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Deviations from the Standard Model (SM) can be parametrized in terms of the SM effective field theory
(SMEFT), which is typically truncated at dimension-6. Including higher dimension operators—as well
as considering simultaneous insertions of multiple dimension-6 operators—may be necessary in some
processes, in order to correctly capture the properties of the underlying UV theory. As a step toward
clarifying this in the Higgs boson production in gluon fusion process, we study double insertions of
dimension-6 operators in the 1-loop virtual amplitude. We present needed Feynman rules up to O(1/A%)
and we numerically study the impact of various approximations to the O(1/A*) expansion.
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I. INTRODUCTION where A is chosen to be the scale of new physics, O¢ are

Current measurements of LHC experiments are in ~ OPCrators of dimension d, and cf the corresponding
excellent agreement with theoretical predictions, but with dimensionless SMEFT Wilson coe?ff1c1en.ts (W(;)' Fits
uncertainties at the O(5%—20%) level [1,2]. As a result, to the latter haY? been made using Higgs, diboson,
the High Luminosity LHC program will be focused on electroweak precision, aqd top data [5—.8]..Such analyses
high precision measurements. It is expected that the are usujcllly done by terminating the series in E(,l‘,(l) after
experimental uncertainties will reduced to O(1%) for dlmen31op—6 oPera.tors. Yet, the need f;)r precision calls
many observables [3]. This requires precise theoretical for an 1nvest1gatlop beyond o(1/ A ). At .the next
Standard Model (SM) predictions, but also precise com- nf)ntrlﬁal order, this includes studying the 1.mpacF of
putations in specific beyond the Standard Model (BSM) d1m§n31on'—8 SMEFT operators, but also dopble insertions
scenarios to describe potentially emerging small non-SM of dimension-6 operatqrs [5-17]. An amplitude, A{’ for'a
signatures. A more general approach is also possible; lepton number conserving process canzbe parametrized in
BSM physics which contains no new light particles and the SMEFT as a power series in 1/A°,
which respects the SM gauge symmetries can be para-

. . . . C6c6
metrized using the Standard Model effective field theory A~ A + o + k o6
(SMEFT) [4]. This consists of an expansion around the PSM ZAZ ol Z AF ik
SM Lagrangian Lg) in terms of an infinite tower of higher
dimension operators, + Z_a + O(1/A9), (2)
cio?
L= Lo+ Z Z i (1)  where the & coefficients are process dependent. The terms
A4 - 66 / A4 nserti
proportional to C;Cy /A* are the double insertions of
interest here. The amplitude-squared corresponding to a
cross section is then expanded generically as,
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If a coefficient is well constrained by data, it may be
sufficient to retain only the O(1/A?) contributions to
observables. This is typically the case in fits to electro-
weak precision observables [18-20]. However, for most
of the SMEFT coefficients contributing to predictions for
LHC observables, the O(1/A*) terms play an important
role. Global fits [5—8] include the first term on the second
line of Eq. (3) (required to make the cross sections
positive-definite), but the other terms of O(1/A*) are
more subtle. For tree-level processes, the second term on
the second line of Eq. (3) (which corresponds to a
double insertion) is easily included [21,22] and can have
important numerical effects [23]. The dimension-8
contributions [first term on the third line of Eq. (3)]
have been studied in only a few special cases and the
numerical importance of these terms is not known in
general [9-11,24]. In the case where the new physics that
generates the SMEFT coefficients corresponds to a
strongly interacting theory, it has been argued that the
dimension-8 contributions are small [25].

In the following, we present a preliminary investigation
of the impact of double insertions on the inclusive gluon
fusion Higgs boson production process. This production
channel has recently been calculated in the SM to N’LO
QCD [26-28]. In the SMEFT, the NLO result with single
insertions of dimension-6 operators is well known [29-33].
Gluon fusion Higgs production has also been calculated to
all orders in v?/A? using the GeoSMEFT approach [34,35].
Here, we present a study of the 1-loop contributions to the
gg — h amplitude including all terms of O(1/(162%A%))
and we investigate the numerical effects of double insertions
of a consistent subset of dimension-6 SMEFT operators.

The paper is organized as follows. Section II contains a
brief description of the SMEFT to O(1/A*). The 1-loop
calculation of gg— h to O(1/(16a*A*)) is presented
in Sec. III, including the insertion of two dimension-6
operators in the 1-loop amplitude and the required counter-
term for the gg — h process corresponding to the dimen-
sion-8 (¢'p)>G*#* G5, operator. Numerical effects of the
double insertions are investigated in Sec. IV, along with a
discussion of the potential effects of neglected contribu-
tions. Finally, we conclude in Sec. V with a discussion of
the path forward to a more complete study of the impact of
O(1/A*) effects.

II. SMEFT TO O(A~4)

We start by presenting the pieces of the dimension-6
SMEFT Lagrangian (in the Warsaw basis [36]) which are
relevant for the calculation of the virtual 1-loop gg — h
diagrams containing double insertions. All the remaining
necessary terms of the Lagrangian can be found in
Ref. [37]. In the end of this section, we present the
relationships up to O(1/A*) between the original param-
eters of the Lagrangian and our input parameters [24].

We neglect finite contributions from dimension-8 terms.
Although such contributions enter in the cross section at the
same order as double insertions of dimension-6 operators,
they can be treated separately, as they are not required to
obtain a gauge-independent result. Yet, the dimension-8
operators are in general required to absorb ultraviolet (UV)
divergences of O(1/A*). There is a single dimension-8
operator that can be used to this end [38,39],

C 2 4
—('ePGLeh. (4)
When renormalizing the theory, the counterterm 6C2 ¢ is
generated from Eq. (4). Below, we present the result 6C2 4
using minimal subtraction. We work in minimal subtrac-
tion, which amounts to dropping all poles. A complete
understanding of dimension-8 renormalization in the
SMEFT, including fermionic operators, does not yet exist,
although significant progress has been made in under-
standing the bosonic operators [40—44].

A. Lagrangian and field redefinitions

The relevant pieces of the dimension-6 SMEFT
Lagrangian can be grouped into three terms,

‘CHiggs + ['QCD + [’fermions- (5)

The first one is the Higgs Lagrangian,

. A
‘CHiggs = (Dﬂ(p)| (D,u(p> + /‘2§0T(p - E (¢T§0>2

1 _ )
1 [C,(@"0)* + Cya(9"0)O(9 )

+ Con(@'D'9)* (0" D). (6)

where ¢ represents the Higgs doublet, which we para-
metrize as

= \/Li(vr—l-h—l—i(po) ' ()

Here, vy is the vacuum expectation value (vev) that
minimizes the Higgs potential in the presence of the
SMEFT operators, and &, ¢°, and ¢* represent the Higgs,
the neutral Goldstone, and the charged Goldstone boson
fields, respectively. The second term in Eq. (5) is the QCD
Lagrangian,

1 Coo . -
Locp = —— G, GM + A—(/JQ(QDIQO)G%GA””

4w
Cg Av ~Bp ~C
+FfABCG;4 GGy, (8)
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with
G/“}v = auglf} - avg;\ - stABcg;ljgga (9)

where ¢ is the gluon field. Finally, Liemions is the

fermionic Lagrangian,

_ C .
ﬁfermions = _YMQL(de + ﬁ((p—t(/)) (QL(/)MR) + H.c.

Cy - N
+F(1LyylL)(lLyﬂlL)+ A ? iD, (I 7% ,1),
(10)

with ¢} = (uz,d;), I} = (vi,e), @ =io,p*, and we
retain only the top quark contributions.

To ensure that all fields have canonical kinetic terms, we
need to perform the following shifts,

h — hR;', (11a)
(po - (pOR;Ol, (1lb)
g‘;} - gﬁR_l, (110)
where
% V7 2 -6
R(p = I—FXh—WXh—l-O(A ), (123)
V7 T 2 -6
R(po :1+WCmD—WC¢D+O(A ), (le)
% v7 2 -6
Rg: l_pC(ﬂG_WC(/JG—i_O(A ), (120)
with X, in Eq. (12a) defined as
C
XhEC(/,D—%D. (13)

B. Input parameters

We choose as independent parameters

GF’ Ay, MZ? MW? Mh7 my, (14)
where G is the Fermi constant, a; is the strong coupling
constant and M (M), M;,, and m, are the gauge boson,
Higgs, and top masses.

The expression for vy can be determined through the
amplitude for muon decay, including double insertions of

dimension-6 operators. Assuming flavor universality of
the WCs

(3)y2
Gr —#—FX—?(CS,) —%Cu> +\1]/—2T§(C}\#), (15)
vr
which can be inverted to yield
1 n 2C((/)3l> - C”
Vr = 3
T (V2GR L T 2(V2G,)iN2
3)\2 3
16((7;,)) —12¢)c, + 3¢,
+ . (16)

8(V2G )N

The parameters x> and / are fixed by the requirement that
the coefficient of the Higgs tadpole contribution vanishes
(i.e. that vy is the true vev) and that the mass of the Higgs
field in the Lagrangian is given by M. Using also Eq. (16),
we find

, M 36, - 42X, G M
=7 8GLA?
3
(2¢) - Cy)(3V2C, - 4X,G M3 |
+ 8GIA? - (17)
3v2C, +2(Cy —2C%) —2X,)G M2
A= GpM?*\2 ’ ¢
PMIV2+ 2G A2
3 3
3G, (Cy- 2¢0)) +V2(CL) )G M} )

2GIA?

The top quark Yukawa coupling is determined by
requiring that the mass of the top-quark field in Eq. (10)
is given by m,,

Y, = \/E(ﬁGF)%mt
3 3 3
[ 2c) — ¢, 8(Cl))?—4ct)cy + C},]

@ @l

B 2(V2Gr)A? B 8(V2Gr)*A*
Coy 2cl) - ¢y
T aVaGHN [l * <ﬁGF>A2]' 19)

Finally, ¢ can be related to 4za, through the inverse
transformation of Eq. (11c¢) and we find

3
I G 1 Coo(Cpatach)—2cy)
V2Gy A2 4G AT

gS = gS

El

(20)
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FIG. 1.

@ G

Virtual 1-loop contributions to the gluon fusion to Higgs amplitude including contributions from both single and double

insertions of dimension-6 SMEFT operators. Conventions used throughout the paper concerning 4-momenta, Lorentz indices and color
indices are shown in diagram (a). Note that diagrams (a), (b), and (f) also contribute with crossed initial states (not shown for

compactness).

where we defined

Js = \/4na,. (21)

III. CALCULATION

We now describe the 1-loop calculation of the gg — h
amplitude to O(1/(16x>A*)). The Feynman rules accurate
to O(1/A*) that are relevant for our calculation are given in
Appendix B. Lorentz and gauge invariance imply that at
any order, the amplitude for ¢ (pi)¢®(p5) — h must have
the form,

A" (p1, py) = iBap(PiPh = p1 - P29™)Y Fi  (22)

1

where, up to 1-loop,

> Fi=Fy+ Fy+ Fer. (23)

with F representing the tree-level SMEFT contribution,
Fy the virtual 1-loop amplitude and Fcop the total
counterterm.

The tree-level contribution is given by

_4C,q C,o
FO — 1 + 3

(V2Gp) A (V2GR)iA?

X [8C,G + 4X, +4CY) —2Cy). (24)

Fy is computed from the diagrams shown in Fig. 1, using
the software FeynMaster [45—53]. We use the true vev up to 1-
loop order [54] and we work in the Parameter
Renormalized tadpole scheme [55,56]. Analytic results
for Fy can be found in the auxiliary file submitted with
this paper. Finally, Fr is determined by identifying the
original parameters and fields in Egs. (4) and (5) as bare
parameters (with index “(0)”) and by expanding them into
renormalized quantities,

1
hoy = (1 +252,,>h, (25a)
o (14 Lsy 25b
g(o) - +§ g gA ’ ( )
Gr) = (1 +6Gr)Gr, (25¢)
Cx(()) = CX + 6CX, (25d)

where Cy represents a generic WC. The expression for Fr
is given in Appendix Al

This allows us to determine 6C2 + by requiring Eq. (23)
be free from divergences. We work in dimensional regu-
larization, using D = 4 — 2¢ for the spacetime dimension,
and fix the counterterms of the WCs in the minimal
subtraction scheme [57,58]. We perform the calculation
in two independent ways: (i) we subtract known infrared
(IR) poles using results of Ref. [59]; and (ii) we use
Package-X [60,61] and consider only UV poles.

It is sufficient to compute the counterterms in Eq. (A2) to
order O(1/A?), since Eq. (A2) is already O(1/A?). 5Z;, and
0Z, can be computed from the Higgs and gluon self
energies at 1-loop, respectively; explicit expressions can
be found in Appendix A. 6G is given by

6Gp = ———

ArSM
) Ao,
) 16722A2

V2

4_ (;F[\za

(25c§j} - 5C,,) (26)

'As discussed in Sec. II, we ignore finite effects from
dimension-8 operators (i.e., we set the renormalized WC
Cgry¢ 10 Z€10).
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where the expressions for Argy and Arggr can be found in

Appendix D of Ref. [62]. The contributions from 6Cf/,3,> and

0C;; cancel when Eq. (26) is used in Eq. (A2). The
contribution to 6C,; of O(1/A?%) can be obtained from
Refs [63—65]; we confirmed their result by requiring that
Eq. (22) be finite to O(1/A?) and present it in Eq. (A1).
Combining these elements, we find the expression for
6Cg ¢ given in Eq. (AS).

TABLE 1. Numerical results for linear coefficients a; and
coefficients b;; of pairs of SMEFT WCs, cf. Eq. (27). Results
are shown with (third column) or without (second column)
double insertions. In the fourth column we show the ratio of
single coefficients over double coefficients. Ratios given as
rational numbers are exact. Numerical values for physical
parameters are reported in Sec. IV. See text for further
details.

%;,42 a4 Linear
3 _
C{(ﬂ) 12.13
Cu 6.06
C,o 12.13
Cup -3.03
C, —12.28
Cio 19.35
10710 . .
Govt - bij Single Double Ratio
c®?2 0.3678 —0.3678 -1
ol
szCffz) —0.3678
c? 0.0919
3 —
C(pDC,(,,/) 0.7355
C,oCy 0.3678 e e
Cim 0.3678 1.4711 1/4
3
C(pDC,(,;[) 0.1839
C,pCy —0.0919
C,pCyn —0.1839 —0.7355 1/4
CiD 0.0230 0.0919 1/4
10-10 . .
Gov® bi; Single Double Ratio
3 _ _
Cy Cf,, l) 0.7447 0.7447 1
C,Cy —0.3723 0.3723 -1
C,Con —0.7447 —1.4893 1/2
Cy,Cop 0.1862 0.3723 1/2
c, 0.3769 0.3769 1
3 — _
C[GC((al) 1.1732 1.1732 1
CicCy 0.5866 0.5866 1
16Cor 1.1732 2.3465 1/2
CiCyp —0.2933 —0.5866 1/2
CiCyy —1.1878 —0.0661 17.97
Ci? 0.9357 1.3909 0.6727

IV. IMPACT OF DOUBLE INSERTIONS

To study the impact of double insertions on the 1-loop
amplitude of the gluon fusion process, we compute
the amplitude squared in two ways: (i) we truncate the
amplitude at O(1/A?) and then compute the amplitude
squared; and (ii) we compute the amplitude to O(1/A*)
and then truncate the amplitude squared at O(1/A%*). The
first truncation is not sensitive to the double insertions of
the dimension-6 operators, and we label it as “single.” The
second truncation is sensitive to the double insertions
of SMEFT operators, and we label it as “double.” We note
that the latter is in fact a complete computation of the
virtual amplitude up to O(1/A*) at 1-loop, neglecting finite
contributions from dimension-8 operators. Since the WC
C, contributes at tree-level, the double insertions propor-
tional to C,; require the computation of 2-loop virtual
graphs with single insertions of dimension-6 operators,
along with 1-loop virtual graphs proportional to C,g to
obtain an IR finite result.

As a first step in understanding the relevance of double
insertions, we consider a scenario where C,, is generated
at loop level and thus can be consistently set to zero after
renormalization. This is a realistic scenario from a model
building point of view. At tree-level, scalars, vectorlike
quarks, and vector particles in arbitrary representations that
contribution to the dimension-6 SMEFT Lagragian do not
generate C,,; contributions [66]. It is interesting to note that
vectorlike quarks generate C, at 1-loop consistent with
our assumption. When we set C,,; = 0, there are no real
corrections and we can study the numerical effects of the
double insertions from the remaining operators using our
finite results for the renormalized amplitude to construct a
cross section normalized to the SM result.”

For the numerical results reported below, we use
M, =125GeV, My, =80.377GeV, M, =91.1876 GeV,
m, =172 GeV, Gp = 1.166 x 107 GeV~2, and a, =
0.1179. The renormalization scale u is chosen to be
equal to the Higgs mass M,,. Finally, we write the virtual
amplitude squared as,

2.iF

FSM

2 C, C.C;
=1 +§;afp+2bi,~ (@)

i,j<i

In the C,; = 0 limit that we are working in,

2

olgg—=h) | XF . (28)

o(g99 = h)lsm B Fsm

ggh =

Numerical results for a; and b;; in the 2 expansions at
O(1/A*) are presented in Table 1.

*We have explicitly checked the gauge independence of our
results.
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-15h,

L S S S s S S S S S B S S

E==8 single insertions |

== double insertions-|

1  global limits*

“JHEP 04 (2021) 279

FIG. 2. Regions where |u,,, — 1| < 5% are shown for single
insertions (squared blue) and double insertions (orange). The
limits from global fits to individual operators at 95% C.L. are
denoted by the black cross [5,6,8]. The WCs not shown are varied
over values allowed by the 95% C.L. fits to individual coefficients
of Ref. [5].

We first note that some contributions that contain C;; or

C<(,;3z> are present in the single but vanish in the double setup.
From the Feynman diagrams shown in Fig. 1 it can be
easily seen that these contributions are proportional
to 1/(R3v%), which vanishes in the double expansion.
Consequently, the functional dependence of the amplitude
on these WCs in the two expansions is quite different; for
) and C

ol 1G
in the upper plot in Fig. 2. In this figure we show the
regions where |u,,, — 1| is less than 5%. For a given value

example, we show this for the combination of C

of Cf/?l) and C,g, the remaining coefficients Cy;, C,n, Cyp,

and C,, are varied over the region allowed by the 95% C.L.

I s e e e e L N S B a

P H‘igg'Js 'daiza*'
Higgs data & Top data*
2 [ e=mm single insertions
== double insertions
[+ sSM

L *JHEP 04 (2021) 279
—4t [T ]
" " 1 " " " " 1 L " " " 1 " " " " 1 " "
-20 -10 0 10

FIG. 3. Allowed parameter space from a 2-parameter fit to Cy,
and C,. Yellow (hashed) and green (fine hashed) ellipses show
constraints from linear fits at 95% C.L. to Higgs data and Higgs
plus top data respectively [6]. Regions where |u,,, — 1| < 5% are
shown for single insertions (squared blue) and double insertions
(orange). The WCs not shown are varied over values allowed by
the 95% C.L. fits to individual coefficients of Ref. [5].

individual fits of Ref. [6].3 It is clear that the difference
between the single and double insertion expansions has
no phenomenological relevance, since the values of the
parameters plotted are excluded by fits to Higgs data
[5,6,8]. We do not show it explicitly, but we have checked
that the same conclusion holds for all other combinations
that include C;; and/or CS,).

We also observe a nontrivial change in the coefficient of
C,i and we show a fit in combination with C, to the value
of the SM amplitude squared in Fig. 2 (bottom). Also in this
case, significant differences between single and double
expansions only occur for values of the WCs far beyond
current single parameter limits [6].

The biggest change is in the coefficient of C,;C,,. For
this combination of WCs, the allowed parameter space is
available in Ref. [6] from 2-parameter fits to Higgs and
Higgs plus top data at 95% C.L. In Fig. 3, we show these
regions together with a fit to |, — 1| < 5%. The differ-
ence in the results for single and double expansions is small
and demonstrates the power of including top data in the fits.
While fits to Higgs data alone show a small sensitivity to
the expansion, when top data is included with the Higgs

3Limits used in all figures for WCs not shown explicitly are
-05<10%-C; <19, -1.0<10%- Cf;,) <03, -1.0<Cyn <
0.5, —2.3<10%- C,p <03, -1.0<C, <08, and -13<
10-Cs L 15.
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data, there is again no difference between the two expan-
sions in the region allowed by global fits.*

V. CONCLUSIONS

We computed the 1-loop amplitude for the gluon fusion
process gg — h including all contributions of dimension-6
operators up to O(1/(16z%A*)). This includes double
insertions of dimension-6 operators and the relationships
between parameters in the SMEFT Lagrangian and physi-
cal observables to this order. We derived the necessary
Feynman rules that are valid up to O(1/A*) and determined
the required counterterm to obtain a UV finite result at this
order. For our numerical studies, we considered the limit
C,c = 0 which ensures that there are no infrared singu-
larities. We note that this is a well-motivated scenario, since
in many BSM models C, is only generated at 1-loop level.
We then compared the gluon fusion cross section in
different expansions up to O(1/A*) and found that the
impact of the double insertions is negligible for values of
the WCs allowed by global fits and neglecting the unknown
dimension-8 contributions.

An extension of this study including the effects of
C,c and double insertions would require 2-loop virtual
amplitudes with up to two insertions of dimension-6

1 6C
V2G, A

V asGFmt C

€6C,g = €|5CS; +

N 3V2G (M3 + 2m? —

SMEFT operators as well as real-virtual and double real
emission contributions. We leave this exercise for future
investigations [67].

Digital data associated with this research is contained in
the auxiliary file attached to this paper.
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APPENDIX A: COUNTERTERMS

Here, we collect results related to the renormalization. In
what follows, all results are written in the Feynman gauge
and, unless explicitly stated otherwise, € represents eyy
(i.e., a UV pole).

The counterterm o6C,; receives contributions of
O(1/A*). The bosonic contributions of O(1/A*) are given
in Ref. [42], while the fermionic contributions are
unknown. We denote the total O(1/A*) contribution to
6C,g as 6C; and the O(1/A?) contribution as 5C5;,

2M3, — M%) — 287, 1 6C3;

C

3 tG

a2

1
The quantity Fr defined in Eq. (23) is given by
2

26CS; + Cy6(6Z), + 262, — 5Gpr) 4

671'2 »G + 6—\/§GF A2 .

5Cg

F g
CT A2 + (

(V2Gy):
1

+
2(V2Gp)A

V2Gp)
[85CG2W4 +8C,00C5; — 2C,pdC5 +

3

2

A4

32C¢G5C27G + SC((;I)(SCS;G - 4C115C2,G + 8C¢G5C((ﬂ3l)

—4C,68Cy + 3C,pC,58G — 24C250Gk — 12C,6Co) 6Gr + 6C6Cy8Gr — 2C,pC 82,

+16C256Z,, + 8C¢Gcfj,>5zg —4C,Cu6Z, — CypCp60Zy + 8C250Z), + 4C(,,Gcfj,>5zh

= 2C,6C1dZy + 4C,5C i (—36Gy + 267, + 52;,)} .

*We stress that we have not included unknown dimension-8 cont

(A2)

ributions that could also contribute at O(1/A%).
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The poles of 6Z;, and 6Z, are respectively such that

€5Zh

| _2M%V—3m%+M§G +L 3(M§—M%V)C +4M%V+2M§—7M§,—6m,2
poles — 4 \/571'2 F A2 471'2 @B 871'2

S5M2 + 6m? — 4M3, + M2 3m} —2M3, — M%
3277 Con ¢

C,o

2
3) 9MW
472 ol T 47 Cow
N 3My /M2 — M3, co M2 +2M3%, — 3m? 3m, ]

C )
i o s AR (2G

SZ| = - Sag 1 fag 1 [ Jam, _M§+2M%V+M§C
glpoles R2rer ey 4 A [V273(V2G )2 G 87’ oGl

Finally, the counterterm 6Cg2,+ is

3v2G M3 + 28 3 3(vV2Gp )t 9G M2
€5CG2(p4 = C?)G{ \/_ F 8h2+ asﬂ} + C(pG{— CH _ (\/_ F) th F w
T

1672 8212 e 4272 o
3GF(mt2 — 2M%V) c® 3Gr(My — Mz)(My + Myz) C 3GpMy v/ M% - M%V C
* 4272 Z 4272 B 4272 owe
N Gp(45M2 + 36m? — 46M3%, — 18M2%) Coo + 3Gp(M2 +2m? — 2M3, — M%) c
24y/27° v 8v/ 21 !
N Gp(=3M3 — 6m? + 4M3, + 3M3) B _ Gp[13M3 + 3(4m? — 8M%, + M2)] c
421 ol 32277 (e
L IVEGEMS, L /E(V2Ge)m, } L Grmi
2\/57[5 ¢ 2\/57[3 ©
1
\/a—;(\/zGF)zmr 3) \/CTS(\/EGF) m; 3
+ W C(p[ CtG - W CllCtG - €5C(pG‘ (AS)

V as
Cls ++=C6Ciy
82

l—

APPENDIX B: FEYNMAN RULES

In this appendix, we collect all needed Feynman rules valid up to O(1/A*). We adopt the notation of Ref. [37], but
choose the WCs to be real and symmetric (e.g., C}Sfl = C;‘fff] ~ 8¢, r,)- The remaining Feynman rules are only needed to

O(1/A?) in our calculation and can be found in Ref. [37]. For compactness, we present Feynman rules without inserting the
field redefinitions of Eq. (12).

1. Quark-Higgs-gauge vertices

; 2
v —1 wrCp 1,y (B1)
‘ - EdﬁfzmuRgo +08 \/51\2 Rtp
th ———e - h

055038-8



DOUBLE INSERTIONS OF SMEFT OPERATORS IN GLUON ... PHYS. REV. D 107, 055038 (2023)

2. Quark-gluon vertices

t,
. — a vTa VCG _ B2
- lgs§flf27-m?m27u3 - \/iva3Tm?m20-M3 ﬁRg ! ( )
th 94
th
) g% e o Cr B3
m H3 — Z\/§'UTgsfa3a4b1 TnlzbllmZ ottt 7[{2 Rg 1 ( )
9y
th,
tl ———ag0000000, g3 vra vCia po1 (B4)
" | a - \/§p3 mi’mgO—H3 FRg 1R¢1
h
3. Higgs-gauge vertices
}‘L ) _y  15iwwdCy, s twrCyup 4
! —3idvrR,” + TR“’ - TR“’ (p1-p2+p1-ps+p2-ps3) (B3)
i iUTC O o~
B e h - AQW R,*(3pT + 3p5 + 3p3 + 2p1 - p2 + 2p1 - p3 + 2p2 - p3)
o0
| ) 1 3iv3Co, wrCoo
| —ivor RS RLE + P RORCE — — S ROVRLE (9 + 03+ 05 + 201 p2)
| wrCyp 1, o
S00 ,,,,,, PO h - A2 Rgp R@O (pl P2)

(B6)
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¥
| , . 3ivdC ivpC.
| —zAvTR Ly T SDR - TA;’DR (p1-p1+2p1 - p2 +p2-p2+ps - p3)
i Z’UTOLPD
ot oo . 5 SA\2 R, (pl p3 + P2 p3)
(B7)
4. Higgs-gluon vertices
Ut
Coc B8
b ivrban, CEE RS (P — (- pe)g ) (B
Yjiy oTTETETEY - - - - - - h
Ut
777777 Coa B9
i | " +4ib0,0, 5 Ry °R (pé‘ngl (p1-p2)g’”“2) (B9)
h
Ut
777777 0 Coa B10
i | 4 + 410010, 3 “R’R; (p‘ﬁpgl (p1-p2)g’““2) (B10)
o0
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943
g et ) Coc: Bl11
Ml : v + 415(11(12 XQ Rg 2(pib2p§1 - (pl 'pQ)gMIIQ) ( )
)
o
5. Gluon-gluon vertices
gl% P K3 H2 H1
*gSfa1a2a3 [nullm(pl *pQ) +n#l#3(p3 *pl) +77#2#3(p2 7p3) ]
6Cq _
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)
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