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The energy-momentum tensor (EMT) of the ’t Hooft-Polyakov monopole and the Julia-Zee dyon are
studied. This tensor contains important information about the pressure and the shear force distributions
which define mechanical properties of systems. Obtaining the violation of the local stability criterion for
the magnetic monopole and dyon we decompose the EMTs into the long- and short-range parts. This
decomposition depends on the Abelian field strength tensor which cannot be uniquely defined. We suggest
to use the modified ’t Hooft definition for the tensor. Finally, the long- and short-range parts of the EMTs
are computed and new equilibrium equations are obtained. Numerical values for masses, D-terms, and
various mean square radii for the monopole and the dyon are also computed.
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I. INTRODUCTION

A magnetic monopole is a hypothetical particle carry-
ing a magnetic charge like an electron carrying an electric
charge. Maxwell formulated his elegant equations in 1865
without a monopole because there was no evidence for it.
Despite the fact that the monopole is still experimentally
not detected there is also no proof of its nonexistence.
In 1974 Polyakov and ’t Hooft showed in Refs. [1,2] that a
magnetic monopole exists in all grand unified theories
of elementary particles as a static soliton solution of the
classical equations of motion. In 1975 Zee and Julia
generalized the ’t Hooft-Polyakov monopole by including
the electric charge; they called such particle a dyon
in Ref. [3].
Usually the mass and related properties of a monopole

are studied. In this work we are more interested in
mechanical properties of a monopole and a dyon such as
pressure, shear force distributions, and the mechanical
stability condition which can be obtained from the corre-
sponding energy-momentum tensor (EMT). Although the
main purpose of the paper is to study the mechanical
properties of the monopole and dyon, we are also interested
in studying the local stability criterium of an arbitrary
system with finite energy obtained in 2016 in Ref. [4]. The
force distributions obtained from the EMT could be useful
in experimental searches of monopoles and studying the

monopole stability can be helpful for theoretical insights
into the stability of classical solutions in gauge theories.
The organization of the paper is as follows. In Sec. II we

introduce main definitions corresponding to an EMT and
discuss the stability conditions for a static and nonstatic
EMT. In Sec. III we discuss the EMT of the ’t Hooft-
Polyakov monopole and its consequences. We also separate
the EMT into the long- and short-range parts in this section
introducing the Abelian strength tensor. In Sec. IV we
discuss the properties of a Julia-Zee dyon. We conclude in
the last section.

II. STABILITY CONDITIONS

A. EMT densities

The energy-momentum tensor TμνðxÞ can be defined as
a functional variation of the matter part of the action in
curved space-time with respect to metric gμνðxÞ as follows:

TμνðxÞ ¼
2ffiffiffiffiffiffi−gp δS

δgμνðxÞ
����
gμν¼ημν

; ð1Þ

where ημν is a Minkowski tensor with the metric signature
ð1;−1;−1;−1Þ.
The EMT encodes fundamental properties of a system.

The T00 component of the EMT defines the energy density
in the studied system corresponding to the mass distribu-
tion in the static approximation. The integral of the T00ðrÞ
over the full space defines the full energy of a system or its
mass in the rest frame of the system

M ¼
Z

d3rT00ðrÞ: ð2Þ
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The most interesting part of the EMT for our purpose is
the ij components, which define the stress tensor. The Tij

components can be associated, according to Ref. [5], with
the distribution of the shear forces sðrÞ and the elastic
pressure pðrÞ inside the system. For a spherically sym-
metric system in static approximation in three dimensions
the stress tensor is decomposed in sðrÞ and pðrÞ as follows:

Tijðr⃗Þ ¼
�
rirj
r2

−
1

3
δij

�
sðrÞ þ δijpðrÞ: ð3Þ

The pressure and shear force distributions can be
connected with the gravitational DðtÞ-form factor, which
is involved in the parametrization of the matrix element
of the EMT operator; see e.g. Ref. [5]. As it follows from
Ref. [5], the D term (or the Druck term) D≡Dð0Þ can be
obtained as

D ¼ −
4M
15

Z
d3rr2sðrÞ ¼ M

Z
d3rr2pðrÞ; ð4Þ

whereM is the mass of the system. The value of theD term
for a particle can be measured experimentally, like its mass;
however, the value is difficult to extract from experimental
data. For example, the experimental value of the D term
for the proton is D ¼ −1.47� 0.06� 0.14, where the first
error is the statistical uncertainty, and the second error is
due to the systematic uncertainties; see Ref. [6]. The value
of the D term for the nucleon was first obtained theoreti-
cally in the Skyrme model in Ref. [7]; the authors obtained
the valueD ¼ −3.6 and in the bag model the value of theD
term for the nucleon is D ¼ −1.1 [8], other values of the D
term together with the corresponding references can be
found in the Table 2 of Ref. [9]. The values of the D term
for the monopole and the dyon are given in Secs. III and IV,
respectively.

B. Static EMT

The EMT is the conserved Noether current associated
with space-time translations, i.e. it satisfies the following
condition:

∂μTμν ¼ 0: ð5Þ

For the static EMT Eq. (5) turns to ∂iTiν ¼ 0. For the
parametrization of Eq. (3) it implies that the pressure and
shear force distributions satisfy the following equation
which is also called the equilibrium equation:

∂pðrÞ
∂r

þ 2

3

∂sðrÞ
∂r

þ 2

r
sðrÞ ¼ 0: ð6Þ

Assuming that the pressure and shear force densities decay
at large distances faster than ∼ 1

r3, multiplying on r3 and

integrating over r one obtains the von Laue stability
condition given in Ref. [10],

Z
d3rpðrÞ ¼ 0; ð7Þ

which is necessary for stability, but not sufficient, since it is
also satisfied for unstable systems; see discussion in
Ref. [4]. This condition is satisfied for any system, whose
EMT is conserved and implies that the pressure distribution
has at least one mode. Integrating the differential equa-
tion (6) from positive value r to infinity and requiring that
sðrÞ and pðrÞ vanish at the infinity, one obtains

2

3
sðrÞ þ pðrÞ ¼ 2

Z
∞

r
dx

sðxÞ
x

: ð8Þ

This equation describes the equilibrium of the internal
forces inside a system. The combination 2

3
sðrÞ þ pðrÞ

describes the normal component of the total force exhibited
by the system on an infinitesimal piece of area dSi, which is
denoted as prðrÞ:

FiðrÞ ¼ TijðrÞdSj ¼
�
2

3
sðrÞ þ pðrÞ

�
dSi ¼ prðrÞdSi

ð9Þ

where dSi ¼ dSri=r. From the equilibrium equation (8)
follows that for the positive shear force distribution sðrÞ the
normal force is always positive and for the negative sðrÞ the
normal force is always negative. In Ref. [4] it was argued
that the normal force has to be directed outwards otherwise
the system would collapse, this means that it has to be non-
negative, i.e.

2

3
sðrÞ þ pðrÞ ≥ 0: ð10Þ

Thus, according to Eq. (8) for negative shear force
distribution the system is definitely unstable. The local
stability condition is also necessary, but not sufficient for
stability analogously to the von Laue condition. However,
due to its local character, it is stronger than the von Laue
condition.

C. EMT and external forces

The EMT conservation taking the form ∂iTijðrÞ ¼ fjðrÞ
can be interpreted according to Ref. [11] as the equilibrium
equation for internal stress and external force fj (per unit of
the volume). According to the parametrization in Eq. (3) the
equilibrium equation gets the following form

d
dr

�
2

3
sðrÞ þ pðrÞ

�
þ 2

sðrÞ
r

¼ fðrÞ; ð11Þ
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where fðrÞ is the normal component of the external force
per unit of the volume. This equation describes the balance
between internal forces pushing out from center and
external force pulling inwards to the center. When the
corresponding forces are equal, the system is at equilib-
rium. The von Laue stability condition for such equilibrium
equation gets the following form:

Z
d3rpðrÞ ¼ −

1

3

Z
d3rrfðrÞ: ð12Þ

One can also rewrite the equilibrium equation (11) as

prðrÞ þ σðrÞ ¼ 2

Z
∞

r
dx

sðxÞ
x

; ð13Þ

with σðrÞ ¼ R
∞
r dxfðxÞ. The left-hand side describes the

normal component of a total force of the system acting on
the infinitesimal unit area dSi as it follows from below

FiðrÞ ¼ ðTijðrÞ þ δijσðrÞÞdSj
¼

�
2

3
sðrÞ þ pðrÞ þ

Z
∞

r
dxfðxÞ

�
dSi

¼ ðprðrÞ þ σðrÞÞdSi: ð14Þ

Then for systems affected by an external force, i.e. for
systems described by the equilibrium equation (11), the
local stability criterium of Eq. (10) can be modified as

2

3
sðrÞ þ pðrÞ þ

Z
∞

r
dxfðxÞ ≥ 0: ð15Þ

For a time-dependent system the conservation of EMT
gives the equation ∂iTij ¼ −∂0T0j, where the left-hand side
again describes internal force of the system and the right-
hand side can be interpreted as an external force.

D. Mean square energy radius and mechanical radius

For a positive energy density T00ðrÞ the mean square
radius of the energy density can be introduced as

hr2iE ¼
R
d3rr2T00ðrÞR
d3rT00ðrÞ

; ð16Þ

which characterizes the size of the system in which the
energy is distributed.
According to the local stability condition, for a stable

system the radial force must be positive, so the mechanical
mean square radius where the normal force is distributed
can be defined as in Ref. [12]; for a system with the
equilibrium equation (6) it takes the form

hr2imech ¼
R
d3rr2prðrÞR
d3rprðrÞ

; ð17Þ

and for the system with the equilibrium equation (11) it
takes has the form

hr2imech ¼
R
d3rr2ðprðrÞ þ σðrÞÞR
d3rðprðrÞ þ σðrÞÞ ; ð18Þ

where prðrÞ and σðrÞ are defined above.
The local stability condition has not been mathematically

proven and thereby is still questioned; see e.g. criticism in
Ref. [13]. Moreover, as it was mentioned in recent studies
of Refs. [14–16], the local stability condition is not satisfied
in the presence of the long-range forces. Additionlly, as
pointed out in Refs. [14,15,17,18], there is another problem
for systems with the long-range contribution, namely, the
divergence of essential quantities that describe mechanical
properties of a system, such as the D term and the mean
square radii corresponding to the EMT densities.
At this point, it is important to mention that the ’t Hooft-

Polyakov monopole is accepted to be a stable system; see
arguments of Refs. [19,20]. As we will see later, the local
stability condition is violated for the monopole and the
dyon. At first glance, therefore, one could think that the
criterium is not correct. However, the monopole and
the dyon involve electromagnetic interaction, which sup-
ports the idea that the local stability condition does not
apply correctly in the presence of long-range forces.

III. ’t HOOFT-POLYAKOV MONOPOLE

A. Equations of motion

The grand unified theories combine the electromagnetic,
weak, and strong forces into a single force. One of the first
such theories was suggested by Georgi and Glashow in
1974 in Ref. [21]. Later Polyakov and ’t Hooft independ-
ently found that magnetic monopoles automatically
appear in all grand unified theories [1,2]. The most simple
model where the magnetic monopole exists is the gauge
SU(2) Georgi-Glashow model with Higgs triplet field
φa; a ¼ 1, 2, 3, which belongs to adjoint representation.
The corresponding gauge invariant action of the model is

S ¼
Z

d4x

�
−
1

4
Fa
μνFμνa þ 1

2
ðDμφÞaðDμφÞa

−
λ

4
ðφaφa − v2Þ2

�
; ð19Þ

where λ is a dimensionless coupling constant, v2 is the
squared vacuum expectation value of the Higgs field, and μ
and ν are Lorenz indices. The covariant derivative and the
non-Abelian field strength tensor are defined as follows:

ðDμφÞa ¼ ∂μφ
a þ gϵabcAb

μφ
c;

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν; ð20Þ
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where g is the gauge coupling constant and Aa
μ is the gauge

vector field. Choosing the vacuum expectation value as
φa
0 ¼ ð0; 0; vÞ and considering small fluctuations of the

ground state in unitary gauge, one can show that the
Georgi-Glashow model has one massive scalar field
η3ðxÞ with mass mH ¼ ffiffiffiffiffi

2λ
p

v, one massless vector field
A3
μ corresponding to theUð1Þ subgroup of the SUð2Þ gauge

group, and two massive vector fields A1
μ and A2

μ both with
masses mV ¼ gv.
In this model we are interested in a soliton solution;

in other words, in a static solution of classical field
equations with finite energy. As we want to study static
soliton configuration, we consider the fields Aa

i ðx⃗Þ
and φaðx⃗Þ independent of time. We also fix zero
component of a vector field through the gauge Aa

0 ¼ 0

to have zero electric field. Requiring the energy to
be finite the following configuration of fields can
be found:

φa ¼ navhðrÞ;

Aa
i ¼

1

gr
ϵaijnjð1 − FðrÞÞ; ð21Þ

with the unit vector na ¼ ra
r , the unknown profile

functions hðrÞ and FðrÞ, and the following boundary
conditions:

FðrÞ ¼ 0 at r → ∞; FðrÞ ¼ 1 at r → 0;

hðrÞ ¼ 1 at r → ∞; hðrÞ ¼ 0 at r → 0: ð22Þ

The explicit form of the profile functions can be obtained
from equations of motion which can be computed by
varying the action with respect to scalar and vector fields,
which for the static case reduces to the form

DiFa
ij ¼ gϵabcφbðDjφÞc;

DiðDiφÞa ¼ λðφbφb − v2Þφa: ð23Þ

In terms of the profile functions the equations transform to

F00ðrÞ − FðrÞðF2ðrÞ − 1Þ
r2

− g2v2FðrÞh2ðrÞ ¼ 0;

h00ðrÞ þ 2
h0ðrÞ
r

− 2
F2ðrÞhðrÞ

r2
þ λv2hðrÞð1 − h2ðrÞÞ ¼ 0:

ð24Þ

Rescaling the argument r with dimensionless argument ρ
as ρ ¼ r

R0
, where R0 ¼ 1

mV
¼ 1

gv is a typical size of the

solution, and introducing the new parameter β2 ¼ 2 λ
g2 ¼

m2
H

m2
V

we obtain the following system of equations of motion:

F00ðρÞ − FðρÞðF2ðρÞ − 1Þ
ρ2

− FðρÞh2ðρÞ ¼ 0;

h00ðρÞ þ 2
h0ðρÞ
ρ

− 2
F2ðρÞhðρÞ

ρ2
þ β2

2
hðρÞð1 − h2ðρÞÞ ¼ 0;

ð25Þ
with the same boundary conditions as before. This system
can be solved analytically only for the limit β ¼ 0,
otherwise one solves it numerically. However, one can
find approximate solutions at small and large distances:

FðρÞ ≃
ρ→∞

CFe−ρ
�
1 −

1

2ρ
þ 3

8ρ2
þO

�
1

ρ3

��
;

FðρÞ ≃
ρ→0

1þ aρ2 þ
X∞
n¼2

cnρ2n;

hðρÞ ≃
ρ→∞

1 − Ch
e−βρ

ρ

�
1þO

�
1

ρ

��

−
2C2

F

β2 − 4

e−2ρ

ρ2

�
1 −O

�
1

ρ

��
;

hðρÞ ≃
ρ→0

bρþ
X∞
n¼2

dnρ2n−1; ð26Þ

where CF, Ch, a, and b are free constants. Note that for
β ¼ 2 the constant CF ¼ 0. The coefficients cn and dn can
be expressed in terms of a and b as

c2 ¼
1

10
ð3a2þb2Þ;

c3 ¼
1

70

�
7a3þ 6ab2−

b2β2

4

�
;

d2 ¼
b
10

�
4a−

β2

2

�
;

d3 ¼
1

280

�
48a2bþ 4b3 − 4abβ2þ 5b3β2þb

β2

2

�
: ð27Þ

In Ref. [22] another system of differential equations was
obtained and analytically solved for complex non-Abelian
monopole and dyon fields.

B. EMT densities

The EMT for the ’t Hooft-Polyakov monopole can be
obtained variating a generally covariant form of Georgi-
Glashow action (19) with respect to the metric

Tμν ¼ −ημνLþ Fa
μαFαa

ν þ ðDμφÞaðDνφÞa: ð28Þ
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For the static case one gets

T00 ¼
1

4
Fa
ijF

a
ij þ

1

2
ðDiφÞaðDiφÞa þ

λ

4
ðφaφa − v2Þ2;

Tij ¼ −
1

4
δijFa

kmF
a
km − Fa

ikF
a
kj −

1

2
δijðDkφÞaðDkφÞa þ ðDiφÞaðDjφÞa −

λ

4
δijðφaφa − v2Þ2: ð29Þ

Using the ’t Hooft-Polyakov ansatz given in Eq. (21) and the decomposition in Eq. (3) the EMT densities can be expressed
in terms of the profile functions FðρÞ and hðρÞ:

T00ðρÞ ¼
1

R4
0g

2

�
F02

ρ2
þ ð1 − F2Þ2

2ρ4
þ 1

2
h02 þ h2F2

ρ2
þ β2

8
ð1 − h2Þ2

�
;

sðρÞ ¼ 1

R4
0g

2

�
F02

ρ2
−
ð1 − F2Þ2

ρ4
þ h02 −

1

ρ2
F2h2

�
;

pðρÞ ¼ 1

R4
0g

2

�
1

3

F02

ρ2
þ ð1 − F2Þ2

6ρ4
−
1

6
h02 −

1

3

F2

ρ2
h2 −

β2

8
ð1 − h2Þ2

�
: ð30Þ

The T00ðρÞ component provides the information about spatial distribution of the monopole mass; pðρÞ and sðρÞ describe
the pressure and shear force distributions inside the monopole. The first two terms in these densities originate from the
term ∼Fa

μσFaσ
ν in action, the next two terms come from ∼Dμφ

aDνφ
a, and the term proportional to β2 comes from the

Higgs potential.
Before we discuss the numerical results for the EMT density distributions and their properties, we compute their

asymptotic behavior at large and small distances using the behavior of the profile functions from Eq. (26):

T00ðρÞ ≃
ρ→∞

1

R4
0g

2

�
1

2ρ4
þ β2C2

h
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þ 2C2

F
e−2ρ

ρ2

�
1þO

�
1

ρ

���
;

sðρÞ ≃
ρ→∞

1

R4
0g

2

�
−

1

ρ4
þ β2C2

h
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þ C2

F
e−2ρ

ρ4

�
1þO

�
1

ρ

���
;

pðρÞ ≃
ρ→∞

1

R4
0g

2

�
1

6ρ4
−
2

3
β2C2

h
e−2βρ

ρ2

�
1þO

�
1

ρ

��
−
2C2

F

3

e−2ρ

ρ4

�
1þO

�
1

ρ

���
; ð31Þ

and

T00ðρÞ ≃
ρ→0

1

R4
0g

2

��
6a2 þ 3b2

2
þ β2

8

�
þ ρ2

�
8a3 þ 6ab2 −

β2b2

2

�
þOðρ4Þ

�
;

sðρÞ ≃
ρ→0

1

R4
0g

2

�
½−8a3 þ 2ab2 − β2b2� ρ

2

5
þOðρ4Þ

�
;

pðρÞ ≃
ρ→0

1

R4
0g

2

��
2a2 −

b2

2
−
β2

8

�
þ ρ2

3
½8a3 − 2ab2 þ β2b2� þOðρ4Þ

�
; ð32Þ

where Ch, CF and a, b are free constants from the
asymptotic behavior of profile functions in Eq. (26).
From the large distances behavior, it is clear that the
power-law decay (∼ρ−4) is dominating; this behavior
corresponds to the contribution of the electromagnetic
interaction.1 This is not surprising if one remembers that
the mass spectrum of the Lagrangian (19) has one massless
vector particle corresponding to the Uð1Þ group.

The asymptotic behavior of the energy density is
definitely positive at the infinity as well as at the origin.
This hints at the fact that we are dealing with an usual
system. The outer region of the pressure distribution has
definitely a positive sign and that of the shear force
distribution a negative one. Such behavior leads to violation
of the local stability criterion (10). However, this behavior
is related only to the electromagnetic contribution. Note
that because of this long-range contribution both mean
square radii in Eqs. (16) and (17) as well as the Druck term
in Eq. (4) diverge.1We will call this contribution the long-range interaction.
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In Fig. 1 the energy density for various values of β is
shown. Although the energy is growing with β, according
to Ref. [23] it does not diverge for β → ∞. The distribu-
tions of the shear force, pressure, and normal force are
shown in Fig. 2. Although the pressure is mostly negative,
it changes the sign which allows the von Laue condition (7)
to be satisfied, see e.g. Fig. 6. It is also interesting that
the maximum of pressure is three times larger than the
maximum of shear forces like in many other systems
studied before; see e.g. Refs. [4,5,7,12,14]. From the figure
one also sees that the stability condition (10) is violated
everywhere and for every choice of β, although it is proved
in Refs. [19,20] that the monopole is stable. Since the local
stability condition is not mathematically proved, we cannot
conclude from its violation that the monopole is unstable.
This violation can be also explained by the fact that the
stability criterion is inapplicable for systems with the long-
range force that is present in the monopole. The authors of
Refs. [14,15] also obtained the violation of the stability
criterion for stable systems like a proton in the presence of

long-range forces. All of these aspects motivate us to
think that the stability condition in Eq. (10) can be applied
only for the systems where only the short-range interactions
are present.

C. BPS limit

The equations of motion can be solved analytically only
for the limit β ¼ 0. The solution of these equations was first
obtained in Ref. [24]. In Ref. [25] Bogomolny solved these
equations by reducing the system of the second order
equations to the first order by considering the energy
functional for the Georgi-Glashow model. By integrating
the energy density over the volume one gets the energy
functional

Eβ¼0 ¼
Z

d3rTβ¼0
00 ðrÞ

¼
Z

d3r

�
1

4
Fa
ijF

a
ij þ

1

2
ðDiφÞaðDiφÞa

�
: ð33Þ

FIG. 2. Pressure distribution, shear force distribution, and stability condition from Eq. (10) as functions of ρ ¼ r=R0 ¼ gvr for various
values of β.
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3d term
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1

(b)

R 4

FIG. 1. (a) Energy distribution as a function of ρ ¼ r=R0 ¼ gvr for various values of β. (b) Blue line denotes the full pressure
distribution pðρÞ as a function of ρ ¼ r=R0 ¼ gvr. Red line denotes the contribution of the Higgs potential only to the full pressure.
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Rewriting it in terms of the chromomagnetic field
Ha

i ¼ − 1
2
ϵijkFa

jk, Bogomolny introduced the following
inequality for the monopole energy, which is also called
BPS bound:

Eβ¼0 ≥
Z

d3rHa
iDiφ

a; ð34Þ

where the Bianchi identity ðDiHiÞa ¼ 0 and the Gauss’s
theorem were used. The BPS limit gives the possible
minimum of the static energy of the monopole and the
equality holds for the Bogomolny equation

Diφ
a ¼ Ha

i : ð35Þ

From the definition of a chromomagnetic field the follow-
ing expression can be obtained:

Ha
i H

a
j ¼ Fa

ikF
a
kj þ

1

2
δijFa

kmF
a
km: ð36Þ

Using this expression and the Bogomolny equation (35)
it can be shown that the spatial components of the EMT
disappear:

TijðrÞ ¼ 0; ð37Þ

independently of the choice of the ansatz in Eq. (21).
The vanishing of the pressure and shear force distribu-

tions at the BPS limit allows one to assume that the main
contribution for the stress tensor Tij is given by the Higgs
potential. As can be seen from Fig. 1 the largest contri-
bution to the pressure distribution is indeed due to the term
originating from the Higgs potential in Eq. (19). Although
the shear force distribution does not depend explicitly on β,
it is related to the pressure distribution due to the differ-
ential equation (6). We think that in all models where it is
possible to construct the BPS limit, the corresponding ij
components of the EMT would vanish. We have also
obtained such vanishing, for example, for the baby
Skyrme model. The vanishing of the pressure and shear
force distributions for the BSP limit indicates that the
’t Hooft-Polyakov monopole in this limit has the isotropic
matter distribution [12].

D. Abelian field strength tensor
and electromagnetic EMT

In the previous subsection we obtained the EMT in non-
Abelian SUð2Þ gauge theory; however, the theory has one
massless vector field corresponding to the Abelian Uð1Þ
subgroup. This massless vector field is responsible for the
electromagnetic contribution to the EMT and for the
divergence of such mechanical properties of the monopole

as the D term, mean square energy, and mechanical radii.
We will subtract this long-range contribution from the
EMT and study the remaining short-range structure. For
this we have to determine the Uð1Þ Abelian field strength
tensor. Let us denote the Abelian field strength tensor as
F μν. Since in the unitary gauge the massless vector field of
the theory is the third component of the vector field Aμ

3

(see Sec. III A), the expression for the Abelian field
strength tensor must be SUð2Þ gauge invariant and
coincide with F μν ¼ ∂μA3

ν − ∂νA3
μ in the unitary gauge [2].

We introduce a general definition of the Abelian field
strength tensor without any requirements on ϕ as

F μν ¼ ϕaFa
μν −

c1
g
εabcϕaDμϕ

bDνϕ
c: ð38Þ

The constant c1 is not fixed by the above requirements
for the Abelian field strength tensor F μν; however, it is
needed to define the magnetic charge density in such a
way that it coincides with the topological charge density.
’t Hooft suggested in Ref. [2] the tensor with the unit
vector ϕa ¼ φ̂a ¼ φa

jφj and c1 ¼ 1, Faddeev offered in

Ref. [26] the tensor with ϕa ¼ φa

v and c1 ¼ 0, where φa

is the ansatz from Eq. (21), and Boulware in Ref. [27]
suggested the tensor with ϕa ¼ φ̂a ¼ φa

jφj and c1 ¼ 0. Since
the underlying theory combines the long- and short-range
forces, it is not possible to uniquely define the Uð1Þ field
strength tensor to separate the short-range interaction from
the long one.
For the general choice of the Abelian field strength

tensor the magnetic charge density gets the following form:

ρM ¼ −
1

2
εijk∂iF jk

¼ 1

2
εijpðDpϕÞaFa

ijðc1ϕ⃗2 − 1Þ

þ c1
2g

εabcεijpðDiϕÞaðDjϕÞbðDpϕÞc

−
c1
2
εijpϕ

aFa
ij
1

2
∂pϕ⃗

2: ð39Þ

One can show that for ’t Hooft’s definition of the Abelian
field strength tensor, the magnetic and topological charge
densities coincide and describe a single pointlike particle
with the magnetic charge 4π

g at the origin; see Ref. [2].
Such monopole is called Dirac’s monopole. In Ref. [28]
Dirac derived the quantization of the magnetic charge as
QM ¼ QT=g, where QM is a magnetic charge and QT is a
topological charge.
In contrast to ’t Hooft’s definition of the Abelian field

strength tensor, Faddeev’s and Boulware’s definitions
describe the magnetic charge density smoothly without
singularities at the origin. The topological and magnetic
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charge densities are not equal in these cases, but the
quantization of the magnetic charge is satisfied. It is also
interesting to notice that the magnetic charge density in
Eq. (39) for Faddeev’s and Boulware’s definitions of the
Abelian strength tensor coincides with the energy density
in the BSP limit in Eq. (34) up to some dimensional
normalization factor. For the positive magnetic charge
distribution, the mean square radius can be determined,

hr2iM ¼
R
d3rr2ρMðrÞR
d3rρMðrÞ

: ð40Þ

We define the electromagnetic EMT analogously to the
EMT in electrodynamics as

TC
μν ¼ F μ

αF αν þ
1

4
ημνF αβF αβ; ð41Þ

where F μν is the Uð1Þ field strength tensor. As we have
discussed F μν is not uniquely defined. Since we are
interested in the spatial structure of the monopole, it makes
no sense to define TC

μν according to ’t Hooft’s definition
of the F μν because of singularities at the origin. Faddeev’s
and Boulware’s smooth definitions of the Abelian strength
tensor F μν could be a better candidate to define the TC

μν;
however, we suggest another definition of the Uð1Þ field
strength tensor,

F μν ¼
φa

v
Fa
μν −

1

gv3
εabcφaDμφ

bDνφ
c; ð42Þ

which is also smooth as Faddeev’s and Boulware’s defi-
nitions are and it coincides with the ’t Hooft’s definition at
long distances. For this definition of the Abelian strength
tensor the electromagnetic EMT distributions have the
following form:

TC
00ðρÞ ¼

1

R4
0g

2

Q2ðρÞ
2ρ4

;

pCðρÞ ¼ 1

R4
0g

2

Q2ðρÞ
6ρ4

;

sCðρÞ ¼ −
1

R4
0g

2

Q2ðρÞ
ρ4

; ð43Þ

where QðrÞ ¼ hðrÞ½1 − F2ðrÞð1 − hðrÞ2Þ�. The function
QðrÞ is directly related to the magnetic charge density
through

ρMðρÞ ¼
1

gR3
0

1

ρ2
d
dρ

QðρÞ: ð44Þ

The electromagnetic EMT densities are shown in Fig. 3.
The corresponding asymptotic behavior can be found in
Appendix (A3). Note that since the full spatial part of the
EMT in the BSP limit where β ¼ 0 vanishes, see Sec. III C,
and the electromagnetic EMT does not depend on β (and
thereby does not vanish in this limit) the short-range part of
the EMT in Eq. (45) has to be equal to the long-range part.
This means that the scalar interaction in the BSP limit
becomes long-range interacting.

E. Short-range part of the EMT
and its consequences

We denote the short-range part of the EMT as TSR
μν and

define it as

TSR
μν ¼ Tμν − TC

μν; ð45Þ

where the full EMT Tμν is obtained in Eq. (30) and the
electromagnetic EMT in Eq. (43). After some simple
algebraic calculation the following expressions for the
short-range part of the EMT densities can be found:

0 2 4 6 8

�0.010

�0.005

0.000

0.001

0.0 0.2 0.4 0.6 0.8 1.0

�40

�30

�20

�10

0

10
10

FIG. 3. The electromagnetic pressure, share force and normal force distributions as functions of ρ ¼ r=R0 ¼ gvr from Eq. (43) for
various values of β.
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TSR
00 ðρÞ ¼

1

R4
0g

2

�
F02

ρ2
þ ð1 − h2Þð1 − F2Þ2

2ρ4
þ 1

2
h02 þ h2F2

ρ2

�
1 −

h2

ρ2

�
1 − F2

�
1 −

h2

2

���
þ β2

8
ð1 − h2Þ2

�
;

pSRðρÞ ¼ 1

R4
0g

2

�
1

3

F02

ρ2
þ ð1 − h2Þð1 − F2Þ2

6ρ4
−
1

6
h02 −

1

3

F2h2

ρ2

�
1þ h2

ρ2

�
1 − F2

�
1 −

h2

2

���
−
β2

8
ð1 − h2Þ2

�
;

sSRðρÞ ¼ 1

R4
0g

2

�
F02

ρ2
−
ð1 − h2Þð1 − F2Þ2

ρ4
þ h02 −

F2h2

ρ2

�
1 − 2

h2

ρ2

�
1 − F2

�
1 −

h2

2

����
: ð46Þ

The corresponding asymptotic behavior can be found in
Appendix (A4). The short-range part of the pressure and
shear force distributions are presented in Fig. 4. The short-
range part of the pressure distribution is negative and the
short-range part of the shear force distribution is positive for
every choice of β in the considered range of r. The total
normal force distribution is positive for any value of β, which
satisfies the stability criterium (15). It is also interesting to
notice that the pressure distribution of the monopole does not
change drastically after the subtraction of the long-range
part; however, the shear force distribution does.
As we have already discussed in the first section, the

static EMT according to the Noether theorem must be
conserved. The conservation of EMT couples pressure
and shear force densities by the differential equation (6).
However, after the decomposition of the EMT into the
short- and long-range parts, the separate EMTs are not
conserved and the corresponding short- and long-range
parts of the pressure and shear force densities couple due to
the new equilibrium equations:

d
dr

�
2

3
sCðrÞ þ pCðrÞ

�
þ 2

sCðrÞ
r

¼ −
QMðrÞρMðrÞ

4πr2
;

d
dr

�
2

3
sSRðrÞ þ pSRðrÞ

�
þ 2

sSRðrÞ
r

¼ QMðrÞρMðrÞ
4πr2

;

ð47Þ

where QMðrÞ ¼
R
jx⃗j<r d

3xρMðx⃗Þ ¼ 4π
g QðrÞ is the magnetic

charge contained in a sphere of radius r. So the right-hand
side describes the “Coulomb force” of the magnetically
charged sphere acting on the magnetic charge density.2

Thereby the first equation is the equation of magnetostatic
equilibrium between the “Coulomb stress” pushing the
monopole outwards and the magnetic Coulomb force
pulling the monopole inward to the center. In contrast,
the second equation describes the balance between the
“short-range stress” pulling the monopole inward to the
center and the repulsive magnetic Coulomb force pushing
the monopole outward. We notice that since the right-hand
sides of the equilibrium equations are associated with the
magnetic charge density, it is not possible to define the
long- and short-range parts of the EMT using the ambiguity
of the F μν in such a way that the decomposed EMTs would
be conserved separately, i.e. the right-hand sides would
vanish, except the case with zero magnetic charge density.
As we discussed, the D term of the monopole diverges

because of the long-range contribution. After subtracting
the long-range part from the EMT, the corresponding D
term still diverges for small values of β. We illustrate this
divergence in the following. The D term is defined through
the shear force distribution as in Eq. (4). Since for small

0 1 2 3 4 5
�0.05

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
�5

0

5

10

FIG. 4. Short-range part of the pressure, shear force, and total normal force distributions from Eq. (46) as a function of ρ ¼ r=R0 ¼
gvr for various values of β. Note that the total normal force is defined as in Eq. (15).

2Modulus of the magnetic field of the magnetically charged
sphere is H ¼ QMðrÞ

4πr2 .
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values of β ≪ 1 the main contribution to the short-range
part of the shear force density is provided by the asymptotic
behavior at large distances, see Appendix (A4), the D term
diverges for the large enough R as

D ≃ −
16πMSRR0

15g2

Z
∞

R
dρρ4

�
C2
hβ

2
e−2βρ

ρ2
− 2Ch

e−βρ

ρ5

�

∼ −
Z

1=β

R
dρ

�
β2ρ2 −

1

ρ

�

∼ −
1

β
− ln β: ð48Þ

The mean square magnetic charge radius in Eq. (40),
the mean square energy radius of the short-range part in
Eq. (16), and the mean square mechanical radius in Eq. (18)
also diverge for small values of β; see Appendix B.
In the end of this section we present numerical results for

masses, D terms, and mean square radii of the ’t Hooft-
Polyakov monopole; see Table I. We use the following
notations: the full mass of the monopole M is computed
with the help of the energy density from Eq. (30), the
electromagnetic contribution to the full mass MC from
Eq. (43), and the short-range contribution to the full mass
MSH is computed with the help of the expression in
Eq. (46). The values of D terms have been calculated with
the help of the short-range part of the shear force distri-
bution in Eq. (46) according to (4), the mean square radius
of the magnetic charge density is computed due to the
definition in Eq. (40), the mean square radius of the short-
range part of the energy distribution is computed according
to the definition in Eq. (16), and the short-range part of
the mechanical square radius is computed according to
Eq. (18). It is remarkable that for the small values of β the
main contribution to the monopole mass gives the short-
range part and for the large values of β ≳ 5 the long range
part. It would be interesting to find the analytic form of
the pressure and shear force densities depending on the
parameter β like was done in Refs. [23,29,30] for the
static energy.

IV. JULIA-ZEE DYON

A. Equation of motion

In the previous section we considered a monopole
solution carrying a magnetic charge. In this part we will
consider a dyon, that is a hypothetical particle carrying
both electric and magnetic charges; such particle was first
suggested by Schwinger in 1969 in Ref. [31]. The dyon
solution in the Georgi-Glashow model was first obtained in
1975 by Zee and Julia in Ref. [3]. We will use the same
Georgi-Glashow model as we did in the first part with the
same action (19). However, we will not fix the zero
component of the vector field as we did it for the monopole
case, Aa

0ðx⃗Þ ≠ 0. We are again interested in the static soliton
solution with finite energy. Thereby, we choose the same
spherically symmetric ansatz as we chose for the ’t Hooft-
Polyakov monopole in Eq. (21) with the same boundary
condition as in Eq. (22). In contrast to the monopole case,
for the dyon the Aa

0 is nonzero and one chooses the ansatz

Aa
0 ¼

JðrÞ
gr

ra

r
; ð49Þ

which follows from requiring the energy to be finite and
definition of the Abelian field strength tensor as in Eq. (42).
The boundary conditions for the function JðrÞ are

JðrÞ ≃
r→0

0;

JðrÞ ≃
r→∞

−
QD

QM
þmgr; ð50Þ

where QD is an electric charge of a dyon, QM ¼ 4π
g is a

monopole charge, and m is a free constant that has
dimension of mass.
From the variation of the action follows the equations of

motion

D0Fa
00 −DiFa

i0 þ gϵabcφbD0φ
c ¼ 0;

D0Fa
0k −DiFa

ik − gϵabcφcDkφ
b ¼ 0;

D0D0φ
a −DiDiφ

a þ λðφbφb − v2Þφa ¼ 0: ð51Þ

The equations for the profile functions in dimensionless
variable ρ ¼ gvr are

F00ρ2 ¼ ðF2 − 1ÞF − ðJ2 − ρ2h2ÞF;

h00ρ2 þ 2h0ρ ¼ 2F2hþ β2

2
hðh2 − 1Þρ2;

J00ρ2 ¼ 2JF2: ð52Þ

Note that the boundary condition for JðρÞ also changes:
JðρÞ ≃

ρ→∞
− QD

QM
þ Cρ, where C ¼ m=v is a dimensionless

free constant.

TABLE I. Numerical values of D terms, various radii, and
different contributions to the mass for varied choice of β, where
ε ≪ 1. The estimation of the accuracy of our numerical method is
about 95% for 0 ≤ β ≤ 1 and about 85% for β > 1.

β MR0g2

4π MC
R0g2

4π MSR
R0g2

4π − 15g4

64π2
D

hr2iM
R2
0

hr2iE
R2
0

hr2imech
R2
0

ε 0.993 0.153 0.841 ∞ ∞ ∞ ∞
0.1 1.036 0.187 0.849 7.909 20.517 12.157 20.255
0.5 1.133 0.267 0.865 1.022 4.287 3.710 3.379
1 1.204 0.336 0.869 0.43 2.168 2.436 1.545
5 1.438 0.794 0.644 0.293 0.373 1.602 0.445
8 1.457 1.084 0.373 0.213 0.205 2.328 0.307
10 1.461 1.289 0.172 0.108 0.151 4.479 0.254
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The approximate solution for small and large distances
can be found as

FðρÞ ≃
ρ→0

1þ aρ2 þ
X∞
n¼2

a2nρ2n;

FðρÞ ≃
ρ→∞

CFe−
ffiffiffiffiffiffiffiffi
1−C2

p
ρ

�
1þO

�
1

ρ

��
;

hðρÞ ≃
ρ→0

bρþ
X∞
n¼1

b2nþ1ρ
2nþ1;

hðρÞ ≃
ρ→∞

1 − Ch
e−βρ

ρ

�
1þO

�
1

ρ

��

−
2C2

F

β2 þ 4C2 − 4

e−2
ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
;

J̃ðρÞ ≃
ρ→0

cρþ
X
n¼1

c2nþ1ρ
2nþ1;

J̃ðρÞ ≃
ρ→∞

C −
QD

QM

1

ρ
þ CC2

F

2ð1 − C2Þ
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
:

ð53Þ

The a, b, c are free constants, and all other constants for
the small r behavior can be expressed in terms of these
constants, for example,

a4 ¼
1

10
ð3a2 þ b2 − c2Þ;

b3 ¼
1

10

�
4ab −

bβ2

2

�
;

c3 ¼
2ac
5

: ð54Þ

Since we searched the asymptotic behavior at large dis-
tances for real and falling functions, we define a new
function JðρÞ ¼ J̃ðρÞρ and find that the constant C has a
restricted region: 0 ≤ C < 1. From numerical analysis of
the solutions we obtain that the charge ratio is restricted in
the following range: 0 ≤ QD

QM
≤ 1. More detailed analysis

can be found in Ref. [32], where also the dependence of the
parameter C on the charge ratio QD

QM
is found.

B. EMT densities

The EMT for the Julia-Zee dyon can be obtained
analogically to the ’t Hooft-Polyakov monopole by variat-
ing the generally covariant form of the Georgi-Glashow
action (19) with respect to the metric and it can be
decomposed into magnetic and electric parts:

T00ðrÞ ¼ TM
00ðrÞ þ TE

00ðrÞ;
TijðrÞ ¼ TM

ij ðrÞ þ TE
ijðrÞ; ð55Þ

where the magnetic part equals the EMT of a monopole
which we have already computed in the previous section;
see Eqs. (29), (30), and (31). The electric part of the EMT is

TE
00ðrÞ ¼

1

2
ðD0φ

aD0φ
a þ Fa

0iF
a
0iÞ;

TE
ijðrÞ ¼

1

2

h
δijðFa

0kF
a
0k þD0φ

aD0φ
aÞ − 2Fa

i0F
a
j0

i
: ð56Þ

Note that same as for the monopole case the spatial
components of the EMT for the dyon vanish in the BSP
limit, where β ¼ 0. For the electric part of the energy
density, pressure, and shear force distributions of the dyon
in dimensionless variable ρ, the following expressions are
obtained:

TE
00ðρÞ ¼

1

R4
0g

2

�
J̃02

2
þ J̃2F2

ρ2

�
;

pEðρÞ ¼ 1

R4
0g

2

�
J̃02

6
þ J̃2F2

3ρ2

�
;

sEðρÞ ¼ 1

R4
0g

2

�
−J̃02 þ J̃2F2

ρ2

�
: ð57Þ

With the help of the asymptotic behavior of the profile
functions in Eq. (53), the asymptotic behavior of the EMT
for the dyon can be obtained:

T00ðρÞ ≃
ρ→∞

1

R4
0g

2

�
1

2

�
1þ

�
QD

QM

�
2
�

1

ρ4
þ 2C2

F
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
þ β2C2

F
e−2βρ

ρ2

�
1þO

�
1

ρ

���
;

pðρÞ ≃
ρ→∞

1

R4
0g

2

�
1

6

�
1þ

�
QD

QM

�
2
�

1

ρ4
−
2

3
β2C2

F
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þO

�
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ3

��
;

sðρÞ ≃
ρ→∞

1

R4
0g

2

�
−
�
1þ

�
QD

QM

�
2
�

1

ρ4
þ β2C2

F
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þO

�
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ3

��
: ð58Þ

From this behavior one sees that the long-range contribution presented in the dyon is even stronger than in the monopole
case; see Eq. (31). In Appendix A 2 one can find the asymptotic behavior of the EMT near the origin as well as the behavior
of the electric part of the EMT only. Again already from the asymptotic behavior it is clear that the stability condition of
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Eq. (10) is violated. In Fig. 5 the full pressure and shear
force distributions of the dyon are presented. The shear
force and pressure distributions have very similar form as it
was in the monopole case; see Fig. 2. These distributions
are mostly negative for every choice of parameter.
However, pressure distribution changes its sign, which
allows the von Laue condition (7) to be satisfied; see e.g.
Fig. 6. It is also interesting to notice that the main
contribution to the dyon energy comes from the monopole
part as can be seen in Fig. 7. Moreover, for the growing β
this contribution is increasing.

C. Electromagnetic and short-range parts of the EMT

According to the definition of the electromagnetic
EMT in Eq. (41) the long-range part of the EMT for a
dyon is

TC
00 ¼

1

4
F ijF ij þ

1

2
F 0iF 0i;

TC
ij ¼ −

1

4
δijFmnFmn − F ikF kj þ

1

2
δijF 0kF 0k − F i0F j0:

ð59Þ
Using the modified ’t Hooft Abelian field strength tensor
in Eq. (42) one gets the following expressions for the
electromagnetic EMT densities of a dyon:

TC
00ðρÞ ¼

1

2

1

g2R4
0

1

ρ4
ðQ2ðρÞ þ Q̃2ðρÞÞ;

pCðρÞ ¼ 1

6

1

g2R4
0

1

ρ4
ðQ2ðρÞ þ Q̃2ðρÞÞ;

sCðρÞ ¼ −
1

g2R4
0

1

ρ4
ðQ2ðρÞ þ Q̃2ðρÞÞ; ð60Þ

FIG. 6. The pressure distributions of the monopole ðQD
QM

¼ 0Þ and the dyon for various values of β and charge ratio QD
QM

. The pressure
distribution has one mode for any choice of the parameters.

FIG. 5. The mechanical properties of dyons from Eq. (55) as functions of ρ ¼ r=R0 ¼ gvr for varied value of β and charge ratio QD
QM

.
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where the functionQ is defined in Eq. (43) and is related to
the magnetic charge density in Eq. (44) and the function Q̃
is related to the electric charge density of a dyon

ρDðρÞ¼
1

gR3
0

1

ρ2
dQ̃ðρÞ
dρ

; with Q̃ðρÞ¼ρ2hðρÞJ̃0ðρÞ: ð61Þ

Comparing these expressions with the expressions for the
monopole case in Eq. (43), it is clear that both have similar
behavior. Hence, it is again not possible to define the
various mean square radii orD terms, because they diverge.
We will exclude the long-range contribution given in

Eq. (60) from the EMT of the dyon in Eq. (55) in the same
way as we did for the monopole case using Eq. (45). After
simple algebraic calculations we obtain the following
expression for the short-range part of the EMTof the dyon:

TSR
00 ðρÞ ¼ TM;SR

00 ðρÞ þ 1

R4
0g

2

�
1

2
J̃02ð1 − h2Þ þ J̃2F2

ρ2

�
;

pSRðρÞ ¼ pM;SRðρÞ þ 1

R4
0g

2

�
1

6
J̃02ð1 − h2Þ þ 1

3

J̃2F2

ρ2

�
;

sSRðρÞ ¼ sM;SRðρÞ − 1

R4
0g

2

�
J̃02ð1 − h2Þ − J̃2F2

ρ2

�
: ð62Þ

Here TM;SR
00 , pM;SR, and sM;SR correspond to the short-range

part of the EMT of the monopole in Eq. (46). The final
short-range distributions of mechanical properties are
shown in Fig. 8. These distributions have the same behavior
as in the monopole case.
The equilibrium equation of the long- and short-range

parts of the EMT analogously to Eq. (47) is given as

d
dr

�
2

3
sCðrÞ þ pCðrÞ

�
þ 2

sCðrÞ
r

¼ −
QMðrÞρMðrÞ

4πr2
−
Q̃DðrÞρDðrÞ

4πr2
;

d
dr

�
2

3
sSRðrÞ þ pSRðrÞ

�
þ 2

sSRðrÞ
r

¼ QMðrÞρMðrÞ
4πr2

þ Q̃DðrÞρDðrÞ
4πr2

; ð63Þ

where QMðrÞ and Q̃DðrÞ are magnetic and electric charges
contained in the sphere of radius r:

QMðrÞ ¼
Z
jx⃗j<r

d3xρMðx⃗Þ ¼
4π

g
QðrÞ;

Q̃DðrÞ ¼
Z
jx⃗j<r

d3xρDðx⃗Þ ¼
4π

g
Q̃ðrÞ: ð64Þ

FIG. 7. Comparison of the full energy densities of a dyon and the contributions of the monopole part only for various values of β and
charge ratio QD

QM
.
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The first equilibrium equation describes the balance
between two types of Coulomb forces, namely, magnetic
and electric ones, pulling the dyon inwards to the center and
the Coulomb stress pushing the dyon outwards. The second
equation describes the balance between the two types of the
repulsive Coulomb forces pushing the dyon outward and
the short-range stress pulling the dyon inward to the center.
Same as for the monopole case it is not possible to define
the short-range part of the EMT using the ambiguity of the
F μν in such a way that the long- and short-range parts of
the EMT are conserved separately unless the electric and
magnetic charge densities both vanish.
In Table II the full mass of a dyon is denoted as M, the

monopole contribution to the full dyon mass as MM, the
MC and MSR are the long- and short-range contributions
to the full mass, correspondingly, and the D terms are
computed with the help of the short-range part of the shear
force distribution in Eq. (62). The following quantities can
be also found in the table: the energy mean square radius
hr2iE, the magnetic and electric charge mean square radii
hr2iM and hr2iD, and the mechanical radius hr2imech. It is
remarkable that the D term is growing with the parameter

QD
QM

and decreasing with the parameter β. As it was already
mentioned, the main contribution to the dyon mass is given
by the monopole part of the dyon; moreover, the same as it
was for the monopole: for small values of β the main
contribution to the mass comes from the short-range region,
while for the value β ≳ 5 from the long-range part. The
following ratios of the radii can be noticed from the table:

hr2iM
hr2iD

> 1; for small β and every
QD

QM
;

hr2iM
hr2iD

< 1; for β ≳ 0.1 and every
QD

QM
;

hr2iM
hr2iE

> 1; for β < 1 and every
QD

QM
;

hr2iM
hr2iE

< 1; for β ≥ 1 and every
QD

QM
;

hr2iD
hr2iE

> 1; for every β and every
QD

QM
: ð65Þ

FIG. 8. Short-range mechanical properties of dyons as a functions of ρ ¼ r=R0 ¼ gvr from Eq. (62) for varied values of β and charge
ratio QD

QM
. Note that the total normal force is defined as in Eq. (15).
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V. SUMMARY AND CONCLUSIONS

In thiswork theEMTs of the ’t Hooft-Polyakovmonopole
and the Julia-Zee dyon were studied. These EMTs contain
long-range contributions which present analogies to the
Coulombinteraction.Thelocalstabilityconditioncontaining
the pressure and shear force distributions is violated for both
cases, themonopole and the dyon. Therefore, the applicabil-
ity of the condition in the presence of long-range contribu-
tions is questioned. Moreover, such important quantities
which give information about mechanical properties of a
systemas theD term, energy, andchargemean square radii of
the monopole and the dyon cannot be computed due to the
presence of the long-range interaction.
To shed more light on the mechanical properties of the

monopole and the dyon and on the local stability condition,
we exclude the long-range contribution from the EMT
of the monopole and the dyon. The difficulty of such
calculation is that this contribution cannot be uniquely
defined. We suggest the modified ’t Hooft definition of
the Abelian field strength tensor for this purpose. Dealing
with the separate long- and short-range parts of the EMTs,
we obtained the equilibrium equations which couple the

pressure, shear force distributions, and the external force
acting on the system. In this line we have also modified
the local mechanical stability condition for systems in the
presence of external forces. According to this condition the
short-range part of the ’t Hooft-Polyakov monopole as well
as of the Julia-Zee dyon is stable for every choice of the
parameter β.
Further, in this paper numerous figures describing

mechanical properties of the ’t Hooft-Polyakov monopole
and the Julia-Zee dyon can be found as well as tables with
varied contributions to the masses, D terms, and mean
square energy, magnetic, and electric charge radii.
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APPENDIX A: ASYMPTOTIC BEHAVIORS

We specify here the asymptotic behaviors of the EMT which was not directly given in the main body of the paper.

1. For monopole part

The function QðρÞ has the following asymptotic behavior:

QðρÞ ≃
ρ→∞

1 − Ch
e−βρ

ρ

�
1þO

�
1

ρ

��
−

2C2
F

β2 − 4

e−2ρ

ρ2

�
1þO

�
1

ρ

��
;

QðρÞ ≃
ρ→0

ρ3ð−2abþ b3Þ þ ρ5

20
ð−48a2bþ 2abð32b2 þ β2Þ − b3ð4þ 3β2ÞÞ þOðρ7Þ: ðA1Þ

TABLE II. Numerical value of D terms, radii, and different contributions to the mass for various values of β and
the charge ratio QD

QM
, where ε ≪ 1. The estimation of the accuracy of our numerical method is about 95% for

0 ≤ β ≤ 1 and about 85% for β > 1.

β
QD
QM

MM
R0g2

4π MR0g2

4π MC
R0g2

4π MSR
R0g2

4π − 15g4

64π2
D

hr2iE
R2
0

hr2iM
R2
0

hr2iD
R2
0

hr2imech
R2
0

ε 0.5 0.998 1.109 0.168 0.941 ∞ ∞ ∞ ∞ ∞
ε 1 1.050 1.400 0.207 1.193 ∞ ∞ ∞ ∞ ∞

0.1 0.5 1.043 1.164 0.21 0.953 10.826 13.863 23 21.447 24.000
0.1 1 1.099 1.484 0.263 1.215 20.832 18.373 29.247 28.838 33.253

0.5 0.5 1.142 1.281 0.304 0.977 1.33 4.327 4.803 5.624 3.883
0.5 1 1.2 1.654 0.394 1.26 2.225 6.136 6.08 7.732 4.972

1 0.5 1.220 1.371 0.386 0.985 0.529 2.909 2.416 3.504 1.630
1 1 1.28 1.738 0.477 1.262 0.698 4.467 2.954 5.288 1.200

5 0.5 1.44 1.604 0.839 0.375 0.49 2.139 0.4 2.201 0.42
5 1 1.492 1.825 0.909 0.915 0.405 3.299 2.163 3.489 0.365
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The asymptotic behavior of the magnetic charge density is

ρMðρÞ ≃
ρ→0

1

gR3
0

�
3b3 − 6abþ ρ2

�
−12a2b − b3 þ 16ab3 þ 1

2
abβ2 −

3b3β2

4

�
þOðρ4Þ

�
;

ρMðρÞ ≃
ρ→∞

1

gR3
0

�
Chβ

e−βρ

ρ3

�
1þO

�
1

ρ

��
þ 4C2

F

β2 − 4

e−2ρ

ρ4

�
1þO

�
1

ρ

���
: ðA2Þ

The “Coulomb EMT” behaves asymptotically as

TC
00ðρÞ ≃

ρ→∞

1

R4
0g

2

�
1

2ρ4
− Ch

e−βρ

ρ5

�
1þO

�
1

ρ

��
þ C2

h

2

e−2βρ

ρ6

�
1þO

�
1

ρ

��
−

2C2
F

β2 − 4

e−2ρ

ρ6

�
1þO

�
1

ρ

���
;

pCðρÞ ≃
ρ→∞

1

R4
0g

2

�
1

6ρ4
−
Ch

3

e−βρ

ρ5

�
1þO

�
1

ρ

��
þ C2

h

6

e−2βρ

ρ6

�
1þO

�
1

ρ

��
−

2C2
F

3ðβ2 − 4Þ
e−2ρ

ρ6

�
1þO

�
1

ρ

���
;

sCðρÞ ≃
ρ→∞

1

R4
0g

2

�
−

1

ρ4
þ 2Ch

e−βρ

ρ5

�
1þO

�
1

ρ

��
− C2

h
e−2βρ

ρ6

�
1þO

�
1

ρ

��
þ 4C2

F

β2 − 4

e−2ρ

ρ6

�
1þO

�
1

ρ

���
;

TC
00ðρÞ ≃

ρ→0

1

R4
0g

2

�
ρ2

2
ð−2abþ b3Þ2 þ ρ4

20
bð−2aþ b2Þð−48a2bþ 2abð32b2 þ β2Þ − b3ð4þ 3β2ÞÞ þOðρ6Þ

�
;

pCðρÞ ≃
ρ→0

1

R4
0g

2

�
ρ2

6
ð−2abþ b3Þ2 þ ρ4

60
bð−2aþ b2Þð−48a2bþ 2abð32b2 þ β2Þ − b3ð4þ 3β2ÞÞ þOðρ6Þ

�
;

sCðρÞ ≃
ρ→0

−
1

R4
0g

2

�
ρ2ð−2abþ b3Þ2 þ ρ4

10
bð−2aþ b2Þð−48a2bþ 2abð32b2 þ β2Þ − b3ð4þ 3β2ÞÞ þOðρ6Þ

�
: ðA3Þ

The asymptotic behavior of the short-range part of the EMT is

TSR
00 ðρÞ ≃

ρ→∞

1

R4
0g

2

�
Ch

e−βρ

ρ5

�
1þO

�
1

ρ

��
þ C2

hβ
2
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þ 2C2

F
e−2ρ

ρ2

�
1þO

�
1

ρ

���
;

pSRðρÞ ≃
ρ→∞

1

R4
0g

2

�
Ch

3

e−βρ

ρ5

�
1þO

�
1

ρ

��
−
2

3
C2
hβ

2
e−2βρ

ρ2

�
1þO

�
1

ρ

��
−
2C2

F

3

e−2ρ

ρ4

�
1þO

�
1

ρ

���
;

sSRðρÞ ≃
ρ→∞

1

R4
0g

2

�
−2Ch

e−βρ

ρ5

�
1þO

�
1

ρ

��
þ C2

hβ
2
e−2βρ

ρ2

�
1þO

�
1

ρ

��
þ C2

F
e−2ρ

ρ4

�
1þO

�
1

ρ

���
;

TSR
00 ðρÞ ≃

ρ→0

1

R4
0g

2

��
6a2 þ 3

2
b2 þ β2

8

�
þ
�
8a3 þ 6ab2 − 2a2b2 þ 2ab4 −

b6

2
−
β2b2

2

�
ρ2 þOðρ4Þ

�
;

pSRðρÞ ≃
ρ→0

1

R4
0g

2

��
2a2 −

b2

2
−
β2

8

�
þ
�
8a3 − 2ab2 − 2a2b2 þ 2ab4 −

b6

2
þ β2b2

�
ρ2

3
þOðρ4Þ

�
;

sSRðρÞ ≃
ρ→0

1

R4
0g

2

�
ð−8a3 þ 2ab2 þ 20a2b2 − 20ab4 þ 5b6 − β2bÞ ρ

2

5
þOðρ4Þ

�
: ðA4Þ

2. For dyon part

The function Q̃ðρÞ has the following asymptotic behavior:

Q̃ðρÞ ≃
ρ→∞

gQD − gChQD
e−βρ

ρ

�
1þO

�
1

ρ

��
−

CC2
Fffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2
p e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

�
1þO

�
1

ρ

��
;

Q̃ðρÞ ≃
ρ→0

ρ3bcþ ρ5
�
6abc
5

þ c
20

ð8ab − bβ2Þ
�
þOðρ7Þ: ðA5Þ
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The asymptotic behavior of the electric charge density is

ρDðρÞ ≃
ρ→∞

1

gR3
0

�
gQDChβ

e−βρ

ρ3

�
1þO

�
1

ρ

��
þ 2CC2

F
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

���
;

ρDðρÞ ≃
ρ→0

1

gR3
0

�
3bcþ ρ2

�
6abcþ c

4
ð8ab − bβ2Þ

��
þOðρ4Þ: ðA6Þ

The asymptotic behavior of the full EMT of the dyon near the origin is

T00ðρÞ ≃
ρ→0

1

R4
0g

2

�
6a2 þ 3b2

2
þ β2

8
þ 3c2

2
þ ρ2

�
8a3 þ 6ab2 −

b2β2

2
þ 2ac2

�
þOðρ4Þ

�
;

pðρÞ ≃
ρ→0

1

R4
0g

2

�
2a2 −

b2

2
−
β2

8
þ c2

2
þ ρ2

3
ð8a3 − 2ab2 þ b2β2 þ 2ac2Þ þOðρ4Þ

�
;

sðρÞ ≃
ρ→0

1

R4
0g

2

�
ρ2

5
ð−8a3 þ 2ab2 − b2β2 − 2ac2Þ þOðρ4Þ

�
: ðA7Þ

The asymptotic behavior of the electric part of the full EMT for the dyon is

TE
00ðρÞ ≃

ρ→∞

g2Q2
D

2

1

ρ4
þ C2C2

F
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
;

pEðρÞ ≃
ρ→∞

g2Q2
D

6

1

ρ4
þ C2C2

F

3

e−2
ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
;

sEðρÞ ≃
ρ→∞

− g2Q2
D
1

ρ4
þ C2C2

F
e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ2

�
1þO

�
1

ρ

��
;

TE
00ðρÞ ≃

ρ→0

3c2

2
þ 4ac2ρ2 þOðρ4Þ;

pEðρÞ ≃
ρ→0

c2

2
þ 4

3
ac2ρ2 þOðρ4Þ;

sEðρÞ ≃
ρ→0

2

5
ac2ρ2 þOðρ4Þ: ðA8Þ

The asymptotic behavior of the long-range part of the EMT is

TC
00ðρÞ ≃

ρ→∞

1
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0g

2
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ρ→∞
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−
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sCðρÞ ≃
ρ→∞
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2
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1

ρ4
þ 2Chð1þ g2Q2

DÞ
e−βρ

ρ5

�
1þO

�
1

ρ

��

þ 2CC2
FgQDffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2
p e−2

ffiffiffiffiffiffiffiffi
1−C2

p
ρ

ρ4

�
1þO

�
1

ρ

��
− C2

hð1þ g2Q2
DÞ

e−2βρ

ρ6

�
1þO

�
1

ρ

���
;

INTERNAL FORCE DISTRIBUTIONS IN THE ’t HOOFT-POLYAKOV … PHYS. REV. D 107, 055015 (2023)

055015-17



TC
00ðρÞ ≃

ρ→0

1

R4
0g

2

�
ρ4

1

2
b2ðð−2aþ b2Þ2 þ c2Þ þOðρ6Þ

�
;

pCðρÞ ≃
ρ→0

1

R4
0g

2

�
ρ4

1

6
b2ðð−2aþ b2Þ2 þ c2Þ þOðρ6Þ

�
;

sCðρÞ ≃
ρ→0

1

R4
0g

2
½−ρ4b2ðð−2aþ b2Þ2 þ c2Þ þOðρ6Þ�: ðA9Þ

The asymptotic behavior of the short-range part of the EMT of the dyon is as follows:

TSR
00 ðρÞ ≃

ρ→∞

1

R4
0g

2
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2C2

F
e−2

ffiffiffiffiffiffiffiffi
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;

pSRðρÞ ≃
ρ→∞
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sSRðρÞ ≃
ρ→∞
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8
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−
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�
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½−8a3 þ 2ab2 − b2β2 − 2ac2� þOðρ4Þ

�
: ðA10Þ

APPENDIX B: DIVERGENCE OF RADII

As follows from Eqs. (A2) and (A4), the main contri-
bution to the magnetic charge density and to the short-range
part of the energy density, respectively, is provided by the
asymptotic behavior at large distances. Then the corre-
sponding mean square radii for the small values of β and for
the large enough R diverge as

hr2Mi
R2
0

≃

R
∞
R dρρ4ðChβ

e−βρ

ρ3
ÞR∞

R dρρ2ðChβ
e−βρ

ρ3
Þ ∼

R 1=β
R dρρR 1=β
R dρ 1

ρ

∼
1

β2 lnð1βÞ
; ðB1Þ

hr2Ei
R2
0

≃

R
∞
R dρρ4ðCh

e−βρ

ρ5
þ C2

hβ
2 e−2βρ

ρ2
ÞR∞

R dρρ2ðCh
e−βρ

ρ5
þ C2

hβ
2 e−2βρ

ρ2
Þ

∼

R 1=β
R dρð1ρ þ β2ρ2ÞR 1=β
R dρð 1

ρ3
þ β2Þ

∼
1

β2
−
ln β
β

: ðB2Þ

According to the modified definition of the mechanical
radius in Eq. (18), to the external force in equilibrium
equation (47) for the short-range and to the asymptotic
behavior in Eqs. (A1) and (A4), the mean square
mechanical radius of the monopole for small values of
β diverges as

hr2imech

R2
0

∼

R 1=β
R dρρ4ð β

ρ4
− 1

ρ5
ÞR 1=β

R dρρ2ð β
ρ4
− 1

ρ5
Þ
∼
ln β
β2

: ðB3Þ

Proceeding analogously to the monopole case, we obtain
for the dyon the same divergences as in Eqs. (48), (B1),
(B2), and (B3). Namely, theD term diverges as in Eq. (48),
the mean square electric and magnetic charge radii as in
Eq. (B1), the mean square energy radius of the short-range
part as in Eq. (B2), and the mean square mechanical radius
as in Eq. (B3).
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