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In this article, we examine the prospect of a first-order phase transition with a Y ¼ 0 real SUð2Þ triplet
extension of the Standard Model, which remains odd under Z2, considering the observed Higgs boson
mass, perturbative unitarity, dark matter constraints, etc. Especially, we investigate the role of Higgs-triplet
quartic coupling considering one- and two-loop beta functions and compare the results with the complex
singlet extension case. It is observed that, at one-loop level, no solution can be found for both, demanding
Planck-scale perturbativity. However, for a much lower scale of 104 GeV, the singlet case predicts a first-
order phase transition consistent with the observed Higgs boson mass. On the contrary, for the two-loop
beta functions with one-loop potential, both the scenarios foresee a strongly first-order phase transition
consistent with the observed Higgs mass with upper bounds of 310 and 909 GeVon the triplet and singlet
masses, respectively. This mass bound shifts to 259 GeV in the case of a triplet with the inclusion of two-
loop contributions to the effective potential and the thermal masses with two-loop beta functions, consistent
with Planck-scale perturbativity and the observed Higgs boson mass value. This puts the triplet in apparent
contradiction with the observed dark matter relic bound and, thus, requires an additional field for that. The
preferred regions of the parameter space in both cases are identified by benchmark points that predict
gravitational waves with detectable frequencies in present and future experiments.
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I. INTRODUCTION

The discovery of the Higgs boson around 125.5 GeVwas
the last stepping stone in the StandardModel (SM) [1,2] and
a proof of spontaneous symmetry breaking in generating the
masses of some of the SM particles. However, the nature of
symmetry breaking is far from understood; i.e., the role of
another scalar, the order of phase transition, etc., are still to
be comprehended. It is intriguing to notice that, with one
Higgs doublet and the Higgs bosonmass around 125.5 GeV,
one finds only a smooth crossover [3–7] but not the first-
order phase transition. The requirement of the first-order
phase transition is vastly related to the observed baryon
number and lepton number in today’s Universe [8–10]. This
pushes for an additional scalar(s) along with the SM Higgs
doublet. The requirement of an additional scalar can also be
justified, as, in the SM, there is no cold dark matter (DM)

candidate, and it can also provide the much-needed stability
of the electroweak vacuum of the SM and its various seesaw
extensions [11–14]. It is also interesting to see if these
additional scalars are consistent with various constraints
coming from the collider experiments, dark matter relic
abundance along with the requirement of the strongly first-
order phase transition. The inspections regarding the first-
order phase transition exist in various possible extensions of
the SM, viz. in supersymmetric scenarios [15–28], inert
doublet model [29–33], scalar singlet [34–50], two-Higgs-
doublet model [51–54], triplet [55–59], and multiple fields
[60–64]. Some of these extensions need a revisit consid-
ering various recent experimental constraints along with
theoretical perturbative unitarity.
The first-order phase transition originates from the

bubble nucleation of the true vacuum at the nucleation
temperature Tn. These bubbles expand due to the pressure
difference between the true and the false vacua, and the
broken phase extends to the unbroken phase outside [65].
During such bubble expansion in the first-order phase
transition, bubbles collide and create gravitational waves
(GWs) [65–73]. Different scenarios foretelling the first-
order phase transition generate different GW frequencies
that can be detected by the various present and future
experiments.
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It would be interesting to see if such different extensions
can be distinguished either theoretically or experimentally.
We are particularly interested in the study of SM extension
with a Y ¼ 0 SUð2Þ triplet, which stabilizes the electro-
weak vacuum till the Planck scale [12], and compare the
results with a singlet extension. Such a triplet, odd under
Z2, provides the much-needed dark matter in terms of its
neutral component, which should be ≲1.2 TeV to satisfy
the DM relic abundance [12]. The scenario is especially
interesting, as it provides a charged Higgs boson with
displaced decays, which can be detected in the LHC and
the Massive Timing Hodoscope for Ultrastable Neutral
Particles (MATHUSLA) [12,74,75]. In the context of
supersymmetry, the Y ¼ 0 triplet is also motivated for
the reappearance of TeV-scale supersymmetry consistent
with a 125.5 GeV Higgs boson [76–78], predicting correct
B → Xsγ [76,79], triplet charged Higgs boson [80–82], and
displaced decays of triplinos [83].
In this article, we explore the possibility of such a triplet,

providing the much-needed strongly first-order phase
transition and the corresponding bound on the triplet mass
parameter. The compatibility with perturbative unitary at
one- and two-loop level is also studied along with the
bounds from the Higgs data and DM relic. The scenario
is also compared with the complex singlet extension of
the SM, which is also odd under Z2 [84]. Finally, by
measuring the bubble nucleation temperature along with
other parameters, we estimate the signal frequencies of
the GWs created by the bubble collisions. Along with
this, the sound wave of the plasma and the turbulence
contribute substantially and are also considered here.
Such frequencies can be detected by various future space
interferometer experiments like Big Bang Observer (BBO)
[85], Laser Interferometer Space Antenna (LISA) [86], and
Earth-based detector Laser Interferometer Gravitational
Wave Observatory (LIGO) [87–89], and such regions are
identified.
The article is organized as follows. In Secs. II and III, we

describe the inert singlet and inert triplet model along with
the calculation of thermal-corrected potential and masses
with broadly defining the regions responsible for first-order
phase transition. The critical temperature and the effect of
the quartic couplings are discussed in Sec. IV. The bounds
from perturbative unitarity at one and two loops, DM relics
are discussed in Sec. V. The frequencies for the gravita-
tional waves and their detectability in various experiments
for different benchmark points are discussed in Sec. VII.
Finally, we conclude in Sec. VIII.

II. CALCULATION OF FINITE TEMPERATURE
POTENTIAL FOR INERT SINGLET SCENARIO

The minimal SM is extended with a complex singlet
which is considered to be odd under the Z2 symmetry. The
SM Higgs doublet H is even under the Z2 symmetry and
transforms as H → H, whereas the singlet S goes to −S.

Being odd under Z2, the neutral component of the singlet
becomes the dark matter candidate. The detailed calcula-
tion of the tree-level mass spectrum and the vacuum
stability analysis at zero temperature are given in
Ref. [12]. The corresponding tree-level scalar potential is
given by1

V ¼ −μ2H†H þm2
SS

�Sþ λ1jH†Hj2 þ λsjS�Sj2
þ λhsðH†HÞðS�SÞ;

H ¼
� Gþ

1ffiffi
2

p ðϕþ hÞ þ iG0

�
; ð2:1Þ

where neutral component ϕ, of the SM Higgs doublet H,
acts as the background field. However, in the case of
the SM, the field-dependent masses for Higgs field h,
Goldstone bosonsG0, the gauge bosons (W� and Z boson),
and the dominant top quark contribute to the effective
potential. The expressions for the field-dependent mass
contributing to the effective potential from the SM are
given as follows:

M2
hðϕÞ ¼ 3λ1ϕ

2 − μ2; M2
G0 ¼ λ1ϕ

2 − μ2;

M2
WðϕÞ ¼

g2
4
ϕ2; M2

ZðϕÞ ¼
ðg2 þ g1Þ

4
ϕ2;

M2
t ðϕÞ ¼

y2t
2
ϕ2; ð2:2Þ

where Mt is defined as the top-quark mass. As the singlet
does not acquire a vacuum expectation value (VEV), the
field-dependent masses for the singlet will be given in
terms of SM background field ϕ only. The field-dependent
mass of singlet contributing to the effective potential is
calculated as

M2
SðϕÞ ¼ m2

S þ
λhs
2

ϕ2: ð2:3Þ

The one-loop daisy-improved finite temperature effec-
tive potential can be written as [16,84]

Veffðϕ; TÞ ¼ V0ðϕÞ þ V1ðϕ; 0Þ þ ΔV1ðϕ; TÞ
þ ΔVdaisy=ringðϕ; TÞ; ð2:4Þ

where V0ðϕÞ corresponds to the tree-level potential
V treeðϕÞ:

V0ðϕÞ ¼ V treeðϕÞ ¼
−μ2

2
ϕ2 þ λ1

4
ϕ4: ð2:5Þ

1This is our notation to use Higgs singlet interaction coupling
as λhs, and this quartic coupling is defined as λhs ¼ 2ζ2 in
Ref. [84].
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Here, V1ðϕ; 0Þ is evaluated at one loop at zero temperature
via the Coleman-Weinberg prescription [90]. ΔV1ðϕ; TÞ
presents the one-loop temperature-corrected potential. The
potential without daisy resummation can be written as

V tot ¼ V0ðϕÞ þ V1ðϕ; 0Þ þ ΔV1ðϕ; TÞ: ð2:6Þ

The total one-loop result [Veffðϕ; TÞ] includes the
resummation over a subclass of thermal loops which are
defined as ring diagrams or daisy diagrams, and the plasma
effects are explained by these ring-improved one-loop

effective potentials [91–96]. These ring diagrams mainly
amount to adding thermal corrections to bosons usingΔVB.
But this method of adding thermal corrections or resum-
mation is not uniquely defined, and there are two different
methods for adding such thermal corrections; one is the
Parwani method, and the second one is the Arnold-
Espinosa method [97]. In Arnold-Espinosa method,
M2ðϕÞ → M2ðϕ; TÞ ¼ M2ðϕÞ is done only for the cubic
term as in Eq. (2.6) and not for every term of the effective
potential to obtain the ring-improved effective potential

Vdaisy=ring ¼ V tot½M2ðϕÞ� þ T
12π

X
bosons

ðM3ðϕÞ −M3ðϕ; TÞÞ Arnold-Espinosamethod: ð2:7Þ

In the case of the Parwani method, M2ðϕÞ →
M2ðϕ; TÞ ¼ M2ðϕÞ is done for each term in the effective
potential as shown below:

Vring ¼ V tot½M2ðϕ; TÞ� Parwanimethod: ð2:8Þ

Therefore, there is a difference of two-loop order terms
in these two prescriptions and can give us an idea about the
uncertainties in our calculations if we neglect the higher-
order terms in the perturbation theory. However, for this
analysis we consider the Arnold-Espinosa prescription via
considering thermal replacement of mass for the cubic mass
terms only. Since fermions do not contribute in the cubic
term, such replacements are ignored here.
The effective potential in the high-temperature limit

includes ϕ depending mass contributions from bosons
and fermions of the SM and singlet can be written as

Veffðϕ; TÞ ¼ V treeðϕ; 0Þ þ ΔVBðϕ; TÞ þ ΔVFðϕ; TÞ;
ð2:9Þ

where V treeðϕ; 0Þ is the tree-level potential and ΔVBðϕ; TÞ
is the one-loop contribution including thermal corrections
from bosons. These one-loop contributions from bosons are
defined as

ΔVB ¼
X

i¼h;G;WL;ZL;γL;WT;ZT ;γT ;S

niΔVi; ð2:10Þ

where G ∈ fG0; G�g and WL, ZL, γL, WT , ZT , and γT are
the longitudinal and transverse components of gauge
bosonsW� and Z and photon γ withΔVi as detailed below:

ΔVi ¼
m2

i ðϕÞT2

24
−
M3

i ðϕÞT
12π

−
m4

i ðϕÞ
64π2

×

�
log

m2
i ðvÞ

cBT2
− 2

m2
i ðvÞ

m2
i ðϕÞ

þ δiG log
m2

hðvÞ
m2

i ðvÞ
�
: ð2:11Þ

As mentioned earlier, for fermions only the dominant
contribution from the top quark is considered in
ΔVFðϕ; TÞ, and it does not have any cubic term, so no
thermal corrections to masses are considered here as shown
below:

ΔVF ¼ nt

�
m2

t ðϕÞT2

48
þm4

t ðϕÞ
64π2

�
log

m2
t ðvÞ

cFT2
− 2

m2
t ðvÞ

m2
t ðϕÞ

��
:

ð2:12Þ

In Eq. (2.10), the numbers of degrees of freedom for SM
fields and triplet bosons are given as

nh ¼ 1; nG ¼ 3; nS ¼ 2; nt ¼ 12;

nWL
¼ nZL

¼ nγL ¼ 1; nWT
¼ nZT

¼ nγT ¼ 2; ð2:13Þ

while the coefficients cB and cF used in Eqs. (2.11) and
(2.12) are defined by log cB ¼ 3.9076 and log cF ¼ 1.1350,
respectively. The Debye masses used in Eq. (2.11)—M2

i ðϕÞ
for i ¼ h;G; T;WL;WT; ZT; γT—are as follows:

M2
i ¼ m2

i ðϕÞ þ Πiðϕ; TÞ; ð2:14Þ

where m2
i ðϕÞ are the field-dependent masses and Πiðϕ; TÞ

are the self-energy contributions given by

Πhðϕ; TÞ ¼
�
3g2 þ g1

16
þ λ1

2
þ y2t

4
þ λhs

12

�
T2;

ΠGðϕ; TÞ ¼
�
3g2 þ g1

16
þ λ1

2
þ y2t

4
þ λhs

12

�
T2;

ΠTðϕ; TÞ ¼
2λs þ λhs

6
T2;

ΠWL
ðϕ; TÞ ¼ 11

6
g2T2;

ΠWT
ðϕ; TÞ ¼ ΠZT

ðΦ; TÞ ¼ ΠγT ¼ 0: ð2:15Þ
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Here, the self-energy contribution to the transverse compo-
nent of gauge bosons WT , ZT , and γT is zero, and only the
longitudinal components get the self-energy contribution.
The Debye mass expressions for ZL and γL are written as
follows:

M2
ZL

¼ 1

2

�
m2

ZðϕÞ þ
11

6

g2
cos2θW

T2 þ Δðϕ; TÞ
�
;

M2
γL ¼ 1

2

�
m2

ZðϕÞ þ
11

6

g2
cos2θW

T2 − Δðϕ; TÞ
�
; ð2:16Þ

where Δ is given as

Δ2ðϕ; TÞ ¼ m4
ZðϕÞ þ

11

3

g2cos22θW
cos2θW

×

�
M2

ZðϕÞ þ
11

12

g2
cos2θW

T2

�
T2: ð2:17Þ

Now, after getting the full one-loop effective potential
including thermal corrections, we can do the complete
numerical analysis. To see the effectiveness of plasma
screening, we can first include the dominant contribution
from the singlet field only by neglecting the contributions
from other bosons in the SM. Considering the contribution
from singlet only in Eqs. (2.10) and (2.11) and substituting
in Eq. (2.9), we get the ϕ-dependent part of the one-loop
effective potential as follows:

VðϕÞ ¼ AðTÞϕ2 þ BðTÞϕ4 þ CðTÞðϕ2 þ K2ðTÞÞ32:
ð2:18Þ

Here, the temperature-dependent coefficients are given as

AðTÞ ¼ −
1

2
μ2T þ 1

4

�
λhs
6

þ y2t
2

�
T2;

BðTÞ ¼ 1

4
λS;

CðTÞ ¼ −
�
λhs
2

�3
2 T
6π

;

K2ðTÞ ¼ ðλhs þ 2λsÞT2 þ 6m2
S

3λhs
; ð2:19Þ

where

μ2T ¼ μ2 −
λhs
16π2

�
M2

SðvÞ þm2
S log

cBT2

m2
SðvÞ

�

þ 3

8π2
y2t m2

topðvÞ log
m2

topðvÞ
cFT2

; ð2:20Þ

λT ¼ λ1 þ
λ2hs
32π2

log
cBT2

m2
SðvÞ

þ 3

16π2
y4t log

m2
topðvÞ
cFT2

: ð2:21Þ

It is clear from Eq. (2.18) that ϕ ¼ 0 is the local minima
at a very earlier epoch, if AðTÞ > 0, which leads to the
following constraint:

−
1

2
μ2T þ 1

4

�
λhs
6

þ y2t
2

�
> 0: ð2:22Þ

After electroweak (EW) symmetry breaking, ϕ ¼ 0 is
the maxima, and we can find an epoch in between, where
a particular temperature T2 is defined by demanding
V 00ð0Þ ¼ 0. This will give a constraint as follows:

4A2 þ 9C2K2 ¼ 0: ð2:23Þ

The ϕ ¼ 0 is still the minimum above this temperature, i.e.,
T > T2, but there exist another maximum and minima at
ϕ−ðTÞ and ϕþðTÞ, respectively [84]. This can be calculated
by putting V 0ðϕÞ ¼ 0 and demanding that ϕ ≠ 0, which
leads to

ϕ�ðTÞ ¼
1

32B2

	
9C2 − 16AB

� jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9C2 þ 32ð2B2K2 − ABÞ

q 

: ð2:24Þ

These two extrema can merge, resulting in ϕ−ðTÞ ¼ ϕþðTÞ
at a particular temperature T1 which is higher than T2 but
lower than the symmetric temperature (T). The ϕ−ðTÞ ¼
ϕþðTÞ condition from Eq. (2.24) implies

9C2 þ 32ð2B2K2 − ABÞ ¼ 0: ð2:25Þ

Using the set of equations from Eqs. (2.19)–(2.25), T1

and T2 are determined as

T2
1 ¼

2λT1
ðλhsμ2T1

þ 2λT1
m2

SÞ
λhs

	
ðλhs
6
þ y2t

2
ÞλT1

− λ3hs
64π2

− 2λ2T1
3λhs

ðλhs þ 2λsÞ

 ; ð2:26Þ

T2
2 ¼

1

2α

	
Λ2ðT2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ4ðT2Þ − 16αμ4T2

q 

; ð2:27Þ

respectively, where

α ¼
�
λhs
6

þ y2t
2

�
2

−
1

24π2
λ2hsðλhs þ 2λsÞ;

Λ2ðTÞ ¼ 1

4π2
λ2hsm

2
S þ 4

�
λhs
6

þ y2t
2

�
μ2T: ð2:28Þ

III. CALCULATION OF FINITE TEMPERATURE
POTENTIAL FOR INERT TRIPLET SCENARIO

We extend the SM with a Y ¼ 0 (hypercharge ¼ 0) real
SUð2Þ triplet which is odd under Z2 symmetry. The SM
Higgs doublet H as given below transforms under Z2 as
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H → H, whereas the triplet T goes to −T. The triplet has
one complex charged component T� and one neutral
component T0 as shown below. Being Z2, the neutral
component of the triplet T0 becomes the dark matter
candidate. The detailed tree-level mass spectrum and zero
temperature vacuum stability analysis are given in
Ref. [12]. The corresponding scalar potential is given by

V ¼ −μ2H†H þm2
TTrðT†TÞ þ λ1jH†Hj2 þ λtðTrjT†TjÞ2

þ λhtH†HTrðT†TÞ;

H ¼
� Gþ

1ffiffi
2

p ðϕþ hÞ þ iG0

�
; T ¼ 1

2

�
T0

ffiffiffi
2

p
Tþffiffiffi

2
p

T− −T0

�
;

ð3:1Þ

where the neutral component of SM Higgs doublet H,
given by ϕ, acts as the background field. However, the
field-dependent masses which contribute to the effective
potential in the SM include Higgs field h, Goldstone
bosons G0, the gauge bosons (W� and Z boson), and
the dominant top quark. The field-dependent mass expres-
sions contributing to the effective potential from the SM are
calculated as follows:

M2
hðϕÞ ¼ 3λ1ϕ

2 − μ2; M2
G0 ¼ λ1ϕ

2 − μ2;

M2
WðϕÞ ¼

g2
4
ϕ2; M2

ZðϕÞ ¼
ðg2 þ g1Þ

4
ϕ2;

M2
t ðϕÞ ¼

y2t
2
ϕ2; ð3:2Þ

whereMt is the top-quark mass. As the triplet does not get a
VEV, the field-dependent masses for the triplet will be in
terms of SM background field ϕ only. The neutral compo-
nent T0 and charged component T� both will contribute to
the effective potential as we present their field-dependent
masses:

M2
T0
ðϕÞ ¼ m2

T þ λht
2
ϕ2;

M2
T�ðϕÞ ¼ m2

T þ λht
2
ϕ2: ð3:3Þ

In this scenario, the one-loop contributions from bosons
are given as

ΔVB ¼
X

i¼h;G;WL;ZL;γL;WT;ZT ;γT ;T

niΔVi; ð3:4Þ

where G ∈ fG0; G�g, T ∈ fT0; T�g,WL, ZL, γL,WT , ZT ,
and γT are defined as the longitudinal and transverse
components for gauge bosons W� and Z and photon γ,
and ΔVi is given below:

ΔVi ¼
m2

i ðϕÞT2

24
−
M3

i ðϕÞT
12π

−
m4

i ðϕÞ
64π2

×

�
log

m2
i ðvÞ

cBT2
− 2

m2
i ðvÞ

m2
i ðϕÞ

þ δiG log
m2

hðvÞ
m2

i ðvÞ
�
: ð3:5Þ

In Eq. (3.4), the numbers of degrees of freedom for SM
fields and triplet bosons are given as

nh ¼ 1; nG ¼ 3; nT ¼ 3; nt ¼ 12;

nWL
¼ nZL

¼ nγL ¼ 1; nWT
¼ nZT

¼ nγT ¼ 2: ð3:6Þ

The Debye masses used in Eq. (3.5) for the inert triplet
scenario—M2

i ðϕÞ for i ¼ h;G; T;WL;WT; ZT; γT—are as
follows:

M2
i ¼ m2

i ðϕÞ þ Πiðϕ; TÞ; ð3:7Þ

where the field-dependent masses m2
i ðϕÞ and the self-

energy contributions Πiðϕ; TÞ are given by

Πhðϕ; TÞ ¼
�
3g2 þ g1

16
þ λ1

2
þ y2t

4
þ λht

12

�
T2;

ΠGðϕ; TÞ ¼
�
3g2 þ g1

16
þ λ1

2
þ y2t

4
þ λht

12

�
T2;

ΠTðϕ; TÞ ¼
2λt þ λht

6
T2;

ΠWL
ðϕ; TÞ ¼ 11

6
g2T2;

ΠWT
ðϕ; TÞ ¼ ΠZT

ðΦ; TÞ ¼ ΠγT ¼ 0: ð3:8Þ

Similar to the previous scenario, only the longitudinal
components get the self-energy contribution, while the self-
energy contribution to the transverse component of gauge
bosons WT , ZT , and γT is zero. The Debye mass expres-
sions for ZL and γL are the same as earlier and are written as
follows:

M2
ZL

¼ 1

2

�
m2

ZðϕÞ þ
11

6

g2
cos2θW

T2 þ Δðϕ; TÞ
�
;

M2
γL ¼ 1

2

�
m2

ZðϕÞ þ
11

6

g2
cos2θW

T2 − Δðϕ; TÞ
�
; ð3:9Þ

where Δ is given as

Δ2ðϕ; TÞ ¼ m4
ZðϕÞ þ

11

3

g2cos22θW
cos2θW

×

�
M2

ZðϕÞ þ
11

12

g2
cos2θW

T2

�
T2: ð3:10Þ

Here, the temperature-dependent coefficients are now
given as
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AðTÞ ¼ −
1

2
μ2T þ 1

4

�
λht
4

þ y2t
2

�
T2;

BðTÞ ¼ 1

4
λT;

CðTÞ ¼ −
�
λht
2

�3
2 T
4π

;

K2ðTÞ ¼ ð2λht þ 4λtÞT2 þ 6m2
T

3λht
; ð3:11Þ

where

μ2T ¼ μ2 −
3λht
32π2

( X
i¼T0;T�

m2
i ðvÞ þm2

T

X
i¼T0;T�

log
cBT2

m2
i ðvÞ

)

þ 3

8π2
y2t m2

topðvÞ log
m2

topðvÞ
cFT2

; ð3:12Þ

λT ¼ λ1 þ
3λ2ht
64π2

log
cBT2

m2
TðvÞ

þ 3

16π2
y4t log

m2
topðvÞ
cFT2

: ð3:13Þ

It is clear from Eq. (3.11) that, at a very earlier epoch,
ϕ ¼ 0 is the local minima if AðTÞ > 0, which leads to the
following condition:

−
1

2
μ2T þ 1

4

�
λht
4

þ y2t
2

�
> 0: ð3:14Þ

After symmetry breaking, ϕ ¼ 0 will be maxima, and in
between we can find an epoch where we can define a
particular temperature T2 by demanding V 00ð0Þ ¼ 0. This
will give a condition as follows:

4A2 þ 9C2K2 ¼ 0: ð3:15Þ

If we go above this temperature, i.e., T > T2, then ϕ ¼ 0 is
still the minimum, but there exist other maxima at ϕ−ðTÞ

and minima at ϕþðTÞ, respectively [84]. This can be
achieved by putting V 0ðϕÞ ¼ 0 and demanding ϕ ≠ 0,
that give

ϕ�ðTÞ ¼
1

32B2

	
9C2 − 16AB

� jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9C2 þ 32ð2B2K2 − ABÞ

q 

: ð3:16Þ

At temperatures higher than T2 but lower than the sym-
metric temperature (T), these two extrema can merge,
resulting in ϕ−ðTÞ ¼ ϕþðTÞ, which is defined as T1.
The condition for ϕ−ðTÞ ¼ ϕþðTÞ from Eq. (3.16) implies

9C2 þ 32ð2B2K2 − ABÞ ¼ 0: ð3:17Þ

Just to remind ourselves, temperatures higher than T1, i.e.,
T > T1, which designates the symmetric phase, have just
one minimum, i.e., ϕ ¼ 0. Figure 1(b) shows the shapes of
the potential at different thermal epochs. We shall see that
these transitions can lead to first-order phase transitions as
compared to the smooth second-order phase transition as
shown in Fig. 1(a).
For T < T2, ϕ ¼ 0 is the maximum, and there exists

a minimum at ϕ ≠ 0 which evolves toward the zero
temperature minimum. Using the set of equations from
Eqs. (3.11)–(3.17), we determine T1 and T2:

T2
1¼

6144π2λT1
ðλhtμ2T1

þ2λT1
m2

TÞ
λht

	
3072π2ðλht

4
þ y2t

2
ÞλT1

−27λ3ht−
2048π2λ2T1

λht
ð2λhtþ4λtÞ


 ;
ð3:18Þ

T2
2 ¼

1

α

	
Λ2ðT2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ4ðT2Þ − 65536αμ4T2

q 

; ð3:19Þ

FIG. 1. (a) describes a second-order phase transition, and (b) shows the steps of a first-order phase transition.
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where

α ¼
�
λht
4

þ y2t
2

�
−

3

128π2
λ2htð2λht þ 4λtÞ;

Λ2ðTÞ ¼ 9λ2htm
2
T þ 256

�
λht
4

þ y2t
2

�
μ2T: ð3:20Þ

From temperature T1 and T2, we can get an idea about the
nature of the phase transition. The condition when T1 ¼ T2

for a particular value of parameters ðλht; λt; mtÞ, the nature
of the phase transition becomes second order to first order.
The first-order phase transition happens via bubble nucle-
ation, when the bubbles of a broken phase start nucleating
in the sea of a symmetric phase. This process requires
T1 > T2, when at lower temperature T2, ϕ ¼ 0 is the
maximum and there exists a deeper ϕ ≠ 0minimum. While
for T1 < T2, at lower temperature T1 there is no second
minimum deeper than ϕ ¼ 0, and this gives a second-order
phase transition. We considered only the direct one-step
transitions from EW symmetric and broken minima. There
is also a two-step phase transition possible in a Z2

symmetric scenario, where the electroweak phase transition
proceeds by the spontaneous breaking of the Z2 symmetry.2

In the following subsection, we investigate such an effect of
Higgs quartic coupling and bare masses of the extra scalars
in determining the order of phase transition.

A. Effect of scalar quartic couplings in phase transition

Here, we explore the dependency of the scalar quartic
couplings by presenting T1 ¼ T2 lines in λt − λht plane to
segregate regions of first- and second-order phase transi-
tion. For a comparison with the complex singlet, we
consider the potential of a complex singlet (S) extended
SM as given in Ref. [84], where the Higgs-singlet quartic
coupling λhs, λs is the self-quartic coupling for the singlet
and mS ¼ M is the bare mass term for the singlet. The
nature of phase transition is discussed in Fig. 2 by varying
the parameters λs=λt vs λhs=λht for the singlet and triplet,
respectively. The colored lines correspond to the condition
T1 ¼ T2 for different values of mass parameter, which
defines the crossover from first-order to second-order phase
transition. The region above the T1 ¼ T2 condition is first
order and below one is second order. For this analysis,
we considered the current experimental values mh ¼
125.5 GeV and mt ¼ 173.2 GeV, respectively [99]. The
mass parameters mS=mT are varied from 0 to 300 and 0 to
100 GeV with a gap of 50 GeV for the singlet and triplet,
respectively. The lower lines denote mS=mT ¼ 0 GeV, and
the uppermost lines correspond to 300 and 100 GeV for the
singlet and triplet case, respectively. It is evident from both
Figs. 2(a) and 2(b) that, as we enhance the value of the mass
parameter mS=mT, the required Higgs quartic couplings
λhs=λht for T1 ¼ T2 are also enhanced; i.e., the first-order
phase transition now needs higher quartic couplings. The
effect of self-quartic coupling is very minimal and reduces
further as we increase the bare mass parameter.
In Sec. IV, we analyze both singlet and triplet scenarios

considering all the bosonic degrees of freedom, coupling
constants within the perturbativity at two loops, and
calculating the exact critical temperature Tc.

FIG. 2. Plot for the condition T1 ¼ T2 by varying parameters λs=λt vs λhs=λht for the singlet and triplet, respectively. The mass
parameter mS=mT is varied from 0 to 300 and 0 to 100 GeV with a gap of 50 GeV for the singlet and triplet, respectively. We considered
the current experimental values mh ¼ 125.5 GeV and mt ¼ 173.2 GeV. The region above condition T1 ¼ T2 corresponds to first order
and below region for a second-order phase transition. The lower green curve is for mS=mT ¼ 0 GeV, and the upper one is for
mS=mT ¼ 300=100 GeV with a gap of 50 GeV in the case of the singlet and triplet, respectively.

2The spontaneous breakdown of Z2 symmetry gives rise to the
domain wall problem, and Z2 breaking transition is expected to
be of second order but not possible to verify within the
perturbative effective theory [98].
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IV. CRITICAL TEMPERATURE AND
ELECTROWEAK BARYOGENESIS

In this section, we focus on electroweak baryogenesis
and critical temperature during electroweak phase transi-
tion caused by a strongly first-order phase transition and the
out-of-equilibrium condition. Inside the bubble walls, a net
baryon number is generated due to the first-order phase
transition as well as the suppressed sphaleron transition.
Such B-violating interactions inside the bubble walls also
achieve the out-of-equilibrium condition, which helps in
baryogenesis. The required criteria for the strongly first-
order phase transition can be defined as follows [100,101]:

ϕþðTcÞ
TC

≥ 1; ð4:1Þ

where TC is defined as the critical temperature and ϕþðTcÞ
TC

is the parameter which defines the strength of the phase
transition. At critical temperature, different two minima of
the potential are degenerate, i.e., the same depth, and such a
condition defines the critical temperature as

Vð0;TCÞ ¼ VðΦþðTCÞ;TCÞ; ð4:2Þ

where Vð0;TCÞ is the potential at ϕ ¼ 0 minima and
VðΦþðTCÞ;TCÞ is the second minima at ϕþ. In order to

calculate ϕþðTcÞ
TC

, we take the contributions from all the
bosons, i.e., the SM plus the triplet Higgs boson. The

variation of ϕþðTCÞ
TC

with respect to the quartic coupling
λhs=λht is considered formS=mT ¼ 50 GeV in Fig. 3 for the
singlet and the triplet scenarios, respectively. Here,

self-quartic couplings λs=λt are set to 0, 0.5, and 1.0,
which are delineated by blue, orange, and green curves,
respectively, and with the current experimental values of
mh ¼ 125.5 GeV and mt ¼ 173.2 GeV.
For lower values of λhs=λht, the dominant contributions

are mainly from the SM fields. For the singlet case
[Fig. 3(a)], as we cross λhs ≳ 1 the effect of the singlet
field starts showing up, and for λhs ≳ 1.65, we attain

regions with ϕþðTcÞ
TC

> 1. On the contrary, due to more
degrees of freedom in the case of the triplet, we see such
transitions much earlier, i.e., λht ≳ 1.3. One interesting
point to note is that with the increase of the self-couplings,

i.e., λs=λt, the ϕþðTcÞ
TC

> 1 requires higher values of the
interactive Higgs couplings, i.e., λhs=λht.
In Fig. 4, we describe similar variations with respect

to λhs=ht for fixed values of self-quartic couplings, i.e.,

λs=λt ¼ 0, to maximize ϕþðTcÞ
TC

for the singlet and the triplet,
respectively. We also check the dependency over the soft
mass parameter mS=mT by varying them for 0–400 GeV
with a gap of 50 and 1000 GeV, respectively, and are
denoted by blue, orange, green, and red curves and so on.
It can be seen that as we increase the soft mass mS=mT

the value of ϕþðTcÞ
TC

decreases for a fixed value of λhs=λht.
From Fig. 4(a), we see that after mS ≥ 350 GeV getting
ϕþðTcÞ
TC

> 1 will require λhs > 3.0. However, for the triplet
scenario in Fig. 4(b), mT ¼ 400 GeV can still give rise to
ϕþðTcÞ
TC

> 1 with λht ≥ 2.6. The couplings λhs=λht are
restricted differently for the singlet and the triplet case
from the perturbative unitarity, as we will see in Sec. V.

It is clear from Figs. 3 and 4 that the ϕþðTCÞ
TC

parameter is

FIG. 3. Variation of ϕþðTCÞ
TC

with respect to the quartic couplings λhs=λht are shown for the singlet and the triplet, respectively. The
self-quartic couplings of the singlet and triplet, i.e., λs=λt, are assigned three different values 0, 0.5, and 1.0, which are depicted by
blue, orange, and green curves, respectively, for fixed mass parameter mS=mT ¼ 50 GeV with the current experimental values,
i.e., mh ¼ 125.5 GeV and mt ¼ 173.2 GeV.
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maximum for mass parameter mS=mT ¼ 0 for a fixed
value of self-quartic coupling of the singlet or triplet
and is also maximum for λs=λt ¼ 0 for a fixed value of
the mass parameter.

V. RG EVOLUTION OF SCALAR
QUARTIC COUPLINGS

The renormalized group (RG) evolution of the scalar
quartic couplings can give sufficient constraints to the
regions responsible for the first-order phase transition from
their perturbative unitarity. We explore such a possibility
via considering both one- and two-loop beta functions as
explained in the following subsections.

A. Constraints from one-loop perturbativity

In this section, we study the RG evolution of the scalar
quartic couplings λ1, λt, and λht with their one-loop β
functions generated by SARAH [102] as given below:

βλ1 ¼ βSMλ1 þ ΔβITMλ1
; ð5:1Þ

βSMλ1 ¼ 1

16π2

�
27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 − 9

5
g21λ1 − 9g22λ1

þ 24λ21 þ 12λ1TrðYuY
†
uÞ þ 12λ1TrðYdY

†
dÞ

þ 4λ1TrðYeY
†
eÞ − 6TrðYuY

†
uYuY

†
uÞ

− 6TrðYdY
†
dYdY

†
dÞ − 2TrðYlY

†
lYlY

†
lÞ
�
; ð5:2Þ

ΔβITMλ1
¼ 8λ2ht; ð5:3Þ

βλt ¼
1

16π2

�
−24g22λt þ 88λ2t þ 8λ2ht þ

3

2
g42

�
; ð5:4Þ

βλht ¼
1

6π2

�
3

4
g42 − 9

10
g21λht − 33

2
g22λht þ 12λλht

þ 16λ2ht þ 24λhtλt þ 6y2t λht

�
; ð5:5Þ

where ΔβITMλ is the additional contribution to SM βλ from

the inert triplet. Since ϕþðTCÞ
TC

is maximum, both mass
parameters mS=mT and the self-quartic couplings λs=λt
are zero. We have chosen λs=λt ¼ 0 at the EW scale for our
analysis, and RG evolutions at one and two loops govern
the couplings at any other scales. Hence, to maximize
ϕþðTCÞ

TC
, we choose λs=λt ¼ 0 at the EW scale for further

analysis. One point to note here is that the mass parameter
does not enter in the running of quartic couplings; thus, the
choice of λs=λt ¼ 0 is sufficient for perturbative unitarity.
To keep the SMHiggs mass around 125.5 GeV, we keep the
SM quartic coupling λ1 ¼ 0.13 at the EW scale. In Table I,
Λ designates the perturbative scale where any of the
coupling crosses the perturbativity (4π). We fix quartic

FIG. 4. Variation of ϕþðTCÞ
TC

with quartic coupling λhs=λht for fixed values of self-quartic couplings λs=λt ¼ 0 for the singlet and the
triplet, respectively. The mass parameter mS=mT is varied for 0–400 GeV with a gap of 50 and 1000 GeV, respectively.

TABLE I. Maximum allowed values of λhs and λht from the
perturbativity at one loop for the top mass, i.e., mt ¼ 173.2 GeV,
and for the Higgs boson mass mh ¼ 125.5 GeV.

Λ (GeV)

λhs ¼ λmax
hs λht ¼ λmax

ht

mt (GeV) mt (GeV)

173.2 173.2

104 1.6545 1.3710
106 0.7290 0.7067
108 0.5120 0.4873
1011 0.4780 0.3477
1016 0.3090 0.2490
1019 0.2370 0.2180

DISCERNING SINGLET AND TRIPLET SCALARS AT THE … PHYS. REV. D 107, 055032 (2023)

055032-9



couplings λhs=λht at the EW scale and check the perturba-
tive unitarity till a particular scale Λ. To show the effect of
the top-quark mass, we present the maximum values of the
quartic couplings at the EW scale allowed for two different
top-quark masses, i.e., 120.0 and 173.2 GeV, respectively,
for the singlet and the triplet scenarios. We see that, due to
larger scalar degrees of freedom, the triplet scenario gets
more restriction than the singlet one. For example, con-
sidering Planck-scale perturbativity, the singlet can have a
λmax
hs ¼ 0.237ð0.248Þ, whereas the triplet scenario gets
λmax
ht ¼ 0.2180ð0.2202Þ for mt ¼ 173.2ð120.0Þ GeV. For
lower top mass, the large negative contribution from the
top quark slows down the running of scalar quartic
coupling toward the perturbative limit. It can also be
observed that, as we demand a lower scale for the
perturbativity, higher values of λmax

hs =λmax
ht at the EW scale

can be attained. In the next subsection, we discuss such
effects at the two-loop level.
In Fig. 5, we present the variation of ϕþðTCÞ

TC
, i.e., the

strength of the phase transition with the SM Higgs boson
mass for the singlet and the triplet scenario, where we
consider λmax

hs =λmax
ht as given in Table I for a given scale Λ.

Figure 5(a) depicts the situation for the complex singlet

extension, where it is evident that higher values of ϕþðTCÞ
TC

are possible with a lower perturbativity scale and lower
SM Higgs boson mass. It is interesting to note that mh ¼
125.5 GeV and ϕþðTCÞ

TC
> 1 is not possible even for the

perturbative scale Λ ¼ 106 GeV, and only Λ ¼ 104 GeV
can barely satisfy the condition of the first-order phase
transition. The values of λmax

hs =λmax
ht are similar for

Λ ¼ 106 GeV; however, due to more degrees of freedom,

the triplet scenario guarantees larger ϕþðTCÞ
TC

for a given mh.

The perturbative scale Λ ¼ 104 GeV allows larger λmax
hs

compared to λmax
ht , resulting in an enhancement of ϕþðTCÞ

TC
in

favor of the singlet, and it barely makes it for ϕþðTCÞ
TC

≃ 1 at

mh ¼ 125.5 GeV; however, the triplet case fails to achieve
that at one-loop level.
The dependence of the top-quark mass is explored in

Fig. 6 for the variation of ϕþðTCÞ
TC

with the Higgs boson mass

for the choices of the mass parameters mS=mT and self-
quartic couplings λs=λt equal to zero for the perturbative
scale Λ ¼ 106 GeV. The maximum allowed quartic cou-
plings λmax

hs =λmax
ht are estimated using mt ¼ 120.0 and

173.2 GeV and mh ¼ 125.5 GeV at the electroweak scale
for the perturbative scale of Λ ¼ 106 GeV, andmt ¼ 173.2
values are described in Table I. The blue and orange curves
present mt ¼ 120.0 and 173.2 GeV cases, respectively, for
the singlet [Fig. 6(a)] and triplet scenarios [Fig. 6(b)]. The
maximum allowed quartic coupling λmax

ht is lower for the
triplet due to more degrees of freedom, which catalyzes an
early perturbative restriction. Nevertheless, the slight dec-
rement of λmax

ht compared to λmax
hs is overpowered by more

degrees of freedom giving little higher values of the ϕþðTCÞ
TC

for a given mh. The upper bound on the Higgs mass to

avoid baryon asymmetry washout, i.e., ϕþðTCÞ
TC

> 1, is 91.0

and 93.0 GeV for the singlet and the triplet, respectively.
Thus, we can conclude that these upper bounds on the
Higgs mass from baryon asymmetry for both cases,
considering one-loop perturbativity of the quartic cou-
plings, are not consistent with the current observed exper-
imental Higgs mass of 125.5 GeV.
Before ending the discussion of one-loop perturbativity

and moving on to two-loop results, we present the results
in a three-dimensional graph in Fig. 7, where we study
the variation of ϕþðTcÞ=Tc in the λmax

hs =λmax
ht −mh plane.

FIG. 5. Variation of ϕþðTCÞ
TC

with respect to the Higgs boson massmh in GeV for fixed initial values of λmax
hs =λmax

ht at different perturbative
scales as shown in Table I. The mass parametermS=mT and self-quartic couplings λs=λt are chosen to be zero to maximize the strength of
the phase transition with mt ¼ 173.2 GeV.
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The color band of ϕþðTcÞ=Tc from deep blue to red regions
signifies ϕþðTcÞ=Tc in 0–3.5 for both scenarios. The self-
couplings for the singlet and the triplet and their corre-
sponding soft masses are chosen to be zero in order to
enhance ϕþðTcÞ=Tc. It is very apparent from Fig. 7 that a
much lower perturbative scale Λ and lighter SM Higgs
boson are preferred in order to achieve a first-order phase
transition, i.e., ϕþðTcÞ=Tc > 1. Only for the singlet case
can Λ ¼ 104 GeV scale have a first-order phase transition
with a SM Higgs boson mass around 125.5 GeV. The
choice of zero soft masses in order to have a first-order
phase transition for both scenarios may restrict the physical

singlet and triplet scalars. However, as we explore in the
following subsection, two-loop perturbativity gives a little
breather, and such upper limits on the physical singlet and
triplet masses are enhanced.

B. Constraints from two-loop perturbativity

For the given values of quartic couplings at the electro-
weak scale, i.e., λ1, λhs=ht, and λs=t, they hit the Landau pole
at the same scale considering one-loop RG evolution.
Depending on the validity scale of perturbativity, certain
constraints come for the maximum electroweak values of

FIG. 6. Variation of ϕþðTcÞ=Tc with Higgs mass mh for two different values of top mass mt ¼ 120.0 and 173.2 GeV designated by
blue and orange curves, respectively, for the perturbative scale of 106 GeV.

FIG. 7. Variation of ϕþðTcÞ=Tc in the λmax
hs =λmax

ht −mh plane, where λmax
hs =λmax

ht are the maximum allowed values of quartic coupling at
different perturbative scales in GeV for the singlet and the triplet scenarios, respectively. The color band from deep blue to red regions
signifies ϕþðTcÞ=Tc in 0–3.5 for both scenarios.
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the couplings, as we have seen in Table I. For example, if
we choose the perturbativity scale as the Planck scale, i.e.,
Λ ¼ 1019 GeV, λmax

hs and λmax
ht are restricted to 0.23 and

0.21, respectively, at one-loop level. The slight difference
comes due to the variation of λt affecting λ1.
The situation changes a lot as we move to two-loop RG

evolution (see Appendix A). Contrary to the one-loop case,
here λ1 hits the Landau pole before λhs=ht and λs=t.
However, the growth of λ1 coupling slows down at two
loops as compared to one loop, due to the negative
contributions, i.e., −312λ31, −80λ1λ2ht, and −128λ3ht as
shown in Sec. A 1. Similarly, other quartic couplings,
i.e., λht and λt, also slow down due to some extra negative
contributions appearing at two loops (see Sec. A 1). In
comparison, the singlet also suffers from the negative
contributions of −312λ31, −40λ1λ2hs, and −32λ3hs as can
be read from Sec. B 1. However, if we look at the maximum
allowed value (λmax

hs =λmax
ht ) at the electroweak scale at two-

loop level in Table II for the Planck-scale perturbativity, the
singlet can access double the value that of the triplet one.
This can be understood as the triplet having more positive
contributions in terms of 10g42λht and 32g22λ

2
ht in λ1, which

are absent in the singlet one. Thus, the growth of λ1 in the
triplet case is faster, hitting the Landau pole much earlier, as
compared to the singlet one. The presence of such extra

positive contributions at the two-loop level for the triplet
explains the larger difference in λmax

ts and λmax
hs (see Table II)

as compared to one-loop level (see Table I).
In order to examine the situation of the possibility of the

first-order phase transition with the perturbativity at the
two-loop level, we calculate the maximum allowed values
of the quartic couplings, i.e., λmax

hs =λmax
ht , with the Planck-

scale perturbativity (Λ ¼ 1019 GeV) as given in Table II.
The slow-growing quartic coupling at two loops compared
to one loop enhanced the allowed couplings for λmax

hs ¼
4.00 and λmax

ht ¼ 1.95 at the electroweak scale. These are
now enormously amplified compared to the corresponding
one-loop values λmax

hs ¼ 0.25670 and λmax
ht ¼ 0.2180, which

result in higher values of ϕþðTcÞ=Tc, strengthening the
possibility of a first-order phase transition for both
scenarios.
Equipped with relatively larger λmax

hs =λmax
ht for

Λ ¼ 1019 GeV, we now perform the variation of ϕþðTCÞ
TC

with respect tomh in Fig. 8, where the scalar self-couplings
are chosen to be zero. The mass parameters varied for
mSðmTÞ ¼ 500ð100Þ, 840(200), and 1000(300) are
denoted by blue, orange, and green curves, respectively.

The red star in both cases denotes ϕþðTCÞ
TC

¼ 1 and the mh ¼
125.5 GeV point. Higher mass values diminish the ϕþðTCÞ

TC

and push for a second-order phase transition for both
scenarios. However, for the singlet scenario, we see a
maximum of mS ¼ 840 GeV can still be consistent with
the SM Higgs boson mass as well as a first-order phase
transition, whereas, for the triplet scenario, such bounds
come for a rather low mass, i.e., mT ≃ 193 GeV. We see an
order of magnitude difference in the upper bound on the
soft mass parameter in the singlet and the triplet scenarios.

TABLE II. Maximum allowed value of quartic couplings, i.e.,
λmax
hs =λmax

ht , allowed at the electroweak scale for the perturbativity
till Planck scale at two loops, for the singlet and the triplet
scenarios.

Λ (GeV) λmax
hs λmax

ht

1019 4.00 1.95

FIG. 8. Variation of ϕþðTcÞ=Tc with respect to the SM Higgs boson mass mh (in GeV) for the singlet and the triplet scenarios. Three
different values of mass parameters for mSðmTÞ ¼ 500ð100Þ, 840(200), and 1000(300) are denoted by blue, orange, and green curves,
respectively. The quartic couplings λhs=λht are fixed to their respective λmax

hs =λmax
ht with the perturbativity at the Planck scale (1019 GeV),

and the self-couplings are chosen to be zero.
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In Fig. 9, we present ϕþðTcÞ=Tc in the mS=mT −mh
plane for the maximum allowed values of quartic coupling
λmax
hs =λmax

ht at the electroweak scale for the perturbativity till
Planck scale (1019 GeV) for the singlet and the triplet
scenarios, respectively. The color band from deep blue to
red regions signifies ϕþðTcÞ=Tc in 0–3.5 for both scenar-
ios. It is evident that for higher mass valuesmT ≥ 193 GeV
in the triplet case stay in the deep blue region for
mh ¼ 125.5 GeV, conferring a second-order phase tran-
sition. On the contrary, in the singlet case one can obtain
regions up to mS ≃ 840 GeV satisfying a first-order phase
transition at mh ¼ 125.5 GeV.

C. Two-loop resummed potential

The field-dependent term in the effective potential from
one-loop daisy resummation is Oðg3Þ, but achieving
accuracy of Oðg4Þ requires two-loop corrections when
two-loop β functions are analyzed. The most efficient
two-loop contributions are of the form ϕ2 logðϕÞ, which
are induced by the Standard Model weak gauge boson
loops [16]. The diagrams contributing to the two-loop
potential for the minimal Standard Model are given in
Refs. [97,103,104]. In the case of an inert singlet, there is
no additional diagram which contributes to the two-loop
potential. Therefore, the two-loop correction for the
inert singlet comes only from the Standard Model and is
given as follows:

V2 ≃ log
T
ϕ

ϕ2T2

32π2

�
51

16
g42

�
: ð5:6Þ

Similarly, in the case of an inert triplet, there are
diagrams which give additional contributions to the

two-loop potential along with the SM part. The two-loop
resummed potential for the inert triplet scenario is given as

V2 ≃ log
T
ϕ

ϕ2T2

32π2

�
51

16
g42 þ

3

16
g42

�
; ð5:7Þ

where the first term comes from the SM and the second
term comes from the inert triplet.
After adding these two-loop contributions to the full one-

loop effective potential, the strength of the phase transition
enhances [105,106] in both cases, which actually changes
the mass bounds. However, for the singlet one-loop
maximum mass required for first-order phase transition
≃ 909 GeV, which already decouples and does not alter the
phase transition. With inclusion of a two-loop correction,
this bound is still consistent with Planck-scale perturba-
tivity and satisfies the Higgs boson mass bound within 1σ
uncertainty because of the increase in the strength of the
phase transition. Thus, the singlet mass bound still remains
the same at the two-loop resummed potential. On the
contrary, the effect is visible in the case of the inert triplet,
owing to a lower mass bound of ≃310 GeV at one-loop
potential. Inclusion of the two-loop resummed potential
inflates the mass bound slightly to ≃320 GeV, satisfying
the Planck-scale perturbativity and the current experimental
Higgs boson mass bound.

VI. DIMENSIONAL REDUCTION

The effective potential at finite temperature has residual
scale dependence at Oðg4Þ. The cancellation of this scale
dependence at Oðg4Þ requires the inclusion of two-loop
thermal masses to bare masses for Higgs, singlet, and
triplet, i.e., μ, mS, and mT , respectively. The most common

FIG. 9. Variation of ϕþðTcÞ=Tc in mS=mT −mh for the maximum allowed values of quartic coupling λmax
hs =λmax

ht at the electroweak
scale for the perturbativity till Planck scale (1019 GeV) for the singlet and the triplet scenarios, respectively. The color band from deep
blue to red regions signifies ϕþðTcÞ=Tc in 0–3.5 for both scenarios.
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way is to utilize high-temperature dimensional reduction to
a three-dimensional effective field theory (3D EFT) in order
to derive the full Oðg4Þ thermal effective potential. The
dimensional reduction technique is a systematic approach
required at high temperature to the resummations done

order by order in power of couplings [107,108]. TheOðg4Þ
result for the Z2-symmetric real scalar theory with the two-
loop results has been derived long ago. The one-loop
potential to this order reads as

Vg4

thermalðvÞ ¼
1

ð4πÞ2
�
1

12
g42T

2v2
�
1

2
log

�
M2ðvÞ þ ΠT

T2

�
− 3

8
LbðΛÞ − cþ 1

4

��

þ 1

ð4πÞ2
�
− 1

4
g22μ

2v2LbðΛÞ − 1

16
g42v

4LbðΛÞ
�
þ const; ð6:1Þ

where we have introduced the notation using the following:

c ¼ − log

�
3eγ=2A6

4π

�
¼ −0.348723…; ð6:2Þ

LbðΛÞ ¼ 2 log

�
eγΛ
4πT

�
; ð6:3Þ

where A is the Glaisher-Kinkelin constant and γ is the Euler-Mascheroni constant. The full two-loop effective potential
expression is as follows:

V thermal ¼ TV3d
eff ¼ T

�
1

2
μ23v

2
3 þ

1

4!
g22;3v

4
3 −

1

3ð4πÞ ðM
2
3Þ3=2 þ

1

ð4πÞ2
�
1

8
g22;3M

2
3 −

1

24
g42;3v

2
3

�
1þ 2 ln

�
μ3
3M3

����
; ð6:4Þ

where the one-to-one correspondence between Higgs
quartic coupling λ3 and g2;3 is λ3 ¼ 1

6
g22;3 and the expres-

sions for two-loop thermal masses are as follows:

M2
3 ¼ μ23 þ

1

2
g22;3v

2
3: ð6:5Þ

The 3D effective parameters to the same Oðg4Þ order are
given as

g22;3 ¼ T

�
g22ðΛÞ −

3

2ð4πÞ2 g
4
2LbðΛÞ

�
; ð6:6Þ

μ23 ¼ μ2ðΛÞ þ 1

24
g22ðΛÞT2 −

1

ð4πÞ2
�
1

2
g22μ

2LbðΛÞ

þ 1

16
g42T

2LbðμÞ þ
1

6
g42;3

�
cþ ln

�
3T
Λ3d

���
; ð6:7Þ

v3 ¼
vffiffiffiffi
T

p : ð6:8Þ

In the next section, we present similar expressions for
dimensionally reduced 3D theory for the SM extended with
an inert singlet and an inert triplet.

A. Singlet extension

The scalar potential given in Eq. (2.1) for the inert singlet
scenario in the dimensionally reduced 3D effective theories
(DR3EFTs) is given as

V ¼ −μ23H†H þm2
S;3S

�Sþ λ1;3jH†Hj2 þ λs;3jS�Sj2
þ λhs;3ðH†HÞðS�SÞ: ð6:9Þ

Now, the thermal contribution to the self-energy in
Eq. (2.15) has the schematic form ΠT ∼ g2T2. If we
consider the running of the ΠTv2 term, the effect is of
Oðg4T2v2Þ which is not canceled by any resummed one-
loop or any other one-loop contribution to the effective
potential. This cancellation of renormalization scale
dependence is canceled only by the inclusion of explicit
logarithms of the renormalization scale, which appear only
at two-loop level. At high temperature, the order of the
running of tree-level parameters is the same as the running
of one-loop thermal mass, and this order is also similar to
explicit logarithms of the renormalization scale appearing
at two-loop order. All three terms are of the order of
Oðg4T2Þ. The third and the fourth terms in the full two-loop
potential at Oðg4Þ for 3D theory will include contributions
from the bosons and the fermions similar to Eq. (2.10).
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Hence, the matching relations for the quartic couplings and the bare masses (which are the tree-level parameters) are
computed as follows [98,109]:

λ1;3 ¼ T

�
λ1ðΛÞ þ

1

ð4πÞ2
�
2 − 3Lb

16
ð3g42 þ 2g22g

2
1 þ g41Þ þ NcLfðy4t − 2λ1y2t Þ þ Lb

�
3

2
ð3g22 þ g21Þλ1 − 12λ21 −

1

4
λhs

���
;

λs;3 ¼ T

�
λsðΛÞ −

1

ð4πÞ2 Lbðλ2hs þ 9λ2sÞ
�
;

λhs;3 ¼ T

�
λhsðΛÞ þ

λhs
ð4πÞ2

�
Lb

�
3

4
ð3g22 þ g21Þ − 6λ1 − 2λhs − 3λs

�
− NcLfy2t

��
; ð6:10Þ

where

Lb ¼ ln

�
Λ2

T2

�
− 2½lnð4πÞ − γ�; ð6:11Þ

Lf ¼ Lb þ 4 ln 2: ð6:12Þ

Here, Lb and Lf are logarithms that arise frequently from one-loop bosonic and fermionic sum integrals with Λ the MS
scale and γ the Euler-Mascheroni constant. The expressions for the two-loop mass parameters are computed as follows:

μ23 ¼ ðμ23ÞSM þ T2

24
λhsðΛÞ −

Lb

ð4πÞ2
�
1

2
λhsμ

2
SðΛÞ

�
þ 1

ð4πÞ2
�
3

4
ð3g22 þ g21ÞLb − Ncy2t Lf

��
T2

24
λhs

�

−
T2

ð4πÞ2 Lbλhs

�
1

4
λ1 þ

5

24
λhs þ

1

8
λs

�
−

1

ð4πÞ2
1

2
λ2hs;3

�
cþ ln

�
3T
Λ3d

��
; ð6:13Þ

where

ðμ23ÞSM ¼ −μ2ðΛÞ þ T2

12

�
3

4
ð3g22ðΛÞ þ g21ðΛÞÞ þ Ncy2t ðΛÞ þ 6λ1ðΛÞ

�
þ μ2ðΛÞ

ð4πÞ2
��

3

4
ð3g22 þ g21Þ − 6λ1

�
Lb − Ncy2t Lf

�

þ T2

ð4πÞ2
�
167

96
g42 þ

1

288
g41 −

3

16
g22g

2
1 þ

ð1þ 3LbÞ
4

λ1ð3g22 þ g21Þ þ Lb

�
17

16
g42 −

5

48
g41 −

3

16
g22g

2
1 − 6λ21

�

þ 1

T2

�
cþ ln

�
3T
Λ3d

���
39

16
g42;3 þ 12g22;3h3 − 6h23 þ 9g22;3λ1;3 − 12λ21;3 −

5

16
g41;3 −

9

8
g22;3g

2
1;3 − 2h023 − 3h0023

þ 3g21;3λ1;3

�
−

1

96
ð9Lb − 3Lf − 2Þ

�
ðNc þ 1Þg42 þ

1

6
Y2fg41

�
nf þ

Nc

32
ð7Lb − Lf − 2Þg22y2t

−
Nc

4
ð3Lb þ LfÞλ1y2t þ

Nc

96
ðð9ðLb − LfÞ þ 4ÞY2

ϕ − 2ðLb − 4Lf þ 3ÞðY2
q þ Y2

uÞÞg21y2t

−
NcCF

6
ðLb − 4Lf þ 3Þg2sy2t þ

Nc

24
ð3Lb − 2ðNc − 3ÞLfÞy4t

�
; ð6:14Þ

with CF ¼ N2
c−1
2Nc

¼ 4
3
and c ∼ −0.348723, is the fundamental quadratic Casimir of SUð3Þ. And the two-loop mass parameter

for the singlet is given as

m2
S;3 ¼ m2

SðΛÞ þ T2

�
1

6
λhsðΛÞ þ

1

4
λsðΛÞ

�
−

Lb

ð4πÞ2 ð2λhsμ
2 þ 3λsm2

SÞ þ
1

ð4πÞ2 ðð3g
2
2;3 þ g21;3Þλhs;3 − 2λ2hs;3 − 6λ2s;3Þ�

cþ ln

�
3T
Λ3d

��
þ T2

ð4πÞ2
�ð2þ 3LbÞ

24
ð3g22 þ g21Þλhs − Lb

��
λ1 þ

7

12
λhs þ

1

2
λs

�
λhs þ

9

4
λ2s

�
−
Nc

12
ð3Lb − LfÞy2t λhs

�
:
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The other parameters which are used in the above expressions are computed as follows:

g22;3 ¼ g22ðΛÞT
�
1þ g22

ð4πÞ2
�
43

6
Lbþ

2

3
−
ðNcþ 1Þnf

3
Lf

��
;

g21;3 ¼ g21ðΛÞT
�
1−

g21
ð4πÞ2

1

6
ðLbY2

ϕþLfY2fnfÞ
�
;

h3 ¼
g22ðΛÞT

4

�
1þ 1

ð4πÞ2
��

43

6
Lbþ

17

2
−
ðNcþ 1Þnf

3
ðLf − 1Þ

�
g22þ

g21
2
− 2Ncy2t þ 12λ1

��
;

h03 ¼
g21ðΛÞT

4

�
1þ 1

ð4πÞ2
�
3g22
2

−
1

6
ððLb − 1ÞY2

ϕþðLf − 1ÞY2fnfÞg21− 2ðY2
qþY2

uÞNcy2t þ 12λ1

��
;

h0023 ¼ g2ðΛÞg1ðΛÞT
2

�
1þ 1

ð4πÞ2
��

43

12
Lb − 1

�
g22−

Y2
ϕ

3

�
1

4
Lb− 1

�
g21þ 4λ1þ

2

3
Ncy2t − ðLf − 1Þ

�
Ncþ 1

6
g22þ

Y2f

12
g21

�
nf

��
:

ð6:15Þ

With the inclusion of two-loop corrections to the thermal
masses especially to mS and the Higgs, the upper bound on
the singlet mass coming from the first-order phase tran-
sition and the current Higgs mass bound remains the same.
Since the two-loop corrections are less for the chosen
benchmark point from Planck-scale perturbativity, the
strength of the order of the phase transition does not

change significantly, and the Higgs mass bound is now
satisfied in the 1σ limit with this slight change.

B. Triplet extension

In a similar way, the scalar potential given in Eq. (3.1) for
the inert triplet in the DR3EFTs is given as

V ¼ −μ23H†H þm2
T;3TrðT†TÞ þ λ1;3jH†Hj2 þ λt;3ðTrjT†TjÞ2 þ λht;3H†HTrðT†TÞ: ð6:16Þ

The matching relations for the corresponding quartic couplings are given as

λ1;3 ¼ T

�
λ1ðΛÞ þ

1

ð4πÞ2
�
1

8
ð3g42 þ g41 þ 2g22g

2
1Þ þ 3Lfðy4t − 2λ1y2t Þ

− Lb

�
3
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ð3g42 þ g41 þ 2g21g

2
2Þ −

3

2
ð3g22 þ g21 − 8λ1Þλ1 þ

3

4
λ2ht

���
; ð6:17Þ

λht;3 ¼ T

�
λhtðΛÞ þ

1

ð4πÞ2
�
2g42 − 3λhty2t Lf − Lb

�
2λ2ht þ 5λhtλt þ 3g42 þ 6λhtλ1 −

3

4
λhtðg21 þ 11g22Þ

���
; ð6:18Þ

λt;3 ¼ T

�
λtðΛÞ þ

1

ð4πÞ2 ½4g
4
2 − Lbðλ2ht þ 11λ2t − 12g22λt þ 6g42Þ�

�
; ð6:19Þ

where

Lb ¼ ln

�
Λ2

T2

�
− 2½lnð4πÞ − γ�; ð6:20Þ

Lf ¼ Lb þ 4 ln 2: ð6:21Þ

The matching relations for the corresponding bare mass parameters are given as [110]

μ23 ¼ ðμ23ÞSM þ T2

8
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1

16π2
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þ 3
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5
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1
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3

8
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7
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g42 −

5
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5
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3T
Λ3d
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3
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���
; ð6:22Þ
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where

ðμ23ÞSM ¼ −μ2ðΛÞ þ T2
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and

m2
T;3 ¼ −m2
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Below are the expressions for the quantities which are used above:

g22;3 ¼ g22ðΛÞT
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1þ g22

ð4πÞ2
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g21;3 ¼ g21ðΛÞT
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��
; ð6:26Þ
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g22ðΛÞT

3

�
1þ 1

ð4πÞ2
��

44 − Nd − 2Nt

6
Lb þ

53

6
−
Nd

3
−
2Nt

3
−
4Nf

3
ðLf − 1Þ

�
g22 þ

g21
2
− 6y2t þ 12λ1 þ 8λht

��
;

h03 ¼
g21ðΛÞT

4

�
1þ 1

ð4πÞ2
�
3g22
2

þ
�
1

2
−
Nd

6
ð2þ LbÞ −

20Nf

9
ðLf − 1Þ

�
g21 −

34

3
y2t þ 12λ1

��
; ð6:27Þ
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δ3 ¼
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�
1þ 1

ð4πÞ2
�
λht þ 8λt þ g22

�
16 − Nd − 2Nt

3
−
4

3
NfðLf − 1Þ þ Lb

44 − Nd − 2Nt

6

���
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δ03 ¼ −
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�
1þ 1

ð4πÞ2
�
4λt þ g22

�
−
20þ Nd þ 2Nt

3
−
4

3
NfðLf − 1Þ þ Lb

44 − Nd − 2Nt

6

���
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where Nd ¼ 1, Nt ¼ 1, and Nf ¼ 3 to identify the contributions from the SM Higgs doublet, the real triplet, and the
fermions, respectively.
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In the case of the triplet, there is a significant change after
the two-loop corrections to the thermal masses are added.
The upper mass bound which was previously 310 GeV is
now constrained more and reduced to 259 GeV.

C. Constraints from DM relic

Both complex singlet and inert triplet scenarios consid-
ered here offer a dark matter candidate being odd under Z2.
In order to fulfill the criteria of only dark matter candidate,
the neutral component in both scenarios independently
should satisfy the observed dark matter relic by the Planck
experiments [111]:

ΩDMh2 ¼ 0.1199� 0.0027: ð6:31Þ

The interactions of the Z2 odd particles with the particles
in the thermal bath are the gauge couplings and the quartic
couplings, and the values of these couplings are quite large.
Hence, the DM particle is considered to be in equilibrium
with the thermal bath initially. As the Universe expands,
the interaction rates of the DM falls short to maintain the
equilibrium number density and freezes out. After freeze-
out, the number density of the DM remains constant in the
comoving frame, which gives the DM relic abundance in
the current epoch. So, we constrain our parameter space to
satisfy the thermal relic abundance as given in Eq. (6.31).
In the case of the singlet, the main annihilation comes via
an s-channel Higgs boson on or off shell. It is noticed
that for maximum region of parameter space the singlet
dark matter can satisfy the required observed dark matter
relic [75,112,113] and, thus, seems phenomenologically
much more viable. Contrastingly, in the inert triplet
scenario, the neutral part T0 annihilates mainly WþW−

and coannihilates via T�T0 → W�Z and, thus, demands
mT0 ≥ 1176 GeV [12] to satisfy the required dark matter
relic in Eq. (6.31). This is incompatible with the demand
of a first-order phase transition at mh ¼ 125.5 GeV that
we just observed in the previous section which states
mT < 193.00 GeV and mT0 < 310.24 GeV. For the first-
order phase transition occurring at temperatures after the
freeze-out of species, entropy injection during the first-
order phase transition can lead to dilution of the relic
species that has decoupled from the thermal bath in the
early Universe. This dilution factor can reach only on the
order of 10, in the case of purely bosonic models which still
does not make the inert triplet model relic mass bound of
TeV order viable [114]. Certainly, the inert triplet scenario
cannot satisfy both demands: obtaining the first-order phase
transition consistent with the current experimental Higgs
boson mass bound and satisfying the dark matter relic.
A simple gateway would be one more contributor, viz.
singlet, in order to satisfy the dark matter relic, which
would also enhance the possibility of the first-order phase
transition even further [60–64].

VII. CALCULATING FREQUENCY DETECTABLE
BY LISA, LIGO, AND BBO

The phase transition from symmetric phase to broken
phase proceeds via bubble nucleation when bubbles of
the false vacua nucleate in the sea of symmetric phase
and then keep on expanding. These expanding bubbles
collide and gives rise to GWs, which is described below.
The frequencies of such gravitational waves can be
estimated via thermal parameters which are described in
the next subsections. Before we move on to the calculation
of the frequencies of the gravitational waves, let us
revisit the effective potential in order to implement in
CosmoTransition [115]. The effective potential at finite temper-
ature can be written as

Veff ¼ V tree þ V1ðϕ; 0Þ þ V1ðϕ; TÞ; ð7:1Þ

where V tree is the tree-level potential, V1ðϕ; 0Þ is the
quantum correction at the zero temperature, and
V1ðϕ; TÞ ¼ ΔV1ðϕ; TÞ þ ΔVdaisy=ringðϕ; TÞ as shown in
Eq. (2.4). The one-loop quantum correction at zero temper-
ature is estimated via the Coleman-Weinberg method [90]
working in the Feynman gauge and also implemented
in CosmoTransition [115]:

V1ðϕ; 0Þ ¼ � 1

64π2
X
i

nim4
i

�
log

m2
i

Q2
− ci

�
; ð7:2Þ

where ni and mi are the degrees of freedom and field-
dependent masses as described in Eqs. (3.2), (3.3),
and (3.6), respectively. Here, þð−Þ signs come for bosonic
(fermionic) degrees of freedom. The expression for the
potential coming from nonzero temperature including the
daisy/ring resummation (also in the Feynman gauge)
are expressed as [115]

V1ðϕ; TÞ ¼
T2

2π2
X
i

niJ�

�
m2

i

T2

�
; ð7:3Þ

where J� are spline functions with þð−Þ for bosons
(fermions), respectively, and are defined as

J�

�
m2

i

T2

�
¼ �

Z
∞

0

dyy2 log

�
1 ∓ e

−

ffiffiffiffiffiffiffiffiffi
y2þm2

i
T2

q �
: ð7:4Þ

Next, we discuss the relevant parameters needed to calcu-
late the frequencies of the GWs using CosmoTransition [115]
and BubbleProfiler [116].

A. Thermal parameters

GWs are created when bubble collision occurs and, thus,
depend on the bubble nucleation rate as given below [65]:
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ΓðtÞ ¼ AðtÞe−S3ðtÞ; ð7:5Þ

where S3 is the Euclidean action of the background field ϕ
written in spherical polar coordinate of the critical bubble
as follows [65]:

S3 ¼ 4π

Z
drr2

�
1

2
ð∂rϕ⃗Þ2 þ Veff

�
: ð7:6Þ

Here, Veff is the total potential as given in Eq. (7.1).
The temperature of the thermal bath at time t� is defined

as T� and without significant reheating effect, T� ∼ Tn, the
nucleation temperature. At the nucleation temperature Tn,
the bubble nucleation starts, and the bubble nucleation rate
Γ should be large enough that a bubble is nucleated per
horizon volume with probability of the order of 1 [65]. In
terms of bubble nucleation rate, the inverse time duration of
the phase transition, β, is given as

β ¼ −
dS
dt

����
t¼t�

≃
_Γ
Γ
; ð7:7Þ

t� being the instant of time where the first-order phase
transition completes. The parameter β defines the time
variation of the bubble nucleation rate and, therefore,
describes the length of the time in which the phase transition
occurs. There are two relevant parameters which control the
GW signal; one of them is the fraction β

H�
, where H� is the

Hubble parameter at temperature T�. To achieve a large GW
signal, a relatively slow phase transition is required, and,
hence, the fraction β

H�
should be small for stronger signals.

The ratio β
H�

instrumental for this is defined as

β

H�
¼ T�

dS
dt

����
T�

; ð7:8Þ

where T� is the temperature at time t�, i.e., T� ¼ Tjt� , and it
becomes T� ≃ Tn with negligible reheating effect. The ratio
β
H�

required for the visible signal in LISA is β
H�

≲ 103 [117].
This is a dimensionless quantity, and it mainly depends on
the effective potential size at the nucleation temperature.
The other essential parameter is α, defined as the ratio of
the vacuum energy density which is released during the
phase transition to that of the radiation bath, and it is defined
as below:

α ¼ ρvac
ρ�rad

; ð7:9Þ

where ρ�rad ¼ g�π2T4�=30 and g� is the number of relativistic
degrees of freedom at temperature T� in plasma. Other
relevant parameters for the appraisal of the GW frequ-
encies are

κv ¼
ρv
ρvac

; κϕ ¼ ρϕ
ρvac

; ð7:10Þ

where κv is the fraction of vacuum energy that is converted
into bulk motion of the fluid and κϕ is the fraction of vacuum
energy converted into gradient energy of the Higgs-like field.
And vw is defined as the fluid bubble wall velocity.

B. Production of the gravitational wave signal

The first-order phase transition happens via bubble
nucleation, and, because of the pressure difference between
the false and true vacua, these bubbles start expanding. The
collision of these bubbles then breaks the spherical sym-
metry of each bubble, and GWs are produced, while for
uncollided bubbles the spherical symmetry remains pre-
served and no GWs are produced. The gravitational wave
background spectrum arising from cosmological phase
transition depends on various sources. The sources which
are most relevant for GWs depend on the dynamics of
bubble expansion and the plasma as we discuss below.

C. Relevant contributions to the
gravitational wave spectrum

The following processes are involved in first-order phase
transition for the production of gravitational waves.

(i) Bubble wall collision [118–123] and shocks in
the plasma.—The technique referred as “envelope
approximation” is used in this scenario. In this
approximation, the contribution of scalar field ϕ
is considered in computing the GW spectrum.

(ii) Sound waves in the plasma.—When a part of energy
released in the transition is dissipated as kinetic
energy, resulting in the bulk motion of fluid in
plasma [124–128].

(iii) Bubble collision leads to the formation of magneto-
hydrodynamic turbulence in the plasma [129–133].

These three processes generally coexist and linearly com-
bine to give the contribution to the GW background as
follows [134]:

h2ΩGW ≃ h2Ωϕ þ h2Ωsw þ h2Ωturb: ð7:11Þ

The detailed forms of each contribution are discussed
successively.

1. Bubble collision

The scalar field contribution to the GW involved in the
phase transition can be treated by envelope approximation
[119,121]. In envelope approximation, the expanding
bubbles are configured with the overlapping of the corre-
sponding set of infinitely thin shells. Once the phase
transition is completed, the envelope disappears and the
production of GWs stops. It has been found that the peak
frequency for the GW signal is determined by the average
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size of the bubble at collision. The GW contribution to the
spectrum using the envelope approximation via numerical
simulations can be written as

h2ΩenvðfÞ ¼ 1.67 × 10−5
�
β

H

�
−2
�

κϕα

1þ α

�
2
�
100

g�

�
1=3

×

�
0.11v3w

0.42þ v2w

�
3.8ðf=fenvÞ2.8

1þ 2.8ðf=fenvÞ3.8
; ð7:12Þ

with

β ¼
�
HT

d
dT

�
S3
T

������
Tn

; ð7:13Þ

where Tn is defined as the nucleation temperature andHn is
the Hubble parameter at temperature Tn. The estimation of
the bubble wall velocity vw used in the above equation is
given as [122,135–137]

vw ¼ 1=
ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 2α=3

p
1þ α

: ð7:14Þ

The κϕ parameter used in the calculation is defined as the
fraction of latent heat deposited in a thin shell and is
expressed as

κϕ ¼ 1 −
α∞
α

; ð7:15Þ

with [134,138]

α∞ ¼ 30

24π2g�

�
vn
Tn

�
2
�
6

�
mW

v

�
2

þ 3

�
mZ

v

�
2

þ 6

�
mt

v

�
2
�
;

ð7:16Þ

where v and vn are the vacuum expectation values of the
Higgs field at the electroweak scale and at the nucleation
temperature Tn, respectively. MW , MZ, and Mt are the W
boson, Z boson, and top-quark masses, respectively. α is
defined in Eq. (7.10) at the nucleation temperature, where

ρvac ¼
��

Vhigh
eff − T

dVhigh
eff

dT

�
−
�
V low
eff − T

dV low
eff

dT

��
ð7:17Þ

and

ρ�rad ¼
g�π2T4

n

30
: ð7:18Þ

Finally, we receive the expression of the peak frequency
fenv, produced by bubble collisions, which contribute to the
GW spectrum as

fenv ¼ 16.5 × 10−6 Hz

�
0.62

v2w − 0.1vw þ 1.8

��
β

H

�

×

�
Tn

100 GeV

��
g�
100

�1
6

: ð7:19Þ

2. Sound wave

The latent heat is released at the phase boundary during
bubble expansion. This released energy in transition grows
with the volume of the bubble as ∼R3, and the energy that is
transferred to the scalar bubble wall grows with the surface
of bubble ∼R2, where R is the radius of the bubble. This
energy which is released into the fluid mostly contributes in
reheating the plasma. A small fraction of this energy goes
into the bulk motion of fluid which can give rise to GWs.
Therefore, the contribution to the gravitational wave from
the sound wave (SW) can be estimated as follows:

h2ΩSW ¼ 2.65 × 10−6
�
β

H

�
−1
vw

�
κvα

1þ α

�
2
�

g�
100

�
−1
3

×

�
f

fSW

�
3
�

7

4þ 3ð f
fSW

Þ2
�
2

; ð7:20Þ

where the parameter κv, earlier defined in Eq. (7.10) as the
fraction of latent heat which is transferred to the bulk
motion of the fluid, can be rewritten as

κv ¼
α∞
α

�
α∞

0.73þ 0.083
ffiffiffiffiffiffi
α∞

p þ α∞

�
: ð7:21Þ

The peak frequency contribution fSW to the GW spectrum
produced by sound wave mechanisms is

fSW ¼ 1.9 × 10−5 Hz

�
1

vw

��
β

H

��
Tn

100 GeV

��
g�
100

�1
6

:

ð7:22Þ

3. Turbulence

The collision of bubbles can also induce turbulent
motion of fluid [139]. This can give rise to GWs even
after the transition is finished. Lastly, the contribution
to GWs from magnetohydrodynamic turbulence can be
evaluated as

h2Ωturb ¼ 3.35 × 10−4
�
β

H

�
−1
vw

�
ϵκvα

1þ α

�3
2

�
g�
100

�
−1
3

×

	
f

fturb



3
	
1þ f

fturb



−11

3

ð1þ 8πf
h�
Þ ; ð7:23Þ

where ϵ ¼ 0.1 and fturb is again the peak frequency
contribution to the GW spectrum produced by the turbu-
lence mechanism
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fturb ¼ 2.7 × 10−5 Hz

�
1

vw

��
β

H

��
Tn

100 GeV

��
g�
100

�1
6

;

ð7:24Þ

where

h� ¼ 16.5 × 10−6 Hz

�
Tn

100 GeV

��
g�
100

�1
6

: ð7:25Þ

The updated expression for κv given in Eq. (7.21) which is
used in this analysis is as follows [140,141]:

κv ≃
�

α∞
0.73þ 0.083

ffiffiffiffiffiffi
α∞

p þ α∞

�
: ð7:26Þ

D. Benchmark points

In this section, we compare the triplet and the singlet
scenarios with their gravitational wave frequencies detect-
able by LISA, LIGO, and BBO experiments [85–87]. For
this purpose, we choose the benchmark points (BPs) in the
singlet and the triplet cases as given in Table III.
The thermal parameters required for the calculation of

the GW spectrum are mainly the nucleation temperature
Tn, the strength of phase transition α, length of the time of
phase transition β, Higgs VEV at the nucleation temper-
ature vn, and the bubble wall velocity vw. The calculation of
the GW intensity requires the phase transition temperature.
Hence, the finite temperature effective potential is com-
puted for the calculation of the transition temperature.
These calculations are performed using the publicly avail-
able package CosmoTransition [115]. The tree-level potential is
given as an input to this package, and it provides the
thermal parameters required for the calculation of GW
intensity. These thermal parameters corresponding to the
benchmark points in Table III, predicting a strongly first-
order phase transition, and allowed by 125.5 GeV Higgs
boson are shown in Tables IV and V for the singlet and the
triplet scenarios, respectively.
The GW spectrum arising from the first-order phase

transition for the benchmark points is given in Fig. 10. The
constraints for different experiments are drawn by the
respective sensitivity curves for the different GW detectors,
viz. LISA, LIGO, and BBO. The higher value of α and
lower value of β actually provide stronger GW signals. It is
clear from Tables IV and V that the nucleation temperature
Tn is lower than the critical temperature Tc for all

benchmark points in singlet and triplet, and the value of
ratio vn=Tn is ≳1, giving a strongly first-order phase
transition. The values of the nucleation temperature for
inert triplet Tn ¼ 115.07ð113.55Þ GeV are lower compared
to singlet ones Tn ¼ 121.03ð119.25Þ GeV that ensure
stronger signals detectable by various experiments. For
both the benchmark points, the GW intensity lies within the
sensitivity curves of LISA and BBO in the singlet and the
triplet scenarios, respectively. The detectable frequencies
for a singlet lie between ∼1.15 × 10−3 and 1.06 × 10−2 Hz,
while for the triplet the allowed ranges enhance to range
∼4.18 × 10−4–1.99 × 10−2 Hz for the LISA experiment as
can be seen from Fig. 10. It is also inferred from Fig. 10 that
the GW intensity mainly depends on the parameter β. The
smallest value of parameter β is attained for BP2 of the inert
triplet scenario, which leads to highest GW intensity.
For LIGO, the GW intensities lie outside the detectable
region in both the singlet and the triplet scenarios. In
comparison, BBO has more region of parameter space that
can be detected for both, with the triplet having a larger
spectrum with a slightly larger frequency range compared
to the singlet case. Also, the SNR for a particular detector is
given as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tobs

Z
fmax

fmin

df

�
ΩGWðfÞh2
ΩnoiseðfÞh2

�
2

s
;

where tobs is defined as the duration of the observation in
unit of seconds and ΩnoiseðfÞh2 is defined as the effective
strain noise power spectral density for the considered

TABLE III. BPs for frequency analysis for singlet and triplet
scenarios.

mS=mT λs=λt λhs=λht

BP1 150.23 0.10 0.10
BP2 120.23 0.01 0.01

TABLE IV. Thermal parameters required for frequency analysis
of the singlet for the chosen benchmark points, where Tn is the
nucleation temperature, α is the strength of transition, β is the
length of the time of phase transition, and vn is the Higgs VEVat
the nucleation temperature.

BP1 BP2

Tn [GeV] 121.03 119.25
α 0.17 0.18
β=H 332.83 327.94
vn=Tn 1.10 1.16

TABLE V. Thermal parameters required for frequency analysis
of the inert triplet for the chosen benchmark points, where Tn is
the nucleation temperature, α is the strength of transition, β is the
length of the time of phase transition, and vn is the Higgs VEVat
the nucleation temperature.

BP1 BP2

Tn [GeV] 115.07 113.55
α 0.86 0.89
β=H 284.22 278.87
vn=Tn 1.16 1.22
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detector. ΩGWðfÞ is detectable for SNR > 1, which is
possible for ΩnoiseðfÞ < ΩGW. Therefore, there is a finite
chance that the frequency range in Fig. 10 covered by the
BBO experiment is detectable [142–147].
However, future advanced GW detectors such as eLISA

and BBO are expected to explore millihertz to decihertz of
frequency ranges in the future. Similarly, ground-based
detectors like aLIGO can explore the lower frequency range
with much higher sensitivity. There can be 2–3 orders-
of-magnitude theoretical uncertainty in the peak GW
amplitude using the daisy-resummation approach due to
renormalization scale dependence. Using higher-order
terms in the perturbative calculations, i.e., the dimensional
reduction approach, the scale dependence can be reduced
and the theoretical uncertainty can be reduced to
Oð100–101Þ [107,148].
In order to ensure that the physical quantities in any field

theory are independent of the particular renormalization
scheme (RS), if the true result is exactly RS independent,
then the best approximation should be least sensitive to the
small changes in the RS. This is known as the principle of
minimal sensitivity [149]. This principle states that, for
unphysical parameters, the exact result is a constant. Hence,
the calculated result cannot be a successful approximation
where it is varying rapidly. If the variation is considered
with the renormalization scale, then the extrapolation from
102 GeV can be judged by observing how flat the result is
at higher scales. The variation will not be flat everywhere,
so one can always choose the scale to lie in the middle of
the flat portion of the variation. The variation of all the
quartic couplings becomes almost constant after 106 GeV
and further higher scales. Therefore, we consider the
variation of the quartic couplings using the two-loop β
functions in the daisy-resummation approach including
the two-loop potential from Eqs. (5.6) and (5.7) at three

different scales, i.e., 102, 103, and 106 GeV, respectively.
The benchmark points and the thermal parameters for
singlet and triplet scenarios are given in Tables VI–VIII.
The GW spectrum for the singlet and the triplet scenarios

is given in Fig. 11. The blue and the green intensity curves
correspond to the singlet and the triplet scenarios, respec-
tively, and the dotted purple, orange, and cyan curves
denote the intensity spectrum for LISA, BBO, and LIGO
experiments, respectively. The gravitational wave spectrum

FIG. 10. GW spectrum for the BPs allowed by a strongly first-order phase transition in comparison with the sensitivity curves based on
noise curves of experiments, i.e., LISA, LIGO, and BBO. The value of nucleation temperature (Tn), the strength of transition (α), and the
length of the time of phase transition (β) are computed and used for the GW intensity calculation.

TABLE VII. Thermal parameters required for the frequency
analysis in the case of a singlet for chosen benchmark points,
where Tn is the nucleation temperature, α is the strength of
transition, β is the length of the time of phase transition, and vn is
the Higgs VEV at the nucleation temperature.

102 103 106

Tn [GeV] 130.73 131.69 185.91
α 0.15 0.15 0.10
β=H 292.83 295.94 327.68
vn=Tn 0.97 0.97 0.83

TABLE VI. Allowed benchmark points for the frequency
analysis in singlet and triplet scenarios at three different renorm-
alization scales, i.e., 102, 103, and 106 GeV using the daisy-
resummation method with two-loop potential and two-loop β
functions. The quartic couplings are given for three different
renormalization scale variations followed by the running of the
two-loop β functions.

μ (GeV) mS=mT (GeV) λs=λt λhs=λht λh

102 190.23 0.10 0.33 0.1264
103 190.23 0.11=0.11 0.36=0.36 0.1040=0.1040
106 190.23 0.19=0.22 0.48=0.53 0.1198=0.1253
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is then considered for three different renormalization
scales (μ), i.e., 102, 103, and 106 GeV in Figs. 11(a), 11(b),
and 11(c), respectively. The nucleation temperature for the
triplet is lower than the singlet scenarios for the three
renormalization scales as can be read from Tables VII
and VIII. It can be noted that the nucleation temperature

increases with the renormalization scale and, nevertheless,
remains lower for the triplet compared to the singlet. The
increase in the nucleation temperature with the renorm-
alization scale actually reduces the GW intensity and,
thus, the detectable frequency range by LISA, LIGO, and
BBO experiments for both singlet and triplet scenarios.
Using Tables VII and VIII, the uncertainty in the compu-
tation of the gravitational wave intensity due to the
renormalization scale dependency is given in Fig. 12
for both the singlet and the triplet scenarios. The uncer-
tainty band depicts the variation of the results with the
renormalization scale using the daisy-resummation
method including the two-loop potential and two-loop
β functions. It can be seen from Fig. 11 that the changes in
the gravitational wave intensity from 102 to 103 GeV scale
are minuscule. Hence, in order to show a significant
amount of scale dependency, we choose 102 and 106 GeV
scales, respectively, in Tables VII and VIII.

TABLE VIII. Thermal parameters required for the frequency
analysis in the case of the inert triplet for chosen benchmark
points, where Tn is the nucleation temperature, α is the strength of
transition, β is the length of the time of phase transition, and vn is
the Higgs VEV at the nucleation temperature.

102 103 106

Tn [GeV] 128.50 129.60 181.07
α 0.16 0.16 0.11
β=H 291.56 294.23 320.68
vn=Tn 0.98 0.98 0.84

FIG. 11. GW spectrum for the BP allowed by a strongly first-order phase transition and perturbative unitarity in comparison with the
sensitivity curves based on noise curves of experiments, i.e., LISA, LIGO, and BBO for three different renormalization scales, i.e., 102,
103, and 106 GeV using the daisy-resummation method including the two-loop potential and two-loop β functions. The blue and green
curves correspond to the singlet and the triplet scenarios, respectively. The dotted purple, orange, and cyan curves denote the sensitivity
curves from LISA, BBO, and LIGO experiments, respectively.
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In this article, we showed how the parameters satisfying
the first-order phase transition and the gravitational wave
signatures are different for both scenarios. The effect of
two-loop corrections to the potentials are considered, in
which only the triplet mass bound gets affected slightly.
Another interesting fact is that the upper mass bound for
singlet is larger, i.e., ∼1 TeV, compared to the triplet
≲320 GeV. The nucleation temperature is lower for the
triplet in comparison to the singlet, and the detectable
frequency range by LISA is more for the triplet, i.e.,
∼4.18 × 10−4 –1.99 × 10−2 Hz, in comparison to the sin-
glet, i.e., ∼1.15 × 10−3–1.06 × 10−2 Hz.
There are other aspects of the collider and dark matter

phenomenology in which the scenarios can be easily
discerned. The singlet does not have a charged Higgs
boson like the triplet one, which can give rise to a displaced
pion at the collider due to the compressed spectrum
[12,74,75,83]. Y ¼ 0 triplet unlike the SM doublet does
not couple to fermions which alters the bounds on rare B
decays [76,79] and also difficult to produce at the collider.
However, vector boson fusion to charged Higgs and other
associate production can be analyzed in the ZW decay
mode of the charged Higgs via multilepton final states,
where the triplet takes a VEV [80–82]. On the contrary, the
singlet does not have any charged Higgs bosons, and, being
gauge singlet, it cannot be produced via gauge bosons. The
productions mainly come via the mixing with the SMHiggs
bosons or SM Higgs boson decay to a singlet pair [35,118],
and for an inert singlet it is bounded by Higgs to invisible
decay width [40,119]. Lastly, the inert singlet model
satisfies the DM relic density bound even with the very
small singlet mass along with the first-order phase tran-
sition [115–117], but for the triplet it shows underabun-
dance, demanding such low triplet mass required for the
first-order phase transition [75].

VIII. CONCLUSION

In this article, we study the Y ¼ 0 SUð2Þ inert triplet
which successfully stabilizes the electroweak vacuum at
zero temperature and also provide the DM candidate [12] at
finite temperature. The regions of parameter space suitable
for the first-order phase transitions are designated consid-
ering perturbative unitarity at one- and two-loop level
along with the demand of a SM-like Higgs boson around
125.5 GeV. It has been noticed that no consistent solutions
have been found at one-loop perturbativity till Planck scale
consistent with a first-order phase transition and current
Higgs boson and top-quark masses. Considering the two-
loop beta functions with the one-loop resummed potential,
one can find the maximum mass values for the singlet and
the triplet field as 909 and 310 GeV, respectively, predicting
the first-order phase transition, which are also consistent
with the currently measured Higgs boson and top-quark
masses. Including the two-loop contributions coming from
the effective potential as well as the thermal masses, the
mass bound for the singlet remains the same while
satisfying the current Higgs mass within the uncertainty
of 1σ. On the other hand, the mass bound for the inert triplet
is further constrained to ≲259 GeV with these corrections.
However, these maximum allowed values of mass corre-
spond to relatively larger values of λhsðλhtÞ ¼ 4.00ð1.95Þ,
respectively. For lower values of these masses correspond
to the regions with higher ϕþðTcÞ

Tc
, i.e., a more strongly first-

order phase transition. The self-couplings of the singlet and
the triplet are considered to be zero to maximize the ϕþðTcÞ

Tc
.

It is interesting to note here that for the singlet mass
≲ 909 GeV one not only realizes a first-order phase
transition along with a Higgs boson mass around
125.5 GeV, but also finds the parameter space consistent
with a DM relic [75,112,113]. On the contrary, the situation
looks grim for the triplet scenario, as the correct DM relic

FIG. 12. Uncertainty band for the scale dependence of the gravitational wave intensity in both singlet and the triplet using the daisy-
resummation method including the two-loop potential and two-loop β functions. The uncertainty band depicts the variation as a result of
the change in the renormalization scale. The red and the green colors correspond to the gravitational wave intensity for 102 and 106 GeV
renormalization scale, respectively.
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abundance demands the triplet scalar mass ≲1.2–1.8 TeV.
Thus, with only triplet extension of the SM, we cannot have
the first-order phase transition along with the correct DM
relic. Triplet DM mass < 320 GeV gives rise to under-
abundance for the DM, and we need additional fields to
satisfy the correct relic [75].
A first-order phase transition in both cases can give rise

to a gravitational wave coming from the bubble collision,
sound wave of the plasma, and the turbulence. These add
up to the frequencies that can be observed via the space-
and Earth-based experiments like LISA [86], BBO [85],
and LIGO [87]. To observe and distinguish the singlet
and the triplet scenarios, we benchmark both singlet and
triplet scenarios and predict their frequencies observed
by various different detectors. The detectable frequency
range by LISA is more for the triplet, i.e., ∼4.18 × 10−4 –
1.99 × 10−2 Hz, in comparison to the singlet, i.e.,
∼1.15 × 10−3–1.06 × 10−2 Hz. For all the benchmark
points, the GW intensities lie within the detectable range
of LISA and BBO in both singlet and triplet scenarios. With
the increase of the renormalization scale using the daisy-
resummation method with two-loop β functions and two-
loop potential, the GW intensity and also the detectable
frequency drop. Thus, the singlet model, constrained from
perturbative unitarity and DM relic, is in agreement with
the sensitivity curves of GW detectors. However, for the
triplet case, the strongly first-order phase transition predicts

a relatively lower mass for the triplet (≲320 GeV),
demanding additional multiplets to satisfy the DM relic.
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