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We study two novel aspects of democratic three-Higgs-doublet models (3HDMs)—the custodial limit and
the possibility of wrong-sign Yukawa couplings. In the custodial limit, the democratic 3HDMs can easily
negotiate the constraints from the electroweak T-parameter. We also uncover the possibility of having wrong-
sign Yukawa couplings in democratic 3HDMs, as in the case of 2HDMs. We show that a democratic 3HDM
encompasses all the wrong-sign possibilities entertained by 2HDMs, and has considerably more leeway in the
wrong-sign limit as compared to the 2HDM case. Our study underscores the importance of reporting analysis
in the kappa-formalism without any implicit assumptions on the signs of the kappas.
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I. INTRODUCTION

The Standard Model (SM) of particle physics remains
consistent in accommodating the experimental tests
designed to measure its properties. The discovery of a
scalar particle at the LHC has further vindicated the SM.
This discovery has also intensified the interest in scalar
extensions of the SM, which feature more than one
fundamental scalars. In fact, the phenomenological evi-
dences of dark matter and neutrino masses quite regularly
motivate us to pursue physics beyond the SM (BSM). More
often than not, these BSM scenarios come with an
extension of the scalar sector of the SM. Although there
are many different ways to extend the SM scalar sector,
extensions with additional SUð2ÞL doublets are particularly
attractive because they preserve the tree-level value of the
ρ-parameter [1].
The SM being reliant on the minimal scalar sector

containing only one SUð2ÞL doublet, is free from flavor-
changing neutral currents (FCNCs) at the tree-level. This

feature is not guaranteed to be preserved when one extends
the SM scalar sector. In fact, BSM models with multiple
scalar doublets, in general, lead to the presence of tree-level
FCNCs mediated by neutral scalars. However, experimen-
tal data suggest that the FCNC processes are strongly
suppressed [1], which makes the absence of tree-level
FCNCs a desirable property of any BSM scenario. A
common way to achieve this is to impose a symmetry
which ensures that fermions of a particular charge couple
to only one scalar doublet. Consequently, the fermionic
mass matrices and the corresponding Yukawa matrices
are simultaneously diagonalizable, thereby preventing the
appearance of scalar-mediated FCNCs at the tree-level, just
as in the SM. Such a possibility, in the context of multi-
Higgs-doublet models, is known as natural flavor conser-
vation (NFC) [2]. The two Higgs-doublet model (2HDM)
entertains four types of flavor universal NFC models
(type-I, type-II, type-X, and type-Y), which have been
extensively studied in the literature [3]. Beyond these four
possibilities, there is one more attractive option where a
particular scalar doublet is reserved exclusively for
each type of massive fermion, and the up-type quarks,
the down-type quarks, and the charged-leptons couple to
separate dedicated scalar doublets. Quite clearly, such an
arrangement of Yukawa couplings is impossible within the
2HDM framework and one needs at least three scalar
doublets to achieve it. It should be mentioned that this
particular composition of Yukawa couplings is commonly
dubbed as “democratic” [4] or “type-Z” [5] Yukawa
structure. In this paper, we choose to refer to this possibility
as “democratic Yukawa” and subsequently, the three
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Higgs-doublet models (3HDMs) that feature a democratic
Yukawa structure will be collectively called “democratic
3HDMs.” These democratic 3HDMs have received a lot of
attention in the recent past. Theoretical constraints from
unitarity and boundedness from below (BFB) have been
studied in Refs. [6,7], the alignment limit in democratic
3HDMs is studied in Refs. [8,9], and more recently, the
phenomenological studies involving the flavor and Higgs
data have been performed in Refs. [10,11].
In this paper, we turn our attention to a couple of

unexplored aspects of democratic 3HDMs, namely, the
custodial limit and the possibility of “wrong-sign” Yukawa
couplings. Keeping in mind the surging popularity of
democratic 3HDMs, this study is quite timely and relevant.
To highlight the importance of the custodial limit, we recall
that in the SM, the custodial symmetry (CS) ensures ρ ¼ 1
at the tree-level. The custodial symmetry is only an
approximate symmetry of the SM since it is broken
by the Uð1ÞY gauge coupling, as well as the Yukawa
couplings [12]. Because of this, at the loop level, the
ρ-parameter deviates slightly from unity and the deviation
is quite accurately predicted by the SM. As it happens, the
experimental measurement is compatible with this SM
prediction, leaving very little room for new physics (NP)
to give an extra contribution. Such NP contributions
are sometimes conveniently expressed in terms of the T-
parameter, which has the following experimental limit [1]

ΔT ¼ 0.03� 0.12:

One noteworthy aspect is that the SM scalar sector respects
CS perfectly. However, this is no longer guaranteed once
the scalar sector is extended. Therefore, it is expected that
the additional scalars will give rise to extra contributions
to the T-parameter. The limit on the T-parameter will place
constraints on the NP contributions, sometimes requiring a
fine-tuned scalar spectrum to keep the value under control.
Thus, models with n Higgs-doublets (nHDMs), although
respecting ρ ¼ 1 at the tree-level, can potentially drive the
T-parameter away from the experimental bounds, if the
scalar masses are arbitrarily chosen [13–16]. Therefore, it
can be very attractive if we can systematically construct
democratic 3HDMs which respect the CS in the scalar
sector by design. Admittedly, such studies have been
performed earlier in the context of nHDMs [17–21],
resulting in relations between the quartic parameters of
the scalar potential. But, unlike the earlier studies, which
directly implement the custodial symmetry in the scalar
potential, our analysis conveniently starts with the scalar
kinetic terms, following Ref. [22]. This alternative
approach enables us to intuitively identify the different
custodial multiplets and at the end, the conditions for CS in
nHDMs are concisely expressed in a single equation, in
terms of the physical masses and mixings of the scalar
sector. Note that such a condition does not depend on the

explicit structure of the scalar potential. Being related to
the mass matrices of the scalar sector, the condition for
respecting CS in nHDMs becomes quite easily imple-
mented in practical analysis. As a simple cross-check, we
will also show how the conditions in terms of the quartic
parameters of the scalar sector in earlier references follow
from this single condition in a straightforward manner.
The scalar extensions of the SM also face severe

constraints from the measurements of the Higgs signal
strengths [23]. For nHDMs, these constraints can be greatly
alleviated by staying in the proximity of the “alignment
limit” [8,9,24–29], where the lightest CP-even scalar has
the same couplings as the SM Higgs boson at the tree-level.
However, an intriguing possibility may arise if we keep
in mind that the current Higgs data is not very sensitive to
the sign of the down quark and charged lepton Yukawa
coupling. Such an exotic possibility can be accommodated
in a 2HDM framework with e.g. a type-II Yukawa structure
and is quite well studied in the literature [30–33]. In this
paper, we want to point out that democratic 3HDMs can
also accommodate this possibility, with much more free-
dom, due to the increased number of parameters. These
possibilities should encourage our experimental col-
leagues to report the results of the analysis of the
Higgs data in the kappa framework [34,35] without any
implicit assumption on the sign of the kappas.
This article will be organized as follows. In Sec. II we lay

down our methodology to study the CS starting from the
scalar kinetic terms. We then apply this in the case of the
SM and recover the essential features of CS in the SM.
Later in this section, we extend our analysis to the nHDM
case and retrieve the 2HDM result as a special example. In
Sec. III we explicitly demonstrate how the custodial limit
neutralizes the constraint arising from the electroweak
T-parameter. We define democratic 3HDMs in Sec. IV,
and present the custodial limit for the two usual incarna-
tions in Sec. IVA. Afterwards, in Sec. IV B we investigate
the possibility of wrong-sign Yukawa couplings in dem-
ocratic 3HDMs. Finally, we summarize our findings
in Sec. V.

II. CUSTODIAL SYMMETRY IN
MULTI-HIGGS-DOUBLET MODELS

The CS is an accidental global SUð2Þ symmetry (here-
after denoted as SUð2ÞC) which prevails even after the
spontaneous breaking of the electroweak symmetry in the
SM. In the case of the SM gauge group, SUð2ÞL ×Uð1ÞY ,
the CS is responsible for the value of the ρ-parameter to be
equal to unity at the tree-level. In this paper, we follow the
formulation of CS as in Ref. [22], and confine ourselves to
the SUð2ÞL part of the electroweak gauge symmetry, that is,
we work in the limit where the Uð1ÞY gauge coupling goes
to zero (g0 ¼ 0). In this section, we will build our intuition
first, by considering the simple example of the SM scalar
sector. Then, we will extend our formalism to the case of a
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general nHDM and obtain conditions such that the scalar
sector obeys the CS.

A. Recap of the custodial symmetry in the SM

In the SM, there is a single complex scalar doublet, ϕ,
which drives the electroweak symmetry breaking (EWSB).
The scalar Lagragian of the SM is given by

L scalar ¼ ðDμϕÞ†ðDμϕÞ − VðϕÞ; ð1Þ

where VðϕÞ is the scalar potential. In the limit g0 ¼ 0, the
gauge-covariant derivative for ϕ is given by

Dμϕ ¼
�
∂μ þ ig

τa
2
Wa

μ

�
ϕ; ð2Þ

where g is the SUð2ÞL gauge coupling, Wa
μ are the SUð2ÞL

gauge bosons, and τa are the Pauli matrices. After the

EWSB, the scalar doublet ϕ can be explicitly expressed in
terms of the component fields, as follows

ϕ ¼ 1ffiffiffi
2

p
 ffiffiffi

2
p

ωþ

vþ hþ iζ

!
; ð3Þ

where v is the vacuum expectation value (VEV).
Subsequently, the scalar kinetic terms can be conveniently
decomposed as [22]

L kin¼ðDμϕÞ†ðDμϕÞ
¼LmassþL quadþL mixedþL derivþL cubicþL quartic:

ð4Þ
Collectively denoting the gauge bosons as Ga;b;::

μ and
the component scalar fields as si;j;::, the meaning of the
individual terms introduced in the above equation are
given below

L mass∶ these are the mass terms for the gauge bosons of the form v2Ga
μ
†Gaμ;

L quad∶ these are the kinetic terms of the component scalar fields; ð∂μsiÞ†ð∂μsiÞ;
L mixed∶ terms of the form ð∂μsiÞ†ðivGμÞ þ H:c:;

L deriv∶ terms of the form ð∂μsiÞ†ðiGμsjÞ þ H:c:;

L cubic∶ terms of the form ðGa;μsiÞ†ðvGb
μÞ þ H:c:;

L quartic∶ terms of the form ðGa;μsiÞ†ðGb
μsjÞ:

To identify the custodial multiplets, we begin with L mass
which, in the SM, is given by

Lmass ¼
g2v2

8
ðWμþW−

μ þWμ−Wþ
μ þWμ3W3

μÞ: ð5Þ

where

W�
μ ¼ W1

μ ∓ iW2
μffiffiffi

2
p : ð6Þ

We can see from the above equation that the SUð2ÞL gauge
bosons have the same mass. This motivates us to identify a
custodial multiplet of the gauge bosons as1

W ¼

0
B@

−Wþ

W3

W−

1
CA: ð7Þ

Note that the Lorentz indices have been suppressed here
for simplicity as it has no bearing on the SUð2ÞC trans-
formations. In terms of the SUð2ÞC triplet of Eq. (7),L mass
can be rewritten as

Lmass ¼
g2v2

8
ðW ·WÞ; ð8Þ

which is manifestly invariant under SUð2ÞC. To identify
the SUð2ÞC multiplets of the scalar fields, let us turn
our attention to L cubic and L mixed. First, in terms of the
triplet W, L cubic can be expressed as

L cubic ¼
g2v
4

hðW ·WÞ: ð9Þ

Thus, L cubic will also be SUð2ÞC invariant if we identify
the physical scalar, h, as a singlet of SUð2ÞC. Next, we look
into L mixed, which is given by

Lmixed ¼
gv
2

h
ið∂μω−ÞWþ

μ − ið∂μωþÞW−
μ − ð∂μζÞW3

μ

i
:

ð10Þ
1The minus sign in the first entry of W comes from the details

of SUð2Þ group theory, which are explained in Appendix A.
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Given the identification ofW in Eq. (7), the above equation
encourages us to define an SUð2ÞC triplet of scalar fields
as follows:

T ¼

0
B@

iωþ

−ζ
iω−

1
CA: ð11Þ

In terms of W and T, Eq. (10) can be written as

L mixed ¼
gv
2
ðW · ∂TÞ; ð12Þ

which explicitly demonstrates the SUð2ÞC invariance of
Lmixed. The other terms,L quad,L deriv, andL quartic, when
expressed in terms of W and T, can also be shown to be
invariant under SUð2ÞC. All these terms will be considered
in detail in the next subsection, when we consider the
nHDM generalization of the above prescription.
Now, let us take a look at the SUð2ÞC invariance of the

scalar potential, which is given by

VðϕÞ ¼ μ2ðϕ†ϕÞ þ λðϕ†ϕÞ2: ð13Þ

After the EWSB, ϕ†ϕ can be expressed as

ϕ†ϕ ¼ 1

2
ðT · TÞ þ v2

2
þ h2

2
þ vh: ð14Þ

We can see that, our previous multiplet identifications of T
and h are compatible with the SUð2ÞC invariance of the
scalar potential. In other words, no additional conditions
need to be imposed on the SM scalar potential to make it
SUð2ÞC invariant. It should be noted that, the SUð2ÞC
invariance of the scalar potential mandates that the scalars
which are in the same SUð2ÞC multiplet should have the
same mass. This condition is trivially satisfied here in
the SM as all the components of T are Goldstone bosons
with zero masses. This will no longer be true in nHDMs,
where we will need to impose additional restrictions on
the parameters of the scalar potential to ensure custodial
invariance.

B. Generalization to nHDM

We will now look at the scalar kinetic Lagrangian for a
model with n complex scalar doublets ϕk (k ¼ 1;…; n)
and identify the different SUð2ÞC multiplets. Thus we
begin with

L kin ¼
Xn
k¼1

ðDμϕkÞ†ðDμϕkÞ; ð15Þ

where, under the assumption of g0 ¼ 0, the gauge covariant
derivative of ϕk is given by

Dμϕk ¼
�
∂μ þ ig

τa
2
Wa

μ

�
ϕk: ð16Þ

After the EWSB, the kth scalar doublet is decomposed as

ϕk ¼
1ffiffiffi
2

p
 ffiffiffi

2
p

wþ
k

vk þ hk þ izk

!
; ð17Þ

where vk is the VEVof ϕk, assumed to be real. Borrowing
the terminology introduced in Eq. (4), we still have

L mass ¼
g2v2

8
ðW ·WÞ; ð18Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ � � � þ v2n

p
is the total electroweak

VEV, and we have used Eq. (7) for the definition of W.
This implies that L mass will still respect SUð2ÞC once we
identify the custodial triplet of the gauge bosons, as in the
case of the SM. Similarly, for L cubic we have

L cubic ¼
g2

4
ðW ·WÞ

Xn
k¼1

vkhk: ð19Þ

Evidently, L cubic will also be custodially invariant if we
identify hk (k ¼ 1;…; n) as singlets of SUð2ÞC. Next, we
turn our attention to L mixed, which has the following form

Lmixed ¼
g
2

Xn
k¼1

vk½ið∂μw−
k ÞWþ

μ − ið∂μwþ
k ÞW−

μ − ð∂μzkÞW3
μ�:

ð20Þ

Taking inspiration from Eq. (10), we now proceed to define
a set of SUð2ÞC triplets involving the scalar component
fields as

Tk ≡
0
B@

iwþ
k

−zk
iw−

k

1
CA; k ¼ 1;…; n: ð21Þ

Following this identification, we can express Lmixed as the
sum of SUð2ÞC invariants, given by

Lmixed ¼
g
2

Xn
k¼1

vkðW · ∂TkÞ: ð22Þ

For the sake of completeness, we also express L quad,
L quartic, and L deriv, in terms of W, Tk, and hk, as follows
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L quad ¼
1

2

Xn
k¼1

½ð∂Tk · ∂TkÞ þ ð∂μhkÞð∂μhkÞ�; ð23aÞ

L quartic ¼
g2

8
ðW ·WÞ

Xn
k¼1

ðTk · Tk þ h2kÞ; ð23bÞ

L deriv ¼
g
2

Xn
k¼1

fhkðW · ∂TkÞ þ ∂hkðTk ·WÞ

þ ðTk × ∂TkÞ ·Wg; ð23cÞ

where ðr1 × r2Þ · r3 is the singlet combination of the SUð2Þ
product of three triplets, r1;2;3, for which the explicit
expression is given in Appendix A.
Thus, we can see that all the terms in the scalar kinetic

Lagrangian are custodially invariant. However, the triplets
Tk are not expressed in terms of physical fields. Rotation of
these fields from the Lagrangian basis to the physical basis
will give rise to the Goldstone bosons, the physical charged
scalars, and pseudoscalars.2 We would like to transfer the
SUð2ÞC invariance into the physical basis as well. For this,
we need to rotate each triplet as a whole object, that is,

Pj ¼
Xn
k¼1

OjkTk j ¼ 1; 2;…n; ð24Þ

where Pj denotes the jth triplet of SUð2ÞC in the physical
basis, and Ojk are the elements of an orthogonal matrix.
Note that, each triplet Tk, contained a pseudoscalar field
and a pair of charged fields. Consequently, Eq. (24) implies
that the charged and pseudoscalar mass matrices should
be rotated into the physical basis by means of the same

rotation matrix, in order to preserve the SUð2ÞC invariance
of L kin in the physical basis as well. Now, for a charged
scalar and a pseudoscalar in the physical basis to be placed
in the same triplet Pj, they should have a common mass so
that the mass terms for the members of Pj can be concisely
expressed in an SUð2ÞC invariant form as M2

jðPj · PjÞ.
Thus, we can conclude that, in the physical basis, the
diagonal mass matrices in the charged and pseudoscalar
sectors must be equal. Also, from Eq. (24), we should recall
that the rotations that bring the mass matrices of the
charged and pseudoscalar sectors to their respective diago-
nal forms should also be the same. Putting this together, we
can conclude that the mass matrix of the charged and
pseudoscalar sectors should be equal in the Lagrangian
basis as well, that is

M2
C ¼ M2

P: ð25Þ

Since the information about the scalar masses and the
mixings comes from the scalar potential, the parameters
of the scalar potential should adjust themselves so that
Eq. (25) is satisfied for arbitrary values of the VEVs. The
arbitrariness of the VEVs is important because the validity
of the custodial symmetry should not depend on the exact
values of the VEVs, just as in the case of the SM.

C. Examples with 2HDMs

We will now explicitly demonstrate how Eq. (25) man-
ifests itself for the simple case of a 2HDM scalar potential.
At first, let us consider the 2HDM scalar potential with a
softly broken Z2 symmetry (ϕ1 → ϕ1, ϕ2 → −ϕ2), which is
commonly used in NFC models [3]:

Vðϕ1;ϕ2Þ ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 −m2

12ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ þ
λ1
2
ðϕ†

1ϕ1Þ2 þ
λ2
2
ðϕ†

2ϕ2Þ2

þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
λ5
2

n
ðϕ†

1ϕ2Þ2 þ ðϕ†
2ϕ1Þ2

o
: ð26Þ

The charged and pseudoscalar mass matrices which transpire from the above scalar potential are given by

M2
C ¼

 m2
12
v2

v1
− 1

2
λ4v22 − 1

2
λ5v22 −m2

12 þ 1
2
λ4v1v2 þ 1

2
λ5v1v2

−m2
12 þ 1

2
λ4v1v2 þ 1

2
λ5v1v2

m2
12
v1

v2
− 1

2
λ4v21 − 1

2
λ5v21

!
; ð27aÞ

M2
P ¼

 m2
12
v2

v1
− λ5v22 −m2

12 þ λ5v1v2

−m2
12 þ λ5v1v2

m2
12
v1

v2
− λ5v21

!
: ð27bÞ

Thus, imposition of Eq. (25) for arbitrary values of the VEVs will lead to the following relation

2Following Ref. [18], it is reasonable to have such a classification of the scalar spectrum because CP conservation follows for nHDMs
with custodial symmetry.
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λ4 ¼ λ5; ð28Þ

which agrees with earlier results [13,14,21]. In passing, we wish to point out that even if we consider the general 2HDM
potential [3]

Vðϕ1;ϕ2Þ ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 − ðm2

12ϕ
†
1ϕ2 þ H:c:Þ þ λ1

2
ðϕ†

1ϕ1Þ2 þ
λ2
2
ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ

þ λ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
�
λ5
2
ðϕ†

1ϕ2Þ2 þ λ6ðϕ†
1ϕ1Þðϕ†

1ϕ2Þ þ λ7ðϕ†
2ϕ2Þðϕ†

1ϕ2Þ þ H:c:

�
; ð29Þ

the condition for custodial invariance is still given by
Eq. (28). The reason for this will be discussed in more
detail in Appendix B.

III. VALIDATION OF THE CUSTODIAL LIMIT
BY EXPLICIT CALCULATION

In SUð2ÞC invariant models, we expect that no additional
contribution to the T-parameter comes from the scalar
sector. It would be rather reassuring to explicitly verify that
this is indeed the case for nHDMs in the limit of Eq. (25).
For this purpose, we use the one-loop formula for the NP
contribution to the T-parameter for nHDMs given in
Refs. [15,16]:

αT ¼ g2

64π2M2
W

�Xn
a¼2

X2n
b¼2

jðU†VÞabj2Fðm2
a; μ2bÞ

−
X2n−1
b¼2

X2n
b0¼bþ1

jðV†VÞbb0 j2Fðμ2b; μ2b0 Þ

þ 3
Xn
b¼2

jðV†VÞ1bj2
�
FðM2

Z; μ
2
bÞ − FðM2

W; μ
2
bÞ
��

;

ð30Þ

where

Fðx; yÞ≡
� xþy

2
− xy

x−y ln
x
y ; x ≠ y

0; x ¼ y
; ð31Þ

and α is the fine-structure constant. The masses of the
charged scalars are denoted byma, and μa are the masses of
the physical neutral scalars, defined in such a way that
a ≤ n refers to the pseudoscalars, and a > n are the
CP-even fields. Lastly, U† and V† are n × n and 2n × n
matrices that rotate the charged and neutral components
(w�

k and φ0
k ≡ hk þ izk) into the physical basis (S� and S0),

respectively, in such a way that the Goldstone bosons are
located in the first row,

w�
k ¼

Xn
a¼1

UkaS�a ; φ0
k ¼

X2n
b¼1

VkbS0b: ð32Þ

We give the explicit structure of S� and S0 as follows

S� ¼ ðω�; H�
1 ;…; H�

n−1ÞT;
S0 ¼ ðζ; A1;…; An−1; h; H1;…; Hn−1ÞT; ð33Þ

where ω� and ζ are the charged and neutral unphysical
Goldstone bosons, respectively, H�

k is the kth charged
scalar, and Ak the kth pseudoscalar. For the CP-even
scalars, h is the lightest scalar usually identified as the
SM-like Higgs, and Hk denotes the kth physical CP-even
scalar. Following the definition of Eq. (24), and comparing
with Eq. (32), we can relate the U and V matrices with the
scalar rotation matrices as follows

U ¼ OT
C; V ¼ ð iOT

P OT
S Þ; ð34Þ

where the subscripts C, P, S refer to the charged, pseu-
doscalar, and scalar sectors respectively. The relevant
combinations can be expressed as

U†V ¼ ð iOCOT
P OCOT

S Þ;

V†V ¼
	

1n×n −iOPOT
S

iOSOT
P 1n×n



: ð35Þ

We must note that the last term of Eq. (30) vanishes in the
limit g0 → 0, that is, MZ ¼ MW . Therefore, we will focus
on the first two terms in Eq. (30), and convince ourselves
that they also vanish in the custodial limit of Eq. (25).
Taking advantage of Eq. (35), we can rewrite the first two
terms of Eq. (30) as

αT ¼ g2

64π2M2
W

�Xn
a¼2

Xn
b¼2

jðiOCOT
PÞabj2Fðm2

a; μ2bÞ

þ
Xn
a¼2

Xn
b¼1

jðOCOT
SÞabj2Fðm2

a; μ2nþbÞ

−
Xn
a¼2

Xn
b¼1

jð−iOPOT
SÞabj2Fðμ2a; μ2nþbÞ

�
: ð36Þ

In the custodial limit, we must have M2
P ¼ M2

C, and thus
OP ¼ OC, as well asm2

a ¼ μ2a (with a < n). In this way, the
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second and third terms of Eq. (36) cancel out, andOCOT
P ¼

OPOT
P ¼ 1n×n leads to a zero contribution from the first

term, because of Eq. (31).

IV. DEMOCRATIC 3HDMs

The Yukawa Lagrangian for a democratic 3HDM, as
discussed in the introduction, has the following form

L Y ¼ −YdQ̄Lϕ2nR − YuQ̄Lϕ̃3pR − YlL̄Lϕ1lR; ð37Þ

where Yd:u:l are the Yukawa couplings in the down-quark,
up-quark, and charged-lepton sectors. The up-type, down-
type, and charged-lepton right-handed fields are denoted
as pR, nR, and lR, respectively. The left-handed SUð2ÞL
doublets for the quarks and leptons areQL ¼ ðpL; nLÞT and
LL ¼ ðνL; eLÞT . Finally, ϕ̃3 ¼ iτ2ϕ�

3 is the SUð2ÞL doublet
responsible for the up-quark masses. There are two
common ways to arrive at the above Lagrangian. The first
is to impose a Z3 symmetry as follows [8]

ϕ1 → ωϕ1; ϕ2 → ω2ϕ2;

lR → ω2lR; nR → ωnR: ð38Þ

The second possibility relies on a Z2 × Z0
2 symmetry under

which the fields transform as [5]

Z2∶ ϕ1 → −ϕ1; lR → −lR ð39aÞ

Z0
2∶ϕ2 → −ϕ2; nR → −nR ð39bÞ

Both in Eqs. (38) and (39), only the nontrivial trans-
formations are explicitly displayed. In the following, we
will discuss the implications of these symmetries on the
scalar potential in the context of the custodial limit.

A. Custodial limit of democratic 3HDMs

In this subsection, we will write down the explicit forms
of the scalar potential which follow from the symmetry of
Eqs. (38) and (39). Then, we will proceed to calculate the
detailed structure of the charged and pseudoscalar mass
matrices. Finally, we will impose Eq. (25) to extract the
implications in terms of the parameters of the scalar potential.

1. The case with a Z3 symmetry

The scalar potential for this case will be given by [36]

VZ3
¼ m2

11ϕ
†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3 −m2

12ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ −m2
13ðϕ†

1ϕ3 þ ϕ†
3ϕ1Þ −m2

23ðϕ†
2ϕ3 þ ϕ†

3ϕ2Þ
þ λ1ðϕ†

1ϕ1Þ2 þ λ2ðϕ†
2ϕ2Þ2 þ λ3ðϕ†

3ϕ3Þ2 þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ þ λ6ðϕ†
2ϕ2Þðϕ†

3ϕ3Þ
þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ8ðϕ†

1ϕ3Þðϕ†
3ϕ1Þ þ λ9ðϕ†

2ϕ3Þðϕ†
3ϕ2Þ þ λ10

n
ðϕ†

1ϕ2Þðϕ†
1ϕ3Þ þ ðϕ†

2ϕ1Þðϕ†
3ϕ1Þ

o

þ λ11
n
ðϕ†

2ϕ1Þðϕ†
2ϕ3Þ þ ðϕ†

1ϕ2Þðϕ†
3ϕ2Þ

o
þ λ12

n
ðϕ†

3ϕ1Þðϕ†
3ϕ2Þ þ ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ

o
; ð40Þ

where soft breaking terms have also been allowed. The explicit expressions for the elements of the 3 × 3 symmetric mass
matrix in the charged scalar sector are given below3

ðM2
CÞ11 ¼

m2
12v2
v1

þm2
13v3
v1

− λ10v2v3 −
λ11v22v3
2v1

−
λ12v2v23
2v1

−
λ7v22
2

−
λ8v23
2

; ð41aÞ

ðM2
CÞ22 ¼

m2
12v1
v2

þm2
23v3
v2

−
λ10v21v3
2v2

− λ11v1v3 −
λ12v1v23
2v2

−
λ7v21
2

−
λ9v23
2

; ð41bÞ

ðM2
CÞ33 ¼

m2
13v1
v3

þm2
23v2
v3

−
λ10v21v2
2v3

−
λ11v1v22
2v3

− λ12v1v2 −
λ8v21
2

−
λ9v22
2

; ð41cÞ

ðM2
CÞ12 ¼ ðM2

CÞ21 ¼ −m2
12 þ

1

2
λ10v1v3 þ

1

2
λ11v2v3 þ

1

2
λ7v1v2; ð41dÞ

ðM2
CÞ13 ¼ ðM2

CÞ31 ¼ −m2
13 þ

1

2
λ10v1v2 þ

1

2
λ12v2v3 þ

1

2
λ8v1v3; ð41eÞ

ðM2
CÞ23 ¼ ðM2

CÞ32 ¼ −m2
23 þ

1

2
λ11v1v2 þ

1

2
λ12v1v3 þ

1

2
λ9v2v3: ð41fÞ

3We have used the minimization conditions to trade m2
11, m

2
22, and m2

33 in favor of the VEVs.
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Similarly, for the pseudoscalar mass matrix we have

ðM2
PÞ11 ¼

m2
12v2
v1

þm2
13v3
v1

− 2λ10v2v3 −
λ11v22v3
2v1

−
λ12v2v23
2v1

;

ð42aÞ

ðM2
PÞ22 ¼

m2
12v1
v2

þm2
23v3
v2

−
λ10v21v3
2v2

− 2λ11v1v3 −
λ12v1v23
2v2

;

ð42bÞ

ðM2
PÞ33 ¼

m2
13v1
v3

þm2
23v2
v3

−
λ10v21v2
2v3

−
λ11v1v22
2v3

− 2λ12v1v2;

ð42cÞ

ðM2
PÞ12 ¼ðM2

PÞ21 ¼ −m2
12 þ λ10v1v3 þ λ11v2v3 −

λ12v23
2

;

ð42dÞ

ðM2
PÞ13 ¼ðM2

PÞ31 ¼ −m2
13 þ λ10v1v2 þ λ12v2v3 −

λ11v22
2

;

ð42eÞ

ðM2
PÞ23 ¼ðM2

PÞ32 ¼ −m2
23 þ λ11v1v2 þ λ12v1v3 −

λ10v21
2

:

ð42fÞ

For Eq. (25) to hold for any arbitrary values of the VEVs,
we should have

λ7 ¼ λ8 ¼ λ9 ¼ λ10 ¼ λ11 ¼ λ12 ¼ 0; ð43Þ

which should be read as the conditions for custodial
invariance in a Z3 symmetric 3HDM potential.

2. The case with a Z2 × Z0
2 symmetry

The scalar potential in this case can be written as [37]

VZ2×Z2
¼ m2

11ϕ
†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3 −m2

12ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ −m2
13ðϕ†

1ϕ3 þ ϕ†
3ϕ1Þ −m2

23ðϕ†
2ϕ3 þ ϕ†

3ϕ2Þ
þ λ1ðϕ†

1ϕ1Þ2 þ λ2ðϕ†
2ϕ2Þ2 þ λ3ðϕ†

3ϕ3Þ2 þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ8ðϕ†

1ϕ3Þðϕ†
3ϕ1Þ þ λ9ðϕ†

2ϕ3Þðϕ†
3ϕ2Þ

þ λ10
n
ðϕ†

1ϕ2Þ2 þ ðϕ†
2ϕ1Þ2

o
þ λ11

n
ðϕ†

1ϕ3Þ2 þ ðϕ†
3ϕ1Þ2

o
þ λ12

n
ðϕ†

2ϕ3Þ2 þ ðϕ†
3ϕ2Þ2

o
; ð44Þ

where, again, we have allowed terms that softly break the
symmetry. The elements of the charged scalar mass matrix
are given below:

ðM2
CÞ11 ¼

m2
12v2
v1

þm2
13v3
v1

− λ10v22 −
λ7v22
2

− λ11v23 −
λ8v23
2

;

ð45aÞ

ðM2
CÞ22 ¼

m2
12v1
v2

þm2
23v3
v2

− λ10v21 −
λ7v21
2

− λ12v23 −
λ9v23
2

;

ð45bÞ

ðM2
CÞ33 ¼

m2
13v1
v3

þm2
23v2
v3

− λ11v21 −
λ8v21
2

− λ12v22 −
λ9v22
2

;

ð45cÞ

ðM2
CÞ12 ¼ ðM2

CÞ21 ¼ −m2
12 þ λ10v1v2 þ

1

2
λ7v1v2; ð45dÞ

ðM2
CÞ13 ¼ ðM2

CÞ31 ¼ −m2
13 þ λ11v1v3 þ

1

2
λ8v1v3; ð45eÞ

ðM2
CÞ23 ¼ ðM2

CÞ32 ¼ −m2
23 þ λ12v2v3 þ

1

2
λ9v2v3: ð45fÞ

For the case of the pseudoscalar mass matrix elements,
we find

ðM2
PÞ11 ¼

m2
12v2
v1

þm2
13v3
v1

− 2λ10v22 − 2λ11v23; ð46aÞ

ðM2
PÞ22 ¼

m2
12v1
v2

þm3
23v3
v2

− 2λ10v21 − 2λ12v23; ð46bÞ

ðM2
PÞ33 ¼

m2
13v1
v3

þm2
23v2
v3

− 2λ11v21 − 2λ12v22; ð46cÞ

ðM2
PÞ12 ¼ ðM2

PÞ21 ¼ −m2
12 þ 2λ10v1v2; ð46dÞ

ðM2
PÞ13 ¼ ðM2

PÞ31 ¼ −m2
13 þ 2λ11v1v3; ð46eÞ

ðM2
PÞ23 ¼ ðM2

PÞ32 ¼ −m2
23 þ 2λ12v2v3: ð46fÞ

Following the reasoning presented for the Z3 case, the
conditions for custodial invariance can be found using
Eq. (25), which read

λ7 ¼ 2λ10; λ8 ¼ 2λ11; λ9 ¼ 2λ12: ð47Þ
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B. Wrong-sign Yukawas in democratic 3HDMs

Now we turn our attention to the Yukawa sector
phenomenology that follows from Eq. (37). We will
continue to assume that no additional sources for CP
violation arise from the scalar sector. To begin with, we
parametrize the VEVs of the three doublets as follows

v1¼vcosβ1cosβ2; v2¼vcosβ1 sinβ2; v3¼vsinβ1;

ð48Þ

which, by design, satisfies the relation

v21 þ v22 þ v23 ¼ v2; ð49Þ

with v ¼ 246 GeV being the total electroweak VEV.
The range of values of β1 and β2 allowed from the
perturbativity of the fermionic Yukawa couplings can be
found in refs. [10,11].
The current LHC Higgs data usually serves as a

motivation to stay close to the so-called alignment
limit [8]. However, as explained in the introduction, here
we are after a relatively less-explored possibility where the
sign of the down-type Yukawa couplings is opposite to
what has been predicted by the SM. To prepare ourselves
for what comes next, we define the Higgs coupling
modifiers as follows [34,35]

κx ¼
ghxx
gSMhxx

; ð50Þ

where the field h, in the context of nHDMs, denotes the
lightest CP-even scalar, and ‘x’ can represent the massive
vector bosons or fermions.
To illustrate the details of the wrong-sign limit, we

briefly revisit the example of a type-II 2HDM where the
coupling modifiers have the expression given in Table I.4

These coupling modifiers can be conveniently rewritten
as follows

κIIV ¼ sin ðβ − αÞ; ð51aÞ

κIIu ¼ sin ðβ − αÞ þ cot β cos ðβ − αÞ; ð51bÞ

κIId ¼ κIIl ¼ sin ðβ − αÞ − tan β cos ðβ − αÞ: ð51cÞ

Now let us consider the limit

cos ðβ − αÞ ¼ r
tan β

; ð52Þ

where r is a real number and tan β ≫ jrj. In such a scenario,
Eq. (51) can be approximated as

κIIV ≈ 1; κIIu ≈ 1; κIId;l ≈ 1 − r: ð53Þ

The wrong-sign limit, in particular, arises for r ¼ 2, in
which case Eq. (53) takes the following form

κIIV ≈ 1; κIIu ≈ 1; κIId;l ≈ −1: ð54Þ

Such a possibility is allowed because the current LHC
Higgs data is not sensitive enough to probe the sign of the
bottom-quark Yukawa coupling in the loop-induced verti-
ces such as hgg and hγγ. To demonstrate this explicitly, we
use the current Higgs data [23], and display the 2σ-allowed
region in the cos ðβ − αÞ vs tan β plane in Fig. 1. The
dark-blue region corresponds to the wrong-sign limit in the
type-II 2HDM.5

Now, we will demonstrate that such wrong-sign scenar-
ios are also entertained in democratic 3HDMs with much
greater flexibility in terms of the number of free parameters.
To illustrate this, we again purposefully rewrite the Higgs
coupling modifiers in Table I for democratic 3HDMs
as follows

TABLE I. The coupling modifiers for the type-II 2HDM and democratic 3HDMs. In the 2HDM case, tan β ¼
v2=v1 and α is a suitably defined rotation angle in the CP-even scalar sector [3]. Similarly, in the case of 3HDMs, α1
and α2 are two suitably defined rotation angles in the CP-even scalar sector [8].

Model κV κu κd κl

Type-II 2HDM sin ðα − βÞ cos α
sin β − sin α

cos β − sin α
cos β

Democratic 3HDMs cos α2 cos β2 cos ðα1 − β1Þ þ sin α2 sin β2 sin α2
sin β2

sin α1
sin β1

cosα2
cos β2

cos α1
cos β1

cos α2
cos β2

4We note here that for the 2HDM case we are using the
standard convention for α, such that the alignment limit is given
by cos ðβ − αÞ ¼ 0. However, for the case of democratic 3HDMs,
the angles α1;2 are defined in a way such that the alignment
conditions read sin ðαi − βiÞ ¼ 0, with i ¼ 1, 2 [8].

5In a recent 2HDM fit [38], it was claimed that the wrong-sign
limit is disfavored by the current Higgs data at 2σ, and only
allowed within 3σ. However, we have used a more updated
dataset and our result for 2HDM agrees with the most updated fit
from ATLAS [23] (in Fig. 20(b), we can see the wrong-sign limit
is still allowed).

DEMOCRATIC THREE-HIGGS-DOUBLET MODELS: … PHYS. REV. D 107, 055035 (2023)

055035-9



κV ¼ cos ðα1 − β1Þ
1þ tan2 β2

ðcos ðα2 − β2Þ − sin ðα2 − β2Þ tan β2Þ

þ tan2 β2
1þ tan2 β2

ðcos ðα2 − β2Þ þ sin ðα2 − β2Þ cot β2Þ;

ð55aÞ

κu ¼ cos ðα2 − β2Þ þ sin ðα2 − β2Þ cot β2; ð55bÞ

κd ¼ ðcos ðα1 − β1Þ þ sin ðα1 − β1Þ cot β1Þ
× ðcos ðα2 − β2Þ − tan β2 sin ðα2 − β2ÞÞ; ð55cÞ

κl ¼ ðcos ðα1 − β1Þ − sin ðα1 − β1Þ tan β1Þ
× ðcos ðα2 − β2Þ − tan β2 sin ðα2 − β2ÞÞ: ð55dÞ

In a similar way to the 2HDM scenario, we focus our
attention to the limit

sin ðα2 − β2Þ ¼
r2

tan β2
; ð56Þ

where r2 is a real number, and tan β2 ≫ jr2j. In this limit,
κV ≈ κu ≈ 1, but κd and κl take the following form

κd ¼ ð1 − r2Þðcos ðα1 − β1Þ þ sin ðα1 − β1Þ cot β1Þ

¼ ð1 − r2Þ
sin α1
sin β1

; ð57aÞ

κl ¼ ð1 − r2Þðcos ðα1 − β1Þ − sin ðα1 − β1Þ tan β1Þ
¼ ð1 − r2Þ

cos α1
cos β1

: ð57bÞ

If we further consider the limit

sin ðα1 − β1Þ ¼
r1

tan β1
; ð58Þ

where, again, r1 is a real number, and tan β1 ≫ jr1j, then
Eq. (57) can be further simplified to

κd ¼ ð1 − r2Þ; ð59aÞ

κl ¼ ð1 − r2Þð1 − r1Þ: ð59bÞ

The limits that can be obtained for different values of r1 and
r2 have been listed in Table II, where we can see that all the
wrong-sign possibilities that can be obtained from 2HDMs
with NFC are encompassed by a democratic 3HDM. All
these features have been clearly depicted in Figs. 2 and 3,
where the darker shade correspond to the wrong-sign
limit. Thus, we can see that the democratic 3HDM gives
more leeway for the wrong-sign limit, when compared to
the 2HDM.
So far, we have obtained the wrong-sign limit in the

democratic 3HDM following the 2HDM prescription.
However, a democratic Yukawa structure can entertain
more exotic possibilities. As usual, we start by investigating
how to impose κu ≈ 1. One possibility is to set tan β2 ≫ 1
together with cos ðα2 − β2Þ ≈ 1, as was done in Eq. (56),
leading to Eq. (57). Now, instead of going to the limit of
Eq. (58), one can choose

sin ðα1 − β1Þ ≈�1; tan β1 ≈ 1: ð60Þ

In this way, using cos ðα1 − β1Þ ≈ 0, we get

κV ≈ κu ≈ 1; ð61aÞ

κd ≈ −κl ≈�ð1 − r2Þ; ð61bÞ

FIG. 1. Allowed region at 95% CL from the current data on
Higgs signal strengths in the type-II 2HDM. It should be noted
that when considering the h → γγ decay, the charged-Higgs
contribution has been neglected with the understanding that it can
be safely decoupled in the presence of the soft breaking parameter
in the scalar potential [39–41]. For illustration, the line corre-
sponding to cosðβ − αÞ ¼ 2=tan β has also been plotted in the
same graph, which reinforces our intuitions from Eq. (52).

TABLE II. Wrong-sign possibilities in democratic 3HDMs. It should be noted that κu ≈ κV ≈ 1 in all the cases.

r1 ¼ 0 r1 ¼ 2

r2 ¼ 0 κd ¼ 1 κl ¼ 1 (alignment limit) κd ≈ 1 κl ≈ −1 (wrong-sign limit in the type-X 2HDM)
r2 ¼ 2 κd ≈ −1 κl ≈ −1 (wrong-sign limit in the type-II 2HDM) κd ≈ −1 κl ≈ 1 (wrong-sign limit in the type-Y 2HDM)
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where, as before, r2 ≈ 0 and r2 ≈ 2 can give us two
different possibilities. As such, we see that it is possible
to achieve a wrong-sign limit in the democratic 3HDMs
without the requirement of large tan β1. If we follow
the usual path to the wrong-sign limit, we see that
sin ðα1 − β1Þ ≈ 1 is allowed in Fig. 2. The possibility with
sin ðα1 − β1Þ ≈ −1 is separately showcased in Fig. 3 for
better visibility.

At this point it will be quite natural to wonder how such
wrong-sign possibilities can be probed in experiments.
An obvious way to sense the wrong-sign limit will be to
measure the Higgs signal strengths that involve hgg and hγγ
effective vertices with increasing precision to the extent that
the interference terms from the lighter fermions in the loop
start to become relevant. Alternatively, the decay h → ϒγ
was suggested as a probe for the sign of κb [42,43].

FIG. 2. Allowed region at 95% CL from the current data on Higgs signal strengths in democratic 3HDM. As before, the charged-Higgs
contribution to h → γγ decay is neglected with the understanding that it can be safely decoupled in the presence of the soft breaking
parameter in the scalar potential [39–41]. The contour corresponding to Eqs. (56) and (58), for r1 ¼ r2 ¼ 2 are also displayed for easy
comparison.

FIG. 3. Allowed region at 95% CL from the current data on Higgs signal strengths for sinðα1 − β1Þ ≈ −1 is displayed separately in this
plot. All the points shown in the left panel in the sinðα2 − β2Þ vs. tan β2 plane are sampled from the sinðα1 − β1Þ ≈ −1 region as
displayed in the right panel. The contour corresponding to Eq. (56) for r2 ¼ 2 is displayed for easy comparison.

DEMOCRATIC THREE-HIGGS-DOUBLET MODELS: … PHYS. REV. D 107, 055035 (2023)

055035-11



Similarly h → τþτ−γ [44] may serve as a probe for the sign
of κτ. Additionally, if we know the UV complete model
responsible for the wrong-sign Yukawas, then we can
perform a targeted search for the nonstandard particles.
For instance, in this case the wrong-sign limit is arising
within an nHDM framework. Thus, one can look for
nonstandard scalars whose phenomenologies in the
wrong-sign limit will be presumably different from the
corresponding alignment limit counterparts [45].
But the crucial point is, even if we stay agnostic about

the origin of the wrong-sign Yukawas, we should still
remember that any departure from the SM couplings will
introduce an energy scale beyond which unitarity will be
violated [46]. Therefore, the wrong-sign limits as described
in, e.g., Eq. (54) will inevitably call for NP below the
unitarity violation scale. For the arrangement of couplings
appearing in Eq. (54), the earliest onset of unitarity
violation will occur in the bb̄ → WLWL scattering and
the maximum energy cutoff before which the NP must
intervene, will be given by [47],

Emax ¼
2
ffiffiffi
2

p
π

GFmb
≈ 180 TeV: ð62Þ

V. SUMMARY

In this article we have studied two new aspects of
democratic 3HDMs, namely, the impact of custodial
symmetry and the wrong-sign Yukawa couplings. As such,
our goal is to provide the ingredients for constructing
democratic 3HDMs which is safeguarded against the
T-parameter constraints, while showcasing the interesting
Yukawa structure allowed by the Higgs data. The custodial
limit serves as a systematic guideline for alleviating
the stringent constraints arising from the electroweak
T-parameter. We have followed an alternative approach
to find the general condition for the custodial symmetry to
be prevalent in scalar sector of an nHDM. We used
these results to extract the model specific conditions for
democratic 3HDMs which usually comes in two different
avatars—one with a Z3 symmetry and the other with a
Z2 × Z0

2 symmetry. We then turn our attention to the
Yukawa sector of democratic 3HDMs and showed that
the democratic 3HDMs also accommodate the possibility
of wrong-sign limit where the signs of the down-type
Yukawa couplings are opposite to the corresponding SM
predictions. We find that a democratic 3HDM covers all the
wrong-sign scenarios that can possibly arise from a 2HDM
framework with NFC. In the recent fits of the Higgs
couplings [23,48,49] in the kappa formalism [34,35], the
results are often reported with an implicit assumption about
the signs of the kappas. Our discussion on the wrong-sign
limit highlights the importance of presenting the fit results
without any inherent assumptions about the signs of the
kappas because, otherwise we can miss potentially

interesting and unconventional limits brought in by many
different BSM scenarios. To emphasize the last point, we
have also argued how the wrong-sign limit inevitably leads
to an upper limit on the energy scale for the onset of NP.
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APPENDIX A: BRIEF NOTE ON SUð2Þ TRIPLETS
A real triplet of SUð2Þ in the Cartesian basis is expressed

as follows:

ACar ¼

0
B@

A1

A2

A3

1
CA: ðA1Þ

The generators of SUð2Þ in this basis are given by

T1 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; T2 ¼

0
B@

0 0 i

0 0 0

−i 0 0

1
CA;

T3 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; ðA2Þ

which make the transformation real. Now we want to
migrate to a basis where T3 is diagonal. We will call this the
spherical basis and the SUð2Þ triplet in this basis will be
denoted by ASph. We note that the unitary matrix

U ¼ 1ffiffiffi
2

p

0
B@

−1 i 0

0 0
ffiffiffi
2

p

1 i 0

1
CA; ðA3Þ
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diagonalizes T3 as follows

U · T3 · U† ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA ¼ T 0

3: ðA4Þ

This implies that ASph will be related to ACar via the
following relation

ASph ¼ UACar ¼

0
B@

1ffiffi
2

p ð−A1 þ iA2Þ
A3

1ffiffi
2

p ðA1 þ iA2Þ

1
CA: ðA5Þ

where we have used Eq. (A1). Now let us define

A� ¼ 1ffiffiffi
2

p ðA1 ∓ iA2Þ; ðA6Þ

where Aþ and A− are implicitly understood to be the
complex conjugates of each other. In terms of these we can
write the SUð2Þ triplet in the spherical basis as follows

ASph ¼

0
B@

−Aþ
A3

A−

1
CA: ðA7Þ

Thus, the SUð2Þ invariant combination of two triplets, in
these two bases, will be given by

A ·B ¼ A1B1 þ A2B2 þ A3B3 ðA8aÞ

¼ AþB− þ A−Bþ þ A3B3: ðA8bÞ

In a similar manner, the SUð2Þ invariant combination of
three triplets is expressed as

ðA ×BÞ ·C ¼ ðA2B3 − B2A3ÞC1 þ ðA3B1 − B3A1ÞC2

þ ðA1B2 − B1A2ÞC3 ðA9aÞ

¼ i½A3ðB−Cþ − C−BþÞ þ B3ðC−Aþ − A−CþÞ
þ C3ðA−Bþ − B−AþÞ�: ðA9bÞ

APPENDIX B: CUSTODIALLY INVARIANT
SCALAR POTENTIAL

In this appendix, we try to enumerate the terms in the
scalar potential of a CS-invariant nHDM. Since we have
doublets only, the renormalizable scalar potential can
contain only quadratic and quartic terms.
In n doublets, there are 4n real fields. After the symmetry

breaking, there will be n triplets of the CS, including one that
contains the unphysical Goldstone modes. In addition, there
will be n singlets. The real parts of the neutral components of
ϕk will be CS singlets. It is then easy to see that

ϕ†
kϕk ¼

1

2
Tk · Tk þ CS singlets; ðB1aÞ

ϕ†
jϕk þ ϕ†

kϕj ¼ Tj · Tk þ CS singlets; ðB1bÞ

with j ≠ k. These are the quadratic forms which are CS
invariant [13,17,19]. The total number of terms of the first
kind is n, and of the second kind is 1

2
nðn − 1Þ, making a total

of 1
2
nðnþ 1Þ, which is also exactly the number of different

quadratic terms of the form Tj · Tk that we can get, with
unrestricted j and k. In fact, if we insist on only real
parameters in the scalar potential, there is no additional
restriction arising from the CS: the terms shown in Eq. (B1)
are the only ones that are Hermitian and gauge invariant.
A large subset of the quartic CS invariants can be

constructed as combinations of the quadratics. We can
enumerate these kinds of terms as follows:

ðϕ†
iϕiÞ2 ∶ ∶ n terms; ðB2aÞ

ðϕ†
iϕiÞðϕ†

jϕjÞ ∶ði ≠ jÞ∶ N terms; ðB2bÞ

ðϕ†
iϕj þ ϕ†

jϕiÞ2 ∶ði ≠ jÞ∶ N terms; ðB2cÞ

ðϕ†
iϕj þ ϕ†

jϕiÞðϕ†
kϕl þ ϕ†

lϕkÞ ∶ðfi:jg ≠ fk; lgÞ∶ 1

2
NðN − 1Þ terms; ðB2dÞ

ðϕ†
iϕiÞðϕ†

kϕl þ ϕ†
lϕkÞ ∶ðk ≠ lÞ∶ nN terms; ðB2eÞ

where, N ¼ 1
2
nðn − 1Þ. The total number of such terms is 1

8
nðnþ 1Þðn2 þ nþ 2Þ. The number of such terms arising from

pairs of dot product type combinations of n triplets of CS comes out to be exactly the same. For nHDMs with n ≥ 4,
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as discussed in Ref. [18], it is possible to obtain a new gauge invariant quantity that is truly independent of the combinations
listed in Eq. (B2) and corresponding to it we have the following CS invariant:

Imðϕ†
iϕjÞImðϕ†

kϕlÞ þ Imðϕ†
iϕlÞImðϕ†

jϕkÞ þ Imðϕ†
iϕkÞImðϕ†

lϕjÞ

¼ −
1

4
½ðTi × TjÞ · Tkðhl þ vlÞ − ðTj × TkÞ · Tlðhi þ viÞ þ ðTk × TlÞ · Tiðhj þ vjÞ − ðTl × TiÞ · Tjðhk þ vkÞ� ðB3Þ

with i ≠ j ≠ k ≠ l. However, the term in Eq. (B3) does not
contribute to the mass matrices and therefore complies with
Eq. (25). It should be noted that in the most general gauge
invariant potential, many more quartic terms are possible.
Thus, the quartic coefficients, λi, need to be correlated in
such a way so that the terms in the quartic part of the scalar
potential can be expressed in terms of the SUð2ÞC invariant
quantities listed in Eqs. (B2) and (B3).

To elucidate the implications, let us go back to the
example of the 2HDM scalar potential. From the general
2HDM potential of Eq. (29), we can see that the only terms
that are not expressible in terms of the SUð2ÞC bilinear
invariants of Eq. (B2) are the terms proportional to λ4 and
λ5. But in the custodial limit of Eq. (28), these two terms
can be combined as

λ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ
λ5
2
fðϕ†

1ϕ2Þ2 þ ðϕ†
2ϕ1Þ2g ⟶

λ4¼λ5 λ4
2
ðϕ†

1ϕ2 þ ϕ†
2ϕ1Þ2 ðB4Þ

which, in view of Eq. (B2), is SUð2ÞC invariant.
The above discussion can easily be extended to the case of nHDMs, especially to the democratic 3HDMs, discussed in

section IVA. The conditions obtained using Eq. (25) thus rearrange the quartic part of the scalar potential in such a way that
it can be expressed as combinations of the terms listed in Eq. (B2).
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