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The rate of energy exchange of spatially localized and gravitationally bound axion configurations with
electromagnetic radiation is investigated in the presence of strong static magnetic fields. A fully analytic
treatment is achieved based on variationally optimized separable spatiotemporal clump profiles. For dilute
axion stars the equation of the energy variation is reinterpreted as a rate equation of the axion number. Its
solutions hints at an asymptotic ∼t1=5 increase of the clump size.
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I. INTRODUCTION

A boson star is expected to form from free massive scalar
particles merely due to their gravitational interaction. Such
objects were first studied numerically by Kaup [1] and
Ruffini and Bonnazola [2]. In the context of axions, a
leading dark matter candidate, this phenomenon was first
investigated by Tkachev [3]. The characteristics of axionic
scalar stars have been extensively explored in the liter-
ature [4–8]. Numerical studies by Chavanis and Delfini [9]
including quartic self-interactions of axions pointed out
the existence of a stability edge in the mass-radius relation
for this so-called dilute branch. Semianalytical solutions in
the gravity-dominated branch were constructed by Eby
et al. [10]. Another branch where higher n-point axion
interactions can stabilize even high-mass localized con-
figurations was discovered by Braaten et al. [11] and called
dense axion stars.
In the equations of gravitationally bound axion stars the

energy is dominated by the rest mass of axions and one can
apply the nonrelativistic approximation. Then, the axion
number content of a field configuration is an approximately
conserved quantity. When one includes via higher-order
couplings the generation of more energetic (relativistic)
particles, some particles get the chance to escape from the
Bose-Einstein condensate of the star. This effect can be
accounted for by introducing a non-Hermitian term into the
axion potential [12] which arises from scattering processes
of the full theory involving the high-momentum tail of the
axion field [13,14]. In the case of the dilute branch the main
mechanism leading to the depletion of the axionic medium

is the two-photon decay of axions [15]. A detailed
discussion of the lifetime of axion stars can be found
in Ref. [16].
Strong external magnetic fields are present around

neutron stars (104–1011 T), in particular around magnet-
ars (109–1011 T). Electromagnetic radiation from axion
stars embedded in strong magnetic fields was studied in
Refs. [17,18]. A generic dimensionless combination of
some axion data and the magnetic field strength was
suggested to determine the order of magnitude of
the electromagnetic decay time in Ref. [19]. A computa-
tional algorithm to include the radiation backreac-
tion effect quantitatively in the evolution of dense
branch stars was put forward and implemented very
recently [20].
The aim of the present short paper is to outline a fully

analytic computation of the time evolution of the particle
number of a gravitationally bound (dilute) axion clump in a
strong magnetic field. The treatment relies on the dis-
cussion of the energy-momentum transfer between axions
and the electromagnetic field, analyzed in our previous
publication [21]. The rate equation for the change of the
energy in the axion sector will be analyzed, taking into
account fully the backreaction of the emerging electro-
magnetic radiation (Sec. II). In the course of the calcu-
lation a spherically symmetric axion configuration is
assumed. Its separable spatiotemporal profile function is
given in terms of variationally optimized trial functions.
Their variational treatment is reviewed in Sec. III. Based
on such profile functions, a rather compact analytic
formula is given in Sec. IV for the right-hand side of
the energy rate equation. It is translated into the rate
equation of the axion number in Sec. V, which is solved
explicitly for two trial spatial profiles used already in
the literature. The asymptotic solution of this equation
leads to conjecturing powerlike time dependence for the
particle depletion of axion stars due to electromagnetic
radiation.
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II. ELECTROMAGNETIC ENERGY BALANCE
OF AN AXION CLUMP

Temporal and spatial variations of an axion field aðx; tÞ
in the presence of a static magnetic background field B0ðxÞ
represent effectively electromagnetic source densities, the
strength of which is determined by the axion–two-photon
coupling gaγγ [15,22]:

jaðx; tÞ ¼ −gaγγ _aðx; tÞB0ðxÞ;
ρaðx; tÞ ¼ gaγγB0ðxÞ ·∇aðx; tÞ: ð1Þ

This means that in Lorentz gauge one finds the following
retarded scalar and vector potentials generated by the
axions, using natural units (ℏ ¼ c ¼ 1):

Aðx; tÞ ¼
Z

d3x0
jaðx0; t − jx − x0jÞ

jx − x0j ;

A0ðx; tÞ ¼
Z

d3x0
ρaðx0; t − jx − x0jÞ

jx − x0j : ð2Þ

It is worthwhile to emphasize that jB0ðxÞj ≫ j∇ ×Aðx; tÞj,
by assumption, throughout the investigation below. The
rate of the energy exchange of any axion configuration with
electromagnetic fields formally coincides with the expres-
sion of the work power of electrically charged currents, as
was emphasized recently by various authors [20,21] (see
also the Appendix of Ref. [23]):

dEa

dt
¼
Z

d3xjaðx;tÞ ·Eðx;tÞ

¼
Z

d3xgaγγ _aðx;tÞB0ðxÞ ·ð _Aðx;tÞþ∇xA0ðx;tÞÞ: ð3Þ

One might also note that the rate of momentum change of
the axion clump due to the presence of a topologically
nontrivial electromagnetic field density is given as

dPa

dt
¼

Z
d3xgaγγ∇aðx; tÞ

× ½B0ðxÞ · ð− _Aðx; tÞ −∇xA0ðx; tÞÞ�: ð4Þ

One substitutes the expressions (2) of the potentials into
Eq. (3) and performs in the second term (involving the
scalar potential) a partial integration. Then one can exploit
the continuity equation ∂tρa ¼ −∇ja, which is also valid
for the axionic “charge” and “current” densities to arrive at

dEa

dt
¼

Z
d3x

Z
d3x0

1

jx − x0j

×

�
jaðx; tÞ ·

∂

∂t
jaðx0; t − jx − x0jÞ

þ ρaðx0; t − jx − x0jÞ ∂
∂t
ρaðx; tÞ

�
: ð5Þ

The clump oscillates with some average frequency ωa. The
retardation dependence of ρa, ja can be expanded into
Taylor series in the near zone, where ωajx − yj ≪ 1.
Separating the first term of the expansions from the rest,
one finds the time derivative of an “electromagnetic”
contribution to the energy of the axion configuration,
ΔEa. It has the obvious interpretation of being the
electrostatic and magnetostatic energy of the near zone
promptly following the oscillation of the corresponding
source densities. The rest (Wrad−loss) can be associated with
the energy lost by the clump via electromagnetic radiation,

dEa

dt
¼ −

dΔEa

dt
−Wrad−loss

ΔEa ¼
1

2
g2aγγ

Z
d3x

Z
d3x0

B0iðxÞB0jðx0Þ
jx − x0j

× ½δij _aðx; tÞ _aðx0; tÞ þ∇xiaðx; tÞ∇x0j
aðx0; tÞ�: ð6Þ

One might attempt to represent the energy loss with just
the next term of the Taylor expansion. Also one notes
(exploiting the continuity equation) that there is no con-
tribution from the second (“electric”) term proportional to
ðR d3x_ρðx; tÞÞ2. The “magnetic” piece suggests an analogy
with the so-called “three-dot” force exerted by the emitted
electromagnetic radiation on the motion of its pointlike
electric source:

Wrad−loss

¼−g2aγγ
Z

d3x _aðx; tÞB0ðxÞ ·
Z

d3x0 ⃛aðx0; tÞB0ðx0Þ: ð7Þ

One can average this expression over the average period
T ¼ 2π=ωa and obtain with partial time integration the
compact formula

Wrad−loss
T ¼ g2aγγ

�Z
d3xäðx; tÞB0ðxÞ

�2T

: ð8Þ

In the next section we summarize some well-established
facts about axion stars of spherically symmetric shape
while also assuming separable time and space dependences
of their profile. A simple variational approximation to its
binding energy allows one to determine its size and
establish a functional relation with the number of its
constituent axions. It becomes clear that for gravitationally
bound axion clumps one cannot justify the above Taylor
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expansion; rather, one has to find an exact treatment for
retardation effects.

III. PROFILE OF AN AXION STAR

Here we outline the construction steps and the main
features characterizing the spatial profile of scalar stars
emerging from an equilibrium between gravitational attrac-
tion and kinetic pressure. For this a reduction to a non-
relativistic approximation of the full theory is performed.
We mostly follow the treatments of Refs. [14,24].
The Hamiltonian governing the dynamics of the axion

condensate in its own gravitational field reads

H ¼
Z

d3x

�
1

2
ð _aðx; tÞÞ2 þ 1

2
ð∇aðx; tÞÞ2 þ 1

2
m2

aaðx; tÞ2
�

þ Ugrav: ð9Þ

The gravitational energy is determined by the mass-density
distribution ρmassðx; tÞ of axions:

Ugrav ¼ −
GN

2

Z
d3x

Z
d3x0

ρmassðx; tÞρmassðx0; tÞ
jx − x0j : ð10Þ

In the condensate all particles have nearly the rest-mass
energyma, and therefore the field aðx; tÞ is parametrized as
the product of the corresponding harmonic oscillation with
a slowly varying amplitude,

aðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ma

p ðe−imatψðx; tÞ þ eimatψ�ðx; tÞÞ;

ψðx; tÞ ¼ e−iμgtψ̃ðxÞ: ð11Þ

The time dependence of the slowly varying term is
approximated by a small frequency shift μg ≪ ma. When
substituting this ansatz into the canonical equations one
keeps only the first time derivative of ψðx; tÞ in view of its
assumed slow variation. This results in the following
equation:

i _ψ ¼ −
1

2ma
△ψ þ δUgrav

δðψ�ψÞψ : ð12Þ

As a consequence one can define a density ψ�ψ, which is
conserved in the present approximation. Its integral is
identified with the axion number N of the clump,

d
dt

ðψ�ψÞ ¼ 0;→ Na ¼
Z

d3xjψ̃ðxÞj2 ¼ const: ð13Þ

The corresponding mass density ρmass ¼ maψ̃
�ψ̃ can be

used in the expression of the gravitational energy:

Ugrav¼−
GN

2

Z
d3x

Z
d3x0

ðmajψ̃ðxÞj2Þðmajψ̃ðx0Þj2Þ
jx−x0j : ð14Þ

Substituting Eq. (11) into the equation of ψ one arrives at
an eigenvalue equation for μg,

μgψ̃ðxÞ ¼ −
1

2ma
△ψ̃ðxÞ þ ψ̃ðxÞGN

Z
d3x0

m2
ajψ̃ðx0Þj2
jx − x0j :

ð15Þ

The corresponding nonrelativistic Hamilton operator is
readily identified and its minimum in the space of ψ̃
functions determines the binding energy of the clump:

Hnon−rel ¼
Z

d3x
1

2ma
j∇ψ̃ j2 þ Ugrav;

Eground ¼ min½Hnon−relðψ̃Þ�: ð16Þ

The ground-state energy and the gravitational energy of the
ground-state profile determine the frequency shift due to
the binding:

Nμg¼
Z

d3x
1

2ma
j∇ψ̃ j2þ2Ugrav¼EgroundþUgrav: ð17Þ

In the present paper wewill be satisfied with a variational
estimate after choosing a spherically symmetric ansatz
for ψ̃ :

ψ̃ðxÞ ¼ wFðξÞ; ξ ¼ jxj
R

; w2 ¼ N
C2R3

: ð18Þ

Here we have introduced the parameter R to be determined
variationally, which characterizes the spatial extension of
the clump. The quantity w is determined by the normali-
zation condition (13). The energy function in units of ma
depends on the dimensionless parameters (maR;N) and
also on the combination GNm2

a of the physical constants:

EðR;NÞ ¼ ma

�
D2

2C2

1

ðmaRÞ2
−

B4

2C2
2

1

maR
GNm2

aN

�
; ð19Þ

where specific integrals over the profile function FðξÞ are
introduced,

C2 ¼ 4π

Z
∞

0

dξξ2F2ðξÞ; D2 ¼ 4π

Z
∞

0

dξξ2F02ðξÞ;

B4 ¼ 32π2
Z

∞

0

dξξF2ðξÞ
Z

ξ

0

dηη2F0ðηÞ. ð20Þ

One minimizes EðR;NÞ at a fixed value of N with respect
to maR which yields

ELECTROMAGNETIC ENERGY LOSS OF AXION STARS PHYS. REV. D 107, 055017 (2023)

055017-3



X≡ ðmaRÞopt ¼
2C2D2

B4

1

GNm2
aN

;

Ea ¼NmaþEground; Nμg¼
3

2
Eground;

Eground¼−ma
B2
4

8C3
2D2

ðGNm2
aNÞ2≡EgðXðNGnm2

aÞÞ: ð21Þ

The order of magnitude of the coefficient built from integrals
over the clump profile is ≤ Oð102Þ. Choosing for the axion
massma ¼ 10−14 GeV, one finds GNm2

a ≈ 5 × 10−66. Guth
et al. [24] argued that during the formation of axion stars
(near the temperature of theQCD transition)N ≈ 1061. Using
these values one finds thatX ≫ 1 and μg ≪ ma. Retardation
effects cannot be treated perturbatively for this solution.
The full energy of the axionic clump is the sum of the

rest masses of the free axions and the binding energy. Both
X and Eg depend parametrically on GNm2

aN ∼ 5 × 10−66N.
Since here one can neglect the frequency shift μg relative

to ma, we use below the following trial function with
separable time and spatial dependencies, and with real
function FðξÞ:

adilute ¼
ffiffiffiffiffiffi
2

ma

s
cosðmatÞwFðξÞ: ð22Þ

IV. ELECTROMAGNETIC ENERGY LOSS
INCLUDING RETARDATION EFFECTS

We return to the evaluation of the rate of energy change
of the axion clump (5) after substituting Eq. (22) into
Eq. (1). In the “magnetic” and “electric” parts of the
integrand the following expressions multiply the squared
photon-axion coupling:

_aðx; tÞäðx0; t− jx−x0jÞ
¼ 2m2

a sinðmatÞcosðmaðt− jx−x0jÞÞw2FðξxÞFðξx0 Þ;
ðB0 ·∇x _aðx; tÞÞðB0 ·∇x0aðx0; t− jx−x0jÞÞ

¼ 2B2
0

�
nB ·

x̂
R

��
nB ·

x̂0

R

�
×sinðmatÞcosðmaðt− jx−x0jÞÞw2F0ðξxÞF0ðξx0 Þ: ð23Þ

In the third line the gradient operator applies only to
the first arguments. The time average over the period
T ¼ 2π=ma is easily performed with the help of simple
trigonometric identities leading to

dEa

dt

T

¼ −
Z

d3x
Z

d3x0
g2aγγB2

0w
2

jx − x0j sinðmajx − x0jÞ

×

�
m2

aFðξxÞFðξx0 Þ þ
�
nB ·

x̂
R

��
nB ·

x̂0

R

�

× F0ðξxÞF0ðξx0 Þ
�
: ð24Þ

One rediscovers the “three-dot” result for the energy loss
(8) when one keeps only the first term of the Taylor series
of sinðmajx − x0jÞ. The near-zone electromagnetic contri-
bution to the energy of the axion clump (6) oscillates
periodically, and therefore its average vanishes. Now, one
proceeds with the evaluation of the angular parts of the
space integrations by exploiting the following factorization
of the jx − x0j dependence of the integrand:

eimajx−x0j

4πjx − x0j

¼
�
ima

X∞
l¼0

jlðmar<Þhð1Þl ðmar>Þ
Xl

m¼−l
Y�
lmðx̂ÞYlmðx̂0Þ

�
;

ð25Þ

where r< ¼minðjxj; jxj0Þ; r> ¼maxðjxj; jxj0Þ. In the actual
expression of the integrand of the time-averaged energy
loss one has to take the imaginary part of both sides. The
angular integrations of the “magnetic” term only receive
contributions from the l ¼ 0 spherical harmonics, while in
the “electric” term only Y10 contributes when the z axis is
chosen along n̂B. The relevant imaginary parts turn out to
be invariant under the exchange of r< and r>:

Im½ij0ðmar<Þhð1Þ0 ðmar>Þ� ¼
sinðmar<Þ
mar<

·
sinðmar>Þ
mar>

; ð26Þ

Im½ij1ðmar<Þhð1Þ1 ðmar>Þ� ¼
�
sinðmar<Þ
ðmar<Þ2

−
cosðmar<Þ

mar<

�

×

�
sinðmar>Þ
ðmar>Þ2

−
cosðmar>Þ

mar>

�
:

ð27Þ

The r< ↔ r> invariance has the consequence that the radial
ξx and ξx0 integrations are independent and lead to the same
result. By this observation one finds a rather compact
expression for the averaged electromagnetic energy loss of
an axion star:

dEa

dt

T

¼ −ma ·maN ·
g2aγγB2

0

m2
a

X3

C2

�
I2mag þ

1

3X2
I2el

�

≡ −ma ·maN ·
g2aγγB2

0

m2
a

F ðXðGNm2
aNÞÞ;

Imag ¼
Z

d3ξ
sinðXξÞ
Xξ

FðξÞ;

Iel ¼
Z

d3ξ

�
sinðXξÞ
ðXξÞ2 −

cosðXξÞ
Xξ

�
F0ðξÞ: ð28Þ

The first three terms on the right-hand side follow the
parametric form denoted as τγ in Ref. [19]. The temporal
dependence of the decay however is essentially influenced
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by the X-dependent (in the final count N-dependent) factor
F ðXÞ. This effect was observed in Refs. [17,18]. In the case
of clumps stabilized by the self-interaction of axions
Refs. [17,20] numerically found F ≈ 2. These investiga-
tions all arrived at the conclusion that axionic clumps decay
exponentially. The only difference is in the scaled value of
the decay constant maτγ . With the help of specific choices
of FðξÞ we shall evaluate this factor and establish its
limiting behavior in the extreme dilute (X ≫ 1) case,
relevant to the above chosen values of the physically free
parameters. It will be shown that this leads to a qualitatively
different conclusion concerning the temporal dependence
of the number of particles in an axion star, NðtÞ.
It is notable that a completely analogous analysis of the

rate of momentum transfer given in Eq. (4) arising from
the magnetically induced electromagnetic radiation to the
spherically symmetric axion clump leads to the conclusion
that the resulting force is zero.

V. TIME EVOLUTION OF AXION PARTICLE
NUMBER FOR GENERIC CLUMP PROFILES

Several specific trial profile functions were used for
estimating the energy of axionic clumps. Guth et al. [24]
chose a simple exponential taking the example of theground-
state wave function of the hydrogen atom, although it
does not satisfy the prescribed boundary condition
limr→0 ∂rψ̃ðjxjÞ ¼ 0. In Ref. [14] a Gaussian was used for
the variational estimation. For our analytic calculation an
alternative cosine profile is more convenient, which was
shown [14] to reproduce the Gaussian very well in the range
jxj < R. We have computed the profile integrals (20) and the
factor F [Eq. (28)] with the following trial profiles:

Fexp ¼ e−ξ; Xexp ≈ 20ðGNm2
aNÞ−1;

Eexp
g ≈ −0.31ðGNm2

aNÞ2ma; ð29Þ

and

Fcos ¼ cos2
�
πξ

2

�
; ξ < 1; Xcos ≈ 11.2ðGNm2

aNÞ−1;

Ecos
g ≈−0.25ðGNm2

aNÞ2ma: ð30Þ

The elementary integrals which determine Imag; Iel in
Eq. (28) lead to apparently quite different expressions for
the average energy loss per particle mass:

1

maN
dEexp

a

dt

T

¼ −ma

�
gaγγB0

ma

�
2 256π

3

X3

ð1þ X2Þ4 ; ð31Þ

1

maN
dEcos

a

dt

T

¼ −ma

�
gaγγB0

ma

�
2 4π2

C2

×

	
X

�
cosX
X

π2

X2 − π2
þ sinX

�
1

X2
−

X2 þ π2

ðX2 − π2Þ2
��

2

þ π4

3XðX2 − π2Þ2
�
cosX −

sinX
X

3X2 − π2

X2 − π2

�
2


: ð32Þ

However, the asymptotic behaviors for both small and very
large values of X turn out to be the same:

F ðXðGNm2
aNÞÞ∼X3; X≪ 1; ∼X−5; X≫ 1: ð33Þ

The coinciding asymptotic behaviors prompt the conjecture
that they reflect the nature of the exact solution.
This conjecture can actually be proven for profile

functions which are nonzero in the interval ξ ∈ ð0;ΛÞ
and fulfill at the upper end the boundary conditions

FðΛÞ ¼ F0ðΛÞ ¼ 0: ð34Þ

The asymptotic behavior can be constructed in the same steps
for both Imagn and Iel. Here we give some details for the first
one. The limiting behavior whenX → 0 is easily established
by performing the limit directly in the integrand:

lim
X→0

Imagn ¼
Z

d3ξFðξÞ: ð35Þ

For the large-X asymptotics it is convenient to introduce the
integration variable u ¼ Xξ and perform three (!) partial u
integrations, taking into account the boundary conditions
(34) in the intermediate steps. This results in

lim
X→∞

Imagn

¼ −
8π

X4
F0ð0Þ þ 4π

X5
ðΛX cosðΛXÞ þ 3 sinðΛXÞÞF00ðΛÞ

þ 4π

X6

Z
ΛX

0

duð3 sin u − u cos uÞF000ðu=XÞ: ð36Þ

One promptly recognizes that the contribution from the last
integral is at most OðX−5Þ, and therefore the leading
asymptotics reads as

lim
X→∞

Imagn ¼ −
8π

X4
F0ð0Þ þ 4π

X4
Λ cosðΛXÞF00ðΛÞ ð37Þ

In the case of the exponential ansatz one has
Fexp;0ð0Þ ¼ −1; Fexp;00ðΛÞ ¼ 0, for the cosine ansatz
Fcos;0ð0Þ ¼ 0; Fcos;00ðΛÞ ¼ π2=2 and the above formula
reproduces the asymptotics directly obtained from
Eqs. (31) and (32).
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The same steps lead for Iel=X2 to the same ∼X−4

behavior in the above class of axion clump profiles. The
class is generic enough (although not the most general) to
support the above conjecture for the asymptotics of the
exact solution. Now we turn to the rate equation of the
axion number.
In regions where the gravitational binding energy is

small, one can use the approximate relation Ea ≈ Nma
which allows to reinterpret the rate equation of the energy
as an equation for the rate of change of the axion number of
the clump:

1

ma

1

maN
dEa

dt

T

≈
1

N
dN

dðmatÞ

¼ −
g2aγγB2

0

m2
a

F ðXðGNm2
aNÞÞ: ð38Þ

This can certainly be applied for X ≫ 1 and eventually one
finds a slow algebraic blowing up of the clump which is
accompanied (in view of the inverse relation of X andN) by

the diminishing of the number of axions due to electro-
magnetic radiation:

XðtÞ ∼ ðGNg2aγγB2
0matÞ1=5; X ≫ 1: ð39Þ

VI. SUMMARY

Starting from the equation governing the energy balance
of the axion sector of axion electrodynamics a dynamical
rate equation has been derived for the particle number
content of a gravitationally bound axion clump. Our fully
analytic treatment was based on assuming a separable
single-frequency, spherically symmetric ansatz for the
spatiotemporal profile of the axion star. Variational treat-
ments of two rather different looking explicit trial spatial
profile functions led to the same behavior of the relative
axion number rate in both the small-size and large-size
regimes. This experience led us to conjecture a universal
asymptotic form of the rate equation for large axion
numbers. In this region the characteristic size parameter
of the object slowly increases as ∼t1=5.
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