
Ultraviolet freeze-in dark matter through the dilaton portal

Aqeel Ahmed 1,* and Saereh Najjari 2,†

1Max-Planck-Institut für Kernphysik (MPIK), Saupfercheckweg 1, 69117 Heidelberg, Germany
2PRISMA+ Cluster of Excellence and Mainz Institute for Theoretical Physics,

Johannes Gutenberg University, 55099 Mainz, Germany

(Received 22 March 2022; accepted 27 February 2023; published 14 March 2023)

We study a class of models in which the Standard Model (SM) and dark matter (DM) belong to a
conformal/scale-invariant theory at high energies. Scale invariance is spontaneously broken at scale f,
giving rise to a dilaton as the corresponding Goldstone boson. In the low-energy theory, we assume that
DM interacts with the SM solely through the dilaton portal, which is suppressed by the conformal breaking
scale f. For f ≫ TeV, the portal interactions are extremely weak, resulting in DM not being in thermal
equilibrium with the SM. Thus, ultraviolet freeze-in production of DM occurs through the dilaton portal,
being most effective at the maximum temperature of the SM bath. The temperature evolution is greatly
impacted by the reheating dynamics, which we parametrize using a general equation of state w and
temperature at the end of reheating Trh. We analyze the implications of the reheating dynamics for DM
production in this framework and identify regions of parameter space that result in the observed DM relic
abundance for a wide range of DM masses and reheating temperatures for scalar, vector, or fermion DM.
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I. INTRODUCTION

The Standard Model (SM) of particle physics presents a
remarkably successful description of visible matter con-
stituents and their interactions. However, there remain
some puzzles that are unanswered within the SM frame-
work including the nature of dark matter (DM), the
electroweak hierarchy problem, and the fermion mass
hierarchy. Some of these puzzles can be addressed within
the framework of strongly coupled gauge theories where
the SM Higgs boson emerges as a composite state or
pseudo-Nambu-Goldstone boson (pNGB), see for a
review [1,2]. Regarding the DM candidate within strongly
coupled theories, one possibility is that it is a pNGB state
which ensures it is naturally lighter than the composite
scale. Hence it forms a good weakly interacting massive
particle (WIMP) DM candidate [3–6] where DM is
produced through the standard freeze-out mechanism
assuming it remains in thermal equilibrium at temperatures
larger than DM mass. There is a vast experimental program
of DM searches including direct detection, indirect detec-
tion, and collider searches for a WIMP DM, see, e.g., [7].

However, there is no signal of WIMP DM to date, which
motivates us to explore DM candidates beyond the WIMP
or in general DM production through the freeze-out
paradigm.
In this work, we consider a framework where the SM

and DM belong to a (strongly coupled) conformal/scale-
invariant theory. We assume the conformal invariance is
spontaneously broken at scale f ≫ vSM, where vSM ¼
246 GeV is the electroweak scale. Furthermore, we assume
that the SM and DM do not have direct interactions below
the conformal invariance breaking scale f. The sponta-
neous breaking of scale invariance results in a pseudo-
Goldstone boson called dilaton [8]. Requiring the scale
invariance of the theory dictates the form of dilaton
interactions with the SM and DM in the low-energy
effective theory below scale Λ ¼ 4πf [9–13]. It turns
out that the dilaton interacts with the SM and DM through
dimension-five or higher operators suppressed by the scale
f. Hence the effective couplings between the SM and DM
through the dilaton portal is at least dimension-six order.
For low-scale conformal breaking f, the SM and DM are in
thermal equilibrium, and hence the production of DM via
the dilaton portal is realized through the thermal freeze-out
mechanism [14–20]. However, assuming the conformal
invariance breaking scale f ≫ vSM, it is natural that the SM
and DM are out of thermal equilibrium. Hence the possible
DM production follows through the freeze-in mechanism,
where DM is produced through the SM annihilation via the
dilaton portal or through direct decays/annihilation of the
dilaton field, see also [21–25].
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The freeze-in mechanism relies on the fact that initial
DM abundance is negligible compared to the states
in thermal equilibrium [26], see for a review [27].
Furthermore, if the SM-DM interaction is a higher dimen-
sional operator, as in our case, the freeze-in mechanism also
crucially depends on the maximum temperature in the early
universe. In particular, the DM production is dominated
around the maximum temperature [28]. The maximum
temperature is usually assumed as the temperature at the
end of reheating, Trh. This is the only correct description if
the reheating is instantaneous. However, the reheating
through perturbative decays of the inflaton field to the
SMwould be noninstantaneous, which leads to an extended
period of reheating. Assuming a noninstantaneous reheat-
ing scenario, the maximum temperature Tmax can be much
larger than the temperature at the end of reheating phase
Trh [29]. The maximum temperature Tmax depends on
inflaton energy density at the end of inflation, the equation
of state w during the reheating period, and the duration of
reheating phase which can be parametrized by the temper-
ature at the end of reheating phase, Trh. The end of
reheating is defined when the SM energy density becomes
equal to the inflaton energy density. Without specifying the
details of the reheating phase, we consider the general
equation of state w in the range ð−1=3; 1Þ, where w ¼ 0
corresponds to the matter-dominated phase during the
reheating process. Recently there have been significant
studies on the implications of the reheating dynamics on the
production of DM, see, e.g., [30–47].
We study the implications of nonstandard reheating

dynamics on the ultraviolet (UV) freeze-in production of
DM through the dilaton portal. We consider a DM
candidate to be a scalar, fermion, or vector field. For
simplicity, we assume no self-interactions for the DM field,
and dark matter mass is the only parameter of the dark
sector. The dilaton portal dynamics are completely fixed
by two parameters, the dilaton mass and the conformal
breaking scale f. Furthermore, the reheating dynamics is
parametrized effectively by three parameters, the Hubble
scale at the end of inflation, the equation of state w, and
the reheating temperature. We study the freeze-in produc-
tion of the DM within this framework and identify the
parameter space where the observed DM abundance can be
produced.
The paper is organized as follows: In Sec. II, we

present details of the dilaton portal DM model with
the effective low-energy Lagrangian including inter-
actions of the dilaton field with the SM and DM. In
Sec. III, we describe early universe cosmology with the
nonstandard period of reheating defined with the equation
of state w. Production of DM via UV freeze-in is given in
Sec. IV, where we consider DM production through SM
annihilation as well as dilaton annihilation/decays when
kinematically allowed. Finally, in Sec. V we conclude our
findings.

II. THE MODEL

In this section, we lay out a framework where freeze-in
dark matter production via a dilaton portal is realized. We
assume a UV completion of the SM and DM involving a
strongly coupled nearly scale-invariant theory. The scale
invariance is broken spontaneously and the corresponding
pseudo-Goldstone boson is the dilaton σðxÞ. Furthermore,
we assume the scale symmetry is realized nonlinearly
below the symmetry breaking scale f, such that under
the scale transformation xμ → x0μ ¼ e−ωxμ, the dilaton
undergoes a shift symmetry σðxÞ → σ0ðx0Þ ¼ σðxÞ þ ωf.
It is instructive to express the dilaton field as a conformal
compensator, i.e.,

χðxÞ ¼ feσðxÞ=f; ð2:1Þ

such that it transforms linearly under the scale trans-
formation, i.e., χðxÞ → χ0ðx0Þ ¼ eωχðxÞ. The vacuum
expectation value (VEV) of χðxÞ sets the scale of sponta-
neous symmetry breaking, i.e., hχðxÞi≡ f, which is
determined by the underlying strong sector dynamics
at Λ ¼ 4πf.
In this work, we consider the interactions of DMwith the

SM only through the dilaton portal. In particular, we
consider the following form of the Lagrangian

L ¼ LSM þ LDM þ Ldil þ Lint
SM þ Lint

DM; ð2:2Þ

where LSM is the SM Lagrangian. As mentioned in the
Introduction, we consider three possibilities for DM X, i.e.,
scalar DM (SDM), fermion DM (FDM), or vector DM
(VDM), with the following Lagrangian,

LDM ¼

8>><
>>:

1
2
∂μX∂μX − 1

2
m2

XX
2; SDM

iX̄∂X −mXX̄X; FDM

− 1
4
XμνXμν þ 1

2
m2

XX
2
μ; VDM

ð2:3Þ

where Xμν ¼ ∂μXν − ∂νXμ is the field strength tensor to the
vector DM Xμ. The dilaton Lagrangian is

Ldil ¼
1

2
∂μχ∂

μχ − VðχÞ; ð2:4Þ

where we assume the following form for the dilaton
potential,

VðχÞ ¼ m2
σ

4f2
χ4
�
ln

�
χ

f

�
−
1

4

�
; ð2:5Þ

where we neglected terms of the order Oðm4
σ=f4Þ and

higher.
It is instructive to understand the origin of the above

effective dilaton potential. In our framework, we employ a
strongly coupled CFT theory which is explicitly broken at
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scale Λ ¼ 4πf by a deformation operator OdefðxÞ with
scaling dimension Δdef , such that

LUV ⊃ LCFT þ λdefOdefðxÞ; ð2:6Þ

where parameter λdef has dimension ϵ≡ 4 − Δdef . The
deformation operator OdefðxÞ transforms under the scale
transformation as OdefðxÞ → O0

defðx0Þ ¼ eωΔdefOdefðxÞ.
One can obtain the above effective dilaton potential (2.5)
by either a spurion analysis [9] or by a general (with one or
higher loop) analysis [11] in this theory. Here we present
the spurion analysis such that the spurion field correspond-
ing to the CFT deformation allows the following form of
nonderivative interactions for the dilaton potential [9],

VðχÞ ¼ χ4
X∞
j¼0

cjðΔdefÞ
�
χ

f

�
jðΔdef−4Þ ð2:7Þ

where cj ∼ λjdef are order one coefficients which in general
depend on the scaling dimension and CFT breaking
dynamics. Since we are interested in strongly coupled
CFT, therefore the parameter λdef cannot be arbitrarily
small. Hence, treating the CFT deformation as small is
possible only if the deformation operator OdefðxÞ is nearly
marginal, i.e., ϵ≡ j4 − Δdef j ≪ 1. In this case, the above
effective potential can be calculated with small order
parameter ϵ as [9] (see also [11])

VðχÞ ¼ ϵ

4
χ4
�
ln

�
χ

f

�
−
1

4

�
þOðϵ2Þ; ð2:8Þ

where ϵ ≪ 1. Note that in Eq. (2.5) we have identified
m2

σ ¼ ϵf2, such that for ϵ ≪ 1 the dilaton mass mσ can be
much smaller than the conformal breaking scale. In this
work, we treat the dilaton mass mσ (in other words ϵ) as a
free parameter.
Before moving forward, we would like to comment on a

possible UV completion of our model. We assume a
strongly coupled CFT which in the low energy results in
a dilaton field that interacts with the SM and DM as
described in effective Lagrangian (2.2). This framework
can be naturally realized in a holographic model with
RS-like 5D warped extra dimension [48] which involves
two branes associated with a UV scaleMUV and an IR scale
Λ. With the Goldberger-Wise [49] stabilization mechanism
of the radius of 5D warped extra dimension, one can
identify the corresponding radion field as the dilaton of the
4D boundary theory using holographic dictionary [50,51].
In this framework, the effective theory only involves the IR
scale Λ, which is identified in the 4D theory as the CFT
breaking scale. Unlike RS model [48], we consider
Λ ≫ Oð1Þ TeV. Moreover, in our framework we assume
the SM and dark sector as elementary fields, therefore in the
holographic model they are localized on the UV brane.

A comprehensive analysis of this holographic model is
beyond the scope of the present work where we only
consider an effective theory valid below the IR scale
Λ ¼ 4πf.
It is convenient to rewrite the dilaton field χ in terms of

canonically normalized physical dilaton fluctuation σ by
expanding the χ field around its VEV, i.e., χ ¼ f þ σ.
Such that the dilaton Lagrangian in the canonical basis
takes the form,

Ldil ¼
1

2
∂μσ∂

μσ −
1

2
m2

σσ
2 −

5

3!

m2
σ

f
σ3 −

11

4!

m2
σ

f2
σ4; ð2:9Þ

where we neglect higher order Oðσ5Þ terms. The inter-
actions of the dilaton field σ with the SM and DM are
dictated by the nonlinearly realized scale invariance below
scale Λ ¼ 4πf.
In this work we assume that scale invariance breaking

scale Λ is much larger than the electroweak scale, i.e.,
Λ ≫ 1 TeV. Furthermore, as we are interested in UV
freeze-in production of dark matter, therefore usually
temperatures involved are much larger than the electroweak
scale. Taking this into account, we define dilaton inter-
actions with the SM only in the electroweak symmetric
phase (EWSP) for temperatures T above critical temper-
ature Tc ∼ 150 GeV. Note the SM electroweak symmetry
is restored at T > Tc and taking into account the thermal
corrections at the one-loop level, Higgs effective potential
takes the following form,

VðH; TÞ ≃ μ2ðTÞjHj2 þ λðTÞjHj4 ð2:10Þ

where the Higgs quartic coupling is λðTÞ ∼ λ ≃ 0.13,
and the Higgs effective mass parameter μ2ðTÞ can be
approximated as,

μ2ðTÞ ≈
�
−λv2EW T ≲ Tc;

βT2 T > Tc;
ð2:11Þ

with the parameter β ∼ 0.4 [52].

A. SM–dilaton interactions

All the SM gauge and fermion fields are massless in the
electroweak symmetric phase. However, the SM Higgs
doublet (four real scalar components, hi with i ¼ 0, 1, 2, 3)
mass is m2

h ¼ βT2. Therefore in the SM sources of explicit
breaking of scale invariance are the Higgs mass term and
the renormalization scale through RGE running of the
coupling constants. To make the Higgs mass term scale
invariant one needs to rescale it with the conformal
compensator as [9,11],

m2
hjHj2 → m2

h
χ2

f2
jHj2: ð2:12Þ
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One can also think of this as the Higgs field being rescaled
as H → Hχ=f, since the Higgs VEV hHi explicitly breaks
the scale invariance. In this case dilaton field σ coupling
with the Higgs field is

Lint
SM ⊃

X3
i¼0

�
σ

f
þ σ2

2f2

�
½∂μhi∂μhi − 2m2

hh
2
i �; ð2:13Þ

where higher-order interaction terms are neglected.
Furthermore, the dilaton interacts with the SM fermions
through the Yukawa terms,

Lint
SM ⊃

σ

f
½ytQ̄LH̃tR þ…� þ H:c:; ð2:14Þ

where H̃ ¼ iσ2H� and ellipsis represent the fermions with
smaller Yukawa couplings. Since top Yukawa coupling
yt ∼ 1 is the largest coupling, it would be the most relevant
for our analysis. The dilaton interactions with the SM
massless gauge bosons emerge due to RGE running of their
gauge couplings as

Lint
SM ⊃

X3
i¼1

αi
8π

bi
σ

f
FiμνF

μν
i ; ð2:15Þ

where i ¼ 1, 2, 3 corresponds to SM gauge groups Uð1ÞY ,
SUð2ÞL, and SUð3Þc, respectively. Whereas αi ¼ g2i =4π
and bi are the corresponding gauge couplings and beta-
function coefficients, respectively.

B. DM–dilaton interactions

At the leading order, the interaction Lagrangian for the
dilaton field with the DM is given by

Lint
DM ¼

8>><
>>:

ðσf þ σ2

2f2Þ½∂μX∂μX − 2m2
XX

2�; SDM

− σ
f mXX̄X; FDM

ðσf þ σ2

2f2Þm2
XX

2
μ; VDM

ð2:16Þ

where we consider fermion DM as a Dirac particle,
however for Majorana fermion the above interaction term
is rescaled by factor 1=2.
Note that the above interactions of the dilaton field with

the elementary SM or DM fields can be obtained through
the argument that the dilaton χ couples to the trace of
energy-momentum tensor as [9]

Lint
SM=DM ¼ χ

f
Tμ
μ;SM=DM;

¼ χ

f

�X
i

giðμÞðΔi − 4ÞOi
SM=DM

þ
X
i

βiðgiÞ
∂LSM=DM

∂gi

�
; ð2:17Þ

where Δi is the scaling dimension of the SM/DM operator
Oi

SM=DM and βi ≡ μ∂gi=∂μ is the beta-function.

III. NONSTANDARD COSMOLOGY
DURING REHEATING

We assume a slow-roll inflationary paradigm with quasi-
de Sitter expansion of the Universe with Hubble parameter
HI . The inflationary epoch of accelerated expansion ends
with a reheating phase where the inflaton field ϕ is assumed
to transfer its energy density via perturbative decays to
the SM sector. For concreteness we consider α-attractor
T-model of inflation [53,54] with inflaton potential

VðϕÞ ¼ Λ4
I tanh

2n

�jϕj
M

�

≃
�Λ4

I ; jϕj ≫ M

Λ4
I j ϕM j2n; jϕj ≪ M

; ð3:1Þ

where ΛI determines the scale of inflation, whereas M is
related to the reduced Planck mass through the α parameter
as M ≡ ffiffiffiffiffiffi

6α
p

MPl. The above potential VðϕÞ approximates
to constant value for jϕj ≫ M which is ideal for slow-roll
inflation. Whereas, the inflaton potential takes a monomial
form proportional to jϕj2n for jϕj ≪ M. In this model the
inflationary phase ends when jϕj ∼M and for smaller field
values the inflaton field coherently oscillates around its
minimum at ϕ ¼ 0 for positive values of n. In this regime,
we assume the inflaton field perturbatively decays to the
SM sector, which is referred to as the reheating phase.
Without specifying the details of reheating dynamics, we

assume inflaton energy density scales as ρϕ ∝ a−3ð1þwÞ
during the reheating phase, where w is the equation of state.
During inflation w ≃ −1 and the end of inflation is marked
when w ¼ −1=3. During the reheating phase total energy
density is dominated by the inflaton energy density where
the equation of state parameter w can be related to the
inflaton potential parameter n as

w ¼ hpϕi
hρϕi

¼ n − 1

nþ 1
: ð3:2Þ

Above hpϕi and hρϕi are the inflaton pressure and energy
density which are time-averaged over one inflaton oscil-
lation. In the following, we assume the equation of state
w ∈ ð−1=3; 1Þ during the reheating phase. For example,
w ¼ 0 defines the matter-dominated universe due to the
inflaton coherent oscillations. The Hubble rate is given by

HðaÞ≡ _a
a
¼

ffiffiffiffiffiffiffiffiffiffi
ρðaÞ
3M2

Pl

s
; ð3:3Þ

where MPl ¼ 2.435 × 1018 GeV is the reduced Planck
mass and over-dot is derivative with respect to time t.
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Above the energy density ρðaÞ is the sum of the inflaton
and the SM radiation energy densities, i.e., ρðaÞ ¼
ρϕðaÞ þ ρRðaÞ. During the reheating phase inflaton energy
density is dominant, i.e., ρϕðaÞ ≫ ρRðaÞ for ae < a < arh,
where ae and arh denote the end of inflation and the
reheating phase, respectively. Furthermore, we assume that
DM energy density ρX remains a subdominant component
of the total energy density. The end of the reheating phase is
defined when ρϕðarhÞ ¼ ρRðarhÞ.
The exact cosmological evolution of the reheating phase

is determined by solving the coupled Boltzmann equations,

_ρϕ þ 3ð1þ wÞHρϕ ¼ −Γϕρϕ;

_ρR þ 4HρR ¼ þΓϕρϕ; ð3:4Þ

where Γϕ is the perturbative decay width of the inflation
field to SM radiation. For instance, this can be achieved by
employing an effective coupling between the inflaton and
SM fermions ψ of the form yϕψ̄ψ , then the perturbative
inflaton decay rate Γϕ is,

Γϕ ¼ y2

8π
mϕ: ð3:5Þ

Other possible inflaton decay channels to SM fields can
also be considered. In general, Γϕ is not a fixed quantity,
but depends on time, see, e.g., [45]. More exact compu-
tation of the right-hand-side of the above Boltzmann
equations, i.e., Γϕρϕ, is more complicated as recently
discussed in [37,47]. However, in this work, we remain
agnostic about details of the reheating dynamics and for
simplicity treat Γϕ as a free parameter with a constant value.
Assuming Γϕ ≪ 3ð1þ wÞH during the reheating phase

ae ≲ a≲ arh we can approximately solve the above
Boltzmann equations as

ρϕ ≃ 3M2
PlH

2
I

�
ae
a

�
3ð1þwÞ

; ð3:6Þ

ρR ≃ 3M2
PlHIHrh

��
ae
a

�
3ð1þwÞ=2

−
�
ae
a

�
4
�
; ð3:7Þ

where we employed Γϕ ≃ ð5 − 3wÞHrh=2 with Hrh being
the Hubble scale at the end of reheating,

Hrh ≡HðarhÞ ¼ HI

�
ae
arh

�
3ð1þwÞ=2

: ð3:8Þ

Above the Hubble scale during inflationHI is related to the
inflaton potential during inflation, i.e., ϕ > MPl, as

H2
I ¼

ρϕ
3M2

Pl

≃
VðϕÞ
3M2

Pl

≃
Λ4

3M2
Pl

: ð3:9Þ

For the slow-roll inflationary scenario the recent
Planck [55] and BICEP/Keck [56] measurements put an
upper-bound at 95% C.L. on the Hubble scale during
inflation as

HI ≲ 4.4 × 1013 GeV: ð3:10Þ

Hence, the above result implies an upper limit on the
inflationary scale as ΛI ≲ 1.4 × 1016 GeV. Furthermore,
the current upper bound on the tensor to scalar power
spectrum ratio, r≲ 0.036 [56] at 95% C.L., limits the value
of the α parameter orM from above, such that,M ≲ 10MPl.
Hereinafter, without loss of generality, we fix α ¼ 1=6,
such that M ¼ MPl. The scale of inflation ΛI is related to
the Hubble scale during inflation HI through Eq. (3.9),
which is the only free parameter during the inflationary
phase. Whereas, during the reheating phase the inflaton
potential parameter n is related to the equation of state w via
Eq. (3.2), which we treat as a free parameter with values
w ∈ ð−1=3; 1Þ.
After the end of reheating, the inflaton energy density

rapidly vanishes and standard cosmological evolution takes
its course where SM radiation is the dominant energy
density until the matter-radiation equality, i.e., a ¼ aeq.
During the radiation-dominated epoch, arh ≲ a≲ aeq, the
radiation energy density is given as

ρR ≃ ρrh

�
arh
a

�
4

; where ρrh ≡ 3M2
PlH

2
rh: ð3:11Þ

It is instructive to write the Hubble parameter as a function
of the scale factor

HðaÞ ¼
�
HIðaea Þ

3ð1þwÞ
2 ; ae < a ≤ arh;

Hrhðarha Þ2; arh < a ≤ aeq;
ð3:12Þ

where Hrh is defined in (3.8). The temperature of the
SM bath is defined in terms of the SM radiation energy
density as

T4 ¼ 30ρR
π2g⋆ðTÞ

;

≃
g⋆ðTrhÞ
g⋆ðTÞ

T4
rh

( HðaÞ
Hrh

; amax < a ≤ arh;

ðHðaÞ
Hrh

Þ2; a > arh;
ð3:13Þ

where amax is the value of scale factor when the temperature
(or radiation energy density) has its maximum value, see
below Eq. (3.16). Whereas, g⋆ðTÞ is the effective number
of relativistic d.o.f. contributing to the energy density.
Temperature at the end of the reheating period Trh is
defined as
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T2
rh ≡ 3

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

g⋆ðTrhÞ

s
MPlHrh: ð3:14Þ

In the following analysis, we treat temperature Trh as one of
the free parameters of the model.
Note that the initial condition for the radiation energy

density at a ¼ ae is ρRðaeÞ ¼ 0, therefore the temperature
of the SM bath is also zero at the onset of the reheating
phase. The maximum of radiation energy density or the
maximum temperature Tmax is reached during the reheating
phase at a ¼ amax < arh,

amax ¼ ae

�
8

3ð1þ wÞ
� 2

5−3w
; for −

1

3
< w <

5

3
: ð3:15Þ

Hence using (3.7) and (3.14) the corresponding maximum
temperature Tmax can be written as

T4
max ¼

3ð5 − 3wÞ
8π

�
3ð1þ wÞ

8

�3ð1þwÞ
5−3w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

g⋆ðTrhÞ

s
MPlHIT2

rh;

ð3:16Þ

for −1=3 < w < 5=3. In the following analysis, we have
three free parameters which determine nonstandard cosmo-
logical evolution during the reheating phase, namely (i) the
Hubble scale at the end of inflationHI , (ii) the temperature at
the end of reheating Trh, and (iii) the equation of state w
which we take in the range ð−1=3; 1Þ. The value of the scale
factor at the end of inflation ae is arbitrary. With these three
free parameters ðHI; Trh; wÞ one can readily calculate all the
other quantities related to cosmological and thermal evolu-
tion. Now the inflationary Hubble scale is constrained by
the CMB measurement of the inflationary perturbations.
The current upper bound from Planck data [57] reads as
HI ≲ 6 × 1013 GeV. An upper bound on the maximum
temperature Tmax is set by the requirement that radiation
energy density is smaller than the total energy density at the
end of inflation, i.e., ρR ≲ 3M2

PlH
2
I . Employing the upper

bound on HI , we get Tmax ≲ 6.5 × 1015 GeV. Reheating
temperature is by default smaller than themaximum temper-
ature, i.e., Trh < Tmax. Furthermore, the BBN sets a lower
bound on the reheating temperature Trh ≳ 1 MeV [58].

IV. DILATON PORTAL DARK
MATTER PRODUCTION

In this section, we discuss the freeze-in production of
dark matter via the dilaton portal. The Boltzmann equation
for DM X is

_nX þ 3HnX ¼ CX þDX; ð4:1Þ

where C=D are the collision/decay terms,

CX ≃ n̄2X½hσXX→SMSMvi þ hσXX→σσvi�; ð4:2Þ

DX ≃ 2nσhΓσ→XXi; ð4:3Þ

with hσXX→SMSMvi and hΓϕ→XXi being the thermally
averaged annihilation cross section and partial width,
respectively. Above the equilibrium number density of
species i with spin Ji is defined as

n̄i ¼ ð2Ji þ 1Þm
2
i T

2π2
K2

�
mi

T

�
; ð4:4Þ

where K2ðxÞ is the Bessel function of the second kind. In
the relativistic regime, i.e., T ≫ mi, the above n̄i receives a
correction due to quantum statistics of order ζð3Þ ≃ 1.2
and 3ζð3Þ=4 ≃ 0.9 for bosons and fermions, respectively.
However, for simplicity, we neglect this correction in our
analysis. Furthermore, we assume no interaction between
the inflaton and dilaton, therefore dilaton is produced
through scattering and inverse decays of the SM fields.
Above nσ is the number density of the dilaton field. If the
interaction rate between the SM and dilaton is larger than
the Hubble scale then dilaton is in thermal equilibrium, i.e.,
nσ ¼ n̄σ. In general, we solve the following Boltzmann
equation to get the dilaton number density nσ,

_nσ þ 3Hnσ ¼ n̄σhΓSM→σi; ð4:5Þ

where the thermally averaged SM annihilation to dilaton
hΓSM→σi is dominated by the top-Yukawa interaction
term Eq. (2.14).
It is convenient to recast the Boltzmann equation (4.1) in

terms of the comoving number density NX ¼ nXa3 and as a
function of temperature T,

dNX

dT
¼ −

3a3rh
π

ffiffiffiffiffiffiffiffiffiffiffiffi
10

g⋆ðTÞ

s
MPl

T3
rh

T6
½CX þDX�

×

( 8
3ð1þwÞ ðTrh

T Þ
7−w
1þw; T ≥ Trh;

g⋆sðTrhÞ
g⋆sðTÞ ; T < Trh;

ð4:6Þ

where g⋆sðTÞ denote the effective number of relativistic
d.o.f. contributing to entropy density s ¼ 2π2g⋆sðTÞT3=45.
Dark matter relic abundance can be calculated as

ΩXh2 ¼
mXnXða0Þ
ρch−2

¼ mX

ρch−2
NXðT0Þ
a3rh

s0
srh

; ð4:7Þ

where nXða0Þ is the DM number at present. Whereas,
the second equality is obtained employing entropy con-
servation with present entropy density s0 ¼ 2970 cm−3

and srh ≡ sðTrhÞ. Above the critical energy density is
ρc ¼ 1.054 × 10−5h2GeVcm−3.
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A. SM and dilaton scattering

The schematic diagrams contributing to the production
of DM due to the annihilation of SM bath particles as well
as the annihilation/decay of the dilaton field are shown in
Fig. 1. Dark matter production through the annihilation of
the dilaton field is relevant when the latter is in thermal
equilibrium with the SM bath. As mentioned above, since
we are interested in the production of DM through UV
freeze-in, we consider SM annihilation to DM only in the
electroweak symmetric phase.

1. Scalar DM case

For the case of vector DM Xμ amplitude squared for the
SM and dilaton scattering processes are

jMXX→hhj2 ¼
ð2m2

h þ sÞ2ð2m2
X þ sÞ2

2f4ðm2
σðΓ2

σ − 2sÞ þm4
σ þ s2Þ ;

jMXX→ViVi
j2 ¼ b2i α

2
i

4π2
s2ð2m2

X þ sÞ2
4f4ðΓ2

σm2
σ þ ðs −m2

σÞ2Þ
; ð4:8Þ

jMXX→σσj2 ¼
1

2f4

�ðm2
σ þ 2m2

XÞ2
u −m2

X
−
2m2

σðm2
σ þ 8m2

X þ 3sÞ
m2

σ − s

þ ðm2
σ þ 2m2

XÞ2
t −m2

X
− 6m2

X

�
2

; ð4:9Þ

where bi and αi are the beta-function coefficient and the
gauge couplings with i ¼ 1, 2, 3 for the SM gauge groups
Uð1ÞY , SUð2ÞL, and SUð3Þc, respectively. The scattering
rate CX can be approximated for the above processes as

CX≈

8>>><
>>>:
ð5þb2i α

2
i

8π2
Þ 3T8

4π5f4
; T≫mσ;mX

ð4þb2i α
2
i

8π2
Þ2880T12

π5f4m4
σ
; mσ ≫T≫mX;

ð4þb2i α
2
i

8π2
Þ 9m9

XT
3

8π4f4m4
σ
expð−2mX

T Þ; mσ ≫mX≫T

ð4:10Þ

where summation over all the SM gauge bosons i is
assumed.

2. Fermion DM case

For the case of vector DM Xμ amplitude squared for the
SM and dilaton scattering processes are

jMXX→hhj2 ¼
49m2

Xð2m2
h þ sÞ2ðs − 4m2

XÞ
4f4ðΓ2

σm2
σ þ ðm2

σ − sÞ2Þ ;

jMXX→ViVi
j2 ¼ b2i α

2
i

4π2
49s2m2

Xðs − 4m2
XÞ

8f4ðΓ2
σm2

σ þ ðm2
σ − sÞ2Þ ; ð4:11Þ

jMXX→σσj2 ¼
49m2

Xðs − 4m2
XÞð15m2

σ þ sÞ2
16f4ðΓ2

σm2
σ þ ðs −m2

σÞ2Þ
: ð4:12Þ

The scattering rate CX for the fermion DM can be
approximated as

CX ≈

8>>><
>>>:

ð4þ b2i α
2
i

8π2
Þ m2

XT
6

64π5f4
þ 25m2

Xm
4
σT2

4096
ffiffi
2

p
π4f4

; T ≫ mσ; mX

ð4þ b2i α
2
i

8π2
Þ 18m2

XT
10

π5f4m4
σ
; mσ ≫ T ≫ mX;

ð4þ b2i α
2
i

8π2
Þ 75m4

XT
4

512π4f4 expð−2mX
T Þ; mσ ≫ mX ≫ T:

ð4:13Þ

3. Vector DM case

For the case of vector DM Xμ amplitude squared for the
SM and dilaton scattering processes are

jMXX→hhj2 ¼
ðs2 − 4sm2

X þ 12m4
XÞð2m2

h þ sÞ2
2f4ðΓ2

σm2
σ þ ðs −m2

σÞ2Þ
; ð4:14Þ

jMXX→ViVi
j2 ¼ b2i α

2
i

4π2
s2ðs2 − 4sm2

X þ 12m4
XÞ

4f4ðΓ2
σm2

σ þ ðs −m2
σÞ2Þ

; ð4:15Þ

jMXX→σσj2 ¼
ðs2 − 4sm2

X þ 12m4
XÞð7m2

σ þ sÞ2
2f4ðΓ2

σm2
σ þ ðs −m2

σÞ2Þ
: ð4:16Þ

In this case, neglecting the leading order phase space factor,
the approximate form of scattering rate CX is the same as
that of the scalar DM case, i.e., Eq. (4.10).

B. Dilaton decays

For dark matter lighter than dilaton, the dominant
contribution to the production of DM is through dilaton
decay. In this case, the decay term DX in Eq. (4.1) is
given by

DX ¼ 2nσ
K1ðmσ

T Þ
K2ðmσ

T Þ

8>>>>><
>>>>>:

m3
σ

32πf2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4m2

X
m2

σ

q
ð1þ 2m2

X
m2

σ
Þ2; SDM

mσm2
X

8πf2 ð1−
4m2

X
m2

σ
Þ3=2; FDM

m3
σ

32πf2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4m2

X
m2

σ

q
ð1− 4m2

X
m2

σ
þ 12m4

X
m4

σ
Þ; VDM

ð4:17Þ

where nσ is the number density of the dilaton field. We note
that in most natural parameter space when f ≫ vSM the
dilaton field is out of thermal equilibrium with the SM bath,
therefore the number density of the dilaton nσ is calculated

FIG. 1. Schematic diagrams for the freeze-in production of DM
through the dilaton portal.

ULTRAVIOLET FREEZE-IN DARK MATTER THROUGH THE … PHYS. REV. D 107, 055020 (2023)

055020-7



through the SM annihilation and inverse decays of the SM
fields. The dominant contribution to the dilaton production
is due to scattering processes involving top-Yukawa cou-
pling (2.14), i.e., ytQLH̃tR, see also [21,23]. The condition
for dilaton to be in thermal equilibrium reads as

1 <
hΓSM→σi

H
∼ 0.04

y2t T3

f2H

∼ 0.01
MPl

f2

� T2
rh
T ; T ≥ Trh

T; T < Trh

ð4:18Þ

which maximizes for T ¼ Trh and the thermalization
condition becomes Trh ≳ 102f2=MPl.

C. Numerical analysis

Making use of the results from the previous section our
goal is to solve the Boltzmann equation (4.6) to calculate
the comoving number density and thus the relic abundance
using Eq. (4.7). Before discussing the numerical results, we
observe that our model contains six free parameters: mX,
mσ , f, HI , Trh, and w. Note, however, that dilaton mass
cannot be arbitrarily smaller than the scale invariance
breaking scale f. Naturalness suggests the dilaton mass
of the same order as breaking scale f, therefore mσ=f
shows the amount of tuning. In the following, we show the
dependence of dark matter comoving number density with
respect to temperature evolution for various choices of
these parameters.

1. Dependence on DM mass

In Fig. 2, we present NX as a function of Trh=T for
different choices of DM mass for scalar/vector DM (left
panel) and fermion DM (right panel). We fix the remaining
parameters as: w ¼ 0, f ¼ 1014 GeV,HI ¼ 1013 GeV, and
Trh ¼ 1010 GeV, with mσ=f ¼ 1%. For this choice of
parameters maximum temperature obtained is Tmax ∼
103Trh. In this figure, we show T ¼ mσ ¼ 1012 GeV with

an orange dashed vertical line, to the left of this line
T > mσ and hence dilaton can be produced on shell via
inverse decays of SM fields, and therefore its decays to DM
(for mσ > 2mX) are the dominant source of DM produc-
tion. However, for temperatures smaller than dilaton mass
T < mσ , the dominant source of DM production is SM
annihilation to DM through an effective dimension-eight
operator, where s-channel dilaton is integrated out. In
Fig. 2 (left panel) for scalar/vector DM illustrates these
features, where comoving number density acquires
maximum value for temperatures mσ > T > Trh for DM
massesmX < Tmax. We consider three illustrative values for
mX ¼ Trh; mσ; 2mσ, however, we note that for DM mass
mX < Trh, the results are same as that of themX ¼ Trh case.
The right panel of Fig. 2 shows the case when DM is a

Dirac fermion. We consider the three values of DM mass
mX ¼ Trh; mσ; 2mσ shown as solid, long-dashed, and
dashed curves, respectively. In this case, we also note that
maximum comoving number density is attained when
mσ > T > Trh. As mentioned above, the cross section is
proportional to fermionic DM mass therefore for dark
matter mass smaller than Trh the DM number density scales
as m2

X=T
2
rh at the end of reheating. Note that once the DM

mass becomes larger than the temperature, i.e.,mX > T, the
number density becomes exponentially suppressed due to
Boltzmann suppression.

2. Dependence on dilaton mass

For the case of scalar/vector DM (left panel) and fermion
DM (right panel) in Fig. 3, we illustrate the dependence
of comoving number density as a function of temper-
ature for various values of dilaton mass mσ with fixed
mX ¼ Trh ¼ 1010 GeV, f ¼ 1014 GeV, HI ¼ 1013 GeV,
and w ¼ 0. We consider three choices for the dilaton mass
mσ=Trh ¼ 100, 10, 1, whereas for mσ=Trh < 1 the comov-
ing number density remains almost the same as for the case
mσ=Trh ¼ 1. Again one can notice the scaling of NX with
respect to T for T > mσ where the dilaton can be produced

FIG. 2. Comoving number density NX for scalar/vector DM (left panel) and Dirac fermion DM (right panel) as a function of Trh=T for
different choices DM mass mX.
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on shell and for the case when T < mσ where the dilaton
can be effectively integrated out. Furthermore, due to
naturalness one expects that the dilaton mass is of the
same order as the conformal breaking scale f.

3. Dependence on the equation of state during reheating

The nontrivial dependence on the equation of state w
during reheating is given in Eq. (4.6) as ðTrh=TÞð7−wÞ=ð1þwÞ.
This shows suppression in the number density with
increasing w. Figure 4 illustrates this feature where comov-
ing number density NX is shown as a function of Trh=T for
w ¼ 0; 1=3; 2=3, 1 with fixed values of mX ¼ 1 GeV,
mσ ¼ 1012 GeV, f ¼ 1014 GeV, and Trh ¼ 1010 GeV for
the scalar/vector DM (left panel) and fermion DM (right
panel). Nonstandard cosmological effects are only relevant
for temperatures T < Trh, i.e., during the reheating phase.

4. Dependence on the scale of inflation

Dark matter production is sensitive to the scale of
inflation HI which overall sets the scale of reheating
dynamics. The dependence of HI on the comoving DM

number densityNX in Eq. (4.6) appears through Trh and the
maximum temperature during reheating phase Tmax. In
Fig. 5 we present the comoving DM number density NX as
a function of Trh=T for HI ¼ ð1013; 1012; 1011; 1010Þ GeV
for fixed values of w¼0, mX¼1010GeV, mσ ¼ 1012 GeV,
f ¼ 1014 GeV, and Trh ¼ 1010 GeV. The left panel shows
the scalar/vector DM case, whereas the right panel repre-
sents the fermion DM case. Note that during the reheating
phase, i.e., T > Trh, the HI dependence on DM production
is nontrivial, however after the end of the reheating phase,
i.e., T < Trh, the comoving DM number density is propor-
tional to H2

I .

5. Dark matter relic abundance

There are six free parameters in our model namely, mX,
mσ , f, HI , Trh, and w. In the following, we present regions
of parameter space in the DM mass mX vs the reheating
temperature Trh with fixed choices of all the remaining
parameters such that we produced to observed DM relic
abundance ΩXh2 ¼ 0.12. In particular, in all the analyses
we choose the Hubble scale at the end of inflation

FIG. 3. Comoving number density NX for scalar/vector DM (left panel) and Dirac fermion DM (right panel) as a function of Trh=T for
different choices dilaton mass mσ .

FIG. 4. Comoving number density NX for scalar/vector DM (left panel) and Dirac fermion DM (right panel) as a function of Trh=T for
different choices of the equation of state w.
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He ¼ 1013 GeV and fix the ratio of dilaton mass to
conformal breaking scale mσ=f ¼ 1%. Whereas the value
of the conformal breaking scale fixes the observed DM relic
abundance for a specific choice of the equation of state
parameter w, which we take w ¼ 0; 1=3; 2=3, 1.
In Fig. 6, we present contours of observed DM relic

abundance for the case of scalar/vector DM in the Trh vsmχ

plane for different values of the equation of state w and f
with fixed values of mσ=f ¼ 1% and HI ¼ 1013 GeV. The
gray shaded region represents parameter space where
the DM would be in thermal equilibrium with the SM
bath. The orange shaded region represents the parameter
space where mX > Tmax and dashed-orange line denotes
mX ¼ Trh. The three panels of this figure show the results
for conformal breaking scale f ¼ 1014; 1012; 1010 GeV
from left to right, respectively. The curves show observed
DM abundance for DM masses from 10−6 GeV to
1012 GeV as a function of the reheating temperature.
Note that for a low DM mass mχ we require larger Trh

to produce desired DM abundance, whereas for a high DM
mass mχ we require smaller Trh. The lower values of Trh

imply that the reheating phase lasts longer and therefore,
the impact of nonstandard cosmology during this phase has
a significant effect on the DM production. This effect is
manifestly shown in Fig. 6. Note that the dip in these curves
for large DM masses is aroundmX ∼mσ as the temperature
dependence of the source term changes as shown in
Eq. (4.10) for the cases of scalar/vector DM.
In Fig. 7 we show the fermionic DM results for

parameters in mX − Trh plane which produces observed
DM relic abundance for different choices of w and f,
whereas we fix mσ=f ¼ 1% and HI ¼ 1013 GeV. Similar
to Fig. 6, in Fig. 7 the gray shaded region represents
the DM in thermal equilibrium with the SM bath and the
orange shaded region shows the DM mass larger than the
maximum temperature of the thermal bath, i.e.,mX > Tmax.
Note that in the case of fermionic DM, unlike the bosonic
DM case, the scattering cross section is proportional to DM

FIG. 5. Comoving number density NX for scalar/vector DM (left panel) and Dirac fermion DM (right panel) as a function of Trh=T for
different choices of the equation of state w.

FIG. 6. Contours of observed DM relic abundance for scalar/vector DM as a function of mX and Trh for different choices of the
equation of state parameter w.
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mass squared. Therefore the DM thermalization condition
is proportional to DM mass, for larger masses, the cross
section is large and hence it is thermalized, whereas the
constraint weakens for lower DMmasses. Furthermore, due
to the same DM mass dependence notice that for larger
values of conformal breaking scaling, e.g., f ¼ 1014 GeV
(left panel) the observed DM abundance can only be
achieved for DM mass mX > 106 GeV, in contrast to the
scalar/vector DM case where sub-GeV masses are also
allowed. Note that the effect of nonstandard cosmology
during the reheating phase is very similar to that of the
scalar/vector DM case, i.e., for smaller values of reheating
temperature the duration of the reheating phase is larger,
and therefore the effect of the equation of state w during this
phase is significant. However, for larger reheating temper-
atures the effect is irrelevant.

V. CONCLUSIONS

In this work, we have studied the implication of
nonstandard cosmology during reheating on the ultraviolet
freeze-in production of DM via the dilaton portal. We
assume the SM and DM are part of a (strongly coupled)
conformal/scale-invariant theory, where the scale invari-
ance is broken spontaneously at scale Λ ¼ 4πf. As a result,
the low-energy effective theory contains a dilaton field σ
which couples to the SM and DM through higher dimen-
sional operators suppressed by the breaking scale.
Furthermore, we assume DM interacts with the SM only
through the dilaton portal. In this framework, the lowest
dimensional interaction between the SM and DM is a
dimension-six operator. For large values of conformal
breaking scale f such interactions are naturally very small
and as a result, the DM is not in thermal equilibrium with
the SM bath. Therefore, DM can only be produced in the
early universe through the freeze-in mechanism. There are
two production processes through which the DM can be

produced: (i) through the annihilation of SM particles to
DM, and (ii) through direct decays of dilaton field to DM
when the dilaton mass is larger than twice the DM mass.
We studied the cases when the DM is a scalar, vector, or
fermion field.
The ultraviolet freeze-in production of DM is highly

sensitive to the maximum temperature of the SM bath
particles as well as the reheating dynamics. We have
parametrized the reheating dynamics with three parameters,
(a) Hubble scale at the end of inflation HI which deter-
mines inflaton energy density at the end of inflation, (b) the
equation of state w of the inflaton field during reheating,
and (c) the reheating temperature Trh when the inflaton
energy density is equal to that of the SM, therefore it
determines the duration of reheating. The dilaton portal
dynamics involve two parameters, the dilaton massmσ, and
the conformal breaking scale f. Apart from these five
parameters, DM mass mX (for scalar/vector/fermion) is the
only remaining free parameter. In this study, we considered
a high-scale inflationary scenario, where the Hubble scale
at the end of inflation is fixed to be HI ¼ 1013 GeV. With
this choice of HI , assuming instantaneous thermalization
the maximum temperature attained by the SM bath is
Tmax ∼ 1015 GeV ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trh=ð1015 GeVÞ

p
, see Eq. (3.16). For

the equation of state parameter, we choosew ¼ 0; 1=3; 2=3,
1, where w ¼ 0 and w ¼ 1=3 correspond to the matter-
dominated and radiation-dominated reheating which are
achieved for quadratic and quartic inflaton potentials,
respectively. We have shown the dependence of the DM
number density as a function of temperature on various
parameters of the model in Figs. 2–5.
In Fig. 6 and Fig. 7, we present the results in the Trh −mX

plane for the scalar/vector and fermion DM cases, respec-
tively. We consider high-scale conformal breaking scale
f ¼ 1014; 1012; 1010 GeV and we fix the dilaton mass
mσ=f ¼ 1%. It is shown that DM production is sensitive

FIG. 7. Contours of observed DM relic abundance for fermionic DM as a function of mX and Trh for different choices of the equation
of state parameter w.
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to the conformal breaking scale f as the production cross
section scales as 1=f4. To realize DM freeze-in production
mechanism, one requires high-scale conformal breaking.
For the case of scalar/vector DM (Fig. 6), the observed
DM abundance can be achieved for DMmasses in the range
10−5–1012 GeV depending on the reheating temperature Trh
and breaking scale f. Whereas, for the case of fermion DM
(Fig. 7), the observed DM abundance can be achieved for
DM masses in the range 102–1012 GeV depending on the
reheating temperatureTrh and breaking scale f.We conclude

that the dilaton portal offers a natural realization of ultraviolet
freeze-in production ofDMfor awideDMmass range and its
sensitivity to the reheating dynamics is investigated.

ACKNOWLEDGMENTS

The research of S. N. is supported by the Cluster of
Excellence Precision Physics, Fundamental Interactions
and Structure of Matter (PRISMAþ—EXC 2118/1) within
the German Excellence Strategy (Project ID 39083149).

[1] R. Contino, The Higgs as a composite Nambu-Goldstone
boson, in Physics of the Large and the Small (World
Scientific, Singapore, 2011), pp. 235–306.

[2] G. Panico and A. Wulzer, The Composite Nambu-Goldstone
Higgs (Springer, Cham, 2016), Vol. 913.

[3] M. Frigerio, A. Pomarol, F. Riva, and A. Urbano, Composite
scalar dark matter, J. High Energy Phys. 07 (2012) 015.

[4] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler,
Charged composite scalar dark matter, J. High Energy
Phys. 11 (2017) 094.

[5] L. Da Rold and A. N. Rossia, The minimal simple
composite Higgs model, J. High Energy Phys. 12 (2019)
023.

[6] A. Ahmed, S. Najjari, and C. B. Verhaaren, Aminimal model
for neutral naturalness and pseudo-Nambu-Goldstone dark
matter, J. High Energy Phys. 06 (2020) 007.

[7] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini,
M. Pierre, S. Profumo, and F. S. Queiroz, The waning of the
WIMP? A review of models, searches, and constraints, Eur.
Phys. J. C 78, 203 (2018).

[8] A. Salam and J. A. Strathdee, Nonlinear realizations. II.
Conformal symmetry, Phys. Rev. 184, 1760 (1969).

[9] W. D. Goldberger, B. Grinstein, and W. Skiba, Distinguish-
ing the Higgs Boson from the Dilaton at the Large Hadron
Collider, Phys. Rev. Lett. 100, 111802 (2008).

[10] C. Csaki, J. Hubisz, and S. J. Lee, Radion phenomenology
in realistic warped space models, Phys. Rev. D 76, 125015
(2007).

[11] Z. Chacko and R. K. Mishra, Effective theory of a light
dilaton, Phys. Rev. D 87, 115006 (2013).

[12] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning,
A Higgs-like dilaton, Eur. Phys. J. C 73, 2333 (2013).

[13] A. Ahmed, B. M. Dillon, and S. Najjari, Dilaton portal in
strongly interacting twin Higgs models, J. High Energy
Phys. 02 (2020) 124.

[14] Y. Bai, M. Carena, and J. Lykken, Dilaton-Assisted Dark
Matter, Phys. Rev. Lett. 103, 261803 (2009).

[15] H. M. Lee, M. Park, and V. Sanz, Gravity-mediated (or
Composite) Dark Matter, Eur. Phys. J. C 74, 2715 (2014).

[16] K. Blum, M. Cliche, C. Csaki, and S. J. Lee, WIMP dark
matter through the dilaton portal, J. High Energy Phys. 03
(2015) 099.

[17] A. Efrati, E. Kuflik, S. Nussinov, Y. Soreq, and T. Volansky,
Constraining the Higgs-dilaton with LHC and dark matter
searches, Phys. Rev. D 91, 055034 (2015).

[18] M. Kim, S. J. Lee, and A. Parolini, WIMP dark matter in
composite Higgs models and the dilaton portal, arXiv:
1602.05590.

[19] A. Ahmed, A. Mariotti, and S. Najjari, A light dilaton at the
LHC, J. High Energy Phys. 05 (2020) 093.

[20] B. Fuks, M. D. Goodsell, D. W. Kang, P. Ko, S. J. Lee, and
M. Utsch, Heavy dark matter through the dilaton portal,
J. High Energy Phys. 10 (2020) 044.

[21] P. Brax, K. Kaneta, Y. Mambrini, and M. Pierre, Metastable
conformal dark matter, Phys. Rev. D 103, 115016 (2021).

[22] P. Brax, C. van de Bruck, and S. Trojanowski, Cointeracting
dark matter and conformally coupled light scalars, Phys.
Rev. D 105, 103015 (2022).

[23] K. Kaneta, P. Ko, and W.-I. Park, Conformal portal to dark
matter, Phys. Rev. D 104, 075018 (2021).

[24] B. Barman, N. Bernal, A. Das, and R. Roshan, Non-
minimally coupled vector boson dark matter, J. Cosmol.
Astropart. Phys. 01 (2022) 047.

[25] I. Baldes, Y. Gouttenoire, F. Sala, and G. Servant, Supercool
composite dark matter beyond 100 TeV, J. High Energy
Phys. 07 (2022) 084.

[26] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West,
Freeze-in production of FIMP dark matter, J. High Energy
Phys. 03 (2010) 080.

[27] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, and
V. Vaskonen, The dawn of FIMP dark matter: A review of
models and constraints, Int. J. Mod. Phys. A 32, 1730023
(2017).

[28] F. Elahi, C. Kolda, and J. Unwin, UltraViolet Freeze-in,
J. High Energy Phys. 03 (2015) 048.

[29] G. F. Giudice, E. W. Kolb, and A. Riotto, Largest temper-
ature of the radiation era and its cosmological implications,
Phys. Rev. D 64, 023508 (2001).

[30] K. Harigaya, M. Kawasaki, K. Mukaida, and M. Yamada,
Dark matter production in late time reheating, Phys. Rev. D
89, 083532 (2014).

[31] S.-L. Chen and Z. Kang, On UltraViolet freeze-in dark
matter during reheating, J. Cosmol. Astropart. Phys. 05
(2018) 036.

AQEEL AHMED and SAEREH NAJJARI PHYS. REV. D 107, 055020 (2023)

055020-12

https://doi.org/10.1007/JHEP07(2012)015
https://doi.org/10.1007/JHEP11(2017)094
https://doi.org/10.1007/JHEP11(2017)094
https://doi.org/10.1007/JHEP12(2019)023
https://doi.org/10.1007/JHEP12(2019)023
https://doi.org/10.1007/JHEP06(2020)007
https://doi.org/10.1140/epjc/s10052-018-5662-y
https://doi.org/10.1140/epjc/s10052-018-5662-y
https://doi.org/10.1103/PhysRev.184.1760
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1103/PhysRevD.76.125015
https://doi.org/10.1103/PhysRevD.76.125015
https://doi.org/10.1103/PhysRevD.87.115006
https://doi.org/10.1140/epjc/s10052-013-2333-x
https://doi.org/10.1007/JHEP02(2020)124
https://doi.org/10.1007/JHEP02(2020)124
https://doi.org/10.1103/PhysRevLett.103.261803
https://doi.org/10.1140/epjc/s10052-014-2715-8
https://doi.org/10.1007/JHEP03(2015)099
https://doi.org/10.1007/JHEP03(2015)099
https://doi.org/10.1103/PhysRevD.91.055034
https://arXiv.org/abs/1602.05590
https://arXiv.org/abs/1602.05590
https://doi.org/10.1007/JHEP05(2020)093
https://doi.org/10.1007/JHEP10(2020)044
https://doi.org/10.1103/PhysRevD.103.115016
https://doi.org/10.1103/PhysRevD.105.103015
https://doi.org/10.1103/PhysRevD.105.103015
https://doi.org/10.1103/PhysRevD.104.075018
https://doi.org/10.1088/1475-7516/2022/01/047
https://doi.org/10.1088/1475-7516/2022/01/047
https://doi.org/10.1007/JHEP07(2022)084
https://doi.org/10.1007/JHEP07(2022)084
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.89.083532
https://doi.org/10.1103/PhysRevD.89.083532
https://doi.org/10.1088/1475-7516/2018/05/036
https://doi.org/10.1088/1475-7516/2018/05/036


[32] E.W. Kolb and A. J. Long, Superheavy dark matter through
Higgs portal operators, Phys. Rev. D 96, 103540 (2017).

[33] A. Biswas, S. Ganguly, and S. Roy, Fermionic dark matter
via UV and IR freeze-in and its possible X-ray signature,
J. Cosmol. Astropart. Phys. 03 (2020) 043.

[34] A. Ahmed, B. Grzadkowski, and A. Socha, Production of
purely gravitational vector dark matter, Acta Phys. Pol. B
50, 1809 (2019).

[35] M. Chianese, B. Fu, and S. F. King, Impact of Higgs portal
on gravity-mediated production of superheavy dark matter,
J. Cosmol. Astropart. Phys. 06 (2020) 019.

[36] N. Bernal, J. Rubio, and H. Veermäe, Boosting ultraviolet
freeze-in in NO models, J. Cosmol. Astropart. Phys. 06
(2020) 047.

[37] M. A. G. Garcia, K. Kaneta, Y. Mambrini, and K. A. Olive,
Reheating and post-inflationary production of dark matter,
Phys. Rev. D 101, 123507 (2020).

[38] N. Bernal, J. Rubio, and H. Veermäe, UV freeze-in in
Starobinsky inflation, J. Cosmol. Astropart. Phys. 10 (2020)
021.

[39] A. Ahmed, B. Grzadkowski, and A. Socha, Gravitational
production of vector dark matter, J. High Energy Phys. 08
(2020) 059.

[40] M. Drees and B. Najjari, Energy spectrum of thermalizing
high energy decay products in the early universe, J. Cosmol.
Astropart. Phys. 10 (2021) 009.

[41] B. Barman, D. Borah, and R. Roshan, Effective theory of
freeze-in dark matter, J. Cosmol. Astropart. Phys. 11 (2020)
021.

[42] Y. Mambrini and K. A. Olive, Gravitational production of
dark matter during reheating, Phys. Rev. D 103, 115009
(2021).

[43] B. Barman, D. Borah, and R. Roshan, Nonthermal lepto-
genesis and UV freeze-in of dark matter: Impact of infla-
tionary reheating, Phys. Rev. D 104, 035022 (2021).

[44] M. A. G. Garcia, K. Kaneta, Y. Mambrini, K. A. Olive, and
S. Verner, Freeze-in from preheating, J. Cosmol. Astropart.
Phys. 03 (2022) 016.

[45] A. Ahmed, B. Grzadkowski, and A. Socha, Implications of
time-dependent inflaton decay on reheating and dark matter
production, Phys. Lett. B 831, 137201 (2022).

[46] A. Ahmed, B. Grzadkowski, and A. Socha, Higgs boson-
induced reheating and dark matter production, Symmetry
14, 306 (2022).

[47] A. Ahmed, B. Grzadkowski, and A. Socha, Higgs boson
induced reheating and ultraviolet frozen-in dark matter,
J. High Energy Phys. 02 (2023) 196.

[48] L. Randall and R. Sundrum, A Large Mass Hierarchy from
a Small Extra Dimension, Phys. Rev. Lett. 83, 3370
(1999).

[49] W. D. Goldberger and M. B. Wise, Modulus Stabilization
with Bulk Fields, Phys. Rev. Lett. 83, 4922 (1999).

[50] N. Arkani-Hamed, M. Porrati, and L. Randall, Holography
and phenomenology, J. High Energy Phys. 08 (2001) 017.

[51] R. Rattazzi and A. Zaffaroni, Comments on the holographic
picture of the Randall-Sundrum model, J. High Energy
Phys. 04 (2001) 021.

[52] M. Quiros, Finite temperature field theory and phase
transitions, arXiv:hep-ph/9901312.

[53] R. Kallosh and A. Linde, Universality class in conformal
inflation, J. Cosmol. Astropart. Phys. 07 (2013) 002.

[54] R. Kallosh, A. Linde, and D. Roest, Superconformal infla-
tionary α-attractors, J. High Energy Phys. 11 (2013) 198.

[55] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. X. Constraints on inflation, Astron. Astrophys.
641, A10 (2020).

[56] P. A. R. Ade et al. (BICEP, Keck Collaborations), Improved
Constraints on Primordial Gravitational Waves using
Planck, WMAP, and BICEP/Keck Observations through
the 2018 Observing Season, Phys. Rev. Lett. 127, 151301
(2021).

[57] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).652, C4(E) (2021).

[58] S. Sarkar, Big bang nucleosynthesis and physics beyond the
standard model, Rep. Prog. Phys. 59, 1493 (1996).

ULTRAVIOLET FREEZE-IN DARK MATTER THROUGH THE … PHYS. REV. D 107, 055020 (2023)

055020-13

https://doi.org/10.1103/PhysRevD.96.103540
https://doi.org/10.1088/1475-7516/2020/03/043
https://doi.org/10.5506/APhysPolB.50.1809
https://doi.org/10.5506/APhysPolB.50.1809
https://doi.org/10.1088/1475-7516/2020/06/019
https://doi.org/10.1088/1475-7516/2020/06/047
https://doi.org/10.1088/1475-7516/2020/06/047
https://doi.org/10.1103/PhysRevD.101.123507
https://doi.org/10.1088/1475-7516/2020/10/021
https://doi.org/10.1088/1475-7516/2020/10/021
https://doi.org/10.1007/JHEP08(2020)059
https://doi.org/10.1007/JHEP08(2020)059
https://doi.org/10.1088/1475-7516/2021/10/009
https://doi.org/10.1088/1475-7516/2021/10/009
https://doi.org/10.1088/1475-7516/2020/11/021
https://doi.org/10.1088/1475-7516/2020/11/021
https://doi.org/10.1103/PhysRevD.103.115009
https://doi.org/10.1103/PhysRevD.103.115009
https://doi.org/10.1103/PhysRevD.104.035022
https://doi.org/10.1088/1475-7516/2022/03/016
https://doi.org/10.1088/1475-7516/2022/03/016
https://doi.org/10.1016/j.physletb.2022.137201
https://doi.org/10.3390/sym14020306
https://doi.org/10.3390/sym14020306
https://doi.org/10.1007/JHEP02(2023)196
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.4922
https://doi.org/10.1088/1126-6708/2001/08/017
https://doi.org/10.1088/1126-6708/2001/04/021
https://doi.org/10.1088/1126-6708/2001/04/021
https://arXiv.org/abs/hep-ph/9901312
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1007/JHEP11(2013)198
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1088/0034-4885/59/12/001

