
Constraining new physics with possible dark matter signatures
from a global CKM fit

Aritra Biswas ,* Lopamudra Mukherjee ,† and Soumitra Nandi‡

Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India

Sunando Kumar Patra§

Department of Physics, Bangabasi Evening College,
19 Rajkumar Chakraborty Sarani, Kolkata, 700009, West Bengal, India

(Received 7 August 2022; accepted 3 March 2023; published 27 March 2023)

We constrain the parameters of a representative new physics model with a possible dark matter (DM)
signature from a global Cabibbo-Kobayashi-Maskawa (CKM) fit analysis. The model has neutral quark
current interactions mediated by a scalar, impacting the semileptonic and purely leptonic meson decays at
one loop. We take this opportunity to update the fit results for the Wolfenstein parameters and the CKM
elements with and without a contribution from the new model using several other updated inputs. In
addition, we analyze and include the B → D�lνl decay in the CKM fit. The newly available inputs on the
relevant form factors from lattice calculations are included, and the possibility of new physics effects in
B → D�lνl is considered. We obtain tight constraints on the relevant new physics parameters. We study
the possible implications of this constraint on DM phenomenology. Apart from DM, the bounds are also
applicable in other relevant phenomenological studies.
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I. INTRODUCTION

The Standard Model of particle physics (SM) has
emerged through theoretical and experimental discoveries,
and has been tested extensively. Flavor physics has played
an essential role in this development. Despite these suc-
cesses, the SM fails to explain some key aspects of nature.
For example, it cannot provide a candidate for dark matter
(DM), nor can it accommodate the observed baryon
asymmetry. Therefore, extensions of the SM are formulated
that address these issues by introducing new degrees of
freedom beyond the SM. New particles or interactions
introduced at a high scale could have a related shorter-
distance interaction. The low-energy observables will
hence be useful in constraining the new physics (NP)
parameter spaces. In the near future, they might play an
essential role in the indirect detection of the new particles
through deviations from the respective SM predictions.

The quark mixing matrix, also known as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, is important for
understanding CP violation. The CKM matrix is a 3 × 3
matrix, and precise knowledge of the corresponding
elements is essential. Following the Wolfenstein paramet-
rization, four parameters are needed to define all of the
elements of the CKM matrix. Therefore, one of the
important goals of the flavor studies is to constrain these
four parameters using all of the available measurements
that are directly or indirectly sensitive to the CKM matrix.
In the SM, the charged-current interactions are the only

flavor changing processes that occur at tree level, and
the decay rates are directly sensitive to the square of the
CKM elements. On the other hand, the flavor-changing
neutral-current (FCNC) processes are loop suppressed in
the SM, and the corresponding amplitudes are sensitive to
the product of CKM elements. Due to their simple and
constrained structure in the SM, the weak processes are
potentially sensitive to new interactions beyond the SM and
hence can be a potent probe for models beyond the SM. It is
necessary to measure the CKM parameters very precisely,
and during the last few decades extensive research has been
performed at the BABAR, Belle, and LHCb experiments.
High-luminosity experiments like Belle-II have also
become operational, and within a few years we expect a
wealth of precise data which will be useful to constrain NP
model parameters. This paper will consider one such model
that contributes to the semileptonic and purely leptonic
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decays at one loop. Most of the inputs used to extract the
Wolfenstein parameters and the related CKM elements are
those coming from semileptonic and leptonic decays. At
the moment, very precise measurements on the related
observables are available which are hence beneficial in
constraining the new model parameters contributing to
these decays. Here, we analyze the constraints on the new
parameters from observables related to the CKM measure-
ments, and comment on the impact of such constraints on
DM phenomenology.
The simplest way to devise a dark matter model is by

considering a scalar, fermionic, or vector field obeying the
SM gauge symmetries whose stability can be ensured by an
additional discrete Z2 symmetry under which the DM is
odd but all other SM particles are even. However, in order
to annihilate into SM particles and give rise to the correct
relic abundance, there has to be a mediator between the
dark and visible sectors. The interactions of the mediator
with the visible sector may include a nonzero vertex with
the SM quark fields among others such that the DM can
scatter off a fixed target nuclei and be detected from any
hint of nuclear recoil. However, such interactions might
also impact important flavor physics observables, which
most of the dark matter analyses do not take into consid-
eration. In this paper, we investigate the constraints on the
dark matter parameter space from flavor data in the context
of a simple dark matter model.

II. SIMPLIFIED MODEL: FERMION DARK
MATTER WITH SPIN-0 MEDIATOR

It is common to use effective field theory to describe
the low-energy effects of high-scale NP, in which non-
renormalizable effective operators are added to the SM
Lagrangian. However, due to the large energies accessible
at the LHC, the interpretation of measurements using an
effective theory approach may become questionable under
certain circumstances. Therefore, the simplified model
approaches [1–6], which often contain both dark matter
and mediator particles, have gained more relevance in the
collider searches. In those models, the mediator provides the
link between the visible SM particles and dark matter. By
construction, these simplified models do not contain
all of the ingredients present in a UV-complete model of
dark matter. However, this approach helps characterize the
dark matter production processes in UV-complete models
without specifying the entire UV completion. There are
different varieties of UV-complete models available in the
literature, and it is not feasible to study all of them
independently and constrain the parameter spaces. Also,
the structures of such models are so rich that it is impossible
to determine the underlying new dynamics unambiguously
from a limited amount of data. Hence, to constrain the NP
parameters from the CKM measurements in this paper,
we consider a simplified model with a spin-0 mediator.

A similar study for a simplifiedmodel with a vectormediator
has been left for future work.
As an illustration of our main objective, here we consider

an extension of the SM by a singlet Dirac fermion dark
matter χ and a spin-0 particle S. The DM decay is stabilized
by imposing a discrete Z2 symmetry under which χ → −χ,
while all other particles remain even under the trans-
formation. The most general renormalizable Lagrangian
for such a model can be written as

L ¼ LSM þ 1

2
χ̄ði=∂ −mχÞχ −

1

2
ð∂μSÞ2

− ½χ̄ðg0s þ ig0pγ5Þχ þ ψ̄ðgs þ igpγ5Þψ �S − VðH; SÞ;
ð1Þ

where H denotes the SM Higgs doublet and ψ denotes SM
fermions. The scalar potential VðH; SÞ can be of the form

VðH; SÞ ¼ μ2HH
†H þ 1

2
λHðH†HÞ2 þ μ31Sþ μ2S

2
S2 þ μ3

3!
S3

þ λS
4!

S4 þ λ1ðH†HÞSþ λ2
2
ðH†HÞS2: ð2Þ

For studies based on such models in the literature, see
Refs. [7–12]. Also, in our study we mostly focus on
effective DM interactions with SM quarks, i.e., ψ ≡ q.
There are plenty of analyses on such leptophobic DM
models from the perspective of LHC and indirect detection
searches [2,10–14].
Note that we do not attempt to construct a UV-complete

model and constrain the interactions of the mediator with
the DM and SM fermions only by the requirement of
Lorentz invariance. In Eq. (1), the mediator interaction with
the SM fermions is renormalizable. However, it is not
invariant under the SM gauge group. Hence, it is expected
that the model will break down at a high energy scale Λ.
One can assume that the origin of these interactions is some
higher-dimensional nonrenormalizable operator suppressed
by the power in Λ, which is invariant under the SM gauge
group. The effective interaction mentioned above could
also be generated from a UV complete model via the loop
diagrams involving the heavy vector-like fermions that mix
with the SM fermions; see, for example, Ref. [15]. There
could be other ways as well; however, we have mentioned
earlier that we are mostly interested in constraining the new
couplings and not in the exact details of the origin of such
interactions. Also, we should mention that for a UV-
complete description, one may need to add new states
and interactions at the energy scale Λ. We will continue this
discussion in the following section.
In this analysis, we consider only quarks and assume

universal coupling for all of the quarks for the mediator
interaction with the fermions. However, the above
Lagrangian can produce large flavor-violating effects
due to the coupling of the mediator with SM quarks.
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Hence, invoking the prescription of minimal flavor viola-
tion, we scale the scalar and pseudoscalar couplings with
the SM Yukawa couplings yij as

Lq
int ¼

X
i;j

q̄i
yqijffiffiffi
2

p ðgs þ igpγ5ÞqjS; ð3Þ

where the sum runs over all quark flavors. In order to avoid
FCNC, all flavor off-diagonal couplings are set to zero and
the diagonal Yukawa couplings are given by yqii ¼

ffiffiffi
2

p
mq

f=v,
where v ¼ 246 GeV, is the vacuum expectation value of the
Higgs boson. Therefore, Eq. (3) can be simplified as

Lq
int ¼ q̄i

mqi

v
ðgs þ igpγ5ÞqiS ð4Þ

¼ mqi q̄iðCs þ iCpγ5ÞqiS; ð5Þ

with Cs ¼ gs
v and Cp ¼ gp

v . Even though these couplings
do not induce FCNCs at tree level, one can have flavor-
changing decays of K and B mesons induced by one-loop
corrections leading to s → dS and b → dðsÞS transi-
tions. Constraints on the couplings in Eq. (1) from such
decays have been studied in Ref. [16] for mediators of
mass MS ≲ 10 GeV.
Following the Lagrangian given in Eq. (1), it is evident

that the dominant channel for DM annihilation will be
the s-channel transition χ̄χ → ψ̄ψ shown by the Feynman
diagram on the lhs of Fig. 1. There can also be a t-channel
annihilation χ̄χ → SS as shown in Fig. 1 but for heavy
scalars, but this contribution will be rather suppressed. The
thermally averaged dark matter annihilation cross section
hσvi is usually expressed as a partial-wave expansion in
powers of the square of the relative velocity between the
annihilating particles as

hσvi ¼ aþ bhv2i þ dhv4i þ � � � ; ð6Þ

where a, b, d are the leading s-wave, p-wave, and d-wave
contributions to the cross section, respectively. The dom-
inant contribution to the s-channel DM annihilation rate for
pure scalar interaction mediation is velocity suppressed due
to the absence of s-wave terms. However, in the presence of
the pseudoscalar coupling g0p, there is an enhancement in
the annihilation cross section due to the presence of an
unsuppressed s-wave [17]. Also, there will be contributions

to the direct-detection (DD) cross section. The advantage
of nonzero pseudoscalar interaction is that the weakly
interacting massive particle (WIMP)-nucleon scattering
cross sections from such operators are spin dependent
and velocity suppressed. These kinds of pseudoscalar
interactions help to evade stringent bounds from present
DD experimental searches. The phenomenology of such
pseudoscalar mediators have been extensively studied in
Refs. [11,16,18–20]. While the pseudoscalar operators
help weaken the DD scattering cross section with a
momentum suppression, they also amplify the chances
of probing the WIMP at indirect-detection experiments
through initial-/final-state radiation or bremsstrahlung pro-
cesses [21–26]. On the other hand, the only way to obtain a
spin-independent DD cross section is to have a nonzero
scalar-scalar effective interaction, i.e., Cs; g0s ≠ 0.

III. CONTRIBUTIONS IN di → ujlνl DECAYS

In the SM, the di → ujlνl transitions are tree-level
processes mediated by the W boson. Therefore, the di →
ujW vertex has a V − A structure, i.e., γμð1 − γ5Þ. In the
previous section, in Eq. (5) we defined a Lagrangian that
contains interactions of SM fermions with the scalar S.
Note that this type of interaction will affect the SM
charged-current vertex d̄jγμð1 − γ5ÞuiWμ at one loop,
resulting in new contributions in the semileptonic or purely
leptonic decay rates Γðdj→uilνlÞ ðl ¼ leptonsÞ. A represen-
tative diagram is shown in Fig. 2, wherein these decays
receive vertex corrections from the heavy scalar exchanges
in the loop. The CKM element Vij appears as a vertex
factor of the charged-current interactions in the SM. As will
be shown in the next subsection, the corrections due to NP
have a direct impact on the vertex factors, which in this case
are the CKM elements multiplied by the SUð2ÞL gauge
coupling: Vij

gffiffi
2

p . The vertex correction shown in Fig. 2 may

introduce additional operators other than (V − A) type.
The most general effective Hamiltonian for the di →

ujlν processes can be expressed as [27,28]

H
di→uj
eff ¼ 4GFffiffiffi

2
p Vij½ðδll þ Cl

V1
ÞOl

V1
þ Cl

V2
Ol

V2
þ Cl

S1
Ol

S1

þ Cl
S2
Ol

S2
þ Cl

TO
l
T �; ð7Þ

where Cl
X (X ¼ V1; V2; S1; S2; T) are the Wilson coeffi-

cients (WCs) corresponding to the operator basis

Ol
V1

¼ ðūjLγμdiLÞðlLγμνLÞ;
Ol

V2
¼ ðūjRγμdiRÞðlLγμνLÞ;

Ol
S1
¼ ðūjLdiRÞðlRνLÞ;

Ol
S2
¼ ðūjRdiLÞðlRνLÞ;

Ol
T ¼ ðūjRσμνdiLÞðlRσμννLÞ: ð8ÞFIG. 1. Annihilation channels for the spin-0-mediated fer-

mionic dark matter model under consideration.
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There are no lepton-flavor-violating vertices in the
Lagrangian (5). Hence, for all practical purposes, we
can remove the suffix l in the operator basis and write
Cl
X ≡ CX. Note that in the SM, only OV1

contributes at the
tree level. Along with OV1

, the rest of the operators may
appear by themselves or as combinations in different NP
scenarios. The WC CX incorporates the NP effects in these
decays, and therefore in the SM, CX ¼ 0.
The detailed mathematical expressions of the decay rate

distributions for the exclusive semileptonic (P → Mð�Þlνl)
and purely leptonic (P → lνl) decays can be found in
Ref. [27], where P andM are the pseudoscalar mesons and
M� is a vector meson. The semileptonic and purely leptonic
decay rates are directly proportional to the vertex factors.
Here, we would like to mention that most of the CKM
elements, like jVudj, jVcdj, jVusj, jVcsj, jVubj, and jVcbj, are
extracted from the semileptonic and purely leptonic (in
some cases) di → ujlνl decays, with l ¼ μ, or e. The
underlying assumption is that these decays with the light
leptons will be less sensitive to any NP effect. The
measured decay rates, along with some other inputs from
lattice calculations (decay constants and form factors), are
useful probes for the CKM elements jVijj. In the presence
of new four-fermion operators in accordance with Eq. (7),
the decay rates will be modified. If only the vertex factor is
modified, then the extracted values of the jVijj can be
directly used to constrain the new couplings; otherwise, we
need to fit the decay rates themselves. In the following
subsections, we will discuss this in detail.
Also, it is important to mention that all of these CKM

elements are extracted with reasonably good precision. For
example, jVudj and jVcsj are known with an error ≈0.01%,
while jVusj and jVcdj are known with an accuracy of 0.1%.
jVubj and jVcbj are relatively less precisely known.
Therefore, it is natural to expect tight constraints on the
new couplings Cs and Cp from an analysis of the CKM
observables, and purely leptonic and semileptonic decay
rates, respectively. Note that jVubj and jVcbj are also
extracted from semileptonic inclusive decays. We do not
consider the inputs from inclusive decays to constrain the
new couplings. The extraction of jVcbj from the inclusive
decays requires a complex fit to the respective decay rates
and moments. Considering leading-order power corrections

up to order 1=m5
b, one needs to fit 18 nonperturbative

matrix elements alongside jVcbj, mb, and mc [29–31]. Due
to the insufficient number of inputs, model assumptions are
used in the fit for a couple of higher-order nonperturbative
matrix elements. On top of this, unknown higher-order
corrections to the nonperturbative matrix elements are also
relevant to improve the precision of jVcbj, which may be
small compared to the known ones but are missing at the
moment. The study of NP contributions in the inclusive
decays is a dedicated project where we need to analytically
calculate the NP contributions in the decay rates, as well as
in the hadronic, leptonic, and q2 moments, and then one
needs to do a simultaneous fit. Here, the dependencies of
these observables on the new physics parameters will not
be simple. Hence, extractions of new physics information
will not be very clean. The situation is even worse in the
inclusive determination of jVubj. Here, the results are
completely dependent on the QCD modeling of the non-
perturbative shape functions on top of the nonperturbative
matrix elements. There are four different methods used in
the literature to model the shape function, and the extracted
values of jVubj in each of these methods do not exactly
agree with each other [28,32]. Therefore, it is natural
to expect that before constraining NP from inclusive
b → ulνl, we first need to understand the underlying
methodology.
On the contrary, we have a sufficient number of inputs

from experiments and lattice calculations for the exclusive
determinations jVubj and jVcbj. Note that the respective
rates have a very simple dependence on the new Wilson
coefficients in these decays. Hence, the extractions of these
coefficients will be relatively clean compared to that from
the inclusive decays, given the complexity of the fit in the
inclusive decays, as discussed above. Numerically, we do
not expect any changes in the allowed parameter spaces of
new coefficients from the inclusion of inclusive decays.
Also, it should be noted that the majority of the other inputs
used in the CKM fit analysis have relatively better precision
than jVubj and jVcbj from inclusive decays.

A. Effective vertex

As mentioned earlier, in the SM the coupling strength for
the di → ujW charged-current interaction is given by igVijffiffi

2
p

FIG. 2. Loop correction to the di → ujW vertex in the presence of a real scalar S. The vertex modification will have direct impact on
the vertex CKM factor Vij.
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and the interaction is of the type (V − A). However,
the one-loop correction of this charged-current vertex
due to the interaction given in Eq. (5) introduces one
new (V þ A)-type interaction in addition to the original
(V − A)-type interaction. The corresponding Feynman
diagram can be seen in Fig. 2, and the effective charged-
current interaction can be written as

Leff
di→ujW

¼ igVij

2
ffiffiffi
2

p ½CLūjγμð1− γ5Þdi þCRūjγμð1þ γ5Þdi�Wμ

¼ igVij

2
ffiffiffi
2

p ½CLOL þCROR�Wμ: ð9Þ

Here, the effects of NP coming from the loop corrections
are introduced in the coefficientsCL andCR. Hence, we can
say that at the tree level (pure SM) CL ¼ 1 and CR ¼ 0. We
perform the calculation in a unitary gauge using dimen-
sional regularization and find that the one-loop contribution
to the charged-current vertex is in general divergent. The
loop factor CL does not receive any 1

ϵ pole from Fig. 2;
however, CR has a pole. Note that there will be a
contribution to CL from the vertex counterterm. The
relevant part of the counterterm can be obtained from
the wave-function renormalization which we calculate from
the quark self-energy correction diagram given in Fig. 3.
For the renormalization we follow the MS scheme.
Note that the overall contributions in CL and CR will be

divergent, and we do not have any additional contributions
to remove these divergences. It is well known that in
simplified models such as those defined above, the one-
loop contributions to flavor-changing transitions are in
general UV divergent; see, for example, Refs. [17,33,34].
To make the theory renormalizable, one may need to add
new states with tree-level charged-current interactions with
the SM fermions. However, the available data will constrain
such an interaction in general. As mentioned earlier, such
divergences reflect the dependence of our results on the
suppression scale Λ (the scale at which new states might
appear). Therefore, we interpret our model as an effective
theory below some new physics scale Λ with the following
replacement: 1=ϵþ Logðμ2=m2Þ → LogðΛ2=m2Þ. In a UV-
complete theory, the additional NP at the scale Λ is expec-
ted to cancel the divergences that are present. Here, we
take an optimistic view and assume that the new high-
scale (higher-dimensional operators) contributions in the

low-energy observables will have a negligible impact on
our analysis. The renormalization group evolution over the
energy range that we consider here will not change the
coupling structure significantly.
After obtaining the contributions in CL and CR and

integrating out the W field from the diagram of Fig. 2, we
obtain the following effective Hamiltonian:

H
di→uj
eff ¼ 4GFffiffiffi

2
p Vij½ð1þ CV1

ÞOV1
þ CV2

OV2
�; ð10Þ

where the operators are defined in Eq. (9). The WCs CV1

and CV2
will be obtained from CL and CR. In the leading-

log approximation, the WCs can be expressed as

C
qi→qj
V1

¼ −
CT

64π2
m2

qi log
Λ2

m2
qi

; ð11Þ

C
qi→qj
V2

¼ −
CT

32π2
mqimqj log

Λ2

m2
qi

; ð12Þ

where CT ≡ ðC2
s þ C2

pÞ ¼ ðg2s þ g2pÞ=v2. We have dropped
the other finite contributions, which are small effects
compared to the one given in the above equations. It is
important to note that the loop contribution is zero in the
massless quark limit for light quarks, such as u, d, s, etc. In
the above we have chosen the scale Λ as the UV cutoff,
while the IR scales will be decided by the respective
decaying quark masses.
We want to point out that in the SM we can have similar

vertex corrections with the scalar S replaced by the SM
Higgs or by a Z boson in Fig. 2. We can parametrize such
corrections as δCSM

V1
, which represents a small shift from

CSM
V1

¼ 1. For SM Higgs, there will not be any contribution
inCV2

and the contribution in δCSM
V1

is≲10−8. For the SM Z
boson, the contributions to both δCSM

V1
and CV2

are
negligibly small compared to the new contribution in
CV2

. We hence drop any such contributions in our analysis
since they have a negligible impact on our findings.

B. Contributions in the decays:
Semileptonic and leptonic

Using the effective Hamiltonian given in Eq. (10), the
differential decay rate for the P → Mlνl transition is
written as [35]

dΓðP → MlνlÞ
dq2

¼ G2
FjVijj2
π3m3

P
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λMðq2Þ

q �
1 −

m2
l

q2

�
j1þ CV1

þ CV2
j2

×

��
1þ m2

l

2q2

�
Hs

V;0
2 þ 3

2

m2
l

q2
Hs

V;t
2

�
; ð13Þ

FIG. 3. Quark self-energy corrections in the presence of the
new interaction given in Eq. (5).
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while that for P → M�lνl is

dΓðP → M�lνlÞ
dq2

¼ G2
FjVijj2
π3m3

P
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λM�ðq2Þ

q �
1 −

m2
l

q2

�

×

�
ðj1þ CV1

j2 þ jCV2
j2Þ

��
1þ m2

l

2q2

�
ðH2

V;þ þH2
V;− þH2

V;0Þ þ
3

2

m2
l

q2
H2

V;t

�

− 2Re½ð1þ CV1
ÞC�

V2
�
��

1þ m2
l

2q2

�
ðH2

V;0 þ 2HV;þHV;−Þ þ
3

2

m2
l

q2
H2

V;t

��
: ð14Þ

The helicity amplitudes are written in terms of the QCD
form factors as

Hs
V;0ðq2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λMðq2Þ
q2

s
fþðq2Þ; ð15aÞ

Hs
V;tðq2Þ ¼

m2
P −m2

Mffiffiffiffiffi
q2

p f0ðq2Þ; ð15bÞ

and

HV;�ðq2Þ ¼ ðmP þmM� ÞA1ðq2Þ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λM�ðq2Þ

p
mP þmM�

Vðq2Þ;

ð16aÞ

HV;0ðq2Þ ¼
mP þmM�

2mM�
ffiffiffiffiffi
q2

p �
−ðm2

P −mM�2 − q2ÞA1ðq2Þ

þ λM�ðq2Þ
ðmP þmM� Þ2 A2ðq2Þ

�
; ð16bÞ

HV;tðq2Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λM� ðq2Þ

q2

s
A0ðq2Þ: ð16cÞ

The branching fraction for P → lνl corresponding to the
same Hamiltonian is

BðP → lνlÞ ¼
τP
8π

mPm2
lf

2
PG

2
F

�
1 −

m2
l

m2
P

�
2

× jVijð1þ CV1
− CV2

Þj2: ð17Þ

From the above decay rate distributions, we can see
that the new contributions to P → Mlνl and P → lνl
decays will modify only the vertex from jVijj → jV 0

ijj ¼
jVijð1þ CV1

� CV2
Þj. However, in P → M�lνl transitions

the new contributions will modify the q2 distribution.
Therefore, the CKM elements jV 0

ijj extracted from purely
leptonic or P → Mlνl decays can be directly used to
constrain the new parameters along with the Wolfenstein
parameters (A, λ, ρ, and η) with which we need to
parametrize jVijj. Note that jVcbj is extracted from both

B → Dlνl and B → D�lνl decays. Hence, to extract the
Wolfenstein parameters along with the new parameters
from B → D�lνl decays, we need to redo the fit to the
experimental data. We discuss the relevant details in the
next section.

IV. NUMERICAL ANALYSIS AND RESULTS

A. B → D�lν observables

As pointed out in the previous section, for the NP
scenario under consideration we need to fit the decay
rate distributions of B → D�lνl decays to extract the
CKM parameters along with the NP parameters. The
methodology of this fit will be similar to the one given
in Refs. [36,37] with very recent updates from the Fermilab
Lattice Collaboration [38]. For the first time, they have
provided the B → D� form factors at nonzero recoil.
They provided a set of synthetic data based on the
Boyd-Grinstein-Lebed (BGL) parametrization [39] of the
form factors truncated at N ¼ 2 at three w values,
f1.03; 1.10; 1.17g, along with their correlations. We use
these data points in our analysis. In accordance with our
previous work, we utilize the untagged data set for the
fourfold decay distribution corresponding to B → D�lν by
the Belle Collaboration [40]. We also use the B → D�

form factors at q2 ¼ 0 from QCD light-cone sum rules
(LCSR) [41]. Additionally, the Fermilab/MILC lattice
input, hA1

ð1Þ ¼ 0.906ð13Þ [42], allows us to efficiently

constrain the form factor parameter af0, and hence jVcbj. In
our analysis we do not consider the data set of unfolded
differential decay rates of four kinematic variables for
B̄0 → D�þl−ν̄l provided by Belle in 2017 [43] since the
data remains unpublished to date. However, in Appendix C
we provide our fit results by including this data set. As we
will see later, the inclusion of this data does not affect our fit
results much.
The four form factors relevant for B → D�lνl decays are

F i ¼ ffðzÞ; gðzÞ;F 1ðzÞ;F 2ðzÞg. In the BGL method of
parametrization, these form factors can be expressed as a
series expansion in z as

F iðzÞ ¼
1

PiðzÞϕiðzÞ
XN
j¼0

aF i
j zj; ð18Þ
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where z is related to the recoil angle w as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p : ð19Þ

The recoil angle is related to the momentum transfer q2 as
q2 ¼ m2

B þm2
D� − 2mBmD�w. The functions PiðzÞ, called

the Blaschke factors, are given by

PiðzÞ ¼
Y
p

z − zp
1 − zzp

; ð20Þ

which are used to eliminate the poles at z ¼ zp, where

zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmB þmD�Þ2 −m2

P

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mBmD�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmB þmD� Þ2 −m2

P

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mBmD�
p : ð21Þ

Here mP denotes the pole masses and can be found in
Ref. [44]. The outer functions ϕiðzÞ are chosen to be

ϕf ¼
4r
m2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

6πχT
1þð0Þ

r ð1þ zÞð1 − zÞ3=2
½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r

p ð1þ zÞ�4 ;

ϕg ¼ 16r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nI
3πχ̃T1−ð0Þ

r ð1þ zÞ2ð1 − zÞ−1=2
½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r

p ð1þ zÞ�4 ;

ϕF 1
¼ 4r

m3
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

6πχT
1þð0Þ

r ð1þ zÞð1 − zÞ5=2
½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r

p ð1þ zÞ�5 ;

ϕF 2
¼ 8

ffiffiffi
2

p
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

πχ̃L
1þð0Þ

r ð1þ zÞ2ð1 − zÞ−1=2
½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r

p ð1þ zÞ�4 ;

ð22Þ

where r ¼ mD�=mB and the other inputs can be found in
Ref. [44]. Therefore, for N ¼ 2, there are 12 coefficients
aF i
j for the four form factors. These coefficients satisfy the

following weak unitarity constraints:

XN
j¼0

ðagjÞ2 < 1;
XN
j¼0

ðafj Þ2 þ ðaF 1

j Þ2 < 1;
XN
j¼0

ðaF 2

j Þ2 < 1:

ð23Þ

Furthermore, there are two kinematical constraints on the
form factors, one each at zero and maximum recoil:

F 1ð1Þ ¼ mBð1 − rÞfð1Þ; ð24Þ

F 2ðwmaxÞ ¼
1þ r

m2
Bð1þ wmaxÞð1 − rÞrF 1ðwmaxÞ: ð25Þ

We consider these constraints in our analysis to remove two
of the BGL coefficients from the theory. In the limit of
massless leptons, the decay distribution becomes insensi-
tive to the form factor F 2. Hence, only eight independent
form factor coefficients are required to fit the theory to
the data. For the numerical analysis presented here, we
perform a maximum likelihood estimation of the param-
eters using Optex, a Mathematica-based package. The
fit results are provided in Table I. The value of jVcbj is
extremely consistent with the one obtained in Ref. [38].1 In
the following section we utilize this value of jVcbj for a
global CKM fit without NP.

B. CKM fit

As we mentioned in the previous section, the NP
contributions to semileptonic (P → Mlνl) and leptonic
decays will impact the vertex factor, which is proportional
to the square of the magnitude of the corresponding
CKM element. Hence, we need to extract the parameters
related to NP alongside the other Wolfenstein parameters.

TABLE I. Fit result for the frequentist analysis of the mentioned B → D�lν̄l data set for the SM scenario.

Fit quality

Data set χ2=d:o:f: p-value Parameter Fit result

Belle 2018 [40] þ hA1
ð1Þ [42]

þ LCSR [41] þ lattice [38]
52.82=45 19.75% jVcbj 38.69ð79Þ × 10−3

af0 0.0123(1)

af1 0.0222(96)

af2 −0.522ð196Þ
ag0 0.0318(10)
ag1 −0.133ð63Þ
ag2 −0.62ð146Þ
aF 1

1
0.0021(15)

aF 2

0
0.0515(12)

aF 2

1
−0.149ð59Þ

aF 2

2
0.987(932)

1In Table XV in Appendix C, we check the fit by additionally
including the 2017 Belle data. We find that the value of jVcbj is
consistent with the value obtained without this data set at 1σ C.L.
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This means that we need to carry out a dedicated fit to all
of these parameters using the machinery used by the
CKMFitter group to fit only the CKM parameters.
To validate the code, we recreate the “Summer’19” SM

fit performed by the CKMFitter group using the same set of

inputs and observables as mentioned in Ref. [45]. The
details of the theoretical expressions for the observables can
be found in Refs. [27,46–48]. We report our fit results in
Table II and compare them to the CKMFitter 2019 results.
They are consistent with each other at 1σ C.L. We go a step

TABLE II. Comparison of the best-fit estimates of the Wolfenstein parameters by the CKMFitter group and our group from the global
CKM fit in the SM framework. The two results are consistent with each other at 1σ. We also provide the χ2=d:o:f: and the goodness of fit
for our fit results. The last row contains the best parameter estimates of the global scenario with the most updated inputs.

Fit quality

A λ ρ̄ η̄ χ2=d:o:f: p-value

CKMFitter 2019 0.8235þ0.0056
−0.0145 0.224837þ0.000251

−0.000060 0.1569þ0.0102
−0.0061 0.3499þ0.0079

−0.0065 � � � � � �
Our result 0.8205� 0.0075 0.22462� 0.00031 0.1607� 0.0093 0.3558� 0.0088 34.18=23 6.26%
Updated 2021 results 0.8178� 0.0070 0.22498� 0.00029 0.1734� 0.0092 0.374� 0.011 37.25=25 8.37%

TABLE III. List of observables used for the CKM fit (Updated 2021) in the SM framework. For the NP analysis
we have not used the inclusive measurements of jVubj and jVcbj. All other inputs have been considered.
Additionally, we have also considered the anomalous Wtb couplings as listed in the last two rows.

Observable Value Reference

jVudj (nucl) 0.97420� 0.00021 [49]
jVusjfK→πþ ð0Þ 0.2165� 0.0004 [50]
jVcdjνN 0.30� 0.011 [28]
jVcsjW→cs̄ 0.94þ0.32

−0.26 � 0.13 [28]
jVubjexcl ð3.91� 0.13Þ × 10−3 [51,52]
jVubjincl ð4.10þ0.09

−0.22 � 0.15Þ × 10−3 [53]
jVcbjB→D ð40.84� 1.15Þ × 10−3 [36]
jVcbjB→D� ð38.69� 0.79Þ × 10−3 This work
jVcbjincl ð42.16� 0.50Þ × 10−3 [54]
BðΛp → pμ−ν̄μÞq2>15=BðΛp → Λcμ

−ν̄μÞq2>7 ð0.947� 0.081Þ × 10−2 [55]
BðB− → τ−ν̄τÞ ð1.09� 0.24Þ × 10−4 [27]
BðD−

s → μ−ν̄μÞ ð5.51� 0.16Þ × 10−3 [27]
BðD−

s → τ−ν̄τÞ ð5.52� 0.24Þ × 10−2 [27]
BðD− → μ−ν̄μÞ ð3.77� 0.18Þ × 10−4 [27]
BðD− → τ−ν̄τÞ ð1.20� 0.27Þ × 10−3 [27]
BðK− → e−ν̄eÞ ð1.582� 0.007Þ × 10−5 [28]
BðK− → μ−ν̄μÞ 0.6356� 0.0011 [28]
Bðτ− → K−ν̄τÞ ð0.6986� 0.0085Þ × 10−2 [27]
BðK− → μ−ν̄μÞ=Bðπ− → μ−ν̄μÞ 1.3367� 0.0029 [28]
Bðτ− → K−ν̄τÞ=Bðτ− → π−ν̄τÞ ð6.438� 0.094Þ × 10−2 [27]
BðBs → μþμ−Þ ð2.9� 0.7� 0.2Þ × 10−9 [56]
jVcdjfD→πþ ð0Þ 0.1426� 0.0018 [27]
jVcsjfD→Kþ ð0Þ 0.7180� 0.0033 [27]
jεK j ð2.228� 0.011Þ × 10−3 [28]
Δmd ð0.5065� 0.0019Þ ps−1 [27]
Δms ð17.757� 0.021Þ ps−1 [27]
sin 2β 0.71� 0.09 [27]
ϕs −0.055� 0.021 [27]
α ð85.2þ4.8

−4.3 Þ° [27]
γ ð67� 4Þ° [57]

VL 0.995� 0.021 [28]
VR ½−0.11; 0.16� [58]
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further and use some recent updates for the CKM observ-
ables as listed in Table III and redo the fit in this “Updated
2021” scenario. These are the most up-to-date global fit
results after CKMFitter 2019. The other relevant inputs are
provided in Table IV. Note that the fit results for all four

parameters are consistent with the 2019 results within 1σ.
However, the fit values for ρ̄ and η̄ are slightly higher than
earlier. The best-fit points for ρ̄ have increased by 8%,
while those for η̄ have increased by about 5%. Primarily,
these shifts are due to changes in the inputs of α, γ, and

TABLE IV. List of additional inputs for the CKM fit.

Input parameters Value Reference

fK→πþ ð0Þ 0.9706(27) Nf ¼ 2þ 1þ 1 [59]
fK�=fπ� 1.1932(19) Nf ¼ 2þ 1þ 1 [59]
fK 155.7� 0.13 Nf ¼ 2þ 1þ 1 [59]
fDKþ ð0Þ 0.747(19) Nf ¼ 2þ 1þ 1 [59]
fDπþ ð0Þ 0.666(29) Nf ¼ 2þ 1 [59]
fBs

230.3(1.3) MeV Nf ¼ 2þ 1þ 1 [59]
fBs

=fB 1.209(0.005) Nf ¼ 2þ 1þ 1 [59]
BK 0.7625(97) Nf ¼ 2þ 1 [59]
fDs

249.9(5) MeV Nf ¼ 2þ 1þ 1 [59]
fDs

=fD 1.1783(16) Nf ¼ 2þ 1þ 1 [59]
ζðΛp → pμ−ν̄μÞq2>15=ζðΛp → Λcμ

−ν̄μÞq2>7 1.471� 0.096� 0.290 [60]
BBs

1.327� 0.016� 0.030 [59]
BBs

=BBd
1.007� 0.013� 0.014 Nf ¼ 2 [59]

m̄cðmcÞ 1.2982� 0.0013� 0.0120 GeV [60]
m̄tðmtÞ ð165.26� 0.11� 0.30 GeV [60]
ηtt 0.402� 0� 0.007 [60]
ηut 0.55� 0� 0.024 [60]
ηBðM̄SÞ 0.5510� 0� 0.0022 [60]

FIG. 4. One-dimensional profile likelihoods for the CKMWolfenstein parameters A; λ; ρ̄, and η̄ for the global CKM 2021 SM fit. The
best-fit estimates at 68.3% C.L. are mentioned in each case.
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sin 2β which have been updated from the previous 2019
inputs. Figure 4 shows the single-parameter profile like-
lihoods for the global CKM fit with the most up-to-date
inputs and observables. These are the most up-to-date best-
fit estimates for the CKM parameters.

C. CKM fit including new physics

As mentioned earlier, due to the presence of the WC
corresponding to the V þ A operator OV2

, the decay
distribution of P → M�lνl decays will be modified, unlike
the alteration of the vertex CKM factor in case of the
P → Mlνl and P → lνl decays. Hence, in order to
perform the fit for the NP scenarios, we consider both
CKM observables listed in Table III as well as the list of
B → D�lν̄l data mentioned in the previous subsection.
However, we do not consider the inclusive determinations
of jVubj and jVcbj for the NP fit, as mentioned earlier.
Additionally, we also consider the Wtb anomalous cou-
plings as observables which are significantly affected
by heavy beyond-the-SM physics like the present model.
The most general Wtb vertex is expressed as

LWtb ¼ −
gffiffiffi
2

p b̄γμðVLPL þ VRPRÞtW−

−
gffiffiffi
2

p b̄
iσμν

MW
ðgLPL þ gRPRÞtW− þ H:c: ð26Þ

In the SM, VL ¼ Vtb ≃ 1 while the other anomalous cou-
plings VR, gL, gR are equal to zero. Limits have been set on
such couplings by analyzing CMS and ATLAS data on
helicity fractions, the single top production cross section, and
forward-backward asymmetries [58,61,62]. In our model,
contributions to these couplingswill bemuch enhanced since
they are proportional to the top-quark mass. As listed in
Table III, we use them as inputs in our analysis. Note that the
NP contribution to the tensor operator σμν is much sup-
pressed and therefore we do not consider the anomalous
couplings gL and gR in our analysis.
To begin with, we present the fit results corresponding to

the analysis of B → D�lν̄l alone in Table V. We fit CT ¼
C2
s þ C2

p along with jVcbj and the BGL coefficients for
different values of Λ between 1 and 10. However, we
present the results for only three different values of the
cutoff scale Λ, e.g., Λ ¼ 1, 2, and 5 TeV. In the cases
we study with different values of Λ, the fitted values for the
BGL coefficients are identical, and we only present the
results for Λ ¼ 1 TeV. Note that because of the new
contribution in the decay rate distribution, there is a small
shift (≈5.5%) in the best-fit values of jVcbj. However, the
fitted values are consistent within 1σ with the one obtained
without any NP (Table I). We obtain a nonzero solution for
CT , which is allowed due to a small discrepancy between
the Fermilab-MILC estimates and the measurement of the
decay rates, which can be seen in Fig. 8 of Ref. [38].

As a next step, we include the data on B → D�lν̄l
alongside all of the other data used in the CKM fit.
The presence of a new contribution in P → Mlνl and
P → lνl decays modifies the CKM element to jV 0

ijj ¼
jVijð1� CV2

Þj (with CV1
¼ 0). In such cases, the measured

values of the elements should be considered to be jV0
ijj,

while jVijj will be parametrized in terms of A, λ, ρ̄, and η̄.
In the expansion of Vij we consider terms up to order λ8.
The fit results of the corresponding frequentist analysis
are presented in Table VI.2 Note that in the presence of
NP, the fitted values of A, λ, ρ̄, and η̄ remain practically
unchanged. For both values of Λ the allowed ranges
of CT are consistent with zero and very tightly constrained.
The negative values of CT could be accommodated by
introducing phases in Cs and Cp, for example, using
the following replacements: Cs → eiπ=2Cs ¼ iCs and
Cp → eiπ=2Cp ¼ iCp.

3

TABLE V. Fit result for jVcbj and CT (GeV−2) from the
frequentist analysis for different NP scenarios with the same
B → D�lν̄l data set as in Table I. We only show the fit results for
the BGL coefficients for Λ ¼ 1 TeV; the results for Λ ¼ 2 and
5 TeV are identical.

Fit quality

Scale Λ (TeV) χ2=d:o:f: p-value Parameter Fit result

1.0 42.57=44 53.31% CT (GeV−2) 0.306(85)
jVcbj 40.82ð93Þ × 10−3

af0 0.0122(1)

af1 0.0181(96)

af2 −0.268ð210Þ
ag0 0.0333(11)
ag1 −0.099ð64Þ
ag2 −0.058ð148Þ
aF 1

1
−0.0003ð17Þ

aF 2

0
0.0513(12)

aF 2

1
−0.185ð60Þ

aF 2

2
0.981(921)

2.0 42.57=44 53.31% CT (GeV−2) 0.272(75)
jVcbj 40.82ð93Þ × 10−3

5.0 42.57=44 53.31% CT (GeV−2) 0.237(66)
jVcbj 40.82ð93Þ × 10−3

2In Table XVI, we list the fit results for the Wolfenstein
parameters including NP in the presence of the Belle 2017 data
and find no significant changes in the fit results compared to those
listed in Table VI.

3In principle, one can consider Cs and Cp to be complex with
the respective phases as unknowns, which can be constrained
from the data on mixing and electric dipole moments, etc. We do
not explore this possibility here, and leave it to future work.
Furthermore, it is to be noted that our NP scenario has negligible
impacts on K-K̄ or Bq − B̄q (q ¼ d, s) mixing.
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In the Bayesian view of subjective probability, all
unknown parameters are treated as uncertain and thus
should be described in terms of their underlying probability
distributions. In addition to the frequentist analysis, we also
carry out a Bayesian fit for the Wolfenstein parameters with
and without the contribution from the NP cases discussed
above. The results of the Bayesian fit are given in Table VII.
Note that the fit values of the Wolfenstein parameters
are highly consistent in all of the scenarios with and
without the NP. All other observations are similar to the
ones obtained in the frequentist analysis. In order to provide
numerical estimates, we present the median and the cor-
responding 1σ quantiles for the posteriors of the respective

parameters. In the presence of the NP, the best-fit points of
all of the Wolfenstein parameters are almost unchanged.
The fitted values for CT are given in Table VII. The cor-
responding one-dimensional posterior is shown in Fig. 5. In
accordance with our expectations, CT is consistent with
zero, and we obtain tight constraints on it which become
more stringent with increasing values of the cutoff scale.
The overall observations remain similar to those obtained
from the frequentist analysis. The posteriors for the
Wolfenstein parameters A, λ, ρ̄, and η̄ are understandably
Gaussian. We refrain from showing the corresponding
posteriors for all of the fit and nuisance parameters here.
For the Bayesian analysis related to the BGL parameters,
we provide the corresponding information consisting of the
one-dimensional posteriors, two-dimensional correlation
plots, and the corresponding numerical estimates as a
triangle plot (Fig. 12) in Appendix A.
In Fig. 6, we provide two-dimensional correlation plots

between the CKM parameters A − λ, ρ̄ − η̄, and A − ρ̄. We
also display the correlation of the NP parameter CT with A,
η̄, and ρ̄. Note that in the presence of a new contribution the
correlations between A, λ, η̄, and ρ̄ do not change. Also, for
all values of the scale Λ, CT has negligible correlations
with the Wolfenstein parameters. In addition, we have
checked that CT has a negligible correlation with λ for all
cases. The numerical values of these correlations are pre-
sented in Appendix A. In the absence of any NP contri-
butions, the numerical values of the correlations are given
in Tables XI–XIV.

TABLE VI. Fit results for the Wolfenstein parameters and CT with NP. For the NP analyses, we show the results for three benchmark
values of the cutoff scale, Λ ¼ ð1.0; 2.0; 5.0Þ TeV. The corresponding results for the BGL coefficients are given in Table X in
Appendix C.

Fit result

Case χ2=d:o:f: p-value (%) CT (GeV−2) A λ ρ̄ η̄

Scale

(
1 TeV
2 TeV
5 TeV

87.49=70 7.69 0.00003� 0.00013 0.799806� 0.007691 0.224982� 0.000293 0.176546� 0.009690 0.386274� 0.011863
87.49=70 7.69 0.00002� 0.00009 0.799806� 0.007691 0.224982� 0.000293 0.176545� 0.009689 0.386274� 0.011863
87.49=70 7.69 0.000015� 0.000066 0.799808� 0.007691 0.224982� 0.000293 0.176544� 0.009690 0.386273� 0.011863

TABLE VII. Extracted values of the Wolfenstein parameters in the Bayesian fit with and without the contributions
from NP. We consider the NP scale Λ to be 1, 2, and 5 TeV in the NP scenarios. The numbers correspond to the
medians and 1σ quantiles of the respective distributions for the CKM parameters. The corresponding results for the
BGL coefficients are given in Table X in Appendix C.

In scenarios with NP

Parameters Without NP Λ ¼ 1 TeV Λ ¼ 2 TeV Λ ¼ 5 TeV

A 0.79925þ0.00766
−0.00757 0.79922þ0.00767

−0.00753 0.79922þ0.00765
−0.00753 0.79943þ0.00769

−0.00759
λ 0.224979� 0.000293 0.224979� 0.000293 0.22498þ0.000294

−0.000292 0.224979� 0.000292
ρ̄ 0.17657þ0.00971

−0.00969 0.1765þ0.00959
−0.00962 0.17658þ0.0097

−0.00963 0.17628þ0.00977
−0.0096

η̄ 0.3867þ0.0119
−0.0118 0.3866þ0.0118

−0.0117 0.3865þ0.0119
−0.0118 0.3862þ0.0119

−0.0118

CT (GeV−2) NA 0.0000297þ0001260
−0001263 0.0000214� 0.0000906 0.0000156þ0.0000659

−0.000065

FIG. 5. One-dimensional posteriors for the NP coupling CT
corresponding to the NP scale λ taken to be 1, 2, and 5 TeV.
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FIG. 6. Two-dimensional correlation plots for the Wolfenstein parameters. We show the correlations between A − λ, ρ̄ − η̄, and A − ρ̄
for the scenario without NP and the two NP cases with the NP scale Λ taken to be 1, 2, and 5 TeV. The smaller and larger concentric
ellipses represent the 1σ and 2σ regions and are displayed for the SM and all of the NP cases. The shaded contours represent probability
densities and are provided only for the SM case. The blue (dotted) ellipses represent the SM, while the brown (solid), green (dot-dashed),
and red (dashed) ellipses represent the NP cases with Λ ¼ 1, 2, and 5 TeV, respectively.

TABLE VIII. Extracted values of the CKM elements from the fit results given in Table VII in the different
scenarios with and without the NP. These estimates have been obtained from the Bayesian posteriors of the
respective runs for the SM and NP scenarios with the NP scale Λ taken to be 1, 2, and 5 TeV. The numbers
correspond to the medians and 1σ quantiles of the respective distributions for the CKM elements. It is evident that
the inclusion of NP has a negligible effect on these elements.

In scenarios with NP

CKM elements Without NP Λ ¼ 1 TeV Λ ¼ 2 TeV Λ ¼ 5 TeV

jVudj 0.974355� 0.000068 0.974356� 0.000068 0.974355þ0.000067
−0.000068 0.974356� 0.000067

jVusj 0.22498� 0.00029 0.22498� 0.00029 0.22498� 0.00029 0.22498� 0.00029
jVubj 0.00397� 0.00011 0.00397� 0.00011 0.00397� 0.00011 0.00396� 0.00011
jVcdj 0.22486� 0.00029 0.22486� 0.00029 0.22486� 0.00029 0.22486� 0.00029
jVvsj 0.97351� 0.00007 0.973509� 0.00007 0.973509� 0.00007 0.973509þ0.000069

−0.00007
jVcbj 0.04045þ0.00038

−0.00037 0.04045� 0.00037 0.04045� 0.00037 0.04046þ0.00038
−0.00037

jV tdj 0.00828� 0.0001 0.00828� 0.0001 0.00828� 0.0001 0.00828� 0.0001
jV tsj 0.0398þ0.00037

−0.00036 0.03979� 0.00036 0.03979� 0.00036 0.0398þ0.00037
−0.00036

jV tbj 0.999174� 0.000015 0.999174� 0.000015 0.999174� 0.000015 0.999173� 0.000015

BISWAS, MUKHERJEE, NANDI, and PATRA PHYS. REV. D 107, 055041 (2023)

055041-12



As mentioned earlier, in the presence of new con-
tributions the CKM element Vij is modified to V 0

ij ¼
Vijð1þ ΔNPÞ. To check the impact of the NP on the
extracted values of the CKM elements, we extract Vij in
the fit with ΔNP ¼ 0 and compare it with the extracted
values obtained from the fit results with ΔNP ≠ 0. The
numerical estimates for all nine CKM parameters in all
of the fit scenarios are given in Table VIII. Each of
the numbers corresponds to the median and 1σ quantiles
for the respective distributions of the CKM parameters.
As expected, the extracted values remain unaltered in the
presence of the NP effects we are considering.
As discussed in Sec. IVA, we analyze the B → D�lνl

(l ¼ e and μ) decay mode independently and along with all
of the other inputs used to extract the Wolfenstein param-
eters. With the updated inputs from lattice calculations, we
carry out fits in the SM (without any new contribution) and
include new contributions. In the frequentist and Bayesian
analyses, the fit results for the BGL coefficients with and
without CT are given in Table X. For the semileptonic
P → M decay modes we can define observables like

RðMð�ÞÞ ¼ BðP→Mð�ÞτντÞ
BðP→Mð�ÞlνlÞ. In the SM, these observables are

expected to respect lepton universality, which can be
violated in the presence of new interactions affecting these
decays. For the type of new effects we are considering here,
the NP effects will cancel along with the CKM elements
in RðMÞ. However, in RðM�Þ, the new contributions will
affect the decay rate distributions along with the vertex
factor and the contribution will be sensitive to the lepton

mass. Therefore, for RðD�Þ, the new effects will not get
cancelled completely. We also take this opportunity to
update the SM prediction for RðD�Þ with the newly
available inputs. Using the results given in Table X along
with the respective correlations, we predict RðD�Þ in the
SM and in NP scenarios with three masses, which are
shown in Table IX. The SM predictions are unchanged due
to NP in B → D�lνl, which are tightly constrained from
the CKM fit analysis.
As we mentioned earlier, the extraction of CT from the

detailed analysis of the inclusive B → Xclνl decays is
beyond the scope of this paper. In spite of the difficulties in
the extraction of NP parameters from inclusive measure-
ments, we attempt to naively extract the allowed range of
CT from the respective decay rate. Following the simplified
approach discussed in Ref. [63], we define the approximate
inclusive branching fraction in the presence of leading-
order (LO) NP effect only in the rates

BðB → XceνÞexp ≈ BðB → XceνÞSM
ΓðB → XceνÞLONP
ΓðB → XceνÞLOSM

;

ð27Þ

where BðB → XceνÞexp ¼ ð10.8� 0.4Þ% [28] is the exper-
imentally measured branching fraction. The expressions
for ΓðB → XceνÞLONP and ΓðB → XceνÞLOSM can be found
in Ref. [63]. Note that ΓðB → XceνÞLONP is sensitive to CT .
We can express BðB → XceνÞSM as

TABLE IX. RðD�Þ estimates for the SM and the three NP scenarios with scales of 1, 2, and 5 TeV. The Bayesian
estimates correspond to the median and 1σ quantiles for the respective distributions for RðD�Þ.

In scenarios with NP

Observable SM 1 TeV 2 TeV 5 TeV

RðD�Þ
�
Frequentist
Bayesian

0.2579� 0.0034 0.2579� 0.0034 0.2579� 0.0034 0.2579� 0.0034
0.2586þ0.0031

−0.0030 0.2586þ0.0031
−0.0030 0.2586þ0.0031

−0.0030 0.2586þ0.0031
−0.0030

TABLE X. SM and NP estimates for the BGL parameters. The NP estimates are shown for both cases with the NP scale Λ ¼ 1, 2, and
5 TeV. The Bayesian estimates correspond to the median and 1σ quantiles of the posteiors for the respective parameters.

Frequentist Bayesian

Parameters SM Λ ¼ 1 TeV Λ ¼ 2 TeV Λ ¼ 5 TeV SM Λ ¼ 1 TeV Λ ¼ 2 TeV Λ ¼ 5 TeV

af0 0.01219� 0.00012 0.01219� 0.00012 0.01219� 0.00012 0.01219� 0.00012 0.01218� 0.00012 0.01218� 0.00012 0.01218� 0.00012 0.01219� 0.00012

af1 0.0203� 0.0092 0.0202� 0.0092 0.0202� 0.0092 0.0202� 0.0092 0.0222� 0.008 0.0221þ0.008
−0.0081 0.022þ0.0081

−0.008 0.0214þ0.0077
−0.0079

af2 −0.49� 0.19 −0.49� 0.19 −0.49 � 0.19 −0.49� 0.19 −0.53� 0.17 −0.53� 0.17 −0.52� 0.17 −0.51� 0.16

ag0 0.0313� 0.00095 0.0313� 0.00095 0.0313� 0.00095 0.0313� 0.00095 0.03121� 0.00094 0.03122� 0.00094 0.03121� 0.00094 0.03124þ0.00095
−0.00094

ag1 −0.142� 0.062 −0.143� 0.062 −0.143� 0.062 −0.143� 0.062 −0.149� 0.036 −0.147þ0.035
−0.037 −0.146þ0.035

−0.037 −0.154þ0.037
−0.036

ag2 −0.43� 1.44 −0.41� 1.44 −0.41 � 1.44 −0.41� 1.44 −0.13þ0.68
−0.58 −0.22þ0.7

−0.54 −0.25þ0.77
−0.49 0.022þ0.627

−0.685

aF 1

1
0.0017� 0.0014 0.0017� 0.0014 0.0017� 0.0014 0.0017� 0.0014 0.0022� 0.0012 0.0022� 0.0012 0.0022� 0.0012 0.0021� 0.0012

aF 2

0
0.0508� 0.0012 0.0508� 0.0012 0.0508� 0.0012 0.0508� 0.0012 0.0507þ0.0012

−0.0011 0.0507þ0.0012
−0.0011 0.0507� 0.0012 0.0508þ0.0012

−0.0011

aF 2

1
−0.149� 0.058 −0.149� 0.058 −0.149� 0.058 −0.149� 0.058 −0.125þ0.033

−0.028 −0.127þ0.032
−0.028 −0.126þ0.033

−0.028 −0.134þ0.028
−0.026

aF 2

2
0.99� 0.9 0.99� 0.9 0.99 � 0.9 0.99� 0.9 0.61þ0.28

−0.49 0.63þ0.27
−0.44 0.62þ0.28

−0.45 0.76þ0.18
−0.38
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BðB → XceνÞSM ¼ τBjVcbj2inclΓ0: ð28Þ

Here, τB is the mean lifetime of the B meson, and Γ0 is the
integrated rate and includes all of the available higher-order
perturbative corrections up to Oðα3sÞ and the corrections
to the nonperturbative matrix elements; for details, see
Refs. [30,54]. Note that Γ0 is a function of m2

b, m
2
c, and

different nonperturbative matrix elements which could be
extracted from a fit to the respective leptonic energy
moments and the moments of the hadronic invariant mass
of the respective differential distributions [29,30]. Using
these fitted parameters, one can determine Γ0 and thereby
extract jVcbj from Eq. (28) by letting BðB → XceνÞSM ¼
BðB → XceνÞexp. Following this approach, the authors of
Ref. [54] obtained Γ0 ¼ 2.44ð11Þ × 10−11 GeV, and hence
jVcbjincl ¼ 42.16ð51Þ × 10−3. Note that the fit in Ref. [54]
did not assume contributions from NP.
In this analysis, we aim to constrain the magnitude of CT

from Eq. (27) with the measured value BðB → XceνÞexp,
and the jVcbj obtained from the CKM fit without any inputs
from the inclusive decays. Ideally, one should simulta-
neously fit the jVcbj along with CT ; however, for the naive
estimate, the only available input is the inclusive branching
fraction. Therefore, we must fix jVcbj from the other
measurements. In order to extract the allowed range of
CT , we calculate the ratio

Rincl ¼
BðB → XceνÞexp
BðB → XceνÞSM

¼ 1.087� 0.034: ð29Þ

With the fitted Γ0 ¼ 2.44ð11Þ × 10−11 GeV, along with
our predicted jVcbj ¼ 0.04045þ0.00038

−0.00037 from the CKM fit
(Table VIII), we find BðB → XceνÞSM ¼ ð9.9� 0.5Þ%
which is consistent with the measured value BðB →
XceνÞexp at 68% C.L. Note that from Eq. (27) we can

define Rincl ≈
BðB→XceνÞLONP
BðB→XceνÞLOSM

, and using the estimate in

Eq. (29) we can find the allowed ranges of CT . In
Fig. 7, we show the variation of Rincl with CT , from which
we can get the allowed range ofCT required to explainRincl
in its estimated range. The figure shows the estimated 1σ
limit of the ratio Rincl, and the allowed magnitude of CT
could be as large as 0.2. As expected, the inclusive
measurement does not provide a strong constraint on
CT , and even though large negative values of CT are
favored, the corresponding range obtained is consistent
with 0.

D. DM phenomenology

We point out the main results from DM phenomenology
in this section. Before we present our results related to DM
phenomenology, we would like to point out different
contributions to the relic density in the different mass
regions of the DM (Mχ), the mediator (Ms), and quarks.
This exercise will be important given the mass hierarchy
betweenMχ ,Ms, and the top-quark mass. In the simplified
dark matter model we are considering, for Mχ < Ms < mt,
the dominant annihilation channels that will contribute to
relic are given by χχ̄ → bb̄; cc̄; gg. Here, χχ̄ → gg is a one-
loop process where the dominant contribution to the
effective S → gg vertex will be from a top-quark loop
[14,64]. However, for Mχ > mt, the dominant annihilation
channel is χχ̄ → tt̄ due to the quark mass dependence of the
mediator-quark couplings. At and above the top threshold,
i.e., when Ms ≳ 2mt, resonant annihilation into top-quark
pairs is sufficient to generate the observed relic abundance.
Finally, when Mχ > Ms, the annihilation will dominantly
proceed via t-channel exchange, χχ̄ → SS. Also, in a
situation when Mχ > mt;Ms and Ms > 2mt, there will
be contributions to relic from both the s-channel χχ̄ → tt̄
and t-channel χχ̄ → SS annihilation.
Considering the facts discussed above, in the context of

DM phenomenology, we present the analysis in two seg-
ments for better understanding: one for Ms < 2mt and the
other forMs ≳ 2mt. We first begin by showing the allowed
parameter space satisfying the relic data in the presence
of scalar couplings only, i.e., when gp ¼ g0p ¼ 0 and
gs; g0s ≠ 0, in the left panel of Fig. 8. The allowed values
of gs can be inferred from the fit result for CT (with
Cp ¼ 0), as listed in Table VI. For simplicity, we only
consider the allowed solutions forCT that are positive in the
2σ range of the best-fit estimate for the DM analysis.
Therefore, we have gs ¼

ffiffiffiffiffiffiffiffiffiffiffi
v2CT

p
, while g0s varies between

0–10. Note that the allowed value of gs is restricted to ≲4.
In the left panel of Fig. 8 we show the correlation between
the two scalar couplings satisfying the relic abundance of
dark matter with a mass of 200 GeVand mediator masses of
300, 500, 1000 GeV (dark magenta, dark blue, and dark
orange lines, respectively). However, we find that the scalar

FIG. 7. Variation of Rincl as a function of the NP coupling CT
for three different values of the scale Λ. The red dashed line
represents the central value of the ratio with the 1σ uncertainty
depicted by the shaded region.
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couplings required to satisfy the relic abundance are ruled
out from the spin-independent direct-detection (SIDD)
constraints from the XENON-1T experiment [65]. The
regions allowed by the XENON data for the same DM and
mediator masses as above are shown in light magenta, light
blue, and light orange, respectively, which are far away
from the allowed relic curves. Hence, for all nonzero values
of the scalar couplings gs and g0s, the SIDD bound plays the
most important role in constraining their upper limits. The
same conclusion holds for values of DM masses other than
Mχ ¼ 200 GeV. Therefore, one can reestablish the fact that
scalar portal DM candidates are not favored by the data.
Similarly, we show the correlations between the pseu-

doscalar couplings gp and g0p in the right panel of Fig. 8 for
similar DM and mediator masses. Here, we set gs ¼ g0s ¼ 0

and obtain the bound on gp from the results of Table VI

using the relation gp ¼
ffiffiffiffiffiffiffiffiffiffiffi
v2CT

p
, while g0p varies between

0–10. In Fig. 9 we show the variation of the maximum of
the 1σ and 2σ allowed values of the coupling gp (with
gs ≈ 0) with the cutoff scale Λ. There are slight reductions
in the allowed upper limit of the coupling with increasing
values of the cutoff scale for Λ≲ 5 TeV. The changes in
the allowed values of the coupling are almost negligible for
Λ > 5 TeV. This is due to the logarithmic dependence of
the coupling on the cutoff scale. Note that for mediator
masses below the top threshold (for example with
MS ¼ 300 GeV) the allowed values of g0p is ≲1 and its
value could be > 1 only if gp ≪ 1. Also, for gp ≳ 0.5 the
allowed values of g0p will be≪ 1. The constraints are severe
for values of MS larger than 2mt (top threshold). Such an
observation is also true for the scalar coupling case
discussed previously. We show the correlation between
the couplings for MS ¼ 1000 and 1500 GeV. It should be
noted that, if kinematically allowed, i.e., forMS > 2mt, the
DM can annihilate into a pair of top quarks whose cross
sections are enhanced due to the heavy top mass effect in
the interaction [see Eq. (5)]. If we neglect the top-quark
interaction, the resulting correlation is presented by the blue
and brown curves in the right panel of Fig. 8 for MS ¼ 0.5
and 1 TeV, respectively. Larger couplings are allowed if
annihilation to only light quarks is considered. In the
absence of the scalar couplings, the parameter space is
free of any constraints from the DM-nucleon scattering data
since the pseudoscalar couplings give rise to velocity-
suppressed spin-dependent scattering.
So far, we have focused on a particular DM mass.

We will discuss the phenomenology for varying mediator
and DM masses in what follows. The variation of the
relic abundance with the DM mass is shown in Fig. 10.
Here we show the variation with the DM mass for
MS ¼ 0.3, 0.5, 1.0, and 1.5 TeV using green, orange,
blue, and magenta points, respectively, for the scenario

FIG. 9. Variation of the maximum 1σ and 2σ allowed values of
the coupling gp when gs ≈ 0 or is negligibly small, with the
cutoff scale.

FIG. 8. Left: parameter space in the gs-g0s plane satisfying the DM relic constraints for a mediator of mass 0.3 TeV (dark magenta),
0.5 TeV (dark blue), and 1 TeV (dark orange) for Mχ ¼ 200 GeV in the absence of pseudoscalar couplings. The dark matter is
underabundant in the region to the right of these curves. We also show the region allowed by the Xenon-1T data on the spin-independent
dark matter–nucleon scattering cross section as lighter shades of the same colors. Right: a similar plot in the gP-g0P plane in the absence
of scalar couplings.
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0 ≤ gp ≤ 4 (as obtained above) and for g0p ¼ 1 (left panel)
or 2 (right panel). The black dashed line signifies the
present-day relic abundance of DM. For g0p ¼ 1, from the
scans, we find that for relatively lighter masses, like
MS ¼ 300 GeV, the correct relic abundance is satisfied
for a wide range of DMmasses on both sides ofMS ≈ 2Mχ .
However, for values of MS higher than the top threshold,
the allowed DM masses become constrained to a small
region, and they satisfy Mχ ≪ MS=2. A similar plot for
g0p ¼ 2 is shown in the right panel of Fig. 10. One can
note that the probability of getting an allowed solution for
Mχ > MS=2 has decreased compared to that for g0p ¼ 1.
Therefore, for higher values of the coupling g0pð> 2Þ, the
relic abundance will be satisfied only when Mχ < MS=2.
On the other hand, one would expect the solution to be
concentrated near Mχ ≈MS=2 for values of MS near or
below the top threshold and g0p < 1.
In Fig. 11, we show the allowed correlations between the

mediator and dark matter masses for a few values of gp0 ,

while we fix gp ¼ 1. The relic abundance is satisfied only
along the orange, blue, and magenta curves for gp0 ¼ 0.01,
0.1, and 1.0, respectively. These benchmark values were
chosen after an inspection of the correlations in Fig. 8. The
plot to the left corresponds to mediator masses MS ≲
2mt GeV while the one to the right represents the cases
where MS ≳ 2mt . The black dashed and dot-dashed lines
depictMχ ¼ MS and Mχ ¼ 2MS, respectively. It is evident
from the plots that for MS < 2mt, for lower values of
g0pð≲1Þ, the relic abundance is satisfied near the region
Mχ ≈MS=2. However, for a relatively high value like
g0p ≈ 1, the relic abundance will be satisfied only when
Mχ < MS=2. For MS > 2mt, for smaller values of g0p (for
example, g0p ¼ 0.01), the relic abundance will be satisfied
near the region Mχ ≈MS=2. However, as observed earlier,
the relic abundance will be satisfied for Mχ < MS=2 when
g0p is not too small. High DM masses (≳350 GeV) do not
satisfy the relic constraint until the annihilation to the top
final state becomes relevant. This is expected since

FIG. 10. Relic abundance as a function of the DM mass for the four values ofMS, as denoted by the green, orange, blue, and magenta
points, for 0 ≤ gp ≤ 4 and when gp0 is taken to be 1 (left) or 2 (right). See text for more details.

FIG. 11. Relic allowed regions in the Mχ-MS plane for different values of pseudoscalar couplings when MS < 2mt (left) and
MS > 2mt (right).
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the annihilation cross section is smaller for low values of
the couplings, thereby making the relic overabundant.
Therefore, we need smaller DM masses to tune the relic
abundance to the correct amount by increasing the overall
cross section. The reverse is true for the cases shown in the
right panel of Fig. 11 since the top-quark effect is so
dominant that high DM masses are disfavored unless the
couplings are very low.
Based on the analyses of 8 TeV data, the relevant bounds

on gs; g0s; gp; g0p;MS, and Mχ from the collider searches
=ETþ jet and =ET þ t̄t can be found in Refs. [14] and [64],
respectively. The corresponding bounds have been updated
in the newly available analyses from the ATLAS [66] and
CMS [67–70] collaborations, which are based on the data
at the center-of-mass energy

ffiffiffi
s

p ¼ 13 TeV. Although a
dedicated collider analysis is beyond our paper’s scope or
motivation, we can draw some inferences from the results
of the ATLAS and CMS collaborations on the respective
model parameters. The ATLAS and CMS collaborations
looked for signatures in X þ =ET final states, where X stands
for W=Z=γ or jets. Note that the LHC bounds are only
applicable for Ms ≳ 2Mχ. As was seen in these experi-
mental analyses, the strong constraints on the scalar or
pseudoscalar mediator masses come mainly from the
analyses of ðt=t̄=tt̄þ =ETÞ [67,69] and =ET þ jets signatures
[66,70]. As can be seen from Ref. [69], from the analysis of
combined events in ðt=t̄=tt̄þ =ETÞ searches for gp ¼ g0p ¼ 1

and the DM mass Mχ ¼ 1 GeV, mediator masses Ms <
300 GeV are excluded at 95% C.L. On the other hand, at
both CMS and ATLAS [66,70], from the searches of the
energetic jets and large missing transverse energy, con-
straints are obtained on Ms for Mχ ¼ 1 GeV with the
magnitude of the mediator couplings: gp ≈ 1.5 and
g0p ¼ 1.4 Their studies exclude pseudoscalar mediator mass
Ms up to 470 GeV at 95% C.L. As proposed in Ref. [71],
the constraints are obtained in the Ms-Mχ plane from the
LHC analyses for fixed values of the mediator couplings,
which can be seen from Ref. [66], and it could be helpful to
exclude a part of the region of low DM masses.
In addition, we understand that the jets plus missing

transverse energy production cross section will increase
with increasing values of gp or g0p. One should note that the
maximum excluded values of Ms decrease with increasing
Mχ , as the value of the branching fraction of the mediator to
DM particle decays diminishes [71]. Therefore, with
increasing values of the DM masses, the bounds on the
mediator masses will be less stringent. Also, the naive
expectation is that the mediator production cross sections
will decrease with increasing values of Ms. Therefore, it is

expected that for higher values ofMχ andMs (≳470 GeV),
the mediator coupling gp > 1.5will be allowed by the LHC
data. Also, the current LHC bound on Ms will be relaxed
for gp or g0p < 1. In our analysis, we obtain the relic allowed
regions for gp ¼ g0p ¼ 1 shown in magenta in Fig. 11 for
Ms ≲ 350 GeV (left panel), which will not be allowed by
the LHC data. In the same figure, the other allowed solutions
are shown for g0p ¼ 0.1 and 0.01, which might still be
allowed by the current experimental searches. For g0p ¼
0.1 or 0.01, due to the reduction in the production cross
section, the exclusion limit onMs will be less stringent than
that obtained for g0p ¼ 1. Also, the allowed regions shown in
the right panel of Fig. 11 forMs > 400 GeVwill be allowed
by the current LHC limits. A dedicated collider analysis may
be required to support these arguments, which is beyond the
scope of this paper. Also, the current collider searches have
not ruled out the upper limits on the values of gs or gp
obtained from the CKM fit. The variation of the maximum
allowed value for gp with the cutoff scale have been shown in
Fig. 9, a more stringent bound from the future collider
experiment may be helpful to get some understanding about
the viable cutoff scale. More precise data might be helpful to
constrain it further both at the collider and in the CKM fit.

V. SUMMARY

From the global CKM fit analysis, in this paper we
analyzed the constraints on the parameters of a class of NP
models with a neutral quark current interaction mediated
by a heavy scalar. This kind of NP has an impact on the
leptonic and semileptonic decays at the one-loop level.
Also, with the newly available updates, we have extracted
Wolfenstein parameters and the related CKM elements with
and without a contribution from NP from the global fit. In
this paper, we mainly focused on the impact of our bounds
on DM phenomenology. However, the bounds might be
applicable in any other relevant phenomenology.
We have considered a simplified DM model with

fermionic dark matter whose interactions with the SM
are mediated by a heavy neutral scalar. There is no
symmetry to forbid the interactions of the SM quarks with
this new scalar. Hence, it will contribute to the charged-
current vertices of d̄iujW at the one-loop level. The
modifications to the P → M and P → M� transitions due
to the new interactions are in contrast to each other. In case
of the leptonic P → lνl and semileptonic P → M decays,
the vertex factors will be altered, while in case of the P →
M� semileptonic decays the q2 decay distribution itself is
modified. As a recent development, lattice results on the
form factors of the B → D�lνl decay at nonzero recoil are
now available. Therefore, we updated the SM prediction
of the CKM element jVcbj before incorporating the NP
effects. We obtained jVcbj¼38.69ð79Þ×10−3 at 68% C.L.
We also predicted the observable RðD�Þ in the different fit
scenarios with and without the NP.

4Note that in Refs. [66,70] the couplings of the mediator with
the quarks were defined a little differently than in our paper. The
couplings are related by the relation gp ¼ v

mt
gLHC, wheremt is the

mass of the top quark. However, in Ref. [69] the definitions of gp
and gs exactly match ours.
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With this new update and all other available CKM
measurements, we performed a global fit in the presence
of the NP effects for some fixed values of the mediator
mass. From this fit, we could only constrain the
combination CT and not the individual couplings Cs
and Cp. We showed that for high values of MS, the
coupling gets severely constrained by the data. From the
dark matter SIDD constraints, we can restrict the scalar
couplings Cs and g0s to minimal values. This automati-
cally translates to a bound on the parameter Cp from our
fit results on CT . However, since the pseudoscalar
couplings have a velocity-suppressed contribution to
the spin-dependent DD cross section, there remains
some freedom in g0p. With this setup, we discussed
the relevant DM phenomenology.
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APPENDIX A: FIT RESULTS FOR THE BGL
COEFFICIENTS

In this appendix, we show the fitted values of the BGL
coefficients (Table X) defined in Eq. (18) which are
obtained from a combined fit to B → D�lνl decay rates
and other relevant inputs used in global CKM fit analysis.
In Fig. 12, we provide the triangle plot for the BGL
parameters corresponding to the SM in this section which
are almost unchanged in the presence of NP.

FIG. 12. Triangle plot for the BGL parameters for the SM. We find no appreciable changes for the three NP scenarios compared to the
SM as far as the posterior and correlations for the BGL parameters are concerned. The central value and corresponding errors for the
parameters are provided at the top of the corresponding one-dimensional posteriors.
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APPENDIX B: CORRELATIONS BETWEEN
THE WOLFENSTEIN PARAMETERS AND CT

In this appendix, we provide numerical estimates for the
correlations between A, λ, η̄, ρ̄, and CT corresponding to the
analyses with and without any NP contributions. In the case
of NP, we present the results for the corresponding scales

Λ ¼ 1 and 2 TeV. These have been obtained from the
Bayesian posteriors.

APPENDIX C: FIT RESULTS INCLUDING
BELLE 2017 DATA

In this appendix, we point out the effect on the fit results
if we include the B → D�lν data from the Belle 2017
analysis [43]. In Table XV, we list the results for the SM fit
to the data for extracting jVcbj and the BGL form factor
parameters. We can see from the table that the fit values are
consistent with those obtained without considering the Belle
2017 data set given in Table I. Similarly, for the full CKM fit
including NP, the fit values (as shown in Table XVI) for CT
remain unchanged, while theWolfenstein parameters remain
consistent within the 1σ errors of the previous fit result.

TABLE XI. Correlations between the four Wolfenstein param-
eters corresponding to the fit without NP.

SM A λ ρ̄ η̄

A 1. −0.258465 −0.210554 −0.493578
λ −0.258465 1. 0.0728912 −0.055793
ρ̄ −0.210554 0.0728912 1. 0.409138
η̄ −0.493578 −0.055793 0.409138 1.

TABLE XII. Correlations between the four Wolfenstein parameters along with CT for the NP scale Λ ¼ 1 TeV.

Λ ¼ 1 TeV CT A λ ρ̄ η̄

CT 1. −0.00380722 0.00172136 0.0017101 0.00245208
A −0.00380722 1. −0.260845 −0.216509 −0.492561
λ 0.00172136 −0.260845 1. 0.075102 −0.0563302
ρ̄ 0.0017101 −0.216509 0.075102 1. 0.405289
η̄ 0.00245208 −0.492561 −0.0563302 0.405289 1.

TABLE XIII. Correlations between the four Wolfenstein parameters along with CT for the NP scale Λ ¼ 2 TeV.

Λ ¼ 2 TeV CT A λ ρ̄ η̄

CT 1. −0.00117545 0.000992878 0.000133051 0.000899192
A −0.00117545 1. −0.260192 −0.214117 −0.492652
λ 0.000992878 −0.260192 1. 0.0719362 −0.0561466
ρ̄ 0.000133051 −0.214117 0.0719362 1. 0.414471

TABLE XIV. Correlations between the four Wolfenstein parameters along with CT for the NP scale Λ ¼ 5 TeV.

Λ ¼ 5 TeV CT A λ ρ̄ η̄

CT 1. −0.00275994 −0.000450748 0.00303057 0.00405182
A −0.00275994 1. −0.258676 −0.212262 −0.494841
λ −0.000450748 −0.258676 1. 0.0715675 −0.0577073
ρ̄ 0.00303057 −0.212262 0.0715675 1. 0.406381
η̄ 0.00405182 −0.494841 −0.0577073 0.406381 1.
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