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In the Grimus-Neufeld model (GNM) the neutrino mass generation from an extended Higgs sector leads
to bounds for charged lepton flavor violating (cLFV) processes. Here we update bounds from a previous
study by extending the parameter space to a nonvanishing Majorana phase of the Pontecorvo-Maki-
Nakagawa-Sakata matrix and to heavier charged Higgs boson masses. Three-body cLFV decays are shown
to contribute significantly in the large mass regions, as the boxes are enhanced relatively to photonic
diagrams. This is in contrast to the smaller mass region studied before, in which the two-body decays
tightly restrict the parameter space. The Majorana phase is shown to change limits within 1 order of
magnitude. The tiny seesaw scale is assumed, which makes the cLFV decays in the GNM similar to the
cLFV decays in the scotogenic model and the scoto-seesaw models.
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I. INTRODUCTION

The smallness and hierarchies of neutrino masses might
be explained in models featuring radiative mass generation.
Three simple examples are provided by the scotogenic
model [1], the scoto-seesaw model [2] and the Grimus-
Neufeld model (GNM) [3]. Specifically, the GNM is an
economical model with only one single sterile neutrino N
and the extended scalar sector of the two-Higgs-doublet
model (2HDM). At tree level, the seesaw mechanism
generates only a single nonvanishing neutrino mass,
governed by a Z2-odd effective Yukawa coupling y; at
the one-loop level, loops involving the extra Higgs states
generate a second nonvanishing neutrino mass, governed
by the Peccei-Quinn symmetry breaking Higgs potential
parameter λ5. An appealing parameter region of the GNM
studied in Refs. [4,5] is the “tiny” seesaw scale region,
where the sterile Majorana mass is below the electroweak
scale and the Peccei-Quinn and Z2 breaking parameters
are small.

In neutrino mass models, such as the GNM or the
scotogenic or scoto-seesaw models, the neutrino mass
generation automatically also implies the existence of
charged lepton flavor violation (cLFV) processes, studied
in [2,6–8] for high sterile neutrino masses. In fact, in the
three mentioned models, the predictions for cLFV proc-
esses become similar (or even identical, for the scoto-
seesaw and GNM models) in the case of a tiny sterile
neutrino mass, as discussed in [5], thus our study also
complements the ones in [2,6–8].
In Ref. [5], the interplay between the neutrino sector,

the scalar sector and cLFV was used to analyze which
restrictions are imposed by cLFV on the scalar sector.
A main finding was that a single parameter combina-
tion, called photon factor, is constrained by cLFV, if the
charged Higgs mass is sufficiently small (less than 1 TeV).
In most of the parameter space, the decay μ → eγ was the
most constraining, but in order to obtain absolute, most
conservative bounds, special parameter regions needed to
be considered in which τ → eγ or τ → μγ were important.
Reference [5] focused on the tiny seesaw scale region of

the GNM, but several additional restrictions on the param-
eter regions were imposed in order to simplify the analysis.
The mass of the charged Higgs was constrained to be less
than 1 TeV and the free Majorana phase was set to zero. In
the present paper we relax those restrictions and complete
the phenomenological study of this GNM scenario in the
tiny seesaw scale, by studying the effects of the free
Majorana phase and including large values of the charged
Higgs mass. A major implication of the extended parameter
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space is that further decays, such as τ → 3e and τ → 3μ,
need to be considered because the related box diagram
contributions can now be significant.
In Sec. II we provide a more detailed summary of the

GNM and of the main findings of Ref. [5]. We also provide
an overview of the changes in the considered parameter
space and the expected effects. Section III is devoted to the
extended phenomenological analysis, and Sec. IV presents
our conclusions.

II. THE MODEL AND ITS PARAMETERS

Wewill briefly describe the main features of the GNM to
introduce our definitions. For a more detailed explanation
of the model we refer to [5].
The GNM consists of the general 2HDM with an added

gauge singlet Weyl fermion N with a Majorana mass M,
called the sterile neutrino. This allows for an additional
Yukawa coupling with the singlet N. New terms to the
2HDM Lagrangian read as

L ∋ −
1

2
MNN − YðiÞ

j ljϵHiN þ H:c: ð1Þ

The matrix ϵ ¼ iσ2 combines the two doublets to an SUð2Þ
invariant product, i is the Higgs family index, while j is the
flavor index. We can always use the Higgs basis, where
the Yukawa coupling Yð1Þ to the Higgs doublet with
nonvanishing vacuum expectation value (VEV) enables
the seesaw mechanism, while Yð2Þ leads to radiative
neutrino mass generation for light neutrinos, resulting in
two nonvanishing light neutrino masses at one loop. The
seesaw mechanism mixes N with the active neutrino fields
νj already at tree level and yields the two new mass
eigenstates with nonvanishing masses m3 ≪ m4, related to
the original parameters of the Lagrangian by

X
i

jYð1Þ
i j2 ¼ 2m3m4

v2
; M ¼ m4 −m3: ð2Þ

We assume an approximate Z2 symmetry, under which
H2 and N are odd, while H1 is even. The Yukawa coupling
Yð1Þ then explicitly breaks this symmetry by a tiny amount.
To reproduce the light neutrino masses at the scale of the
atmospheric neutrino mass splitting with the seesaw
mechanism [m3 ≈Oð0.1 eVÞ], one then must have a tiny
mass for the sterile neutrino. We call this the tiny seesaw
scale and assume

M ≈m4 < 10 GeV ⇔
X
i

jYð1Þ
i j2 < 10−14; ð3Þ

which follows from Eq. (2). This makes Yð1Þ
i at least an

order of magnitude smaller than the electron Yukawa
coupling of the SM. In the general 2HDM the Yukawa

interactions of charged leptons with H2 would also break
the Z2 symmetry, thus we set them to zero.
In this limit, we can neglect the OðYð1Þ × loopÞ terms in

the approximated 3 × 3 one-loop neutrino mass matrix for
light neutrinos and write it as

mðνÞ
ij ¼ Yð1Þ

i Yð1Þ
j

v2

2m4

þ Yð2Þ
i Yð2Þ

j Λ: ð4Þ

The parameter Λ, which is responsible for radiative mass
generation and thus relates the scalar and neutrino sectors,
is defined via the neutrino self-energy diagram at vanishing
external momentum:

ð5Þ

In the loop, H0
2 is the neutral component of the second

Higgs doublet in the Higgs basis and N is the sterile
neutrino. As indicated, the coupling values have been
normalized to unity such that Λ essentially corresponds
to the mass-dependent loop function. For the inertlike
scalar sector and the tiny seesaw scenario, this parameter
reduces to

Λ ¼ m4

32π2
ln

�
m2

H

m2
A

�
; m4 ≪ v; ð6Þ

where m4 is the mass of the sterile neutrino and mH;A are
the masses of the extra neutral CP-even/odd Higgs bosons.
We note, however, that our results on cLFV directly apply
for the most general scalar potential, using the definition
of Eq. (5).
Using Eq. (4) in the tiny seesaw limit we are able to get

the one-loop parametrization of Yukawa couplings YðiÞ,
which automatically reproduce the observed Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix and the neutrino
mass differences squared. The explicit derivation of the
parametrization is presented in [5], it is relatively tedious
and includes employing an intermediate convenient basis
and utilizing its specific properties which in the end allows
to decouple the relation of pole masses to the two sets of
Yukawa couplings: Yð1Þ and Yð2Þ. Here we use the final
parametrization taken from [5]. For cLFV rates, the
Yukawa coupling of neutrinos to the first Higgs doublet
in the Higgs basis can be neglected [5] and thus only the
Yukawa coupling to the second Higgs doublet is important
for us, which is

Yð2Þ ≡ signðΛÞ
ffiffiffiffiffiffiffiffiffiffi
mpole

2

jzΛj

s 2
64

0

cos r eiω22

sin r eiω32

3
75
T

U; ð7Þ
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ω32 ≡ −
1

2
arcsin

�
sinð2ω22Þ
t32tan2r

�
; t32 ≡mpole

3

mpole
2

; ð8Þ

z ¼ zðr;ω22Þ≡ cos2 re2iω22 þ t32 sin2 re2iω32 ; ð9Þ

where the neutrino masses, mpole
2 ; mpole

3 , and the mixing
matrix U, have different values for normal ordering (NO)
and inverted ordering (IO) and are related to the exper-
imental values [9] as in Table I. The matrix OIO,

OIO ¼
�

0 1

12×2 0

�
; ð10Þ

relates our mixing matrix convention to the usual 3ν
convention, used in Ref. [9].
The PMNS matrix is defined as [9]

UPMNS ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA

0
B@

c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA

0
B@

eiη1 0 0

0 eiη2 0

0 0 1

1
CA; ð11Þ

where η1 and η2 are unknown Majorana phases, and
sij ¼ sin θij, and cij ¼ cos θij.
While the parameters r and ω22 are free, not all values

reproduce neutrino masses and mixings. They are restricted
by z ∈ R (see [5]). Λ enters as a free parameter in Eq. (7).
Every other parameter is to be determined by the neutrino
masses and mixings. However, the Majorana phases η1 and
η2 are not observed so far and thus are, in principle, free
parameters. In the GNM, η1 is absorbed into the field
redefinition and has no physical significance. This is the
direct consequence of the lightest neutrino being massless in
the GNM: a massless neutrino simply does not have a
Majorana phase, and hence η1 ¼ 0. The Majorana phase η2,
however, is a free parameter in the GNM that does have a
physical significance. Thus the free parameters that para-
metrize Yð2Þ are

r; ω32; Λ; η2: ð12Þ

Note that to simplify the study in [5], we set η2 ¼ 0. We now
relax this assumption and study its significance for the
bounds drawn from cLFV decays.
The Yukawa coupling Yð2Þ leads to one-loop generated

cLFV decays with a charged Higgs boson and sterile
neutrino in the loop. These amplitudes for li → ljγ and
li → ljlklk consist of penguin and box contributions,
which are [5]

Apenguin ∼
Yð2Þ
i

�Yð2Þ
j

m2
H�

∼
1

jΛjm2
H�

; ð13Þ

Abox ∼
Yð2Þ
i

�Yð2Þ
j jYð2Þ

k j2
m2

H�
∼

1

Λ2m2
H�

; ð14Þ

where we used the parametrization from Eq. (7) to factor
out the so-called photon factor jΛjm2

H� and the box
factor Λ2m2

H�.
It is then useful to translate the set of free parameters of

Eq. (12), together with the free mass of the charged Higgs
mH� into the new set of parameters

r; ω32; η2; jΛjm2
H� ; Λ2m2

H� ð15Þ

that directly controls the cLFV rates.
In the tiny seesaw parameter region, the cLFV decays

thus dominantly depend on five parameters, Eq. (15). Two
of them, jΛjm2

H� with Λ2m2
H� , are connected to the Higgs

sector while others parametrize the Yukawa sector only.

A. Recap of the previous study

In [5] we assumed a relatively low charged Higgs mass
of mH� ≲ 1 TeV and η2 ¼ 0. This led to a suppression of
box diagrams, which are essentially governed by the factor
Λ2m2

H� , called box factor. In addition, three-body decays
turned out to be unimportant in that parameter region.
Instead, two-body decays gave the strongest constraints. As
a result, only three out of the five parameters in Eq. (15)
were important, and we could put an experimental bound
on the photon factor jΛjm2

H� as a function of the ω22 − r
plane from two-body decays only. The used branching
ratios are listed in Table II. They are categorized by phases
of experiments: the current experimental limits are referred
to as current phase, while next phase are the planned
sensitivities of the upgraded experiments.
The most constraining experiment for the photon factor

in almost all the ω22 − r plane is μ → eγ. However, there
exist fine-tuned areas, in which this decay rate vanishes,

because of the vanishing of either Yð2Þ
e or Yð2Þ

μ . The point in
the ω22 − r plane, in which the corresponding Yukawa

coupling Yð2Þ
e;μ vanishes (and thus, the corresponding decay

rate) one gets [5] from Eq. (7):

TABLE I. Relations of neutrino pole masses and mixings, to the
oscillation parameters for NO and IO.

mpole
2 mpole

3 U

NO
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

32j þ Δm2
21

p
U†

PMNS
IO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

32j − Δm2
21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2

32j
p

OIOU
†
PMNS
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cotðrÞeiðω22−ω32Þ ¼ −t32
U3f

U2f
ð16Þ

for flavor f ¼ e; μ. There is one solution of Eq. (16) for each
flavor. This means that there are only two special regions in
which μ → eγ andμ → 3e decays are suppressed: around the

points in the ω22 − r plane with Yð2Þ
e;μ ¼ 0.

In these special regions, the τ decay experiments give
stronger constraints than μ decays. The experimental
sensitivities of τ decays (Table II) give much weaker
constraints on the photon factor. This also means that in
most of the ω22 − r plane, i.e. outside the special regions,
an observation of τ decays in the experiments with the
planned sensitivities of next phase experiments (second
row of Table II) is already excluded by μ → eγ in the
current phase.
Thus, to specify the regions in a robust way, we define

special regions as the regions in theω22 − r plane where the
two-body decays of τ lepton are potentially observable at
the Belle-II experiment. In short, the regions are defined by
the following inequalities for the theory predictions for μ
and τ decays:

special region 1∶

BRðBelle-IIÞ < BRðτ → eγÞ < BRðBABARÞ
while BRðμ → eγÞ < BRðMEGÞ;
special region 2∶

BRðBelle-IIÞ < BRðτ → μγÞ < BRðBABARÞ
while BRðμ → eγÞ < BRðMEGÞ; ð17Þ

where by BRðexperimentÞ we indicate the expected (for
Belle-II) or current (MEG and BABAR) limits on the

branching ratio of a corresponding decay in the experiment.
They occupy relatively small areas in the ω22 − r plane, as
one sees in Fig. 7 of [5] and thus these areas can be dubbed
as “unnatural”/fine-tuned.
The absolute lower bound on the photon factor is defined

as the lowest photon factor value possible anywhere in the
ω22 − r plane, for which all the experimental constraints,
shown in Table II, are satisfied. Naturally, this absolute
bound is defined by the limits on the branching ratios of τ
decays in the special regions, as they are the weakest
possible constraints. However, since the special regions
might be seen as unnatural, we also define a typical bound
on the photon factor, which is the bound obtained in the
same way, but excluding the special regions and thus
derived from μ → eγ branching ratio.
From a practical point of view, the typical bound should

coincide with the bound from the rough random scan over
the ω22 − r plane. In contrast, to derive the absolute bound,
one has to use the analytic solution of (16), to get the point
in theω22 − r plane of μ → eγ close to zero to a high degree
of accuracy. As a result, the typical bound is Oð102Þ
stronger than the absolute one.

B. Extending the parameter space

The extension of the parameter space in the current study
vs the study of [5] is summarized in Table III. Here we
briefly discuss the expected effects and related subtleties.
The extension of η2 is rather straightforward and allows

to study the η2 dependence of the limits. We expect the
qualitative behavior of the model to remain unchanged and
expect the resulting limits to stay within the same order of
magnitude. For the IO, however, it turns out that some
values of η2 push the special regions into the area that we
previously excluded in the study due to a too large tree-loop
cancellation in the neutrino pole mass calculation. This
cancellation is encoded in the parameter z of Eq. (9), which
can be shown to be [5]

jzj ¼ mpole
3

mtree
3

; ð18Þ

where mtree
3 is the tree-level neutrino mass. Hence, we

decided to extend the considered values of z to allow
roughly 62% cancellation instead of 50% to incorporate the
special regions for all η2.

TABLE II. Current and next experimental bounds, divided into
different phases, related to corresponding observables. Data for τ
decays for Belle-II was obtained from Fig. 189 of Ref. [10]. The
GNM predicts a μAl → eAl conversion rateOð10−4Þ smaller than
the branching ratio of μ → eγ. This means that even after taking
into account the immense improvements of COMET [11],
COMET-II [12], and Mu2e [13], the μ → eγ experiment
MEG-II will still be more constraining for the GNM. Therefore,
we do not include the process μAl → eAl in the table. For a more
detailed discussion about this process see Ref. [5].

Process Current phase Next phase

μ → eγ MEG [14]: 4.2 × 10−13 MEG-II [15]: 6 × 10−14

τ → eγ BABAR [16]: 3.3 × 10−8 Belle-II [10]: 3.0 × 10−9

τ → μγ BABAR [16]: 4.5 × 10−8 Belle-II [10]: 1.0 × 10−9

μ → 3e SINDRUM [17]: 1 × 10−12 Mu3e-I [18]: 2 × 10−15

τ → 3e Belle-I [19]: 2.7 × 10−8 Belle-II [10]: 4.6 × 10−10

τ → μee Belle-I [19]: 1.8 × 10−8 Belle-II [10]: 3.1 × 10−10

τ → eμμ Belle-I [19]: 2.7 × 10−8 Belle-II [10]: 4.6 × 10−10

τ → 3μ Belle-I [19]: 2.1 × 10−8 Belle-II [10]: 3.6 × 10−10

TABLE III. Extensions of parameter ranges, compared to the
values studied in [5].

Parameters studied in [5] Current parameters

η2 ¼ 0 −π < η2 < π
mH� < 1 TeV mH� < 5 TeV
jzj > 0.5 jzj > 0.38

jYð2Þ
i j < 1

P
i jYð2Þ

i j2 < 8π
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In the parameter regions where mH� is large, larger
Yukawa couplings are allowed. As a result, box diagram
contributions governed by four powers of Yukawa cou-
plings can become relevant. To see this, consider a fixed
jΛjm2

H� (which is fixed by the limits of the two-body decay
experiments) and put it into Eqs. (13) and (14) to verify the
following proportionality of the relative importance of box
diagrams:

Abox=Apenguin ∼ 1=Λ ∼
jΛjm2

H�¼const
m2

H� : ð19Þ

Hence, extending the mass range for mH� also increases
the importance of three-body decays. At some very large
mH� , however, limits drawn from perturbative unitarity will
become more important than the limits drawn from cLFV
decays.
The restriction of Yukawa coupling values in Ref. [5]

was technically motivated by the numerical stability of the
neutrino pole mass calculation in FlexibleSUSY [20–22],
which also served as a rigorous numerical check of the
parametrization of Eq. (7). This restriction, even though
somewhat ad hoc, was of little consequence since it was in
general weaker than the ones derived from cLFV in the low
mH� region, thus it did not affect our results drawn from
two-body decays. We now look at larger mH�, drop the
ad hoc restriction on the Yukawa coupling, and only apply
the looser restriction derived from perturbative unitarity
(see Sec. II C). For mH� < 1 TeV the only consequence,
compared to our previous limits in Ref. [5], is the change of
the absolute bound for IO, see Eq. (24).
We note, however, that for such large Yukawas, the pole

mass calculation becomes numerically unstable in
FlexibleSUSY and yields errors in the one-loop output for
the sectors that are irrelevant for cLFV. However, the cLFV
rates depend only on the Yukawa couplings and the MS
charged Higgs mass mH� . The parametrization of Yukawa
couplings of Eq. (7) is numerically stable and consistent
with one-loop neutrino masses and mixings by construc-
tion, as was confirmed numerically. The cLFVobservables
are independent of the pole mass calculations up to the
phase-space integration factor in FlexibleSUSY. This allows to
speed up parameter scans by selecting the pole mass
loop order setting to 0 in FlexibleSUSY LesHouches input.
Note that this setting choice prints the pole masses and
mixings inconsistent with the experimental data in the
FlexibleSUSY output and hence they should be ignored for
mentioned input option. We use the FlexibleSUSY extension
NPointFunctions [23] to get three-body decay rates.

C. Perturbative unitarity bound

In the low scalar mass regime that was studied in [5], the
bound on the Yukawa coupling that we got from two-body
cLFV processes is strong enough, such that there was
no need to care about bounds coming from perturbative

unitarity. If the scalar mass mH� is larger, larger Yukawa
couplings are in agreement with cLFV bounds and hence
motivated. Since we are now covering the large scalar mass
regions, we have to be more careful in order to be consistent
with the perturbative unitarity constraints for Yukawa
couplings. Using the bounds described in [24] and applying
them to the GNM, we get the requirement

X
i

jYð2Þ
i j2 < 8π: ð20Þ

Using Eq. (7), we can translate the unitarity bound
Eq. (20) into a bound on Λ, which depends on z;ω22; r:

Λ >
mpole

2 fzðr;ω22Þ
8π

;

fzðr;ω22Þ ¼
cos2rþ t322sin2r

zðr;ω22Þ
: ð21Þ

For jzj > 0.5, we get the following ranges for Λ:

NO∶ Λ > ð0.34 − 6.1Þ × 10−12 GeV;

IO∶ Λ > ð1.2 − 4.6Þ × 10−12 GeV: ð22Þ

For η2 ¼ 0 at two special points of interest, the pertur-
bative unitarity bounds give

NO∶Λ > 3.7 × 10−12 GeV for Yð2Þ
e ¼ 0;

Λ > 5.0 × 10−13 GeV for Yð2Þ
μ ¼ 0;

IO∶Λ > 2.2 × 10−12 GeV for Yð2Þ
e ¼ 0;

Λ > 2.1 × 10−12 GeV for Yð2Þ
μ ¼ 0: ð23Þ

In [5], we got the absolute bound on the photon factor
jΛjm2

H� from two-body decays of Oð10−6Þ GeV3 while
the typical one is of Oð10−4Þ GeV3. Comparing it with
Eq. (21), we see that the absolute bound starts to compete
with the perturbative unitarity bound for mH� > 1 TeV
while we typically should expect stronger bounds from
cLFVup tomH� ∼ 10 TeV. Note that such a large value for
the Higgs mass here is problematic from the consistency of
the scalar sector alone, hence it is safe to say that typically
we have stronger constraints from cLFV, period. For the
previously defined special regions, however, the bound,
given by Eq. (20), becomes important for mH� > 1 TeV
and thus needs to be taken into account.

III. PHENOMENOLOGICAL ANALYSIS

A. The dependence of absolute and typical bounds
on Majorana phase (two-body decays)

We begin our phenomenological analysis by studying
the impact of the Majorana phase η2. It influences the value
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of the Yukawa couplings in the ω22 − r plane. In particular,

the points in the ω22 − r plane where Yð2Þ
e;μ ¼ 0 vary as a

function of η2 as can be obtained analytically from Eq. (16).
As discussed before, in most of the parameter space the

decay μ → eγ provides the strongest constraint; however
the most conservative (“absolute”) bound is obtained by

considering the two special points where Yð2Þ
e;μ ¼ 0 and

where μ → eγ becomes insensitive. Hence, we focus here
on the bounds derived from these special points and study
their η2 dependence. The results are shown in Fig. 1.
The blue dashed lines in Fig. 1 correspond to the special

point where Yð2Þ
μ ¼ 0 and which is only constrained by

τ → eγ. For this special point, all values of the photon
factor below the blue dashed line are excluded by τ → eγ
(the lower/upper blue dashed line corresponds to current/
next phase as defined in Table II). The yellow line

corresponds to the small region with Yð2Þ
μ ≈ 0 and whose

boundary is defined by Eq. (17). Again, the photon factor
values below the line are excluded by τ → eγ in all of this
region.
The red shaded area in Fig. 1 highlights all photon factor

values below the lowest yellow line. This area is excluded
already by the weakest possible constraint from the current
phase experiments in all of the parameter space—hence it is
absolutely excluded already at present. If the next phase of
the experiments does not see a signal, this absolutely
excluded area will move up to the upper yellow line.
Similarly, the black dashed lines correspond to the

special point where Yð2Þ
e ¼ 0 and which is only constrained

by τ → μγ. The green dashed lines correspond to the small
region around this point, defined by Eq. (17). At this point/
in this small region, all photon factor values below the

(a) (b)

FIG. 1. Bounds on the photon factor jΛjm2
H� for two-body τ decays that come from the special points (extension of Table 2 of Ref. [5])

and regions (extension of Table 3 of Ref. [5]) for different Majorana phase η2 values. The highest line corresponds to the special region
and was defined as the typical limit. The lowest line comes from special points and corresponds to the weakest constraint of the GNM
and was called absolute limit. Photon factors below the lines are excluded by the appropriate phase of the two-body decay experiments.
This splits the whole area into three subregions: the red area is already excluded by current experiments (current phase from Table II), the
white area that can potentially be excluded by two-body decays of the planned experiments (next phase from Table II) and the green
region that will remain allowed by the limits on the two-body decay in the planned experiments. For IO special points can move into the
parameter region in which jzj < 0.5 for specified ranges of η2 (highlighted by the red color). There, jzj varies in the following regions:

for Yð2Þ
e ¼ 0 by jzj ∈ ð0.38; 0.48Þ and for Yð2Þ

μ ¼ 0 by jzj ∈ ð0.43; 0.49Þ.
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respective lines are excluded by τ → μγ but not by other
observables (the lower lines correspond to current phase
experiments, the upper lines to next phase experiments).
The limit in this region is stronger than the absolute bound
derived from the yellow dashed line.
The region above the upper green line cannot be excluded

by τ decays even at the next phase of the experiments, given
existing μ → eγ constraints, however typically values of the
photon factor close to the green/blue dashed lines are
excluded by μ → eγ—hence we refer to these lines as
“typical” bounds. We refer to Ref. [5] for extensive dis-
cussions of absolute and typical bounds and for details on the
μ → eγ constraints on the entire parameter space.
Bounds on the photon factor derived from points

Yð2Þ
e;μ ¼ 0 and from small regions Yð2Þ

e;μ ≈ 0, defined by
Eq. (17) are almost the same, as seen in Fig. 1. The small
difference in these bounds reflects the smallness of
these regions. Thus from now on, we approximate the
bounds that come from special regions by the ones from
special points.
Our main result here is the impact of the Majorana phase.

Figure 1 shows that the dependence on η2 value does not
lead to a drastic change in the two-body decay bounds. The
variation of the absolute bound is either roughly a factor of
1.25 for NO or a factor of 2 for IO. The absolute bound for
η2 ¼ 0 is actually very close to the lowest possible value.
Hence, the result for the absolute bound obtained in [5]
remains indeed also the absolute lower bound if we include
η2 in the analysis as well.

B. The importance of three-body decays

The three-body decays are expected to contribute sig-
nificantly in regions of a large Higgs mass. There, for a
fixed photon factor value, the box factor Λ2m2

H� becomes
smaller (equivalently, Λ becomes smaller and Yukawa
couplings are enhanced), so that boxes are enhanced
relatively to photonic diagrams. This enhancement might
improve the limits that were obtained from two-body
decays alone. To illustrate this, we consider the same
parameter scenarios as in Fig. 1 and look at maximum
possible restrictions from the three-body decays, to see how
Fig. 1 is modified. The results are shown in Fig. 2, where, in
order not to overcrowd the pictures, we split bounds from
current and next phases of experiments into separate
subfigures.
The dashed lines are the same as in Fig. 1. They

correspond to the constraints from τ → eγ (for the specific

point with Yð2Þ
μ ¼ 0) and from τ → μγ (for the specific point

with Yð2Þ
e ¼ 0). The new solid lines correspond to the

additional limits from three-body decays (τ → 3e for

Yð2Þ
μ ¼ 0 and τ → 3μ for Yð2Þ

e ¼ 0). These limits depend
on mH� ; we have plotted the limits for specific values of
mH� as indicated. These values are the maximum possible
values for which the bounds, derived from the cLFV

decays, are still stronger than the perturbative unitar-
ity bound.
From Fig. 2 we see that three-body decays can indeed

lead to more severe bounds on jΛjm2
H� . In fact, the absolute

bound for large mH� is now defined by τ → 3e. The green
(where τ decays are not expected at Belle-II) and the red
(absolutely excluded) shaded regions are now also modi-
fied, as shown by hatching.
This highlights that the box amplitudes can change the

picture significantly. However, we also see that the func-
tional dependence on η2 for l → l0γ and the corresponding
l → 3l0 are the same. Having that in mind, we will now set
η2 ¼ 0 again, and study the competition between box and
photonic contributions in more detail.

C. Absolute bounds from photon and box factors

Reference [5] has shown that the cLFVamplitudes in the
tiny seesaw parameter region are essentially governed
by two quantities—the box factor Λ2m2

H� (which was
neglected in small mH� region) and the photon factor
jΛjm2

H� . The previous subsection has shown that the box
contributions and three-body decays can be significant in
the extended parameter region. Here we study the interplay
of all these contributions in more detail. We study the
constraints in the Λ2m2

H� − jΛjm2
H� plane to see which

contributions, which processes, or which constraints are
more important in different parameter regions. We thus set
η2 ¼ 0 and plot the constraints from both, two- and three-
body decays in the Λ2m2

H� − jΛjm2
H� plane in Fig. 3. The

plots in Fig. 3 contain a wealth of information which we
explain step by step.
First, consider again the bounds from τ → eγ for the

specific point where Yð2Þ
μ ¼ 0. The two-body decays do not

depend on the box factor, thus the current/next phase
constraints from τ → eγ are seen as the horizontal blue
dashed lines, as in Figs. 1 and 2. Similarly, the bounds from

τ → μγ for the point where Yð2Þ
e ¼ 0 are shown by the

horizontal black dashed lines. The shaded areas between
these dashed lines correspond to the white area in Fig. 1 at
η2 ¼ 0. The absolutely excluded region for two-body
decays (also shown as red area in Fig. 1) is below the
lowest blue dashed line.
To understand the three-body decays, consider, for exam-

ple, the rightmost τ → 3e blue solid line for which the decay
rate is the same as the sensitivity in Belle-II. Going down this
line from the highest point to the lowest point corresponds
to reducing the value of mH� . Going down, around
mH� ≈ 400 GeV, the curve starts to deviate more signifi-
cantly from thevertical line andclose tomH� ¼ 250 GeV the
curve becomes horizontal. This means that around those
masses, the box contributions become negligible and
photonic diagrams dominate. One can see that all the con-
straints from τ → 3e and τ → 3μ, wherever they are allowed
by the two-body decays (higher than the corresponding
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dashed lines), are almost vertical. This indicates the box
dominance of the three-body decays.
For NO the region between the blue lines (for τ → eγ,

τ → 3e and the point with Yð2Þ
μ ¼ 0) does not overlap with

the region between the black lines (for τ → μγ, τ → 3μ and

the point with Yð2Þ
e ¼ 0). For IO the corresponding region in

the Λ2m2
H� − jΛjm2

H� plane overlaps significantly. This is
in line with Fig. 1 (at η2 ¼ 0). This figure also shows that
the relative overlap between these regions would change for
other values of η2.

The perturbative unitarity limit on Λ of Eq. (21) can be

applied to the special points where Yð2Þ
μ;e ¼ 0. This results in

the left borders of the blue/black shaded regions given by
the contour lines of the indicated values of Λ. The existence
of these borders means e.g. that the unitarity limit becomes
stronger than the one coming from τ → 3e in certain
parameter regions. With the help of the contour lines for
fixed mass mH� , one can see that for the current exper-
imental limits (current phase) this happens around
mH� ≈ 3.2ð4.7Þ TeV, which is consistent with the value

FIG. 2. Maximal bounds on the photon factor jΛjm2
H� for three-body τ decays that come from the special points for different Majorana

phase η2 values. Two-body decay bounds are shown for the comparison. In general, the limits defined by three-body decays depend on
the value of mH� . Here, the highest possible lines for three-body decays are shown accompanied with the corresponding charged Higgs
boson mass. The regions with jzj < 0.5 exist for three-body decays and are the same as in Fig. 1, however they are not shown here in
order not to overcrowd the plot.
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shown in Fig. 2. In other cases, next phase experiments put
stronger bounds than the perturbative unitarity limit, as the
heaviest mass of the scanned values is reached.
To exemplify and highlight the interplay between two-

and three-body decay bounds, we focus again on the

special point with Yð2Þ
μ ¼ 0, which leads to the most

conservative, absolute bounds valid in all of the param-
eter space. The green and yellow shadings in Fig. 3

represent the allowed regions at Yð2Þ
μ ¼ 0. The green

region is allowed by current phase experiments but will
be excluded by next phase experiments; the yellow
regions will remain allowed if next phase experiments
do not find a signal. For small charged Higgs masses, the
regions are bounded from below by the horizontal blue
dashed lines corresponding to the two-body decay
τ → eγ. If the mass is increased, then at some value
the bound from three-body decays (τ → 3e in this case,
solid blue line) becomes more restrictive. At even higher
mass values, the perturbative unitarity can imply another
type of restriction. However, only in the green region for
current phase experiments this restriction is stronger than
the one from the experimental constraints. The next phase
experimental sensitivities give a stronger bound than the
perturbative unitarity bound in all of the yellow region.
From the green and yellow areas in Fig. 3 one can infer at

which mH� value the three-body decays become more
important than the corresponding two-body ones. This also

allows to update and generalize the limits from cLFV
obtained in [5]. The most conservative, “absolute” limits, at

the point with Yð2Þ
μ ¼ 0 are (for NO and IO)

jΛjm2
H� > 1.9ð4.0Þ × 10−6 GeV3

with mH� < 1.2ð0.4Þ TeV;
Λ2m2

H� > 2.6ð98.7Þ × 10−18 GeV4

with mH� ∈ 1.2 ÷ 3.2ð0.4 ÷ 4.7Þ TeV;
jΛj > 0.5ð2.1Þ × 10−12 GeV

with mH� > 3.2ð4.7Þ TeV: ð24Þ

The first line of Eq. (24) corresponds to τ → eγ, the
second line to τ → 3e and the last to the perturbative
unitarity bound. The first line of Eq. (24) also corre-
sponds to the limits in Ref. [5]. For IO the limit is
modified. This comes from allowing larger Yukawa
couplings and hence excluding lower Higgs masses,
when we want to exclude all the Yukawa couplings,
as discussed in section II B.
The region bordered by the upper black (solid and

dashed) lines corresponds to the maximum region where
cLFV τ decays might be observed at the next phase
experiments. Above that region a large part of parameter
space for generic values of Yukawa couplings can still be
excluded by cLFV muon decays; hence these boundaries

(a) (b)

FIG. 3. Constraints from cLFV shown in the Λ2m2
H� − jΛjm2

H� plane for η2 ¼ 0. Blue/black dashed and solid lines show the

constraints of jΛjm2
H� and Λ2m2

H� from current phase and next phase experiments at the parameter points Yð2Þ
μ ¼ 0=Yð2Þ

e ¼ 0. The areas,
named by letters, are the areas in which the three-body decays can be observed in the next phase experiments. The rightmost Λ values in
both plots correspond to the limiting value for which the μ → 3e in Mu3e-I can still be observed. The other shown Λ values are the same
as in Eq. (23) and thus give perturbative unitarity constraints at each of the special points (lower Λ are excluded).
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are referred to as “typical limits.” These typical limits are
not affected by unitarity, and reading off from the τ → μγ
and τ → 3μ next phase experiment lines we obtain for NO
(and IO):

jΛjm2
H� > 8.8ð4.9Þ × 10−5 GeV3

with mH� < 1.5ð1.7Þ TeV;
Λ2m2

H� > 3.4ð0.85Þ × 10−15 GeV4

with mH� > 1.5ð1.7Þ TeV: ð25Þ

These limits update the typical limits found in [5].
Finally, Fig. 3 also shows the parameter areas where

an observation of only three-body decays is possible by
next phase experiments while two-body decays are not
observed. We discuss them only for the left panel of
Fig. 3(a) for NO, where they are more straightforward to
localize. The area denoted with the label “a” is above the
upper dashed blue line, i.e. τ → eγ cannot be observed at
next phase experiments. However, it is to the left of the
solid blue line still, hence τ → 3e is still allowed. Hence
this “a” area corresponds indeed to the case where τ →
3e is observed and τ → eγ is not in forthcoming experi-
ments. Similarly, the area marked by “c” lies above the
upper black dashed line and to the left of the solid black
line. In this area τ → 3μ can be observed in the next
phase experiments but τ → μγ cannot. Also, near to

Yð2Þ
μ ≈ 0 (for both orderings), as was mentioned in the

Ref. [5], there is a slight deviation from dipole domi-
nance for μ → 3e. Together with the ratio between MEG-
II and Mu3e-I experimental bounds, this allows to
observe μ → 3e while μ → eγ is not seen. The allowed
parameter region is marked “b” and is bordered by the
red dashed line. It is also possible to observe μ → 3e and
τ → 3e in the same time due to the aforementioned
localization in the ω22 − r plane, while μ → 3e and τ →
3μ cannot be detected at the same time in the GNM for
the tiny seesaw regime. The drastic improvement of the
sensitivity in Mu3e-II will make μ → 3e observation
possible in all the yellow region of Fig. 3 with photon
dominated contributions for both orderings.

D. Global box dominance of μ → 3e (η2 = 0)

Now we focus our attention on the more generic
parameter space outside the special parameter points

where Yð2Þ
μ;e ¼ 0. Here the limits from cLFV muon decays

are stronger and τ decays cannot be observed at next
phase experiments. In this parameter region the interplay
between the two-body decay μ → eγ and the three-body
decay μ → 3e is of interest. We abbreviate:

R≡ BRðμ → 3eÞ
BRðμ → eγÞ : ð26Þ

For the low Higgs masses studied in [4], the relation
between these two observables is simply fixed by the
photon dominance1:

R ≈ Rph dom ≡ −
5α

18π
þ α

3π

�
ln
m2

e

m2
μ
−
11

4

�
≈ 0.0059

for mH� < 1 TeV: ð27Þ

Note that the branching ratios for three-body decays are
dominated by photonic contributions in the case of light
mH� , while others—boxes, Z and Higgs penguins—are
negligible. This regime is called photon dominance as it
is different from dipole dominance by additional non-
negligible vector photon amplitudes, see [5]. However,
this is no longer the case for the extended charged Higgs
mass range considered here, and thus the ratio between
these two observables can be different.
Weplot the possible ratios ofμ → 3e=μ → eγ for fixedBR

(μ → eγ) at current limits (normalized to the photon domi-
nance value) for different photon factor values in Fig. 4. The
colors for photon factor values are consistent with the
coloring scheme of Fig. 6 of Ref. [5] and correspond to
the same regions in the ω22 − r plane of that reference. The
very highest values (darkest blue) come from a region close

to the special region, in which Yð2Þ
μ ≈ 0. This can be easily

understood by recalling that photonic amplitudes are propor-

tional to Yð2Þ
μ Yð2Þ

e , while boxes ∝ Yð2Þ
μ ðYð2Þ

e Þ3, thus the
photonic contributions are suppressed relative to the box
ones. Getting further away from this region, we get lower and

lower box enhancement. The regions close to Yð2Þ
e ≈ 0 have

box contributions suppressed, thus correspond to photon
dominance. They also correspond to a smaller photon factor
value (of dark blue). However, they are not visible in Fig. 4 as
they are hidden behind the largest parameter space with high
photon factor value (orange).
In general, the deviations from photon dominance are

caused by large Yukawa couplings which in turn are
correlated with small Λ, see Eq. (7). In Fig. 4, therefore,
small photon factor and/or large charged Higgs mass
correlates with strong deviations from photon dominance,
as can be seen from Eq. (19). For example, outside the
darkest blue region with photon factor less than 10−4,
deviations from photon dominance by a factor of 2 can be
reached if the charged Higgs mass is above 3 TeV.

E. Yukawa “fingerprint” of the model (η2 = 0)

So far we have employed the advantageous paramet-
rization of Yukawa couplings in terms of the ω22 − r

1In the published version of [5], there is a missing overall
factor of 1=π in Eq. (5.1) for the expression of the photon
dominance, see also e.g. Eq. (29) of [6] for the case of dipole
dominance. This misprint does not affect any of the results
presented in [5] or here.
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plane. Now we finally show how the model constrains
affect the actual values of the Yukawa couplings Yð2Þ.
Since these are the fundamental Lagrangian parameters,
constraints on them are of interest since they might shed

light on possible patterns and fundamental origins of the
Yukawa couplings.
More specifically, we look at the minimum vs maxi-

mum values of the components of the three-vector Yð2Þ as a

(a) (b)

FIG. 4. Maximal currently allowed deviation from photon dominance as a function ofmH� in the typical parameter region. It is plotted
as a maximal currently allowed ratio of R≡ BRðμ → 3eÞ=BRðμ → eγÞ, normalized to the ratio Rph dom, calculated from Eq. (27), i.e.
when the photon dominance is assumed. Colors show photon factor values for which these deviations can occur.

(a) (b)

FIG. 5. Constrains on Yukawa couplings from cLFV. The Yukawa couplings, which are always allowed, sometimes allowed
(depending on other variables), and always excluded by both current and next phase experiments are colored by green, yellow and red,
respectively. The regions, which change from “allowed” to “ambiguous” and from ambiguous to “excluded” after next phase
experiments are indicated by more intensive yellow and red colors.
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two-dimensional scatter plot. In this way we show which
overall magnitudes of Yukawa couplings are possible, and
also whether the Yukawa couplings can/should involve
strong hierarchies or not.
The resulting plot is given in Fig. 5. Every point in the

plot corresponds to a bin of Yukawa values, while other
parameters are scanned over, see Eq. (15). Different colors
correspond to allowance/exclusions of current/next phases
of experiments, which could be captured by a scan in the
parameter space. The diagonal lines separate the orders of
magnitude of hierarchies between the Yukawa couplings.
For instance, the very lowest diagonal line corresponds to
the case in which all the components of Yð2Þ are equal, while
the leftmost corresponds to the Oð103Þ ratio between the
minimum and maximum value of Yð2Þ. The special points

with Yð2Þ
μ;e ¼ 0 discussed in previous subsections would be

located to the left of the visible plot range in Fig. 5.
The dark red region in Fig. 5 is excluded already by

current phase experiments. In this completely excluded
region the Yukawa couplings take rather large values;
everywhere in the dark red region at least one Yukawa
coupling is above 0.1.
The dark green region is experimentally allowed and will

remain allowed even if next phase experiments see no signal.
As expected this region contains smaller Yukawa couplings;
though nonhierarchical Yukawa couplings are possible up to
values of 10−2 and hierarchical Yukawa couplings are
possible where the minimum/maximum Yukawa values
are around 10−3 ÷ 1. The yellow region, and the regions
with different lighter shadings of yellow and red, are
ambiguous. Each bin in these regions contains points which
are allowed now by current phase experiments and points
which can be excluded by next phase experiments, as
explained in the legend of the figure. This region is thus
the region which will be scrutinized by next phase experi-
ments, and part of this region can be excluded. In the yellow
region there exist parameter points where all Yukawa
couplings are Oð0.1Þ as well as hierarchical points where
the minimum/maximum Yukawa coupling values are
around 10−3 ÷ 1.

IV. CONCLUSIONS

We completed the cLFV study of the GNM by inves-
tigating its full parameter space. The enlarged parameter
space, compared to the previous study [5], is summarized in
Table III. The GNM remains a favorable explanation of
neutrino masses in the parameter region of tiny seesaw
scale, i.e. a seesaw scale below the electroweak scale. In
addition, this leads to a prediction of two- and three-body
decay cLFV processes and provides reasonable restrictions
on the scalar and leptonic parameters.
Just as in the previous study, the weakest and the most

conservative (“absolute”) bounds on the photon factor
are provided by τ two- and three-body decays in special
regions in which one of the Yukawa couplings vanishes

Yð2Þ
e;μ ≈ 0. The impact of the Majorana phase η2 can be

seen in Fig. 1. It does not lead to a drastic change in the
two-body decay bounds, i.e. the bounds stay within an
order of magnitude as a function of η2. Also, the absolute
bound for η2 ¼ 0 turns out to be very close to the lowest
possible value. This means that the result for the absolute
bound obtained in [5] remains the absolute lower bound for
general η2 to a very good approximation.
In the parameter regions with mH� above the TeV scale,

larger Yukawa couplings are possible, see Fig. 2. As a result,
box diagram contributions governed by four powers of
Yukawa couplings dominate the three-body decay observ-
ables, in contrast to the photonic dominance for the low-mass

region. For high mH� and in the special regions (Yð2Þ
e;μ ≈ 0),

perturbative unitarity constraints for Yukawa couplings,
Eq. (20), can become more relevant than cLFVones.
Figure 3 summarizes the main constraints for η2 ¼ 0,

which are the restrictions in the Λ2m2
H� − jΛjm2

H� plane
from both two- and three-body decays. The figure shows
that the parameter space is constrained by an interplay
between box-dominated three-body decays, two-body
decays, and perturbative unitarity. Thus we update the
absolute and typical bounds in Eqs. (24) and (25).
Outside of the special regions where specific Yukawa

couplings vanish and where τ decays are important, μ → eγ
still restricts the majority of the parameter space due to
stronger experimental bounds. Also, complementary to this
two-body decay, μ → 3ewill become competitive already in
the next phase (Mu3e-I) and will become even more
restrictive at Mu3e-II. In addition to the purely experimental
arguments mentioned above, the latter observable is affected
by thebox contributions that are enhanced for larger valuesof
mH� . This allows for significant deviations from photon
dominance, which are shown in Fig. 4 for Mu3e-I.
We recall that the scoto-seesaw model and the GNM in

the tiny seesaw scale have the same predictions for cLFV
and thus all our results are directly applicable for a scoto-
seesaw model, too. One should expect the same qualitative
behavior for the scotogenic model in these parameter
regions, as argued in [5]. Thus by studying the GNM,
we also complement the previous studies of cLFVof scoto-
seesaw and scotogenic models by including the tiny sterile
neutrino mass region.
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