalous
magnetic moment [10–13].
The LR model is among the most natural extensions of

the SM, which is motivated by grand unified theories
(GUTs) and accounts for measured neutrino masses as well
as providing an elegant explanation for the origin of parity
violation in low-energy weak interactions. The LRIS has
been analyzed in detail in Ref. [14]. We recall that it has a
Higgs sector that consists of one scalar bidoublet and a
scalar RH doublet only. In addition, the LRIS contains
singlet fermions S1, S2 for adopting the IS mechanism of
neutrino masses. Such a TeV scale LR model can be probed
in current and future experiments as emphasized in
Ref. [14]. Also, it was argued in Ref. [15] that the tension
between the SM prediction and the experimental results
of the RD and RD� ratios, defined by RðfD�; DgÞ ¼
BRðB→fD�;DgτνÞ
BRðB→fD�;DglνÞ, where l ¼ e, μ, can be resolved in this

class of LRIS models. In fact there are several new physics
scenarios that have been proposed to accommodate δaμ and
δae results. See Refs. [16–30].
This paper is organized as follows. In Sec. II we

highlight relevant interactions in the LRIS, as the details
of the model are given in previous papers [14,15].
Section III is devoted for analyzing new LRIS contributions
to aμ, specifically those due to the light and heavy
Z;W; Z0;W0 gauge bosons and neutral and charged
Higgs bosons with heavy neutrinos. Also, Sec. IV is
devoted for the LFV constraints in LRIS. Finally, our
conclusions are given in Sec. V.
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II. LEFT-RIGHT MODEL WITH AN
INVERSE SEESAW

As previously advocated, we consider the LRIS model
[14], which is based on the gauge group GLR ¼ SUð3ÞC ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. This model has the same
fermion content as any other conventional left-right model
[31–33], but with two extra singlet fermions per family S1
and S2 with opposite B − L charges ¼ −2, ¼ þ2, respec-
tively. The fermion singlet S2 is presumed to implement the
IS mechanism for neutrino masses, while the other, S1, is
added to cancel the Uð1ÞB−L anomaly caused by S2. The
LRIS has a simple Higgs sector consisting of one RH
doublet χR that breaks down left-right symmetry to the SM
gauge symmetry and one bidoublet ϕ that is broken down
into two SM Higgs doublets. Furthermore, a Z2 discrete
symmetry is assumed, with all particles having even
charges except S1, which has an odd charge. This symmetry
prevents the mixing mass term MS̄c1S2 from being used to
allow for the IS mechanism.
The most general LRIS Yukawa Lagrangian is given by

LY ¼
X3
i;j¼1

L̄LiðϕyLij þ ϕ̃ỹLijÞLRj þ Q̄LiðϕyQij þ ϕ̃ỹQijÞQRj

þ L̄Riχ̃RysijS
c
2j þ H:c:; ð2Þ

where i, j are family indices, ϕ̃ is the dual bidoublet of the
scalar bidoublet ϕ, defined as ϕ̃ ¼ τ2ϕ

�τ2, and χ̃R is the
dual doublet of the scalar doublet χR, given by χ̃R ¼ iτ2χ�R.
A nonvanishing vacuum expectation value (VEV) of χR,
hχRi ¼ vR=

ffiffiffi
2

p
of order TeV breaks the RH electroweak

(EW) sector together with B − L, namely SUð2ÞR ×
Uð1ÞB−L down to the Uð1ÞY hepercharge symmetry. In
addition, the VEVs of ϕ, hϕi ¼ diagðk1=

ffiffiffi
2

p
; k2=

ffiffiffi
2

p Þ, are
of order Oð100Þ GeV, break the SM EW symmetry. The
charged leptons acquire their masses via combinations of
the lepton coupling Yukawa matrices yL and ỹL and tβ as
defined below Eq. (3). Similarly, the quarks acquire their
masses via combinations of the quark coupling Yukawa
matrices yQ and ỹQ and tβ. The definition of the Yukawa
couplings yL;Q and ỹL;Q in terms of physical fermion
masses and mixing are recalled below from Ref. [14].
After B − L symmetry breaking and EW symmetry

breaking, the following 9 × 9 neutrino mass matrix is
obtained in the basis ðνcL; νR; S2Þ

Mν ¼

0
B@

0 MD 0

MT
D 0 MR

0 MT
R μs

1
CA; ð3Þ

where the 3 × 3 matrix MD ¼ vðyLsβ þ ỹLcβÞ=
ffiffiffi
2

p
is the

Dirac neutrino mass matrix and the 3 × 3 matrix MR ¼
ysvR=

ffiffiffi
2

p
. Here, we have assumed that k1 ¼ vsβ, k2 ¼ vcβ,

as constrained from the W boson mass MW ≃
gL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
=2 in LRIS, where v ¼ 246 GeV is the EW

VEV, and sx ¼ sin x, cx ¼ cos x, and tx ¼ tan x, hence-
forth. The neutrino mass matrix Mν can be diagonalized
by 9 × 9 matrix U satisfying UMνUT ¼ Mdiag

ν ¼
diagðmνli

; mνhj
Þ, yielding the physical light and heavy

neutrino states νli
, νhj , i ¼ 1; 2; 3, j ¼ 4;…; 9, with the

following light and heavy mass eigenvalues

mνli
¼ MDM−1

R μsðMT
RÞ−1MT

D; i ¼ 1; 2; 3; ð4Þ

m2
νhj

¼ M2
R �M2

D; j ¼ 4;…; 9: ð5Þ

where μs ≲Oð10−5Þ GeV, MR ∼O (a few TeV) and
ys ≲Oð10−1Þ. For these values, Eq. (4) shows that the
light neutrino masses can be of order eV. The S1 fermions
acquire radiative masses mS1 ∼ μs ∼OðKeVÞ and they do
not mix with other neutrinos thanks to the Z2 discrete
symmetry, so they are stable particles. As probable candi-
dates of warm dark matter, one does not have to worry
about the S1 fermions to overclose the Universe. It was
demonstrated in [34] that S1 can account for the observed
relic abundance and meanwhile it is not constrained by the
constraints on sterile neutrino because its mixing with
the active neutrinos vanishes identically in LRIS. On the
other hand, the S2 fermions also acquire radiative mass
terms ∼μs, but due to their large mixing with the RHN,
which is ∼MR ∼O (a few TeV), they acquire masses
mS2 ∼MR as in Eq. (5).
The inverse relation of Eq. (4) is

MD ¼ UPMNS
ffiffiffiffiffiffiffiffi
mνl

p
R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμsÞ−1

q
MR; ð6Þ

where R is an orthogonal matrix and UPMNS is the 3 × 3
light neutrino mixing matrix [35–37].
In the following section, we will study the process aμ,

which is dominated by the charged Higgs boson contri-
butions at the loop level; thus, we provide a brief analysis
for charged Higgs bosons masses and interactions based on
the detailed previous work of Ref. [14]. In the flavor basis
ðϕ�

1 ;ϕ
�
2 ; χ

�
R Þ, the charged Higgs bosons symmetric mass

matrix takes the form

M2
H� ¼ α

2

0
BBB@

v2Rs
2
β

c2β

v2Rs2β
2c2β

−vvRsβ

:
v2Rc

2
β

c2β
−vvRcβ

: : v2c2β

1
CCCA; ð7Þ

where the scalar potential parameter α ¼ α3 − α2 as in [14].
This matrix can be diagonalized by the unitary matrix
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ZH� ¼

0
BBBBBB@

vc2βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2c2

2βþv2Rs
2
β

p 0
vRsβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2c2
2βþv2Rs

2
β

p

−
1
2
v2Rs2βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2c2
2βþv2Rs

2
βÞðv2c22βþv2RÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2c2

2βþv2Rs
2
β

v2c2
2βþv2R

r
vvRcβc2βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2c2
2βþv2Rs

2
βÞðv2c22βþv2RÞ

p
− vRsβffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2c2
2βþv2R

p − vRcβffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2c2

2βþv2R
p vc2βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2c2
2βþv2R

p

1
CCCCCCA
: ð8Þ

Thus, the mass eigenstates are given by ðϕ�
1 ;ϕ

�
2 ; χ

�
R ÞT ¼

ðZH�ÞTðG�
1 ; G

�
2 ; H

�ÞT , where ZH�
M2

H�ðZH�ÞT ¼
diagð0; 0; m2

H�Þ. Here G�
1 and G�

2 represent the charged
massless Goldstone bosons that are eaten by the charged
gauge bosonsWμ andW0

μ to acquire their masses andH� is
the physical massive charged Higgs boson. The charged
Higgs boson mass is given by

m2
H� ¼ α

2

�
v2R
c2β

þ v2c2β

�
: ð9Þ

We notice from Eq. (9) that α > 0 as long as c2β > 0 (i.e.,
tβ < 1) and vice versa. Moreover, for vR ∼Oð10 TeVÞ and
jαj ∼Oð10−2Þ, the charged Higgs boson mass can be of
order hundreds GeV. The physical charged Higgs boson is
defined as a linear combination of the flavor basis fields
ϕ�
1 ;ϕ

�
2 ; χ

�
R , i.e. (corrected from [14]),

H� ¼ ZH�
31 ϕ

�
1 þ ZH�

32 ϕ
�
2 þ ZH�

33 χ
�
R : ð10Þ

It is worth noting that for vR ≫ v, vR ∼OðTeVÞ is enough,
the mixing ZH�

33 ≪ 1 and the charged Higgs mass and
combination reduce to the following approximations

mH� ≃ vR

ffiffiffiffiffiffiffiffiffi
α

2c2β

r
; ð11Þ

H� ≃ −ðsβϕ�
1 þ cβϕ�

2 Þ: ð12Þ

Finally, the charged Higgs boson couplings with fermion
families are given by

ΓH�
ūidj

¼ −
�X3

a¼1

V�
jaðyQ

�
ai Z

H�
32 þ ỹQ

�
ai Z

H�
31 Þ

�
PL

−
�X3

a¼1

VjaðyQiaZH�
31 þ ỹQiaZ

H�
32 Þ

�
PR; ð13Þ

ΓH�
ν̄kl

¼−
�X3

i¼1

U�
k;iþ3ðyL

�
li Z

H�
31 − ỹL

�
li Z

H�
32 Þ

�
PL

þ
�X3

i¼1

ðUkiðỹLilZH�
31 −yLilZ

H�
32 Þ−Uk;iþ6ys

�
liZ

H�
33 Þ

�
PR;

ð14Þ

where V is the 3 × 3 Cabibbo–Kobayashi–Maskawa quark
mixing matrix and U is the 9 × 9 inverse seesaw neutrino
mixing matrices defined after Eq. (3). The following
parametrization will be used below

ΓH�
ūidj

¼ CijPL þDijPR; ð15Þ

ΓH�
ν̄kl

¼ ξklPL þ ζklPR: ð16Þ

We fix vR ∼Oð10 TeVÞ for the extra gauge bosons W0; Z0
experimental limits on their masses and mixing with the
corresponding electroweak gauge bosons [14]. Hence, as
noted before Eq. (12), ZH�

33 ≪ 1, and we can omit the third
term

P
3
i¼1Uk;iþ6ys

�
liZ

H�
33 from numerical calculations of

the charged Higgs boson couplings with leptons ζkl in
Eqs. (14) and (16). Moreover, The nonunitairity limits of
the 3 × 3 light neutrino mixing matrix UPMNS [36–41]
ensures that for the charged Higgs boson and lepton
couplings in Eq. (16) ξkl ≪ 1 for light neutrinos (k ¼ 1,
2, 3) and ζkl ≪ 1 for heavy neutrinos (k ¼ 4;…; 9). Thus,
and according to Eq. (12), the relevant charged Higgs
boson couplings with fermions can be approximated to

Cij ≃
X3
a¼1

V�
jaðyQ

�
ai cβ þ ỹQ

�
ai sβÞ; ð17Þ

Dij ≃
X3
a¼1

VjaðyQiasβ þ ỹQiacβÞ; ð18Þ

ξkl ≃
X3
i¼1

U�
k;iþ3ðyL

�
li sβ − ỹL

�
li cβÞ; k ¼ 4;…; 9; ð19Þ

ζkl ≃
X3
i¼1

UkiðyLilcβ − ỹLilsβÞ; k ¼ 1; 2; 3: ð20Þ

It is clearly noticed that for tβ ≪ 1 ðtβ ≫ 1Þ the couplings
ξklðζklÞ are ỹLðyLÞ dominant, and hence the couplings ξkl
and ζkl are now uncorrelated. Moreover, if we closely
investigate these couplings for l ¼ e, μ, we see that the
family components yLli, ỹ

L
li can distinguish between the

charged Higgs boson couplings to different lepton families.
Successfully, this helps in explaining the aμ anomaly and
satisfying the LFV results as clarified below. This can be
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achieved via controlling the entries of ys, μs and the
orthogonal matrix R in Eq. (6), where the quark and
lepton Yukawa couplings can be written in terms of the
fermion masses as follows [14]:

yQ ¼
ffiffiffi
2

p

vc2β
ðcβVMdV† − sβMuÞ; ð21Þ

ỹQ ¼
ffiffiffi
2

p

vc2β
ðsβVMdV† − cβMuÞ; ð22Þ

yL ¼
ffiffiffi
2

p

vc2β
ðcβMlp − sβMDÞ; ð23Þ

ỹL ¼ −
ffiffiffi
2

p

vc2β
ðsβMlp − cβMDÞ; ð24Þ

where Mu, Md, Mlp are the quarks and charged leptons
diagonal mass matrices and MD is the Dirac neutrino mass
matrix defined after Eq. (3) and solved for it in Eq. (6).
According to Eqs. (17) to (24), we can write the charged
Higgs boson couplings to fermions in terms of the physical
fermion masses as follows:

Cij ≃
ffiffiffi
2

p

vc2β

X3
a¼1

V�
jaðVMdV† − s2βMuÞ�ai; ð25Þ

Dij ≃
ffiffiffi
2

p

vc2β

X3
a¼1

Vjaðs2βVMdV† −MuÞia; ð26Þ

ξkl ≃
ffiffiffi
2

p

vc2β

X3
i¼1

U�
k;iþ3ðs2βMlp −MDÞli; k ¼ 4;…; 9;

ð27Þ

ζkl ≃
ffiffiffi
2

p

vc2β

X3
i¼1

UkiðMlp− s2βMDÞil; k¼ 1;2;3; ð28Þ

where the conjugate “*” is omitted from the matrices when
they are (taken) real. As noted after Eq. (20), for tβ ≪ 1

ðtβ ≫ 1Þ, the couplings ξkl ðζklÞ are MD ðMlpÞ dominant
and uncorrelated, and the family components are

discriminant. Similarly, the above discussion applies for
the charged Higgs boson couplings with quarks as well.
Finally, we close this section by stating the scalar and

pseudoscalar Higgs bosons sectors which were analyzed in
detail with their couplings with charged leptons in [14]

Γhi
ll ¼ vffiffiffi

2
p

ml

ðZH
i1ỹ

L
ll þ ZH

i2y
L
llÞ; ð29Þ

ΓA
ll ¼ vffiffiffi

2
p

ml

ðZA
31ỹ

L
ll − ZA

32y
L
llÞ; ð30Þ

where ZH, ZA are the scalar and pseudoscalar Higgs mixing
matrices, respectively [14,42]. More details about the LRIS
Higgs and gauge sectors couplings and mixing and their
parameters and spectra can be found in our previous work
in Ref. [14].

III. LRIS CONTRIBUTIONS TO MUON
ANOMALOUS MAGNETIC MOMENT

In this section we analyze new contributions from the
LRIS to the muon anomalous magnetic moment, aμ,
induced by the light and heavy Z;W; Z0;W0 gauge bosons,
as well as the neutral scalar and pseudoscalar and charged
Higgs bosons h; A;H� shown in Fig. 1. We will also
consider the constraints on these contributions imposed by
the experimental limits of the electron anomalous magnetic
moment, ae, and charged lepton flavor violations, particu-
larly, the μ → eγ decay and the μ-e conversion. In this case,
we can write δaμ ¼ aLRISμ , where

aLRISμ ¼ aWμ þ aW
0

μ þ aZμ þ aZ
0

μ þ ahμ þ aAμ þ aH
�

μ : ð31Þ

The relevant amplitudes are, ignoring the W −W0 and
Z − Z0 mixing, given by

aWl ¼ Gl
F

X9
k¼1

jUk;jljj2
�
10

3
þ F 2ðxνkWÞ

�
; ð32Þ

aW
0

l ¼ Gl
F

X9
k¼1

jUk;3þjljj2
�
10

3
þ F 2ðxνkW0 Þ

��
1

cw
xWW0

�
; ð33Þ

aZl ¼ Gl
Fðc4w − 5Þ

�
1

3

�
; ð34Þ

FIG. 1. LRIS one-loop Feynman diagrams contributions to lepton gl − 2 via massive neutrinos, V� ¼ W;W0; V0 ¼ Z; Z0; S0 ¼ hi; A,
and the charged Higgs boson H�.
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aZ
0

l ¼ Gl
Fðc4w0 − 12c2w0 − 5Þ

�
t2w

48s2
2w0

xWZ0

�
; ð35Þ

ahl ¼ Gl
F

X3
i¼1

xlhiðΓ
hi
llÞ2

�
7

6
þ logðxlhiÞ

�
; ð36Þ

aAl ¼ Gl
F

�
−1
2

�
xlAðΓA

llÞ2
�
7

6
þ logðxlAÞ

�
; ð37Þ

where the lepton family order jlj ¼ 1, 2 for l ¼ e, μ. The

dimensionless coupling Gl
F ¼ GFm2

l

8
ffiffi
2

p
π2

and the mass ratio

parameters xab ¼ m2
a

m2
b
; a¼ νk;W;l; b¼W;W0; Z0; hi;A;H�.

The neutral gauge bosons mixing angles θw0 and the
Weinberg angle θw are sw0 ¼ gY

gR
; sw ¼ e

gL
, where gY is the

hypercharge coupling. The Z − Z0 mixing angle θw0 is
constrained by tw0 ≲ 10−4 [43,44]. Also, the W0 mass is
given by mW0 ¼ gL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2R þ v2

p
=2≳Oð4 TeVÞ [43,44].

The analytical expressions of Eqs. (32)–(37) show that
numerical values of the BSM contributions to aμ mediated
by W0; Z0; hi; A are negligible due to the suppression of
their masses ratios xWW0;Z0 and xlhi;A, and thus we exclude
their minor contributions. Also, the second summation termP

9
k¼1 jUk;jljj2F 2ðxνkWÞ ≃

P
9
k¼4 jUk;jljj2F 2ðxνkWÞ of Eq. (32),

which represents the W-RHN loops contributions of Fig. 1
is typically ∼Oð10−2Þ; only ≲0.4% of the first term (10

3
),

and thus suppressed. This can be generally understood via
the GIM cancellation mechanism [45] due to the unitarity
of the full 9 × 9 neutrino mixing matrix U within the
nonunitarity limits of the 3 × 3 UPMNS light neutrino
mixing matrix [36–41]. In light of this, it can be generally
concluded that any minimal BSM extension of the SM
with RHN with any adopted seesaw mechanism can not
account for the measured aμ anomaly and extra degrees of
freedom are needed for this [36]. The LRIS with its extra
degrees of freedom is a good candidate for such class of
BSM models.
Finally, the charged Higgs boson H� contribution to aμ

is given by

aH
�

l ¼Gl
FΓH�

γ

X9
k¼1

ðjζ0klj2F 2ðxνkH�Þþ2Re½ζ0klξ0�kl�F 1ðxνkH�ÞÞ;

ð38Þ

where the charged Higgs boson interaction couplings with
leptons ξkl; ζkl appear in Eq. (16), and ζ0kl ¼ v

mνk
ζkl and

ξ0kl ¼ v
ml

ξkl. The charged Higgs boson interaction cou-
pling with photons is

ΓH�
γ ¼ 1

6e
ðgLU0

21 þ gRU0
31 þ ðgBLU0

11 − gLU0
21ÞðZH�

33 Þ2Þ

≃
1

6e
ðgLU0

21 þ gRU0
31Þ; ð39Þ

where the last approximation is for vR ≫ v where
ZH�
33 ≪ 1, as noted before Eq. (12). The matrix U0 is the

neutral gauge bosons mixing matrix and gR is the SUð2ÞR
coupling [14]. The loop functions F k (k ¼ 1, 2) in
Eqs. (32), (33), and (38) are given by

F kðyÞ ¼
yPkðyÞ

ðy − 1Þkþ1
−
6ykþ1 logðyÞ
ðy − 1Þkþ2

; k ¼ 1; 2; ð40Þ

P1ðyÞ ¼ 3yþ 3; ð41Þ

P2ðyÞ ¼ 2y2 þ 5y − 1: ð42Þ

It is understood that, for y → 1, the values of the loop
functions F k (k ¼ 1, 2) are given by their limits and
F 1ð1Þ ¼ 1 and F 2ð1Þ ¼ 1

2
. This happens when some heavy

neutrinos are degenerate in mass with the charged Higgs
boson as in Fig. 2. Asymptotically, the ratio F 2ðxÞ=F 1ðxÞ
is increasing and bounded below and above, and
F 2ðxÞ;F 1ðxÞ → 0 for x ≪ 1 such that F 2ðxÞ=F 1ðxÞ →
1=3 for x ≪ 1, and F 2ðxÞ=F 1ðxÞ → 2=3 for x ≫ 1.
Accordingly, the two loop functions F 1 and F 2 remain
of the same order for all possible values of the argument x.
Typically, the coupling ΓH�

γ ∼ 0.076. Also, the first
contribution term of Eq. (38)

P
9
k¼1 jζ0klj2F 2ðxνkH�Þ ≃P

3
k¼1 jζ0klj2F 2ðxνkH�Þ is ∼Oð10−13Þ. For light neutrinos,

this term is suppressed by the loop function F 2ðxνlH�Þ,
while, for heavy neutrinos, it is suppressed by their
squared masses in the denominators of coefficients
jζ0klj2ðk ¼ 4;…; 9Þ. Indeed, the first term represents only
0.02% of the second term

P
9
k¼1 2Re½ζ0klξ0�kl�F 1ðxνkH�Þ≃P

9
k¼4 2Re½ζ0klξ0�kl�F 1ðxνkH�Þ, which is Oð10−9Þ, where this

time the second term is enhanced due to the charged lepton
masses in the denominators of the coefficients ζ0klξ0�kl.
Thus, the charged Higgs boson contribution to the aμ
anomaly Eq. (38) can be approximated to

aH
�

l ≃ 2Gl
FΓH�

γ

X9
k¼4

Re½ζ0klξ0�kl�F 1ðxνkH�Þ

≲ 3ΓH�
γ

8π2
ml

X9
k¼4

ζklξkl
mνk

; ð43Þ

where 3ΓH�
γ

8π2
∼ 3 × 10−3 and the loop function F 1 is increas-

ing and bounded above such thatF 1ðxÞ → 3 for x ≫ 1, and
the complex notations “Re, *” are omitted as the couplings
are (taken) real.
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In the rest of this section, we analyze the parameter space
of the LRIS for numerical scan for benchmark points (BPs).
In the SM, all particles acquire their masses via the VEVof
only one degree of freedom, the Higgs field, and each
particle mass depends only on one parameter coupling, its
coupling with the Higgs field. This feature almost fixes
the SM parameters values, except maybe due to some
measurements uncertainties. So, in the SM, couplings are
fixed at the EW scale by particles masses. Conversely, in
LRIS, there are many sources of VEVs and couplings for
particles’ masses. So, in LRIS, VEVs, the Yukawa cou-
plings and scalar potential parameters are in general free
parameters (see Ref. [14]), and they can be varied while
fermions and scalar masses are kept fixed. Also, in LRIS,
the gauge couplings are constrained by the gauge bosons
masses at the EW scale and by their renormalization
group equations (RGEs) evolution up to GUT scale,
especially when we fix vR ∼Oð10 TeVÞ for the extra
W0; Z0 experimental mixings and masses limits as discussed
after Eq. (37).
The neutrinos masses Eqs. (4) and (5) and their mixing

matrixU after Eq. (3) are given in terms ofMD,MR, and μs

(or equivalently yL; ỹL; ys; μs; tβ, and vR). In our numerical
analysis, we fix vR ∼Oð10 TeVÞ. Also, we adopted the
normal hierarchy of light neutrino massesmνl , as in Table I.
The chosen light neutrino masses values satisfy Δm2

21 ¼
7.224 × 10−5 eV2 and Δm2

31 ¼ 2.500 × 10−3 eV2. They
agree with the 1σ ranges of the observed solar and
atmospheric mass splittings values Δm2

sol ¼ 7.420þ0.210
−0.200 ×

10−5 eV2, and Δm2
atm ¼ 2.517þ0.026

−0.028 × 10−3 eV2 [37]. But,
to satisfy the aμ anomaly in the inverted hierarchy scenario

of neutrino masses within the imposed LFV constraints, the
nonunitarity limits of the UPMNS matrix should be violated.
In this case, one has to set relatively large [∼Oð10−10Þ] and
thus almost degenerate light neutrino masses. Also, μs is
enlarged for the aμ anomaly and other relevant LFV
constraints, and it mixes with other entries in the neutrino
mass matrix (3), thus violating the nonunitarity limits
of UPMNS [37]. We chose to express MD (and hence,
in correlation, yL; ỹL) in terms of ys, μs, and tβ as in
Eqs. (6), (23), and (24). Accordingly, substituting MD and
ys in the heavy neutrino masses Eq. (5) determine them.
So, in our numerical analysis below, we fix the normal
hierarchy light neutrino masses and the entries of the
UPMNS matrix and scan over ys and μs as in Eq. (44) for
the neutrino sector [37]. It is also worth mentioning here
that the consistency of all numerical calculations of Table I
is verified. For example, the MD matrix, when calculated
from its main definition after Eq. (3) is found consistent
with its values from Eq. (6). Also, the neutrino masses in
Table I are consistent with Table II and Eqs. (4), (5),
and (45). Finally, the orthogonal matrix R of Eq. (6) was
fixed such that its nonvanishing components are R13 ¼
R21 ¼ R32 ¼ 1 as given in Table II.
Also, the charged Higgs boson mass Eq. (9) is varied

versus tβ and the scalar potential parameter α, and the

chargedHiggsmixingZH�
Eq. (8) is given in terms of tβ and

vR. For the charged Higgs boson mass and mixing, we scan
over tβ and α as in Eq. (44). As detailed above, after Eqs. (5),
(9), and (20), in our numerical analysis of the neutrino and
charged Higgs sectors, we scanned over the following
independent parameters’ ranges [with vR ∼Oð10 TeVÞ]

TABLE I. BP and corresponding charged Higgs boson and neutrino mass spectrum in GeVs.

Par α tβ vR ZH�
31 ZH�

32 ZH�
33 mH� mν1 mν2 mν3 mν4 mν5 mν6 mν7 mν8 mν9

BP 0.0058 0.1 10000 −0.099 −0.994 0.024 545 1.0 × 10−13 8.5 × 10−12 5.0 × 10−11 108 695 1449 108 695 1449

FIG. 2. Left/right: the muon/electron magnetic moment anomalies δaμ;−δae versus of the second heaviest neutrino and charged Higgs
boson masses ratio parameter xν5

H� ¼ m2
ν5=m

2
H�. The 1σ and 2σ standard error of measurements of δaμ are included in green and red

borders, respectively. The BP of Table I is encircled.
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α ∼ ½0.0050; 0.0500�; tβ ∼ ½0.01; 0.99�;
ðysÞij ∼ ½0.01; 0.50�δij; ðμsÞij ∼ ½10−9; 10−5�δij GeV:

ð44Þ
We checked that all of our BPs are validated to satisfy
the usual HiggsBounds and HiggsSignals limits confronted with
the latest LEP, Tevatron, and LHC data [46,47]. They
provide important tests for compatibility of anyBSMmodel.
In our analysis, the LRIS model was first built in the SARAH

package, then it was passed to SPheno for numerical spectrum
calculations [48,49]. Specifically, we present one of our BPs
in Table I with the corresponding observables in Table III
and other parameters in Table II and Eq. (45).
The left (right) panel of Fig. 2 depicts the muon

(electron) gμðeÞ − 2 anomalies δaμðeÞ in LRIS, as given in
Eqs. (32) and (38), resulting from the BSM contributions
of the W-RHN loops and the charged Higgs boson

contribution. We choose, without any loss of generality
or independence, to show the distribution of δaμðeÞ versus
the mass ratio xν5

H� ¼ m2
ν5=m

2
H� for its moderate and

variable values, as it is clear from the masses values BP
of Table I, but any other of the independent or dependent
parameters or any one of the heavy neutrinos ratios
x
νj
H�ðj ¼ 4;…; 9Þ would equally work for the same set
of data. The green (red) borders indicate the 1σ ð2σÞ level
of accuracy around the average δaμ as in Eq. (1). The
electron anomaly δae is guaranteed to be within the allowed
experimental uncertainty limits jδaej≲ ð10−15–10−13Þ
[50,51]. So, all BPs used in Figs. 2 and 3 satisfy the
electron ae anomaly limits. Furthermore, Fig. 3 shows that
the LVF BRðμ → eγÞ in Eq. (48) satisfies the experimental
bounds for the same set of parameters values as in Fig. 2.
The 9 × 9 neutrino mixing matrixU of the BP of Table I,

rounded to the Oð10−4Þ, with the UPMNS matrix [37], is

U¼
�
U3×3 U3×6

U6×3 U6×6

�T

¼

0
BBBBBBBBBBBBBBBBBB@

−0.8243 0.4535 −0.3389 0 0 0 0 0.0000 −0.0001
0.5465 0.4812 −0.6853 0 0 0 0.0009 0.0002 0

−0.1468 −0.7453 −0.6403 0 0 0 0 −0.1137 0

−0.0004 −0.0003 0.0004 −0.7071 0 0 0.7071 0 0

−0.0120 −0.0604 −0.0517 0 −0.7071 0 0 0.7025 0

0.0001 0.0000 0.0003 0 0 0.7071 0 0 −0.7071
−0.0004 −0.0003 0.0004 0.7071 0 0 0.7071 0 0

0.0120 0.0604 0.0517 0 −0.7071 0 0 −0.7025 0

−0.0001 0.0000 0.0000 0 0 0.7071 0 0 0.7071

1
CCCCCCCCCCCCCCCCCCA

;

ð45Þ

TABLE II. Yukawa and IS matrices BP of Table I.

Matrix R ys μs yL ỹL yQ ỹQ UPMNS

1,1 0 1.53 × 10−2 1.01 × 10−5 −2.83 × 10−5 3.13 × 10−4 6.33 × 10−5 −3.44 × 10−4 0.8251
1,2 0 0 0 −6.86 × 10−3 6.86 × 10−2 −1.49 × 10−4 1.48 × 10−3 0.5449
1,3 1 0 0 −9.42 × 10−5 9.42 × 10−4 −3.53 × 10−4 3.53 × 10−3 0.1490
2,1 1 0 0 −2.75 × 10−5 2.75 × 10−4 1.38 × 10−4 −1.38 × 10−3 −0.4554
2,2 0 9.76 × 10−2 3.82 × 10−9 −3.39 × 10−2 3.46 × 10−1 2.27 × 10−5 5.26 × 10−3 0.4795
2,3 0 0 0 5.20 × 10−5 −5.20 × 10−4 −4.19 × 10−3 4.19 × 10−2 0.7513
3,1 0 0 0 3.93 × 10−4 −3.93 × 10−3 −6.08 × 10−4 6.08 × 10−3 0.3343
3,2 1 0 0 −2.96 × 10−2 2.96 × 10−1 4.16 × 10−3 −4.16 × 10−2 −0.6836
3,3 0 2.05 × 10−1 5.49 × 10−6 1.03 × 10−2 −6.54 × 10−4 −7.66 × 10−2 9.99 × 10−1 0.6427

TABLE III. Results of muon and electron gμðeÞ − 2 and LFV processes BRðμ → eγÞ and μ-e conversion rates of
the BP given in Table I.

Quantity δaμ −δae BRðμ → eγÞ RAl
μ→e RTi

μ→e RAu
μ→e

Value 2.24 × 10−9 2.30 × 10−16 2.10 × 10−13 4.10 × 10−51 3.80 × 10−50 4.10 × 10−49
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where each block matrix is parametrized such that
[36,41]

U3×6 ≃ ½03×3jF�3×6U6×6; ð46Þ

U3×3 ≃
�
13×3 −

1

2
FFT

�
UPMNS; ð47Þ

where the nonunitarity limits of the UPMNS is encoded
in F ¼ MDM−1

R and the 3 × 6 extended matrix F ¼
½03×3jF�3×6 is F ij ¼ 0 and F i;jþ3 ¼ Fij for i, j ¼ 1, 2, 3.
Finally, U6×6 is the matrix which diagonalizes the fνR; S2g
mass matrix.

IV. LEPTON FLAVOR VIOLATION
CONSTRAINTS

Now, we turn to the constraints on the charged Higgs
boson contributions to LFV rare processes. The LRIS
W-RHN and the charged Higgs boson contributions to
the BRðμ → eγÞ and the μ-e conversion rates Rμ→e are in
order. Experiments set upper bounds to these quantities,
and the stringent experimental limits on these processes
should be regarded as constraints on the charged Higgs
boson contribution to aμ [11,13]. The LFVexperiments set
the upper limit BRðμ → eγÞ≲ 4.2 × 10−13 with 90% con-
fidence level [52]. In LRIS, theW-RHN and charged Higgs
boson mediation for μ → eγ leads to

BRðμ → eγÞLRIS ¼
α3ws2w
256π2

mμ

Γμ
ðxμWÞ2

X9
k¼1

jUk;1U�
k;2F 2ðxνkWÞ þ ζ0k;eζ0�k;μF 2ðxνkH�Þ þ ðζ0k;eξ0�k;μ þ ξ0k;eζ0�k;μÞF 1ðxνkH�Þj2: ð48Þ

As discussed after Eq. (37), the first term
P

9
k¼1Uk;1×

U�
k;2F 2ðxνkWÞ ≃

P
3
k¼1 ðUT

PMNSÞk;1ðUT
PMNSÞk;2F 2ðxνkWÞ of

Eq. (48) of the W − ν contribution is ≲Oð10−29Þ, and thus
negligible by the GIM cancellation mechanism [45]. The
remaining W-RHN contribution in the first termP

9
k¼4 Uk;1U�

k;2F 2ðxνkWÞ vanishes due to contributions from
the first two rows of the 3 × 6 upper-right block matrix in
Eq. (45) which gives Uk;1U�

k;2≊0, k ¼ 4;…; 9. Accord-
ingly, we only constrain the charged Higgs boson con-
tribution. For this, as discussed in the paragraph before
Eq. (43), the second term

P
9
k¼1 ζ

0
k;eζ

0�
k;μF 2ðxνkH�Þ ≃P

3
k¼1 ζ

0
k;eζ

0�
k;μF 2ðxνkH�Þ is ∼Oð10−9Þ, and it is only about

0.004% of the third term
P

9
k¼1ðζ0k;eξ0�k;μ þ ξ0k;eζ0�k;μÞ×

F 1ðxνkH�Þ ≃
P

9
k¼4ðζ0k;eξ0�k;μ þ ξ0k;eζ0�k;μÞF 1ðxνkH�Þ, which is

∼Oð10−5Þ and need to be constrained. We can approximate
Eq. (48) as

BRðμ → eγÞLRIS

≃
α3ws2w
256π2

mμ

Γμ
ðxμWÞ2

X9
k¼4

jðζ0k;eξ0�k;μ þ ξ0k;eζ0�k;μÞF 1ðxνkH�Þj2;

≲ 9αem
256π4

m5
μ

Γμ

X9
k¼4

1

m2
νk

�
ζk;eξk;μ
mμ

þ ξk;eζk;μ
me

�
2

; ð49Þ

where the factor 9αem
256π4

m5
μ

Γμ
∼ 108 and the loop function

F 1ðxÞ≲ 3 for x ≫ 1, as noted after Eq. (43), and again
the complex notations are omitted as the couplings are
(taken) real.
At the end, we check experimental limits on the charged

Higgs boson contributions to the μ-e conversion on a
nucleus with atomic weight A. The charged Higgs con-
tributes to the μ-e conversion rate as follows [11,13]

RA
μ→e ¼

32G2
Fm

5
μ

ΓA
capt

�����C̃pp
V;RV

ðpÞ
A þ C̃nn

V;RV
ðnÞ
A þ 1

4
CD;LDA

����
2

þ fL ↔ Rg
�
; ð50Þ

where ΓA
capt is the rate for the muon to transform to a

neutrino by capture on the nucleus (A). Some numerical
values of ΓA

capt ∼Oð1–10Þ × 106 s−1, and the nucleus
and nucleon ðn; pÞ-dependent “overlap integrals”

VðpÞ
A ; VðnÞ

A ;DA ∼Oð10−2 − 10−1Þ for the nuclei A ¼ Al,
Ti, Au are given in Ref. [53]. Experiments make the upper
bounds RTi

μ→e ≤ 10−18; RAl
μ→e ≤ 10−16; RAu

μ→e ≤ 7 × 10−13.
In LRIS, the nucleon-dependent Wilson coefficients are
given by

FIG. 3. The branching ratio BRðμ → eγÞ versus the muon
anomalous magnetic moment deviation δaμ in LRIS. The green
(red) borders are the 1σ ð2σÞ standard error of measurements
of δaμ, and the gray horizontal line is the upper bound on
BRðμ → eγÞ. The BP of Table I is encircled.
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CD;L ¼ 8GFαem
πs2w

ffiffiffi
2

p
X9
k¼1

X3
j¼1

X
q;q0¼u;d;q≠q0

ðU�
k;eUk;μjVq0;qj j2ÞB2ðxνkW; xqjWÞ; ð51Þ

C̃pp
V;R ¼ 1

8π2m2
H�

X9
k¼1

X3
j¼1

X
q;q0¼u;d;q≠q0

ðζk;eξk;μ þ ζk;μξk;eÞðC2
q0;qj

þD2
q0;qj

ÞB2ðxνkH� ; x
qj
H�Þ; ð52Þ

C̃nn
V;R ¼ 1

4π2m2
H�

X9
k¼1

X3
j¼1

X
q;q0¼u;d;q≠q0

ðζk;eζk;μ þ ξk;eξk;μÞðCq0;qjDq0;qjÞB1ðxνkH� ; x
qj
H�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xνk
H�x

qj
H�

q
; ð53Þ

where in LRIS the interchange fL ↔ Rg does not change
the coefficients. The parameters Cij; Dij, and ζkl; ξkl are
the charged Higgs boson interaction couplings with quarks
and leptons appearing in Eqs. (15) and (16), respectively,
and the loop functions are

JkðxÞ ¼
1

1 − x
þ xk logðxÞ

ð1 − xÞ2 ; ð54Þ

Bkðx; yÞ ¼
JkðxÞ − JkðyÞ

x − y
; k ¼ 1; 2: ð55Þ

Asymptotically, Bkðx; yÞ → 0 as x ≫ 1 and y ≪ 1. So the
W − ν contribution Eq. (51) is clearly suppressed by the

GIM cancellation mechanism [45]. The factor 32G2
Fm

5
μ

ΓA
capt

∼

Oð10−21–10−20Þ in Eq. (50), and all BPs are tested and
found to satisfy the μ-e conversion experimental limits

mentioned after Eq. (50), and all of them are of order of the
BP results in Table III.

V. CONCLUSION

We have analyzed the muon anomalous magnetic moment
aμ in a minimal left-right symmetric model with neutrino
masses inverse seesaw mechanism. We found that a reason-
able region of the parameter space of the model is consistent
with the observed muon g − 2 anomaly.We emphasized that,
in this type of models, only the H� loop explains aμ
significantly, in agreement with the BRðμ → eγÞ, μ-e con-
version and the electron ge − 2 anomaly measured limits.
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