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The Higgs self-coupling measurement is quite essential for determining the shape of the Higgs potential
and nature of the Higgs boson. We propose the di-Higgs plus jet final states at 100 TeV hadron colliders to
increase the discovery sensitivity of the Higgs self-coupling at the low invariant mass region. With detector-
level collider simulation, we find negative Higgs self-coupling would be disfavored beyond 2σ confidence
level, and the allowed region of the Higgs self-coupling is [0.5, 1.7] with this channel only.

DOI: 10.1103/PhysRevD.107.055031

I. INTRODUCTION

The discovery of the Higgs boson in 2012 [1,2]
represents one milestone of modern particle physics. It
provides the evidence that the observed Higgs boson is the
one predicted by the Standard Model (SM). While the SM
parameters have essentially been measured to a very high
precision level, the Higgs self-couplings, important for
electroweak symmetry breaking and understanding its
connection to other fundamental questions like electroweak
baryogenesis [3], have not been measured directly yet.
More importantly, depending on the nature of the
Higgs boson, such as whether it is fundamental, pseudo-
Goldstone, pseudo-Dilaton, or partially composite, the
shape of the Higgs potential could be quite different from
the SM one [4]. Indeed, a wide range of new physics
models beyond the SM predict modified Higgs potentials
that lead to Oð1Þ corrections to the Higgs self-couplings,
the Coleman-Weinberg [5–7] and the tadpole-induced [8,9]
Higgs scenarios for example. Therefore, a precision

measurement of the Higgs self-couplings would provide
an important benchmark for model identification and deepen
our understanding on electroweak symmetry breaking.
Experimentally, the Higgs self-couplings could be mea-

sured directly from Higgs pair production or Higgs
associated production. Due to their lower cross sections
for the latter, in this work, we focus specifically on the
former that is dominated by gluon-gluon fusion (GGF)
at hadron colliders that has been studied in detail earlier
[10–17].1 However, due to a strong cancellation near the
kinematical threshold, the cross sections for Higgs pair
production is highly suppressed. At a 13 TeV pp collider,
the GGF cross section for the Higgs pair production was
calculated at NNLO in finite top-quark mass approxima-
tion, and the result was 31.02þ2.2%−5.0%ðscaleÞþ4%−18%ðmtopÞ �
3.0%ðαs þ PDFÞ fb [22–27]. Here, “scale” stands for the
uncertainty from finite order quantum chromodynamics
calculation, “mtop” that from the top-quark mass scheme
[26,28], and “αs þ PDF” that from the strong coupling
constant and the parton distribution functions. Recently,
it is further improved to N3LOþ N3LL level, and the result
is 33.47þ0.88%

−0.85% fb [29–31]. As a consequence, the Higgs
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1Lepton colliders could also measure Higgs self-couplings
directly, see, for example, Refs. [18–21]. We focus on hadron
colliders in this work given the foreseen high-luminosity/energy
era of the Large Hadron Collider (LHC) in the near future.
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self-couplings are only very loosely bounded [32], let alone
their precision determination.
Nevertheless, it is worth pointing out that current

experimental searches mainly focus on the high di-Higgs
invariant mass region, while it is perhaps universally
recognized that the it is the low mass region that is most
sensitive to new physics. This motivates the study of Higgs
self-couplings in the low mass region in this work. To
increase the significance of the di-Higgs signal in this
region, we consider instead Higgs pair production through
GGF with an extra hard jet in the final state,2 i.e.,
pp → hhþ jetþ X, with X any other particles in the final
state that we are not interested in. Similar to the pure di-
Higgs production channel, we consider the bbγγ decay
channel of the Higgs pair for its cleanness and the
unambiguity in reconstructing the two Higgs particles.
The rest of the paper is organized as follows: In Sec. II, we

set up the frameworkused in thiswork, andbriefly summarize
previous searches in di-Higgs production. We then detail our
strategy for pp → hhþ jetþ X searches in Sec. III. Results
from detector-level simulation for this channel are then
presented in Sec. IV, and we conclude in Sec. V.

II. HIGGS NATURE DETERMINATION
VIA HIGGS SELF-INTERACTIONS

In the effective field theory (EFT) framework, new
physics effect in the Higgs sector could be described using
Higgs EFT (HEFT) and standard model EFT (SMEFT) in
the broken and unbroken phase of electroweak symmetry,
respectively. Although SMEFT is the most popular EFT
scenario, its validity relies on the assumptions that new
physics should decouple at low energy scale. On the other
hand, the HEFT would describe the Higgs potential in the
broken phase and thus describe the nature of the Higgs and
the Higgs couplings in a more general way.
In the HEFT scenario [34–41], the electroweak gauge

symmetry is broken down to the Uð1Þem and the global
SUð2ÞL × SUð2ÞR=SUð2ÞV symmetry in the Higgs sector
is nonlinearly realized. Treating the Higgs boson h as an
electroweak singlet, the HEFT Lagrangian at the leading
order reads

L¼ v2

4
Tr½DμU†DμU�

�
1þ 2a
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ð1Þ

which parametrize the Higgs potential in the polynomial
form and does not depends on the decoupling behavior.
Depending on the nature of the Higgs boson, the Higgs
potential could be different from the SM form as para-
metrized by κλ;h.
In the SMEFT scenario [42–52], the Higgs potential can

be expressed as

Vh ⊃ −μ2H†H þ λðH†HÞ2 þ c6
Λ2

λðH†HÞ3 þ � � � ; ð2Þ

where Λ is the UV cutoff, c6 is some dimensionless Wilson
coefficient, and “� � �” represents some higher-dimensional
operators of the SMEFT. The triple and quartic Higgs
couplings can then be easily matched to above parameters
after electroweak symmetry breaking upon substituting H
for ð0; vþ hÞT= ffiffiffi

2
p

, leading to [4]
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where we have applied the minimization condition
μ2 ¼ λv2 þ 3c6λv4=ð4Λ2Þ to obtain the expression above
and discarded terms that are not interested for the study in
this work. Matching between the HEFT and the SMEFT
operators, the Higgs mass and the κs are defined as,
up to Oð1=Λ2Þ,

m2
h ≡ 2λv2 þ 3c6λv4

Λ2
; κλ ≡ 1þ c6v2

Λ2
; κh ≡ 1þ 6c6v2

Λ2
:

ð3Þ

Note that one reproduces SM tree-level results upon
setting c6 ¼ 0. We comment that ðH†HÞ□ðH†HÞ and
ðH†DμHÞ�ðH†DμHÞ would also contribute to shifting
the Higgs mass and the Higgs self-couplings from the
kinetic Lagrangian. We leave out these operators in our
analysis since they are highly constrained by electroweak
precision physics and/or hVV ðV ¼ W�; ZÞ couplings [4].
Depending on the nature of the Higgs boson, the Higgs

boson could be fundamental, pseudo-Goldstone, pseudo-
Dilaton, or partially composite due to strong dynamics
condensation [4]. For a fundamental Higgs boson, such as
the SM Higgs boson and its scalar/gauge extensions, and
supersymmetric models, the form of the Higgs potential is
polynomial on the Higgs doublet. In this case, there usually
exist additional scalars mixed with the SM Higgs boson,
thus modifying the SM Higgs self-couplings with some
enhancement. In contrast, if the Higgs boson is pseudo-
Goldstone due to the vacuum misalignment, the curvature
of the Higgs field would cause the Higgs couplings to be
always smaller than their SM values. On the other hand,

2To our best knowledge, this channel is first considered at the
LHC with bb̄bb̄ and bb̄τþτ− decay channels in [33]. Here we
reconsider it in a more sensitive bb̄γγ channel at 100 TeV hadron
collider and emphasize the role of it in the analysis of the low di-
Higgs invariant mass region.
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if the Higgs boson is a pseudodilaton, the Higgs potential
would be of purely the Coleman-Weinberg type and thus
the Higgs self-couplings would be larger than the SM ones.
Finally, if the symmetry breaking is partially induced by
condensation, it is possible to have the tadpole-induced
symmetry breaking and thus the Higgs self-couplings are
nearly zero. We summarize the Higgs self-couplings in
different scenarios discussed above in Table I.
Therefore, measuring the Higgs self-couplings could

possibly unveil the pattern of electroweak symmetry
breaking, which in turn helps determine the nature of
the Higgs boson. In this context, Higgs boson pair
production pp → hhþ X through GGF plays a key role
due to its direct sensitivity to κλ and relatively large
production cross section.3 Various final states of hh have
been considered previously, with the promising ones
including bb̄γγ [10,13,59–63], bb̄τ�τ∓ [10–12,33,64,65],
bb̄W�W∓ [10,14,66], bb̄bb̄ [67–69], and W�W∓W�W∓
[70–72]. Among them, bb̄γγ has been recognized as the
most promising channel for precision Higgs boson self-
coupling measurement thanks to its clean final states and
unambiguity in reconstructing the Higgs bosons with the
decay products of hh. Experimentally, this channel has
been intensively investigated at the LHC [73–76],
and recently, the ATLAS collaboration reported their
improved results with −1.5 ≤ κλ ≤ 6.7 at 95% confidence
level (CL) by considering the full run 2 dataset of 139 fb−1

at 13 TeVand utilizing the bb̄γγ channel [32]. We refer the

readers to [32] for the details of their analysis and outline
their strategy below for reference. The preselection cuts
they apply are these:
(1) pleading

T;γ ≥ 35 GeV, psubleading
T;γ ≥ 25 GeV.

(2) At least two photons.4

(3) 105GeV < mγγ < 160 GeV.
(4) pleading

T;γ > 0.35mγγ and psub−leading
T;γ > 0.25mγγ .

(5) Exactly two b-tagged jets.
(6) No electrons or muons.
(7) Fewer than six jets with jηj < 2.5.

Events passed these cuts are then divided into two regions
withm�

bb̄γγ
< 350 GeV for andm�

bb̄γγ
> 350 GeV, targeting

the SM and the beyond the standard model (BSM) signal,
respectively. Here,m�

bb̄γγ
is defined asmbb̄γγ −mbb̄ −mγγ þ

250 GeV for the diphoton and b-tagged jets system. In each
region, the boosted decision tree (BDT) method is adopted
for event selection. For the training variables and the event
selection criteria in each region, see their Tables 2–4.
While perhaps it is universally acknowledged that the

phase space region with small di-Higgs invariant mass mhh
is most sensitive to κλ, this region is mostly excluded in
current experimental analysis, and that motivates the study
in this work. To that end, we consider instead Higgs-pair
production via GGF with an extra light jet in the final state.
The extra hard jet in the final state would boost the
transverse momenta of the Higgs pair such that one could
gain extra significance to the low mhh region in the end.
This in turn helps the determination of the Higgs self-
couplings as we will see later in this article. We detail our
analysis in the next section.

III. DI-HIGGS PLUS JET SIGNATURE
AT 100 TeV HADRON COLLIDER

As discussed above, we consider pp → hhþ jetþ X
instead of pp → hhþ X in this work in order to extract the
Higgs self-couplings from the low mhh region. This relies
on the fact that when an additional hard jet is present in
the final state, the di-Higgs invariant mass would tend to be
small due to kinematics. Furthermore, the additional hard
jet would also highly suppress the SM QCD background
thanks to its large transverse momentum. All together,
the pp → hhþ jetþ X channel could then be a promising
candidate to extract κλ in small mhh region as we shall
see below.
Contributions to pp → hhþ jetþ X mainly arise from

the gg → hhg channel, whose leading order diagrams in the

TABLE I. Higgs self-couplings κλ and κh in different cases.
Here, “MCH5þ5” means the minimal composite Higgs model
[53,54], “CTH8þ1” the composite twin Higgs model [55–57], and
“CW” the Coleman-Weinberg Higgs scenario [5–7]. The first
(second) subscript of the model name represents the fundamental
representation of the left-(right-)handed top quark under the
global symmetry, which is SO(5) and SO(8) for “MCH5þ5” and
“CTH8þ1,” respectively. In the CW Higgs scenario, numbers in
parentheses are results up to the two-loop order from Refs. [5,6].

Higgs self-couplings κλ κh

SM 1 1
SMEFT (with O6) 1þ c6v2

Λ2 1þ 6c6v2

Λ2

MCH5þ5 1 − 3
2
ξ 1 − 25

3
ξ

CTH8þ1 1 − 3
2
ξ 1 − 25

3
ξ

CW Higgs (doublet) 5
3
ð1.75Þ 11

3
ð4.43Þ

CW Higgs (singlets) 5
3
ð1.91Þ 11

3
ð4.10Þ

Tadpole-induced Higgs ≃0 ≃0

3Other production channels, such as vector-boson fusion,
tt̄=W=Z, or single-top associated production, also offer the
opportunity for measuring Higgs self-couplings directly. We
choose not to adopt these channels for the discussion in this
work due to their lower cross sections [58].

4These photons shall correspond to those reconstructed from
topologically connected clusters of energy deposits in the electro-
magnetic calorimeter with pseudorapidity jηj < 2.37. Those with
1.37 < jηj < 2.37 in the transition region between the barrel and
end cap electromagnetic calorimeters are rejected. Furthermore, to
avoid photon misidentification, the calorimeter-based (track-based)
isolation needs to be less than 6.5% (5%) of the photon transverse
energy [32].
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SM are shown in Fig. 1. As discussed earlier, we focus on
the hh → bb̄γγ decay channel of the Higgs pair, and study
its prospect for κλ extraction at a future 100 TeV pp collider
due to the limited statistics at the LHC or its high-
luminosity era. At parton level, all the signal and the
background events are generated using the five-flavor
scheme of MadGraph_aMC@NLO [77], with the sub-
sequent decay of h done by MadSpin [78]. The main
backgrounds included in this study are

pp → tt̄ðh → γγÞ;
pp → tt̄ðh → γγÞj;
pp → bbγγj;

pp → bbγjj;

pp → bjγγj;

with j ∈ fg; u; d; s; c; bg. Other single Higgs production
processes such as pp → hþ jets also contribute back-
ground events, but are negligibly small compared with
the main backgrounds we list here. All backgrounds are
generated using the tree-level event generator of
MadGraph_aMC@NLO to avoid the third background from
being the genuine signal. Furthermore, we also apply the
following kinematical cuts for event generation:

ΔRjγ;jj;γγ > 0.3;

jηb;γj < 3; jηij < 5;

pT;γ > 10 GeV; pT;j > 20 GeV;

pleading
T;j > 80 GeV;

75 GeV < mbb < 175 GeV;

100 GeV < mγγ < 150 GeV;

where i ∈ fg; u; d; s; cg. We comment on that cuts on ΔR,
η, and pT are imposed to avoid infrared divergence. The
cuts for b jets and light-flavor jets are applied differently
from the fact that the sensitivity region of the detector for
b tagging is mostly restricted to jηj < 2.5. The three
exclusive cuts, leading-jet transverse momentum pleading

T;j ,
mbb, and mγγ precisely, are imposed to make our simu-
lation more efficient but still inclusive enough.
Additionally, no cuts are put on the decay products of

the heavy resonances since otherwise one may under-
estimate the backgrounds.
For parton-level analysis, the misidentification rate and

the smearing effect indicated in [79] are employed. For
signal event selection, we require exactly two b jets and two
photons as in Ref. [32] but with an extra requirement
that there be at least one additional jet in the final state.
After these preselection cuts, we further apply the follow-
ing kinematical cuts:

ΔRbb;γγ;bγ < 0.4;

pT;b > 30 GeV; pT;γ > 30 GeV;

jηbj < 2.5; jηγj < 2.5;

120 GeV < mγγ < 130 GeV;

80 GeV < mbb < 160 GeV;

pleading
T;j > 150 GeV: ð4Þ

Note that our cuts on pT;γ is consistent with those in
Ref. [32], and our range formγγ lies within that of Ref. [32].
After vetoing events not passing above cuts, we display the
sensitivity of our signal in the left panel of Fig. 2 as a
function of mhh for three benchmarks with κλ ¼ 0, 2, 3 in
red, blue, and green, respectively. A similar analysis is
carried out for the pp → hhþ X channel based on
Ref. [79], and the corresponding results can be seen in
the right panel of Fig. 2.
In order to show the sensitivity of each channel to

different mhh regions, the results are displayed as signifi-
cance distribution. This distribution is obtained by calcu-
lating likelihood ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 log ðΛ=Λ0Þ

p
for each bin.

From the significance distributions at the parton level as
shown in Fig. 2, it is obvious that with an extra hard jet in the
final state, the pp → hhþ jetþ X process becomes more
sensitive to the Higgs self-coupling κλ in the lowmhh region.
In the meantime, we discuss how the pp → hhþ X process
exhibits a larger significance due to larger statistics, and our
signal is relatively more kinematically suppressed due to the
hard jet. However, we expect the significance of our signal to
be improved, for example, with the BDT method.

IV. DETECTOR-LEVEL SIMULATIONS

We now move to the discussion on the detector side.
All the parton-level events generated in the previous section

(a) (b) (c) (d)

FIG. 1. Leading order Feynman diagrams for the gg → hhg process.
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are showered by PYTHIA8 [80] for hadronization, and the
detector effect is then simulated using DELPHES [81]. Since
the full NLO QCD corrections to the pp → hhþ jetþ X
process are still missing, no additional K factor will be
included in our simulation.
Furthermore, for detector level simulations, the photon

efficiency is tuned to be 90% and all jets are reconstructed
with the anti-kT algorithm with jet radius R ¼ 0.4. The
b-tagging efficiency is set to be 80%, and the mistagging
rate is set to be 10% for charm-jet and 1% for other light-
flavor jets. Also, the jet-faking-photon rate is set to be
0.05%. In addition, as a trigger requirement, all photons
and b jets should have pT > 30 GeV and 0 < jηj < 2.5,
and photons between the barrel and end cap calorimeter, or
equivalently, photons with 1.37< jηγj<1.52, are excluded
for object selection. Then, the bb̄γγ þ jet final state is
reconstructed with exactly two b-tagged jets, two photons,
and at least one additional jet satisfying the following:

122 GeV < mγγ < 128 GeV;

95 GeV < mbb < 155 GeV;

pleading
T;j > 150 GeV; jηjj < 4.5:

At this stage, the SM QCD backgrounds are all well
suppressed except tt̄h and tt̄hþ jet. In order to suppress
these two backgrounds, any event that contains one or more
isolated lepton (e�; μ�) with pT > 25 GeV and jηj < 2.5
will be vetoed. Moreover, for events with at least four
additional jets, the following quantity is calculated to veto
the top quark:

χ2 ¼ min

�ðmW −mi1i2Þ2
σ2W

þ ðmt −mi1i2j1Þ2
σ2t

þ ðmW −mi3i4Þ2
σ2W

þ ðmt −mi3i4j2Þ2
σ2t

�
; ð5Þ

where i1, i2, i3, i4 refer to light jets and j1, j2 refer to b jets,
and we take σW ¼ 10.81 GeV and σt ¼ 31.01 GeV.
The “min” runs over all possible permutations of light
jets and b jets in the event. And, finally, events with χ2 < 6
are vetoed.
After all these cuts, the di-Higgs invariant mass dis-

tributions for both the signal and the backgrounds are
shown in Fig. 3. For illustration, we only show our signal
with κλ ¼ 1 as represented by the red histogram, which
corresponds to the SM scenario. Then by fitting these
histograms, we obtain the expected confidence level scan
as a function of κλ for the pp → hhþ jetþ X process as
shown in Fig. 4. There, we use Λ0 for the significance
with κλ ¼ 1 for the SM case, and Λ that with generical κλs.
The allowed 2σ CL range of κλ is ∼ ½0.5; 1.7�. Clearly,
negative κλs would be excluded beyond 2σ CL by future
100 TeV pp colliders with the pp → hhþ jetþ X chan-
nel only. Finally, the significance distributions for
pp → hhþ jetþ X and pp → hhþ X are shown in
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level analysis. The significance shows the CL at which one can separate the nonstandard scenario with κλ ≠ 1 from the SM with κλ ¼ 1.
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Fig. 5, where the latter is calculated using the mhh
distributions in Ref. [79].
Additionally, we analyzed our pp → hhþ jetþ X

events with the cuts used in [82], which replace our
pleading
T;j > 150 GeV with pγγ

T > 150 GeV and pbb̄
T >

150 GeV. We find that about 23% of the signal events
which pass our cuts cannot pass the cuts in [82].
Especially, in the 250 GeV < mhh < 400 GeV region,
this number is 67%. These numbers show clearly that
the pp → hhþ jetþ X channel does provide extra infor-
mation on κλ that would eventually help the determination
of the latter.
Given the sensitivity of a future 100 TeV pp collider on

κλ as just discussed, we then ask this: What precision level
could a future 100 TeV pp collider achieve in extracting κλ
from the data? To answer this question, we utilize our
results in Fig. 5 and obtain the 1σ and 2σ bands in κλ
determination at a future 100 TeV pp collider. The result
is shown in Fig. 6, with the yellow (green) representing the

1σ (2σ) bands, respectively. Note that since negative κλs
would be ruled out beyond 2σ CL as discussed above, we
only present our result for positive κλs in Fig. 6. On the
other hand, as seen from Fig. 6, the 1σ and 2σ bands are
broader for larger κλs mainly due to the significance drop
when κλ increases, which is already seen in Fig. 5. This
significance drop mainly seeds in the deconstructive
interference between Figs. 1(a), 1(b) and 1(c), 1(d) as
similarly in the pp → hh case, which in turn is guaranteed
by the low-energy theorem [83,84]. Finally, as depicted
in Fig. 6, we find the 1σ uncertainty of κλ would be around
0.2 (1.05) in the small (large) κλ region, mainly as a result
of statistical uncertainties.
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theory predictions on the Higgs self-coupling within the 1σ
uncertainty in different Higgs scenarios are also shown.
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We also show the typical benchmark points for each
kinds of the Higgs scenarios in Fig. 6: the SM, SMEFTwith
c6=Λ2 ¼ 1 TeV−2, the MCH/CTH with ξ ¼ 0.1, the CW
Higgs and the tadpole induced Higgs, in which the Higgs
self-couplings are taken from Table I. We find that given the
30 ab−1 luminosity data, it is likely to distinguish the
nondecoupling scenarios (CW and Tadpole induced) from
the SM-like scenarios (SM, SMEFT, and MCH/CTH).
On the other hand, it is hard to distinguish scenarios inside
the SM-like scenarios, such as between the SM and the
SMEFT and MCH/CTH ones. This is because the Higgs
couplings to the gauge bosons and the SM fermions put
tight constraints on the parameters c6=Λ2 and ξ in such
scenarios. Note that the result shown in Fig. 6 only utilize
the di-Higgs plus jet data, while combining this data and
the future di-Higgs data might provide some possibility to
distinguish scenarios between the SM and the SMEFT and
MCH/CTH ones.

V. CONCLUSIONS

Higgs self-couplings are of fundamental importance to
our understanding of nature. In this paper, we propose to
use the pp → hhþ jetþ X channel as a complementary
probe of Higgs self-couplings. Compared to the conven-
tional searches with pp → hhþ X, we require the exist-
ence of an extra hard jet in the final state to suppress the
QCD background and improve κλ extraction in the lowmhh
region, where it is most sensitive to new physics. Due to the
limited statistics at the LHC even in its high-luminosity era,
we work instead at a future 100 TeV pp collider. We find
the following:

(i) The 2σ allowed interval of κλ by utilizing our signal
would be 0.5≲ κλ ≲ 1.7. Negative κλ would generi-
cally be disfavored beyond 2σ CL using our signal
pp → hhþ jetþ X at a future 100 TeV pp collider.
This can be seen from our Fig. 4.

(ii) Our result is not as good as the result shown in
[85,86]. This is because in our analysis, we only use
the di-Higgs plus one hard jet events since we focus
on investigating the information carried by these
signal events. These events, although carries infor-
mation of the low mhh distribution, are only small
part of the signal events. A combination with regular
signal events will highly increase the total event
number and suppress the statistic uncertainty.

However, we show that these signal events are
helpful to study the low mhh distribution and thus
the strength of the self-interaction of the Higgs
boson, and a lot of them are missed in current
analysis. We suggest our experimentalists colleagues
consider adding them back to their signal events.

Finally, we present the prospect of the precision determi-
nation for κλ at a future 100 TeV pp collider in Fig. 6.
We find that, depending on the magnitude of κλ, its 1σ
uncertainty at a future 100 TeV pp collider could be around
0.2 (1.05) for small (large) κλs. Given the 30 ab−1 lumi-
nosity data, we find that it is likely to distinguish the
nondecoupling scenarios (CW and Tadpole induced) from
the SM-like scenarios (SM, SMEFT, and MCH/CTH).
On the other hand, it is hard to distinguish scenarios inside
the SM-like scenarios, such as between the SM and the
SMEFT and MCH/CTH ones.
A few comments are in order. First, a machine-learning

based approach on the same study is expected to improve
our results by a few, and it would be desirable to see its
impact on further distinguishing different theory scenarios.
Second, we expect that, in the future, a combined analysis
among different channels would finally help determine
the Higgs self-couplings and unveil the nature of the
Higgs boson.
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