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We demonstrate the use of symbolic regression in deriving analytical formulas, which are needed at
various stages of a typical experimental analysis in collider phenomenology. As a first application, we
consider kinematic variables like the stransverse mass, MT2, which are defined algorithmically through an
optimization procedure and not in terms of an analytical formula. We then train a symbolic regression and
obtain the correct analytical expressions for all known special cases of MT2 in the literature. As a second
application, we reproduce the correct analytical expression for a next-to-leading order (NLO) kinematic
distribution from data, which is simulated with a NLO event generator. Finally, we derive analytical
approximations for the NLO kinematic distributions after detector simulation, for which no known
analytical formulas currently exist.
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I. INTRODUCTION

Being able to describe the data collected from the
observations of various physical phenomena with simple
analytical equations and formulas is the holy grail in
theoretical physics—the physicists who are lucky enough
to find such relationships typically get those laws named
after them. In the era of big data, this task is becoming
increasingly difficult for a human—the data is just too
complex and/or very high dimensional. Recent advances in
computer science and theoretical modeling have allowed us
to entertain the idea that the discovery process could
perhaps be automated (at least as a matter of principle)
and novel laws of phenomenological behavior can be
constructed entirely with a machine and without any human
intervention [1–11]. A less ambitious, but still worthy, task
is to simply let the machine rederive the known classical
physics laws from data [12–15].
Spurred by the extensive recent research on symbolic

learning in the machine learning (ML) community, the
above program was recently successfully applied to

examples in a wide range of physics areas, e.g., in
astrophysics [13,16,17], in astronomy for the study of
orbital dynamics [18,19] and exoplanet transmission
spectroscopy [20], in collider physics [21–24], in materials
science [25], and in behavioral science [26]. A common
ML tool used in such studies is symbolic regression—an
interpretable machine learning algorithm which searches
the space of functions until it finds an algebraic expression
that approximates the dataset well. While most current
applications of symbolic regression are limited to low-
dimensional data, the approach can be easily extended
to higher-dimensional spaces by using a neural network
as a proxy, as illustrated in Ref. [13] with the example of
N-body problems.
The basic task in symbolic regression is to learn an

analytical expression fðxÞ given some labeled data ðx; yÞ,
where x are input features, typically high-dimensional, and
y is the output target label.1 The learned function fðxÞ can
be scrutinized further in three aspects corresponding to
fundamental principles of explainable AI [27]:

(i) Explanation accuracy. The first question is, how
good is the result, i.e., how well does fðxÞ fit the
training data. Typical datasets are imperfect, due to
noise, experimental errors, etc., in which case the
fitted function will provide only an approximate
description of the data. The fit is only expected to
get worse as the errors in the data increase [28]. On
the other hand, even if the data is perfect, the fit may
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1In principle, y can also be high dimensional, however, for
simplicity in this paper we shall focus on a single y.
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be suboptimal due to factors related to the training of
the symbolic regression itself. For example, one may
have started with the wrong choice of basis functions,
one may have unnecessarily restricted the functional
complexity, or the training may simply not converge
to the right answer. Our numerical examples con-
sidered in this paper shall illustrate many of those
situations.

(ii) Generalizability (knowledge limits).A system should
only operate under conditions for which it was
designed. In the case of symbolic regression,
extrapolating into the regions away from the training
data in principle could be dangerous and should be
handled with care. At the same time, physics laws are
universal—if we find the correct relationship, it
should be valid over the full allowed domain of
the input variables. As shown below, this principle
could be used to narrow down the list of candidate
analytical expressions.

(iii) Explainability (meaningful). A system must provide
explanations that are understandable to the intended
consumers, and furthermore, these explanations
must correctly reflect the reason for generating the
output and/or the system’s process. A common
criticism of deep learning models is that they are
black boxes which provide little insight into the
fundamental processes that are at work. A symbolic
regression is arguably the most intuitive and mean-
ingful approach from the point of view of a theorist
—theorists are used to working with analytical
formulas and from experience can often find the
physical interpretations of the various terms in an
analytical expression.

In this paper we consider several applications of sym-
bolic regression to problems in collider physics and
specifically particle kinematics. These examples will be
presented in order of increasing difficulty, starting from
simple cases in which the exact theoretical formula is
known. Nevertheless, rederiving those answers with a
symbolic regression will serve as an important illustration
and validation of our procedure.
Symbolic regression is a promising machine learning

method that searches over a large space of functions until
it finds an expression which is both (a) relatively simple,
and (b) a good fit to the training data. Because the
evolutionary algorithm requires diversity in order to
effectively explore the search space, the result of the
symbolic regression is a collection of several high-scoring
models, which need to be scrutinized by the user to
identify an approximation that offers a good trade-off
between accuracy and simplicity. At the same time,
training a symbolic regression is a computationally
expensive process, since the function space to be scanned
is in principle infinite. This is why, as a proof-of-concept,
in this paper we shall limit ourselves to a few simple

examples, which do not require a high-performance
cluster, and can be done on a personal laptop.
To train a symbolic regression, we shall make use of the

PySR software package [29], which models the data set with
a graph neural network before applying symbolic regres-
sion to fit different internal parts of the learned model that
operate on reduced dimension representations [13]. We
shall not attempt any hyperparameter optimization and for
the most part will use the default configuration in the PySR

version 0.10.1 distribution.
The paper is organized as follows. In Sec. II we shall use

parton-level data (in the narrow-width approximation) to
rederive some known analytical results for the Cambridge
MT2 variable. In Sec. III we repeat the same exercise and try
to derive the splitting function F ðE; θÞ for the ISR photon
at an eþe− collider, which gives us the probability to radiate
a photon with a given energy E and a given polar angle θ.
We perform two versions of the exercise. First, in Sec. III A
we sample the F function directly to create a perfect data
sample with no statistical fluctuations. Then, in Sec. III B
we use a sample of Monte Carlo (MC) generated events to
first obtain a binned estimate of F (which is subject to
statistical errors) before applying the symbolic regression.
In Sec. III C we perform a more realistic analysis by adding
detector resolution effects. Section IV is reserved for a
summary and outlook.

II. DERIVING ANALYTIC EXPRESSIONS
FOR ALGORITHMICALLY DEFINED

KINEMATIC VARIABLES: MT2

A standard analysis of particle physics data (such as
events from collisions at the Large Hadron Collider (LHC)
at CERN) involves the study of distributions of kinematic
variables, which are typically defined in terms of the
energies and momenta of the particles observed in the
detector (for recent reviews of the kinematic variables
commonly used in collider phenomenology, see [30–33]).
Many of these variables, e.g., invariant mass, missing
transverse momentum, etc., are defined in terms of simple
analytical expressions and can be readily computed from
the collections of particle 4-momenta in the event.
However, there also exist another class of kinematic
variables, which are defined algorithmically, i.e., through
a well-defined optimization procedure which involves the
minimization (or maximization) of a relevant kinematic
function. In that case, the kinematic variable is a quantity
which can be computed only once the algorithm has
converged, and typically there is no a priori known
analytical expression for it in the general case.
Examples of such variables include many traditional event
shape variables (thrust, sphericity, etc.) [33,34], some
modern substructure variables like N-jettiness [35] and
N-subjettiness [36], and many others. Another large class
of algorithmic variables which have received a lot of
attention in the last 15 years, are the so-called constrained
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mass variables which are computed via constrained
minimization of a kinematic function of the particle
4-momenta [30–33]. The minimization is typically per-
formed over the energy and momentum components of
invisible particles in the event (neutrinos or dark matter
candidates). Examples of constrained mass variables
include the Oxbridge variable MT2 [37,38] and its
4-dimensional generalization M2 [39–41], the variable
M2C [42], etc. In this paper, for concreteness we shall
focus on the well-known MT2 variable [37,38], which is
algorithmically defined and does not have a known ana-
lytical formula in the general case. The advantage ofMT2 is
that there exist formulas for special cases of certain
momentum configurations for the visible final state par-
ticles. As a warm-up, in this section we shall use these
special MT2 cases to validate and illustrate the use of
symbolic regression for the purpose of deriving new
formulas for computing kinematic variables.
A well-motivated class of new physics models which

generically predict a =ET signature, are models with
dark-matter candidates. In such models, the lifetime of
the dark-matter particle is typically protected by an exact
discrete symmetry, which implies that the collider signals
will involve not one, but two decay chains, each terminating
in a dark-matter particle invisible in the detector. The
simplest =ET event topology of this type is illustrated in
Fig. 1, where two identical parent particles P1 and P2 are
produced with additional objects, typically from initial state
radiation (ISR). Each parent particle Pi, (i ¼ 1, 2), decays
to a visible particle system with invariant mass mi and
4-momentum pi ¼ ðEi; p⃗iT ; pizÞ and an invisible particle χi
with 4-momentum qi ¼ ðεi; q⃗iT ; qizÞ. The masses of the
invisible particles are a priori unknown. Here, we shall

assume that the invisible particles χ1 and χ2 are identical and
have a common mass mχ . Momentum conservation in the
transverse plane implies

q⃗1T þ q⃗2T ¼ =⃗pT; ð1Þ

where the missing transverse momentum vector is given by

=⃗pT ¼ −ðp⃗1T þ p⃗2TÞ − p⃗ISR
T : ð2Þ

The transverse momentum vectors p⃗iT , q⃗iT , =⃗pT , and p⃗
ISR
T are

illustrated in Fig. 2.
The two main ingredients in the MT2 calculation are the

transverse masses MTPi
of the two parent particles Pi,

MTPi
ðq⃗iT ; mχÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þm2
χ þ 2ðEiTεiT − p⃗iT · q⃗iTÞ

q
; ð3Þ

where the transverse energies are defined as

EiT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
iT þm2

i

q
; εiT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2iT þm2

χ

q
: ð4Þ

The MT2 is defined as [37,38]

MT2ðm̃Þ≡ min
q⃗1T ;q⃗2T

fmax ½MTP1
ðq⃗1T; m̃Þ;MTP2

ðq⃗2T; m̃Þ�g;

=⃗pT ¼ q⃗1T þ q⃗2T; ð5Þ

where the a priori unknown invisible daughter massmχ has
been replaced with a test mass parameter m̃. This con-
struction guarantees that on an event-by-event basis the
computed value of MT2 does not exceed the mass of the
parent Pi.
In general, the minimization in (5) has to be done

numerically. However, for certain special cases, analytical
solutions have been derived [38,43–47]. In this section, we
shall apply symbolic regression to rederive several of those
analytical solutions. Having such analytical solutions is
motivated by two reasons—first, a purely mathematical
interest in the behavior and properties of theMT2 function,

FIG. 1. The generic =ET event topology applicable to the MT2
variable. The parent particles P1 and P2 are produced in
association with some visible upstream transverse momentum
p⃗ISR
T . The remaining visible final state particles are divided into

two groups (solid black lines), with 4-momenta p1 and p2 and
masses m1 and m2, respectively. The two invisible final state
particles (red dashed lines) have 4-momenta q1 and q2 and are
assumed to have a common mass mχ .

FIG. 2. A generic configuration of the transverse momentum
vectors p⃗iT , q⃗iT , =⃗pT , and p⃗ISR

T entering the definition (5) of MT2.
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and second, the potential use of MT2 as a trigger variable,
which is extensively discussed in Appendix A of Ref. [43].
For this purpose, the computation of MT2 should be fast
enough in order to fit within the trigger bandwidth;
the fastest currently known iterative algorithm for MT2
is capable of ∼200 kHz evaluation rates at machine
precision [48], which is still much slower than computing
an analytical formula.

A. The case of no upstream momentum

The minimization in Eq. (5) may result in one of two
distinct possibilities: the transverse masses of the parents
are equal, MTP1

¼ MTP2
, which is known as the balanced

solution, or the transverse masses of the parents are
unequal, MTP1

≠ MTP2
, known as the unbalanced case.

The analytical expression forMT2 in the unbalanced case is
simply given by Eq. (3) [38], so the balanced case is the
only one we need to worry about. Unfortunately, there is no
known analytical formula for the balancedMT2 solution for
generic momentum configurations like the one in Fig. 2.
However, for the special momentum configuration shown
in Fig. 3, where p⃗ISR

T ¼ 0, the analytical formula for the
balanced MT2 solution is known to be [45,46]

M2
T2ðm̃Þ ¼ m̃2 þ AT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 4m̃2

2AT −m2
1 −m2

2

�
ðA2

T −m2
1m

2
2Þ

s
; ð6Þ

where AT is a convenient shorthand notation introduced
in [47]

AT ¼ E1TE2T þ p⃗1T · p⃗2T: ð7Þ

In order to avoid always taking an extra square root, from
now on for convenience we shall focus on theMT2 variable
squared.

In what follows an important attribute of an analytical
expression will be the so-called complexity C (defined as
the number of leaf nodes in the binary tree representing the
analytical expression) [13,29]. Clearly, functions of higher
complexity in turn will demand more extensive computa-
tional resources, including longer computational times. The
function (6) is of complexity 24, which is already a
formidable challenge. Given (a) our rather modest compu-
tational budget, and (b) our goal of to demonstrate the
method as a proof of principle, here we shall limit ourselves
to four simple, yet nontrivial, special cases of (6) which
have lower complexity, namely

(i) Massless visible and massless invisible final state
particles. Setting m1 ¼ m2 ¼ 0 and m̃ ¼ 0 in (6),
we obtain

M2
T2ðm̃Þ ¼ 2AT ¼ 2ðE1TE2T þ p⃗1T · p⃗2TÞ: ð8Þ

(ii) Massless visible and massive invisible final state
particles. Substituting m1 ¼ m2 ¼ 0 and m̃ ≠ 0 into
(6), we get

M2
T2ðm̃Þ ¼ m̃2 þ AT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATðAT þ 2m̃2Þ

q
: ð9Þ

(iii) Equally massive visible and massless invisible final
state particles. Alternatively, choosing m1 ¼ m2 ¼
m ≠ 0 and m̃ ¼ 0 in (6), we find

M2
T2ðm̃ ¼ 0Þ ¼ AT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
T −m4

q
: ð10Þ

(iv) Equally massive visible and massive invisible final
state particles. Finally, choosing m1 ¼ m2 ¼ m ≠ 0
and m̃ ≠ 0 in (6), we find

M2
T2ðm̃Þ¼ m̃2þAT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAT −m2þ2m̃2ÞðAT þm2Þ

q
:

ð11Þ

We shall now try to reproduce2 each of those expressions
(8)–(11) with the symbolic regression algorithm imple-
mented in PySR [13,29]. For this purpose, we shall generate
a large sample of events, compute the target variable M2

T2
numerically from the defining formula (5), using the Python

code MT2 1.2.0 [48], and then ask the symbolic regression to
“discover” the analytical results (8)–(11).
In the case of no upstream momentum (p⃗ISR

T ¼ 0)
considered in this subsection, there are seven input degrees
of freedom, which naively can be taken to be the two
transverse momentum components of each visible particle,
p⃗1T and p⃗2T , their masses m1 and m2, and the invisible test

FIG. 3. The special momentum configuration with p⃗ISR
T ¼ 0

considered in Sec. II A. The missing transverse momentum =⃗pT
exactly balances the total visible transverse momentum p⃗1T
þp⃗2T .

2Note that all of these results would have been completely
novel prior to 2007, i.e., only 15 years ago.
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mass m̃. In principle, one can use this set of primitive
variables as inputs to the symbolic regression, but the
disadvantage is that the machine will need to learn the
physics principles from scratch. In order to improve and
speed up the performance of the symbolic regression, it is
crucial to use an optimized set of input variables which
reflects the underlying physics principles of the problem.
One possibility is to use dimensional analysis and feed only
groups of variables which have the proper physics dimen-
sions [20]. In our case here, since we are looking for a
formula for a mass-squared quantity,M2

T2, it makes sense if
all of our input variables have mass-dimension 2, otherwise
the complexity of the function will increase, making it more
difficult for the symbolic regression to find it. Furthermore,
we know that the answer must be rotationally invariant,
back-to-back boost invariant [46,47], and symmetric with
respect to permutations among the visible particles
ð1 ↔ 2Þ. These considerations restrict the relevant set of
variables to fewer degrees of freedom, which further
improves the performance of the symbolic regression.
For example, in the case of the function (8) we shall
consider as inputs the set fE1TE2T; p⃗1T · p⃗2T; jp⃗1T þ p⃗2T jg,
in terms of which the answer (8) is only of complexity 5.
Similarly, in the case of the function (9), we shall input the
values of AT and μ̃≡ m̃2, which results in complexity 12.
Then for the function (10) we shall use the values of AT and
μ≡m2 as inputs, and the corresponding complexity is 8.
Finally, for the function (11) we shall feed in fAT; μ; μ̃g and
the complexity is 15.
In order to train the symbolic regression, we need to

create suitable training data. For the exercise in this
subsection, we sample the transverse momenta p⃗1T and

p⃗2T of the two visible particles, which also fixes the
missing transverse momentum vector as =⃗pT ¼ −ðp⃗1T þ
p⃗2TÞ (see Fig. 3). From those momenta we compute the
input features (of mass dimension 2) to the symbolic
regression as explained above. The target variable M2

T2
is then calculated numerically with the MT2 code [48]. This
exercise is performed four different times, depending on the
choice for the mass parameters μ and μ̃ being zero or
nonzero, leading to the four different cases in Eqs. (8)–(11).
In each of these four cases, we train the PySR symbolic

regression algorithm on 10,000 events. We mostly use the
default hyperparameter configuration in the PySR distribu-
tion. Due to the relatively high complexity of our functions,
we increased the number of iterations to 10. We allow for
the simple arithmetic operators addition (þ), subtraction
(−), multiplication (�), division (=), and square root (

ffiffi
·

p
).

The loss function is the mean squared error (MSE). The
typical training time on a single CPU with the default PySR
settings was on the order of a few minutes.
The output from a typical PySR run is a set of functions of

increasing complexity C, together with their MSE and
score. The score is calculated by the fractional drop in the
MSE over the increase in the complexity from the next best
model [13]

Score ¼ −
Δ logðMSEÞ

Δc
: ð12Þ

The results from the four exercises in this subsection are
displayed in Table I. In each case, the symbolic regression
was able to eventually reproduce the correct functional
dependence, once the required complexity was reached.

TABLE I. Results from theMT2 exercise with no ISR considered in Sec. II A. In each case, we show the best fitted functions at several
representative values of the complexity. The correct answers are given by Eqs. (8)–(11), with the substitutions m̃2 → μ̃ and m2 → μ.

Case Complexity Fitted function MSE Score

μ ¼ 0, μ̃ ¼ 0 1 p⃗T1 · p⃗T2 7 × 107 0
3 jp⃗T1 þ p⃗T2j2 2.2 × 106 1.74
5 2ðp⃗T1 · p⃗T2 þ ET1ET2Þ 0 ∞

μ ¼ 0, μ̃ ≠ 0 9 2AT þ 1.8ðμ̃ − 3.91Þ 7.345 × 103 6.73 × 10−3

11 2AT þ μ̃=0.556 − 9.51 7.316 × 103 1.985 × 10−3

13 2AT þ μ̃þ 0.10μ̃A1=4
T

6.377 × 103 6.870 × 10−2

14 μ̃þ AT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
T þ 2μ̃AT

p
0 ∞

μ ≠ 0, μ̃ ¼ 0 5 2.02ðAT − 133.35Þ 6.67 × 104 0.23
7 2.03AT − 0.44μ 3.39 × 104 0.34
9 2AT − μ2=AT 2.06 × 104 0.25
10 AT þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAT − μÞðAT þ μÞp

0 ∞

μ ≠ 0, μ̃ ≠ 0 12 AT þ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAT − μþ μ̃ÞAT

p
3.90 × 104 0.28

13 AT þ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAT − 0.99μÞAT

p
3.34 × 104 0.16

14 AT þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAT − μþ 2.74μ̃ÞðAT þ μÞp
3.488 × 103 2.26

16 μ̃þ AT þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAT − μþ 2μ̃ÞðAT þ μÞp
1.12 × 10−6 10.93
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We note that Eq. (11) turned out to be more challenging than
the others, so for that case we increased the population-size
parameter to 50 and used 40,000 training samples with
batchsize 5,000.
Note that sometimes we obtain an equivalent expression

of slightly higher complexity. For example, in the case of
Eq. (9), the answer has expanded the parentheses under the
square root, which leads to an equivalent expression, but
formally increases the complexity of the function to 14.
Also note that since in this exercise the data is sampled from
the exact function (no noise or errors), the MSE for the right
answer is zero (or very close to it) and the score is infinite
(or very large). The successful replication of the known
special cases (8)–(11) validates our use of symbolic
regression as implemented in PySR and motivates us to
consider more realistic examples in the following sections.

B. The case of no missing transverse momentum

Recently, Ref. [43] pointed out a new special case which
also allows an analytical formula for MT2. Its momentum
configuration is shown in Fig. 4, where the two invisible
momenta are equal and opposite, and as a result =⃗pT ¼ 0.
This cancellation of the invisible momenta is purely

accidental, which is why this case is mostly of academic
interest—there will be very few events (if any) of this type
in the data. Nevertheless, for completeness we shall explore
this situation as well.
For simplicity, we shall focus on the case when the

masses of the visible final state particles are the same, i.e.,
m1 ¼ m2 ≡m. The formula for MT2 is given by [43]

M2
T2ðμ̃Þ ¼ μ̃þ μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ̃ðμþ E1TE2T þ p⃗1T · p⃗2TÞ

p
ð13aÞ

¼ μ̃þ μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ̃ðμþ ATÞ

p
; ð13bÞ

where to facilitate later comparisons to the PySR output,
we have used the mass squared parameters μ̃ ¼ m̃2 and
μ ¼ m2.
Once again, we may consider several special cases,

depending on the masses of the visible and invisible
particles. The case of massless invisible particles (μ̃ ¼ 0)
leads to a trivial function M2

T2 ¼ μ and will not be
considered further. On the other hand, the case of massless
visible particles [μ ¼ 0 in (13)] gives a nontrivial function

M2
T2ðμ̃Þ ¼ μ̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ̃ðE1TE2T þ p⃗1T · p⃗2TÞ

p
: ð14Þ

Keeping in mind that the answer must be symmetric with
respect to interchanging 1 ↔ 2, we can use the set of mass-
dimension 2 variables fE1TE2T; p⃗1T · p⃗2T; μ̃g, in terms of
which the function (14) is of complexity 10.
Proceeding as in Sec. II A, we train a symbolic regres-

sion with the default parameter configuration in PySR on
10,000 events in the =⃗pT ¼ 0 configuration of Fig. 4. We
repeat the exercise twice—once for massless visible par-
ticles (μ ¼ 0) and then again for massive visible particles
(μ ≠ 0). The value of MT2 is always computed with
massive invisible particles (μ̃ ≠ 0). The results are dis-
played in Table II. In the case μ ¼ 0, the exact formula (14)
is reproduced, albeit in a mathematically equivalent form of
slightly higher complexity. In the massive case (μ̃ ≠ 0), our
set of input variables was taken to be fμ; μ̃; ATg, and the

FIG. 4. The special momentum configuration with =⃗pT ¼ 0
considered in Sec. II B. The invisible particles have equal and
opposite momenta in the transverse plane. As a result, p⃗ISR

T exactly
balances the total visible transverse momentum p⃗1T þ p⃗2T .

TABLE II. Results from the MT2 exercise considered in Sec. II B for the momentum configuration with =pT ¼ 0 displayed in Fig. 4.

Case Complexity Fitted function MSE Score

μ ¼ 0, μ̃ ≠ 0 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃ðp⃗T1 · p⃗T2 þ ET1ET2Þ=0.468

p
26.9 2.946

10 μ̃þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃ðp⃗T1 · p⃗T2 þ ET1ET2Þ=0.5

p
2.91 × 10−5 6.87

12 μ̃þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ̃ðp⃗T1 · p⃗T2 þ ET1ET2Þ

p þ 0.005 1.25 × 10−5 4.24 × 10−1

13 μ̃þ ð ffiffiffĩ
μ

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗T1 · p⃗T2 þ ET1ET2

p ffiffiffi
2

p
0 ∞

μ ≠ 0, μ̃ ≠ 0 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃AT=0.22

p
5.33 × 105 9.168 × 10−1

8 ðμþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃AT=0.296

p Þ 1.64 × 105 5.89 × 10−1

10 1.29ðμ̃þ μþ ffiffiffiffiffiffiffiffi
μ̃AT

p Þ 7.08 × 103 1.57
12 μ̃þ μþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ̃ðμþ ATÞ
p

0 ∞
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result was again successful, reproducing the correct func-
tion (13b) at complexity level 12.

C. The collinear momentum configuration

A second special case discussed in Ref. [43] is that of
the collinear momentum configuration in Fig. 5, where the
three transverse vectors =⃗pT , p⃗

ISR
T and p⃗1T þ p⃗2T all lie

along the same line in the transverse plane. Reference [43]
parametrized this case through a proportionality factor Q
defined by

=⃗pT ¼ Qðp⃗1T þ p⃗2TÞ≡Qp⃗T12; ð15Þ

where we have introduced a shorthand notation p⃗T12 for the
total visible transverse momentum p⃗1T þ p⃗2T . Note that Q
is unbounded and can take both positive and negative
values, i.e., −∞ < Q < ∞. For definiteness, in Fig. 5 we
show the case of Q < 0.
Like before, we only consider the case of μ ¼ 0 in which

case the formula is

M2
T2ðμ̃Þ ¼ μ̃ −QAT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATð2μ̃þQ2ATÞ

q
: ð16Þ

For completeness we also consider separately the special
case μ̃ ¼ 0 when the formula simplifies to

M2
T2ðμ̃Þ ¼ −QAT þ jQAT j

¼
(
0; for Q > 0;

2AT jQj ¼ 2AT
j=⃗pT j
jp⃗T12j ; for Q < 0.

ð17Þ

For simplicity we shall only test the nontrivial case given by
the second line in (17).
Training PySR as before, we find the results shown in

Table III. In the case of μ̃ ¼ 0, we choose the variables AT ,

j=⃗pT j, and jp⃗T12j as our input features, while in the case of
μ̃ ≠ 0, our input features were AT ,Q, and μ̃. We see that the
correct answers are reproduced at complexities 7 and 18,
respectively.

III. DERIVING ANALYTIC EXPRESSIONS FOR
NLO KINEMATIC DISTRIBUTIONS

As our second example, we shall apply symbolic
regression to learn the shapes of kinematic distributions
at next-to-leading order (NLO). For simplicity, we shall
consider the simplest possible process at leading order
(LO), namely, the pair-production eþe− → χχ of two
invisible particles at a lepton collider with CM energyffiffiffi
s

p
. Here the χ particles can be neutrinos or stable BSM

dark matter candidates that escape undetected. In order to
observe such events, we have to tag with a photon from
initial state radiation (ISR), i.e., consider the NLO process
eþe− → χχ þ γ [49].3

In general, there is no model-independent exact theo-
retical prediction for the resulting kinematic distribution of
the ISR photon (for model-dependent studies, see [51–54]).
However, if the emitted photon is either soft or collinear
with the incoming electron or positron, soft/collinear
factorization theorems provide an approximate model-
independent relation between the LO and NLO differential
cross sections,

dσðeþe− → χχ þ γÞ
dxd cos θ

≈ F ðx; sin θÞσ̂ðeþe− → χχÞ; ð18Þ

where θ is the angle between the photon direction and the
direction of the incoming electron beam, and the dimen-
sionless quantity

x ¼ 2Eγffiffiffi
s

p ð19Þ

is a measure of the photon energy Eγ, normalized by the
beam energy

ffiffiffi
s

p
=2. Further, σ̂ is the LO χ pair-production

cross section evaluated at the reduced center of mass
energy, ŝ ¼ ð1 − xÞs. Finally, F denotes the splitting
function

F ðx; sin θÞ ¼ α

π

1þ ð1 − xÞ2
x

1

sin2 θ
; ð20Þ

which upon integration over θ, reproduces the familiar
Weizsacker-Williams distribution function. The factor F is
universal; it does not depend on the nature of the (electri-
cally neutral) particles produced in association with the
photon.

FIG. 5. The special balanced momentum configuration =⃗pT ¼
Qðp⃗1T þ p⃗2TÞ considered in Sec. II C. In general, the propor-
tionality factor Q can be positive or negative, while Q ¼ 0

reduces to the case considered in Sec. II A. Note that p⃗ISR
T is also

necessarily collinear with =⃗pT and the total visible transverse
momentum p⃗1T þ p⃗2T .

3The analysis of this section is also applicable to hadron
colliders like the LHC, where the LO process pp → χχ can be
tagged with an ISR jet as pp → χχ þ jet [50].
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Note that the normalization of (18) depends on the fine
structure coupling constant α appearing in (20). Our main
goal in this section will be to apply symbolic regression and
learn the shape of the splitting function (20) from a sample
ofMC events generated either according to the soft/collinear
approximation (18) (see Secs. III B 1 and III C 1) or using
the full matrix element in a specific model (see Secs. III B 2
and III C 2). In Sec. III B (Sec. III C) the exercise will be
performed without (with) detector effects, i.e., smearing the
photon energy according to the calorimeter resolution.

A. Warm-up toy exercise: Learning the splitting
function directly

First we begin with a toy exercise where we create the
training data by sampling the function F directly, i.e., for a
given choice of x and θ, we compute the target variable y
directly from Eq. (20). In other words, our training dataset
will be the set �

x; sin θ;
F ðx; sin θÞ

α=π

�
; ð21Þ

where for simplicity we have factored out the constant α=π.
One can view this exercise as corresponding to the case of
infinite MC statistics in the absence of any detector effects.
We generate training data (21) by sampling x ∈ ½0.1; 1�

and sin θ ∈ ½0.1; 1� on a 100 × 100 grid. Using the
default parameter options in PySR, we obtain the results
shown in Table IV for the target function in this case,
π
αF ðx; sin θÞ. We see that the correct analytical expression,
ð1þ ð1 − xÞ2Þ=ðx sin2 θÞ, is recovered at complexity 11,
as indicated by the sharp drop of the MSE loss (note also

the drastic improvement in the score at complexity 11).
This is pictorially illustrated in Fig. 6, which shows the
evolution of the MSE loss as a function of complexity.

B. Learning from gen-level MC data

Having validated our symbolic regression procedure
with the toy example of the previous subsection, we shall
now modify this exercise, making it more realistic in
several ways:

(i) Instead of considering infinite statistics, we shall
now limit ourselves to a finite event sample, thereby
introducing statistical errors in the target values of
the function which are used for the training of the
symbolic regression.

(ii) In the toy example of Sec. III A, we generated the
training data by simply looking up the value of the
target function at a given x and sin θ from the correct
formula. In reality this will be impossible, and the
target values in the training data will have to be
determined from experimental or MC simulated data
via some sort of density estimation, e.g., through bin
counts. Therefore, from now on we shall always rely
on MC simulated data to obtain the values for the
(unit-normalized) target function from event counts
in suitably chosen bins. This approach is a better
representation of what would be done in an actual
experiment.

TABLE III. Results from the MT2 exercise with the collinear momentum configuration in Sec. II C.

Case Complexity Fitted function MSE Score

μ ¼ 0, μ̃ ¼ 0 3 j=⃗pT jjp⃗T12j 3.13 × 105 1.59
5 j=⃗pT jðjp⃗T12j − 4.04Þ 2.11 × 105 0.20
7 2AT j=⃗pT j=jp⃗T12j 8.65 × 10−8 14.26

μ ¼ 0, μ̃ ≠ 0 14 μ̃ −QAT þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATðμ̃þ ATÞ=0.50

p
52.83 1.08

16 μ̃ −QAT=0.897þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATð2μ̃þ ATÞ

p
44.51 8.57 × 10−2

18 μ̃ −QAT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATð2μ̃þQ2ATÞ

p
3.86 × 10−5 6.98

FIG. 6. The MSE loss as a function of complexity for the warm-
up symbolic regression exercise considered in Sec. III A.

TABLE IV. Results from the warm-up symbolic regression
exercise considered in Sec. III A.

Complexity Fitted function MSE Score

5 ð3.73Þ=sin2 θ 5.56 × 103 0.14
7 1.60=ðx sin2 θÞ 2.08 × 102 1.64
9 ð−1.15þ 1.89

x Þ=sin2 θ 8.63 1.59
11 ðx − 2þ 2

xÞ=sin2 θ 5.71 × 10−11 12.87
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(iii) While in this subsection we shall restrict ourselves to
gen-level data, in Sec. III C we shall account for the
finite detector resolution by smearing the photon
energy.

1. Data generated using a splitting function

For this version of the symbolic regression exercise, we
first generate MC data according to the approximate model-
independent differential cross section (18). We avoid the
soft/collinear singularity at x ¼ 0 and sin θ ¼ 0 by focusing
on the previously considered region x ∈ ½0.1; 1� and sin θ ∈
½0.1; 1� binned on a 100 × 100 grid. We then sample
100 million events and populate the bins, whose final
event counts then serve as the values of the target function
(after unit-normalization) to be used in the training. The
input features are again x and sin θ and we use the default
parameter setup in PySR.
Our results are shown in Table V and Fig. 7 in complete

analogy to the earlier Table IVand Fig. 6. Once again, PySR
finds the correct expression which is now of complexity 13
(the increase by 2 relative to the result in Table IV is due to
the numerical prefactor in front of the linear x term).
However, the MSE error this time does not go down to
machine precision, and instead saturates at around 10−4,
which is due to the statistical uncertainties on the target
function values in our training data. Note that “the knee” in
Fig. 7 is a marker for the true complexity of our target
function.

As mentioned in the introduction, an important principle
of explainable AI is “generalizability,” i.e., extrapolating into
the region away from the training data. In order to
demonstrate this, we repeat the exercise, but this time we
train only on the data within the restricted domain shown
with the dashed rectangle in Fig. 8. We then compare the
predictions from the fitted functions found by PySR to the
true target function, by plotting the difference as a heatmap
in the ðx; sin θÞ plane (see Fig. 6 in [20]). Note that in all four
cases, the fit within the training domain is reasonably good,
but the extrapolation away from it is successful only for the
correct answers at complexities 13 and 15. Furthermore, a
careful inspection of the plots in the lower row reveals that
the extrapolation is better for complexity 13 compared to
complexity 15, even though within the training domain the
performance is similar. This fact favors the complexity 13
answer over its competitor.

2. Data generated with MadGraph

The training data used in the previous Sec. III B 1 was
generated with the approximate factorized formula (18)
which is valid in the soft/collinear limit. The advantage of
doing so is that we knew the answer that we were supposed
to get, which allowed us to judge and validate the
performance of PySR. In this subsection, we shall instead
generate our training data with a full blown event generator,
MadGraph5_aMC@NLO [55], which avoids the soft/collinear
approximation. For concreteness, we shall use one of the
low energy supersymmetry study points from Ref. [49],
namely, the one with neutralino mass of Mχ ¼ 225 GeV.
We choose

ffiffiffi
s

p ¼ 500 GeV at the International Linear
Collider. We assumed electromagnetic calorimeter accep-
tance of sin θ > 0.1, and required pTγ ¼ Eγ sin θ >
7.5 GeV corresponding to the mask calorimeter acceptance
of 1 degree. With that setup, we generated 10 million events
as our training data, and repeated the symbolic regression
exercise with default PySR parameters.
In analogy to the earlier Tables IV and V and Figs. 6

and 7, we present the results in Table VI and Fig. 9, where
for simplicity we focus on the x-dependence only. The
knee in Fig. 9 is observed at complexity 9, which also has
the highest score in Table VI. The form of the function
resembles that of (20), but the coefficients are modified.
The expressions at higher complexities (11, 13, and 15),

FIG. 7. The same as Fig. 6, but for the symbolic regression
exercise performed in Sec. III B 1.

TABLE V. Results for a few representative complexities from the symbolic regression exercise performed in
Sec. III B 1.

Complexity Function fitted MSE Score

9 ð−0.039þ 0.063=xÞ=sin2 θ 8.32 × 10−3 1.59
11 ½−0.030þ 0.063=ðx − 0.012Þ�=sin2 θ 2.72 × 10−3 0.558
13 ð−0.068þ 0.068=xþ 0.034xÞ=sin2 θ 1.53 × 10−4 1.44
15 ½ð−0.067þ 0.067=xþ 0.034xÞ= sin θ − 0.001�=sin θ 1.51 × 10−4 6.80 × 10−3
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while having comparable MSE, might be disfavored using
the method discussed at the end of the previous sub-
section, see Fig. 8.
Since in this example we do not have a simple analytical

answer as a point of reference, the only way to judge
the quality of the answer is to numerically compare to the
distribution in the training data. In Fig. 10, we show the
unit-normalized distribution of the events in the training
data (red) and PySR output (blue). The results from the
current subsection are shown in the left panel, where the
blue line corresponds to the fitted function at complexity 9.
We see that the symbolic regression was capable of
producing a simple analytical expression which describes
the data quite well, the main visible discrepancy is in
the low statistics tail which is not represented well in the

training data, and furthermore, is not relevant for the
experimental analysis.

C. Learning from detector-level MC data

So far in this section we have been ignoring any
instrumental effects, so that the observed distribution
followed the theoretical formula (up to statistical errors).
In this section we shall add the effects of the detector
resolution which would in principle cause the result from
the symbolic regression to differ slightly from the theo-
retical prediction at gen-level.

FIG. 9. The same as Fig. 7, but for the symbolic regression
exercise with MadGraph5_aMC@NLO training data performed in
Sec. III B 2.

TABLE VI. The same as Table V, but for the symbolic
regression exercise with MadGraph5_aMC@NLO training data
performed in Sec. III B 2.

Complexity Fitted function MSE Score

5 17.07 − 98.85x 1.968 0.671
7 17.08 − 98.85xþ x2 1.968 1.6 × 10−5

9 −11.72þ 2.42−0.057=x
x

0.115 1.419

11 x − 11.97þ 2.44−0.057=x
x

0.113 0.007

13 2x − 12.23þ 2.46−0.058=x
x

0.112 0.007

15 3x − 12.48þ 2.48þ0.058=x
x

0.111 0.006

FIG. 8. Heatmaps in the ðx; sin θÞ plane of the differences between the fit functions found by the symbolic regression and the true
target function. The rectangular box marked with a dashed line delineates the domain of values on which the symbolic regression was
trained.
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1. Data generated using a splitting function

Here we repeat the exercise from Sec. III B 1, but
account for the detector resolution via Gaussian smearing
of the energy (but not direction) of the photon with some
resolution parameter σ. By varying the value of σ, we shall
investigate the impact of the detector on our results, which
are collected in Table VII for four different values of σ:
0.01, 0.03, 0.05, and 0.10. In all cases, we observe the
expected sin−2 θ dependence. We note that when the
detector effects are relatively mild, σ ≲ 5%, the x depend-
ence is well recovered as well. This fact—that symbolic
regression appears to be robust against noise—has been
observed in other independent studies as well [56].

In analogy to Fig. 7, in Fig. 11 we show the evolution of
the MSE loss with the complexity of the fitted function, for
several different values of σ: 0.01, 0.05, 0.10, and 0.20. The
“knee” structure is again evident, and the location of the
knee depends slightly on the amount of applied smearing.
Since the exercises in this subsection include both errors

due to the finite statistics and due to the detector resolution,
it is instructive to look at the interplay of the two types of
errors as a function of the number of events Nevents in the
training data, see Fig. 12. When the detector effects are
absent (σ ¼ 0, black line), the average loss improves as
Nevents increases, since statistical errors scale as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nevents

p
.

On the other hand, the detector effects are not influenced by

FIG. 10. Unit-normalized distribution of the events in the training data (red) and PySR output (blue). The results in the left panel are
from Sec. III B 2 and do not include detector effects, while the results in the right panel are from Sec. III C 2 and account for the detector
resolution.

TABLE VII. Results from the symbolic regression exercise performed in Sec. III C 1 for several values of the
detector resolution parameter σ: 0.01, 0.03, 0.05, and 0.10.

Complexity Fitted function MSE Score

σ ¼ 0.01
9 ð−0.039þ 0.064=xÞ=sin2 θ 8.41 × 10−3 1.58
11 0.056=ðx sin2 θðxþ 0.82ÞÞ 5.91 × 10−4 1.33
13 ð−0.068þ 0.068=xþ 0.034xÞ=sin2 θ 2.46 × 10−4 0.438
17 ½ð−0.067þ 0.067=xþ 0.034xþ sin θÞ=sin θ − 1.00�=sin θ 2.44 × 10−4 2.11 × 10−3

σ ¼ 0.03
9 ð−0.039þ 0.064=xÞ=sin2 θ 8.71 × 10−3 1.57
11 0.056=ðx sin2 θðxþ 0.81ÞÞ 7.95 × 10−4 1.20
13 ð−0.068þ 0.068=xþ 0.034xÞ=sin2 θ 5.33 × 10−4 0.20
15 ð−0.068þ 0.068=xþ 0.034xÞ=sin2 θ − 1.24 × 10−3 5.32 × 10−4 1.06 × 10−3

σ ¼ 0.05
9 ð−0.039þ 0.064=xÞ=sin2 θ 1.16 × 10−2 1.44
11 0.056=ðx sin2 θðxþ 0.81ÞÞ 3.89 × 10−3 5.46 × 10−1

13 ð−0.067þ 0.068=xþ 0.033xÞ=sin2 θ 3.70 × 10−3 2.51 × 10−2

15 ½ð−0.067þ 0.068=xþ 0.033xÞ=sin θ − 1.10 × 10−3�=sin θ 3.70 × 10−3 2.78 × 10−4

σ ¼ 0.1
9 ð−0.039þ 0.064=xÞ=sin2 θ 3.90 × 10−2 9.00 × 10−1

11 0.056=ðx sin2 θðxþ 0.82ÞÞ 3.30 × 10−2 8.28 × 10−2

13 ð−0.064þ 0.067=xþ 0.029xÞ=sin2 θ 3.27 × 10−2 3.60 × 10−3

15 0.078=½sin2 θð1.62x2 þ xþ 0.014Þ� 3.17 × 10−2 1.75 × 10−2
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Nevents, and at some point will start to dominate the error
budget. As a result, as illustrated in Fig. 12, the MSE loss
will start to deviate from the benchmark case of σ ¼ 0. The
exact point where this deviation occurs, depends on the size
of the detector smearing parameter—the larger the smear-
ing, the earlier the loss saturates.

2. Data generated with MadGraph

Finally, we repeat the exercise from Sec. III B 2 with the
addition of calorimeter detector resolution typical of the
ILC, δE=E ¼ 0.17=

ffiffiffiffi
E

p
[57–60]. The results are displayed

in Table VIII and Fig. 13, which are the analogs of Table VI
and Fig. 9 from Sec. III B 2. The results are as expected,

based on what we have observed in the previous sub-
sections. The corresponding predicted differential distribu-
tion is shown in the right panel of Fig. 10.

IV. CONCLUSIONS AND OUTLOOK

This study adds to the already wide range of applica-
tions of modern machine learning to event generation and
simulation-based inference in collider phenomenology
[61]. We demonstrated the use of symbolic regression
for two common problems in high-energy particle physics.
First, in the case of kinematic or event variables which are
defined through some kind of an algorithm, the symbolic
regression produces analytical formulas whose accuracy is
limited only by the desired functional complexity.
In Sec. II we showed how to do this in the example of
the stransverse mass variable MT2—we were able to
rederive all known analytical formulas for MT2 in certain
special transverse momentum configurations. Second, the

FIG. 11. The same as Fig. 7, but for the exercise performed in Sec. III C 1 with the added detector smearing. Results are shown for
several values of the detector resolution parameter σ as labeled in the plots.

FIG. 12. Loss as a function of the number of events in the
training data, for several values of the detector resolution
parameter σ. In each case, we chose to show the PySR result
whose complexity is at the “knee” of the corresponding plot
from Fig. 11.

TABLE VIII. Results from the symbolic regression exercise
performed in Sec. III C 2 including detector effects in the training
data.

Complexity Fitted function MSE Score

5 0.724=ðxþ 0.015Þ 6.82 0.051
7 18.07þ 98.855446x 1.97 0.623
9 −11.72þ 2.42−0.057=x

x
0.115 1.419

11 x − 11.97þ 2.44−0.057=x
x

0.114 0.007

13 2x − 12.23þ 2.46−0.058=x
x

0.112 0.007

15 −x − 9.90þ 2.04þð−0.03−0.0004=xÞ=x
x

0.091 0.102
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symbolic regression can also produce analytical formulas
for certain kinematic distributions of interest, for which
theoretical results are unknown or difficult to obtain. In
fact, parametrizing the observed distributions in the data
with analytical formulas is a standard task in many
analyses which attempt to measure the background from
data. In Sec. III we demonstrated that this fit can be done
either at the gen-level (Sec. III B) or at the detector level
(Sec. III C). Note that this last exercise is a nontrivial
result, which involves the convolution of the parton-level

analytical result with the transfer function describing the
detector. To the best of our knowledge, such analytical
expressions are rarely discussed in the literature.
The work presented here can be extended in several

directions. For example, the MT2 concept can be readily
applied to more complex event topologies, where one has
several choices of designating parent and daughter par-
ticles, leading to a menagerie of different “subsystem”MT2

variables [62,63]. It would be interesting to see whether the
symbolic regression can “derive” the correct answer for
MT2 in the general case, for which no analytical formula is
known. One could also explore other modern techniques
for symbolic regression that are adaptable to high-dimen-
sional data [26,64–66].
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Lample, and François Charton, End-to-end symbolic re-
gression with transformers, arXiv:2204.10532.

[66] Jiachen Li, Ye Yuan, and Hong-Bin Shen, Symbolic
expression transformer: A computer vision approach for
symbolic regression, arXiv:2205.11798.

IS THE MACHINE SMARTER THAN THE THEORIST: … PHYS. REV. D 107, 055018 (2023)

055018-15

https://doi.org/10.1007/JHEP03(2015)100
https://doi.org/10.1007/JHEP03(2015)100
https://doi.org/10.1103/PhysRevD.70.077701
https://doi.org/10.1103/PhysRevLett.96.151802
https://doi.org/10.1016/j.physletb.2004.03.075
https://doi.org/10.1140/epjc/s10052-014-2909-0
https://doi.org/10.1140/epjc/s10052-014-2909-0
https://doi.org/10.5506/APhysPolBSupp.15.2-A10
https://doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1007/JHEP06(2011)128
https://arXiv.org/abs/1912.04871
https://doi.org/10.1016/j.nima.2009.07.026
https://doi.org/10.1016/j.nima.2009.07.026
https://arXiv.org/abs/1903.01629
https://doi.org/10.1103/PhysRevD.101.075053
https://doi.org/10.1103/PhysRevD.101.075053
https://arXiv.org/abs/2003.01116
https://arXiv.org/abs/2003.01116
https://arXiv.org/abs/2203.07460
https://doi.org/10.1103/PhysRevD.71.035008
https://doi.org/10.1103/PhysRevD.71.035008
https://doi.org/10.1088/1126-6708/2009/03/143
https://arXiv.org/abs/2201.04600
https://arXiv.org/abs/2204.10532
https://arXiv.org/abs/2205.11798

