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The shift in focus towards searches for physics beyond the Standard Model employing model-
independent effective field theory methods necessitates a rigorous approach to matching to guarantee the
validity of the obtained results and constraints. The limits on the leading dimension-six effective field
theory effects can be rather inaccurate for LHC searches that suffer from large uncertainties while exploring
an extensive energy range. Similarly, precise measurements can, in principle, test the subleading effects of
the operator expansion. In this work, we present an algorithmic approach to automatize matching
computations for dimension-eight operators for generic scalar extensions with proper implementation of
equations of motion. We devise a step-by-step procedure to obtain the dimension-eight Wilson coefficients
in a nonredundant basis to arrive at complete matching results. We apply this formalism to a range of scalar
extensions of the Standard Model and provide tree-level and loop-suppressed results. Finally, we discuss
the relevance of the dimension-eight operators for a range of phenomenological analyses, particularly

focusing on Higgs and electroweak physics.
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I. INTRODUCTION

Searches for physics beyond the Standard Model (BSM)
chiefly performed at the Large Hadron Collider (LHC)
have, so far, not revealed any significant deviation from the
Standard Model (SM) predictions. This is puzzling, on the
one hand, given the SM’s plethora of known flaws and
shortcomings. On the other hand, these findings have
motivated the application of model-independent techniques
employing effective field theory (EFT) [1] to LHC data.
The EFT approach breaks away from the assumption of
concrete model-dependent correlations, thus opening up
the possibility of revealing new (and perhaps noncanonical)
BSM interactions through a holistic approach to data
correlation interpretation. The inherent assumption of such
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an approach is that there is a significant mass gap between
the BSM spectrum and the (process-dependent) character-
istic energy scale at which the LHC operates to “integrate
out” BSM states to obtain a low energy effective descrip-
tion that is determined by the SM’s particle and symmetry
content.

Efforts to apply EFT to the multiscale processes of the
LHC environment have received considerable interest
recently, reaching from theory-led proof-of-principle fits
to LHC data [2-7] (with a history of almost a decade)
over the adoption of these techniques by the LHC experi-
ments (e.g., [8,9] for recent examples), to perturbative
improvements of the formalism [10-21]. In doing so, most
attention has been devoted to SMEFT at dimension-six
level [22]

Ci
£255M+Zﬁof‘ (1.1)

While EFT is a formidable tool to put correlations at the
forefront of BSM searches, the significant energy coverage
of the LHC can lead to blurred sensitivity estimates even in
instances when Eq. (1.1) is a sufficiently accurate expan-
sion. When pushing the cutoff scale A to large values, the
experimental sensitivity to deviations from the SM can be
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too small to yield perturbatively meaningful or relevant
constraints when matched to concrete UV scenarios
(see, e.g., [23]). In contrast, dimension-eight contributions
can be sizeable when the new physics cutoff A is compa-
rably low in the case of more significant BSM signals
at the LHC. To understand the ramifications for concrete
UV models, it is then important to (i) have a flexible
approach to mapping out the dimension-eight interactions
and (ii) gauge the importance of dimension-eight contri-
butions relative to those of dimension-six to quantita-
tively assess the error of the (potential) dimension-eight
truncation.

A common bottleneck in constructing EFT interactions
is removing redundancies. This is historically evidenced
by the emergence of the so-called Warsaw basis [22].
Equations of motion are typically considered in eliminating
redundant operators. Still, they are not identical to
general (nonlinear) field redefinitions, which are the actual
redundant parameters of the field theory [24-28]. When
truncating a given operator dimension, this can be viewed
as a scheme dependence not too unfamiliar from renorma-
lizable theories, however, with less controlled side
effects when the new physics scale is comparably low.
Additional operator structures need to be included to
elevate classical equations of motion to field redefinitions
[28,29] to achieve a consistent classification at the
dimension-eight level.

In this work, we devise a generic approach to this issue
that enables us to provide a complete framework to match
any dimension-eight structure that emerges in the process
of integrating-out a heavy non-SM scalar and obtaining the
form of the Wilson coefficients (WCs). Along the way of
systematically reorganizing the operators into a nonredun-
dant basis, resembling the one discussed in Refs. [30,31],
we show that removing the higher-derivative operators
produced at the dimension-six level itself can induce a non-
negligible effect on dimension-eight matching coefficients
along with the direct contribution to the same which can be
computed following the familiar methodologies of the
covariant derivative expansion [32,33] of the path integral
[34-36] or the diagrammatic approach [37,38]. Finally, it is
worth mentioning that, even though the one-loop effective
action at dimension eight is yet to be formulated, it is
possible to receive equally suppressed, loop-induced cor-
rections from the dimension-six coefficients computed
precisely at one loop. These can present themselves as
the leading order contributions for the WCs, which gen-
erally appear at one-loop.

This paper is organized as follows: in Sec. II, we discuss
the implementation of the Higgs field equation of motion
and study its equivalence with field redefinitions. This
gives rise to the desired dimension-eight operator structures
after removing redundancies (Sec. 11 C). Our approach is
tested and validated against available results for the real
triplet scalar extension in Sec. III. In Sec. IV, the matching

coefficients are presented explicitly considering a range of
scalar extensions of the SM. Finally, the significance
of the dimension-eight operators is analyzed based on
observables in a model-dependent manner in Sec. V. We
conclude in Sec. VI.

II. COMPLETE MATCHING
AT DIMENSION EIGHT

We start by studying the structures of the higher-
dimensional operators that can arise from heavy scalar
extensions of the SM generically once the heavy field (®) is
integrated out. The most generalized structure of the
renormalized Lagrangian involving heavy scalars can be
written as [32,39]

L®] 5 @ (P2 — m® — U(x))® + (O'B(x) + H.c.)

+£A¢(CI>*¢)2. (2.1)

Here, U(x) and B(x) contain the interactions that are
quadratic and linear in @, respectively, and only involve
the lighter degrees of freedom. Once @ is integrated out, we
obtain a tower of operators that can be arranged according
to their canonical dimension. It is important to note that the
operators generated in this process might not be indepen-
dent. Depending on phenomenological considerations,
several sets of operators are defined in the literature. A
set of dimension-six operators was prescribed in Ref. [40].
It was improved by systematically removing the redundant
structures and promoting it to form a complete nonredun-
dant basis in Ref. [22]," popularly known as the Warsaw
basis. There is another set of operators known as the
Green’s set [42-44], which is overcomplete. The operators
here are independent under the Fierz identities and inte-
gration by parts but otherwise redundant on account of
equations of motion.” This source of redundancy contrib-
utes to higher dimensional operators. In this paper, we use
the Mathematica package CODEX [45] to generate WCs of
the operators in the SILH set [46,47] up to one loop,
including the relevant redundant terms. Since we are
interested in the corrections to the dimension-eight coef-
ficients resulting from the dimension-six redundant struc-
tures, we recast the SILH operators into Green’s setlike
structures’ to single out redundant and nonredundant
operators using the following equations:

' A minimal set of four-fermionic operators is also constructed
in Ref. [41].

Here we are being ambiguous about the use of the equation of
motion or field redefinition in removing the redundancies, see
Refs. [24,29] for more details.

3We call it “Green’s setlike structures” because we differ in
some redundant operator structures as defined in Ref. [42], see
Appendix A for more details.
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Oy = %a”(HTH)a”(H*H) = —% (H'H)O(H'H),
Q, = % [HD"H|[HID"H] = -2(D,H'H)(H'D,H) — % (H'H)O(H'H),

Qr = (H'H)(D,H'D'H) = % [(H'H)O(H'H) — (H'H)(D*H'H + H' ' D*H)),

1
Qp=D*H'D’H = — 3 (Y,,(W,w,)D*H + H.c.) - N (H'H)(D*H'H + H'D*H),
1
QZW = _z (D/AWLU)Z
8 vt 2 igy I bl TV 2yt yot (7t 3
— —3—2 qu ((Wqu)D H + H.C.) — e (q/py/“r y/p)(H lD”H) + Tﬂ, YMY,”,(H H)
- Gv o &W ; -
+5 (D'H'H)(H'D,H) - 16 OQr + £ (1+2NY,}Y,)(H'H)(D*H'H + H'D*H),
1
Qop = _E (aMB;w)z
2
8Y v—1//- . _ g v
= =>4 Yoy (pw) D*H + H.c.) — igy (,7"y,) (H'iD,H) + gy Qg + 2034 Y 5 Y (HTH)
2
+ % (1+XY,1Y,})(H'H)(D*H'H + H'D*H),
1
QZG =—-5 (DﬂGZv)z

2

3 prq pq= qp pq ~ 9p

Qw = igw(H'{'D*H)D*'W!,

i 2 < 2 2 2 .
- % (H'iDLH) (yc'y) - %W (D,HH)(H'D'H) + gl—”g Qp - %V (H'H)(D*H'H + H'D*H),

Qy = igy (H'D'H)&*B,, = igh(H'D*H) (j"y) — 2} Qx — g}(H'H)(D*H'H + H'D*H),
Qww = gy (H H)W,, W',
Qpp = g%,(HTH)BWBﬂ”,
Qws = 2gwyy(H'T'H)W/], B",

2 4 2 2 2 .
— 86y 1((g,y,)D*H + H.e) + %A’QY—I y:! (HTH)3+%NY‘1Y‘1 (H'H)(D*H'H + H'D*H),

where Y, denotes the SM Yukawa coupling matrix, {p,q} € (1,2,3) are the flavor indices. We denote the Wilson
coefficients of the SILH operators as C; with 7 labeling the operators in Egs. (2.2). Taking into account all the H-involved
structures that can appear from a scalar extension of the SM, one can write the following:

L= LG+ IHHP + 0 (HHY + ¢ (H H)O(H H) + ¢ (D, HH) (H D, H)

+ 7 (HH) (B, B™) + ¢ (HTH) (WL, W) + ¢ (HiT H) (B, W)
+ & (HTH)(GE,G™) + () (HiD,H) (") + (O (HT iDLH) (e yy)
+ EY (H'H)(D*H'H + H'D*H) + £ [(joy)D*H + H.c ). (2.3)

We highlight the redundant terms in Eq. (2.3) in bold font; they need to be removed. The coefficients of the Green’s
setlike structures in Eq. (2.3) can be expressed in terms of SILH coefficients through the relations given in Table I.

We now discuss our approach to properly implement the Higgs equation of motion (EOM) to compute the corrections to
dimension-eight coefficients.
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TABLE 1.  Translation of SILH coefficients into the Green’s setlike form. Here, Y, denotes the SM Yuakawa coupling, {r.q} €

(1,2,3) are the flavor indices.

Coefficients of Green’s
setlike operators

Relation in terms of SILH coefficients

6 2 lu— Ay 4q2 -
C<1 ) [CG + gTW/VZYpéYq;CQW + ZQ%AIZYp;YWECQB + %AIZYP;Y[HECzG}

6 . I 2 2

g) [_%CH_%CT+%CR_%CZW+%CZB+%CW_9§CB]

6 e 2

g ) [-2Cr + %Czw - %CW]

4(‘6) g%/CBB

g6> g€vaw

é® 29w9yCwa

gé) 96°Coc

ééf [ig3Cop + ig3Cp)

6 i, i

g% [~ Coy + %CW]

6 2 _ _ _ _ 2 2_ _ _ 2
&% [—1Ck + 25 (142075070 Cow + (1 4+ AY53Y 1) Cop + 2L XYY 1Co — D2Cyy) = XC

>
_Y;;[%CZW + éCZB + ?Cz(;] - % quCD

A. Removing redundancies: Field redefinition
and Higgs field EOM

In quantum field theory (QFT), the experimentally
observable quantities are related to the S-matrix elements,
which remain invariant under field redefinition. Naively, this
can be inferred from the fact that when calculating corre-
lation functions using the path integral formalism, the field is
just an integration variable. The correlation functions and
S-matrix elements can be connected by the Lehmann-
Symanzik-Zimmermann (LSZ)-reduction formula [48,49].
In the case of a renormalizable Lagrangian, we exploit this
freedom and rewrite the Lagrangian in the canonical form. In
an effective theory, we can perform nonlinear field redefi-
nitions due to the presence of higher dimensional operators.
This invariance gives rise to a rule to remove redundant

|

terms from the effective Lagrangian and leads to the
construction of “on-shell” effective theory [24].

One way of removing the redundancies with higher
derivatives of operators involving the Higgs field H is to
redefine the field in a perturbative manner [24,28,29,50].

For example, to remove the term 556) (H'H)(D*H'H +
H D’H ) in Eq. (2.3), we can use the redefinition
H— H+&YH'H)H, in which case the redundancy at
the level of 0(5(16)) will be removed. Subsequently, it will

give rise to higher-dimensional operator at (’)((5&6))2).

Now the same outcome can be achieved by employing
the EOM judiciously. We compute the classical EOM
for the Higgs considering all possible structures up to
dimension-six from Eq. (2.3)

D2H = —2)/(H'H)H - Y + 3\" (H'H)H + ¢ (D,H'H)D'H

+ & (D°HH + H'D*H)H + &7 (H'H)D*H - {'D,[(H'D,H)H]

+ 20 HO(HH) + &OD*(HH)H) + ¢ H(B,, B")
+ CTH(WE W) 4 £ (7 H) (B, W) + £ (G, G

i) D [H gy )] |+ iGN (D H) (rrw) + | i DLH (e )]

+ i) (DLH) @y ey + | EVD2 ()|

(2.4)

Here, /' =A—1 with A being the SM Higgs quartic
coupling in the renormalizable Lagrangian. 1 is the direct
contribution to the former, obtained from integrating out
the heavy field as shown in Eq. (2.3). The underlined
part on the right-hand side of the Eq. (2.4) denotes the

|

contribution from the renormalizable part of the Lagrangian
(E(Sﬂ), which is considered as the first-order term in the
EOM. The remainder arises from the effective operators at
dimension-six and is considered second-order terms [49].
We can think of Eq. (2.4) as some special field redefinition
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TABLE II.

Contributions to the dimension-eight operators from the dimension-six structures after implementing the EOM. Here Y gy

denotes the SM Yukawa coupling. We have suppressed the flavor indices without any loss of generality.

Operator Wilson coefficients Operator Wilson coefficients

Ol (@77 + 8076 — ¢ O > 4@@5@

sz)Hap_ 1 i é g O:(;/SZ)H‘D.Z G52

Ol(/i)DH,l lCél)é:gé) Ol(/i)DH.Z ZCSZ 2

o, ci SN o, 2000

O(f?zWB C §< 053462 2§(76)§(16)

Ou(//SZ)BzH éV46> 52 Ol(;?wm ggﬁ) 5(26)

O o £ Oy 70 g9

O (—4(&")? 442k6>+ 435“5Yﬂ4+3¢“:6> o) 608" — 6(e\")22 — ax (a(”)?
—12260 8 + 2087 8&’5 g +4078 107

O.(,,82)H3132_1 +45(6)§(26) +2§( § (91(;32)}]3732.2 (6> 56)

O, (—4£7& - a0 + 200 ) oy O (-367& = 2878 Yoy

and directly employ the first-order terms to remove the
redundancies in Eq. (2.3), but this will not generate
any higher-dimensional structures. This is the common
practice to obtain the complete basis at dimension six.
Working with the second-order terms is a nontrivial
task, substituting it directly into Eq. (2.3) to obtain a
contribution to higher dimension operators could lead
to incompleteness as pointed out in [29]: The missing
contributions can be encapsulated by including a term,

(1/2) (&% (H"H))25* £ /5H' 5H. Calculating this term from
Eq. (2. 3) we obtain the following contribution:

L= (E7VD,[(H H)H|D[(HTH)H] - 6(£7)?A' (HTH)*
_2(556))2/1/(1_]#]_1)4_’_(fiﬁ))Z(HTH)Z(HTy_’_yTH)
— (&2 (H'H)X(D,H'D"H). (2.5)

Since our primary concern is the redundant operators
involving the Higgs field, the boxed structures in the
Eq. (2.4) containing the derivative of fermion fields can
be reduced to other structures by applying the first-order
fermionic EOM.

We are now ready to implement the methodology
discussed above to compute the dimension-eight coeffi-
cients from dimension-six operators. |

B. Impact of dimension-six structures
on dimension-eight coefficients

It is a common practice to employ the first-order EOM, i.e.,
the classical equation of motion obtained from the renorma-
lizable Lagrangian, to transform the operators from one basis
to another at a given mass dimension. Here we extend this
strategy to generate higher-order terms in the effective
Lagrangian. The contribution to the WCs arising from the
EOM substitution considering second-order terms will be
important. In Table II we provide the contribution to dimen-
sion-eight operators coming from the dimension-six
Lagrangian. The operator structures are shown in Appendix A.

As the process of integrating out heavy fields becomes
more complicated at higher operator dimensions, our
method of generating WCs from lower-dimensional ones
becomes economical. Following the expressions shown in
Table II, one can quickly work out the dimension-eight
contribution without explicitly performing the matching at
that order. In the following subsection, we compute the
complete basis at dimension eight.

C. Removing redundancies at dimension eight

We consider all (redundant and nonredundant) structures
that only involve H and its derivatives at dimension-eight
that can arise directly after integrating out at tree level.

) = Oty + O HH)(EHD,HD'H H) + (Y (H H)?(D,H D'H) + ¥ (D,H D'H)(D'HD,H)
+ (D, HD'H)(D*HD,H) + ¢ (D,HD*H)(D,H D*H) + &Y (H'H?(D*H'H + H'D*H)

+ §2 H D'H)(D*H'H + H'D*H) + V(D

D2H'D*H)(H'H) + &> (H'D*H)(D*H'H).

(D H H)(D*H'D'H) + H.c ]
[(’DZHTH)(’DZHTH) +He]+EY(DHH)(D,H D*H) + H.c ]
pll

(2.6)
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TABLE IIL

Matching contributions to the nonredundant dimension-eight operators from the dimension-eight structures after

implementing the EOM. Here Y, denotes the SM Yukawa coupling. We have suppressed the flavor indices without any loss of

generality and continued throughout the rest of the paper.

Operator Wilson coefficients Operator Wilson coefficients

oy (Y —ane® 8226y 1 an2ed) aprdy O (=& + 415 + 2/1'56 + 22y gy
OSQDZJ ggg) - 4’1/5g8> ngbz,z C 2 = 4/1/53 - 4’1,55

Oz (=&Y = )y O e (=&)Y su

Ol (&) + &) 13y o, 9z,

The redundant structures, written in bold in Eq. (2.6), can be expressed in terms of the nonredundant basis structures in the

: 4
following manner :

EY(HTH)2(D*H'H + H'D*H) =
&Y (DMH‘D”H)(DZHTH + HD*H) = —4) &Y (H'H)*(D,H D*H) —
&V [(D,H H)(D*H'D'H) + H.e] = —4
(®)

4
£¥((D,H H)(D,H'D*H) + H.c.

"

(HTH)(HTD,,H) (D'HTH)

eV (H H)* - &Y |(HTH)X(VTH) + H.cl,

£V [(HTY)(D,HD*H) + H.c.],
— & [(H'Y)(D,HD"H) + H.el,

8/1’25 HTH)* + 40D [(H H2 (VHH) + He] + &Y [(VTH)(VTH) + Heel,
£V (HTH)(H'D,H)(D*H'H) — &¥[(D,HTH)(D*H'Y) + H.c,

g< ND*H'D*H)(H'H —41’256 (HTH)* + 22 [(HTH) (V'H) +He] + &Y (HH)(V'Y).

)
) =
]
S (D?HTH)(D*HTH) + H.c]
]
)
) =

Y (HID2H)(D*HTH

In Table III, we present the coefficients in the nonredun-
dant basis.

Before cross-checking the proposed method in the next
section, we summarize our framework in the flowchart
depicted in Fig. 1. This work considers SM extensions of
only a single heavy scalar. CODEX [45] has been used to
generate the operators and the WCs in the SILH set up to
one loop at dimension six. We compute the EOM (only for
the Higgs field), including contributions from dimension-
six operators; we substitute the EOM in the redundant
structures. The first-order terms transform the redundant
structure of dimension six to nonredundant structures,
while the second-order terms generate dimension-eight
operators. To compensate for the missing contribution that
renders the EOM equivalent to a field redefinition, we need
to add a term proportional to the second-order derivative of
the effective action. Furthermore, we calculate dimension-
eight operators by integrating out the heavy field at the tree
level, which gives rise to the leading effects at dimension
eight. We then substitute the first-order terms in the EOM to
convert them into a complete basis and combine all these
contributions to obtain the complete matching result.

*These operators can be related to the structures shown in
Ref. [44].

4/1’257 (H'H)* +2/1’§7 [(H

HR(VH) + Hel + &Y (HTH)(VTY). (2.7)

The following section applies this to reproduce the
known results for the real triplet extension of the SM to
validate our methodology.

III. CROSS-VALIDATION OF THE METHOD

To cross-check our approach, we first turn to the example
case of areal triplet scalar (@) SM extension. The BSM part
of the Lagrangian reads

1
Lo =5 (D) (D'D?) — 2 my® P + 2kH v HP"

I\JI'—‘

—n(HH)®*®* —;L/%((D“CD”)Q. (3.1)
Integrating out the heavy scalar leads to some correction to
the renormalizable term (H'H)? as discussed in Eq. (2.3),
the coefficient 4 for this case is 1 = k>/(2m3,).

The SILH dimension-six coefficients have been tabu-
lated in Table IV. The one-loop contribution to the match-
ing can be categorized into two different classes: the
contribution arising from integrating out scalars from
purely heavy loops has been highlighted in blue, and terms
from heavy-light mixed loops are shown in red.

We compute the Green’s setlike coefficients first following
the relations provided in Table I and derive the corrections to

055007-6
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SM + heavy
scalar

Integrating out the
heavy scalar

Using CoDEXx

I up to tree level

+ up to one-loop

Dimension-6 operators

First order

Redundant
structures

4 Nonredundant k
structures

v

Dimension-8 operators

First order

Redundant

" Nonredundant * ;’ :
structures .~

structures

v

2 62£cff
JHSH

St

Second order

EOM

FIG. 1.

Flow chart depicting the algorithmic approach considered to compute matching coefficients for both dimension-six and

dimension-eight operators. Here, “First order EOM” and “Second order EOM” are formulated from the renormalizable and the

dimension-six parts of the SM Lagrangian, respectively.

dimension-eight from dimension-six structures as shown in
Table II. These contributions are computed considering only
the tree-level part of the SILH coefficients. Thus, they are on
the same footing as the direct dimension-eight contributions;

they are tabulated separately in Table V. The direct con-
tributions at dimension eight after “integrating out” can be
captured by a total of seven coefficients as specified in
Eq. (2.6). The values for the coefficients are

TABLE IV. Dimension-six SILH Wilson coefficients relevant for integrating out the real-triplet scalar of Eq. (3.1) at one loop. The
terms within braces ({}) denote the contribution from pure heavy loops, whereas the brackets ([]) mark the contribution from light-
heavy mixed loops.

SILH SILH
operator Wilson coefficients operator Wilson coefficients
O r,k2 { Snk /1,.,} _|_[13;72k2 L ATkt 19K 2nkPA kA 11KR2% S5KYe Oy { } r_3nk* 9k* 4+ 5K2) 1
Sm 2 m 8Hl$ﬂ2T16mg)ﬂ2T161n§’ﬂz miﬂz mg)izz—rlém;ﬂz ]6mg>7[2J 16m2 2 |-8m P 32m 2 lﬁm4 7[7J
O 21<2 5K gy _ [ 2lgkr 21k 25K2).1 @ 5k* A k> k4 43K
R + {4m4 e Hemin> — 32mSn? + 32minl T +{8m4 [iji)/t2 " 32mG a2 T 32mi A
O 25Kk> O 9
ww {96n12 2} + [768m 2 } W {480;1%712}
o -k o 3k
wB [ 128/23)”2} BB 256m3);rz]
O __k 0] _ Tk
W [ 288mf1,7r2} B [ 96"1:‘1)772}

TABLE V. Contributions to dimension-eight operators from dimension-six structures when integrating out the heavy real triplet scalar
of Eq. (3.1). Here only the tree-level matching of the dimension-six structures have been considered while computing the results.

Operator Wilson coefficients Operator Wilson coefficients
(8) 5K0 y Ok*n _ 10k*A (8) K

On P S Oy g Yom
(8) _ 5K (8) 8kt

0H6D2.1 mS OH(’DZ 2 mg,
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TABLE VI.
scalar of Eq. (3.1).

Contributions to dimension-eight operators from dimension-eight structures when integrating out the heavy real triplet

Operator Wilson coefficients Operator Wilson coefficients
0(3) 21(:) + M _ % _ Zijm + 2»72:2 8ij2 4 82 01(//82)H5 (- ikg‘: 2,::1; + 4/1k2)YSM
OSQDZ.I - % 4nk2 o “k OS(’)DZ.Z % + 8,352 12,1::2
TABLE VII. Total tree-level matching of the dimension-eight coefficients for the real-triplet scalar extension of SM of Eq. (3.1).
Operator Wilson coefficients Operator Wilson coefficients
Og) 7k]‘; 42 (’1211—”) + (40ﬂ—13n/12:/1®>k4 0(521)2,1 _n];_;
(7)(56)732‘2 (4n=81)k> 8,1)k2 +§nk: Ol(,/gz)m Yeur (—3k4—21;§2(q—2z))

C(g) - (2]’[2]{2 k4 (1)) é’(8) 81’]’(2 C(S) o _411k2
1 6 g 0 62 6 3 T T %
mg,  4mg me, mg,
452 2k? 2nk>
548> e ng) =0, Cés) e 28) - rZe ’
@ o o
£ _ 2k £ _ Ak? £ _ k2 £ _g
2 m§ T T m& Y T 2mS” 7P ’
®_2°  w__K 30
-2 -k 32

In Table VI, we show the direct contributions to dimension-
eight structures removing redundancies at dimension-eight
following the relations given in Table III. Lastly, in Table VII,
we provide the complete tree-level matching results at
dimension eight. Here, for comparison, we focus exclusively
on those operators whose coefficients were previously
derived in Ref. [50] employing the field redefinition of the
Higgs field. We can connect the structure of O'®) , givenin

H(sz
Ref. [50] with o® oD 1 and O D22 (see Appendix A for the
explicit structures of the operators), in the following way:

(H'H)(H'o'H)(D,H' o' D*H)
= 2(H'H)(D,H'H)(H'D"H)

— (H'H(D,H'D'H). (3.3)

These results are in agreement with the expressions pro-
vided for the tree-level matching of the dimension-eight

TABLE VIII. Dimension-eight matching coefficients for the
real-triplet scalar extension of SM, Eq. (3.1).

(8) K2 y2 (8) 2 y2
OV/4H2.I m‘; YSM OW4H2.2 ng YSM

®) _®y ®) a2 ®) _®
Ow2H3D2.1 mg, © SM OH4D4,1 mg, Oips 3 mg,

coefficients in Table 10 of Ref. [50]. The remaining structures
that arise after integrating out the heavy triplet scalar at
dimension-eight, mainly at tree-level, including two- and
four-fermionic operators are shown in Table VIII.

IV. EXAMPLE MODELS

This section applies the formalism described above to
several example models to generate dimension-eight oper-
ators. We use CODEX [45] to obtain the operators and
associated WCs in the SILH set at dimension six up to one
loop, which we tabulate for each model. The coefficients
are passed through Egs. (2.2) to (2.5) that yield the
contribution of dimension-six operators to dimension-eight
operators. For clarity, we only present the leading con-
tribution from the dimension-six tree-level generated oper-
ators and the direct integrated-out contribution at
dimension eight. Subleading (yet non-negligible) correc-
tions to the coefficients that arise from loop-generated
operators can be obtained accordingly,” and the complete
list of contributions can be obtained from a Mathematica
notebook [53]. The models (apart from the leptoquark one)
we discuss below are chosen as they generate operators at
the tree level (see, e.g., the discussion in Refs. [54,55]). We
can classify the contributions to WCs into the following
two categories:

(1) Tree-level contributions: In this category, we only
consider the contribution from those WCs generated
at the tree level at dimension six. When the EOM is
applied, they contribute on a par with the tree-level
generated dimension-eight operators. Their com-
bined effects are then considered to be the leading
order contributions at dimension eight. We will
mainly focus on this type of contribution and
tabulate results for each model. It should be noted

’In Refs. [51,52] some of the dimension-eight operators up to
one-loop order for a few models have been computed.
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that these operators also receive subleading loop-
induced contributions. The complete expressions for
the coefficients can be found in the Mathematica
notebook [53].

Loop-induced and/or higher order contributions: If
the redundant dimension-six operators are generated
at one-loop level or the coefficients introduced
through the application of the EOM appear with
loop-level contributions or both, the WCs contain
(1/162%) or (1/162%)* suppressions, depending on
interference between tree and loop parts. We will not
list these types of contributions here, except for the
leptoquark model for demonstration purposes. How-
ever, as mentioned above, the provided Mathematica
notebook [53] contains all contributions, and inter-
ested readers are referred to the here documented
results.

@

A. Complex triplet scalar

The SM can be extended with an electroweak complex
triplet scalar (A) to explain the generation of neutrino
masses through type-II seesaw mechanism [56,57]. This
model also offers interesting collider signatures comprising
rare lepton number and flavor violating processes [58]. In
addition to contemplating the phenomenological signifi-
cance of this model, a consistent effort has been made in the
recent past to explore the effective theory of such an
extension, see Refs. [59-61]. The BSM part of the
Lagrangian reads

Ly D (D,AY)(D'A) = mA (ATA) — [AzH6'HAT + H.c ]
— 1 (ATA = A (ATTIA)(ATTIA) = 23 (HTH) (ATA)
—A4(H'6'H)(ATT!A) (4.1)

(we neglect the interaction with the fermion fields in the
following). As the Lagrangian contains a linear interaction
for the field A, the renormalizable structure (H'H)? gets an
extra contribution proportional to the coupling 4 = 23 /m%.

Table IX contains the complete matching at one-loop
order for the dimension-six SILH coefficients. After the
tree-level integrating we obtain the following WCs at
dimension-eight:

®_ <2<z3 —2)*% 84 HQWA) o _8(a=A)i3
_ e

& 6 g ¢

LON ma DN
o _4(h—A)23 8 843 £ _ 2(A3—)A3
ST T T
g 842 g 43 g 44
fg):m—g, é):m—ﬁf’ 53):’"—? (4.2)

As mentioned before, the total contribution to the dimen-
sion-eight operators is categorized into two categories
depending on how they contribute. Below we write down
the operators in their respective categories.

(1) Trege-level8 contriblilgtion: O;QDZQ I (’)gﬁ)pz,z, (’)g),
Ol(//2>HS’ 01(//2>H3D2,1’ 01(1/4)H2, .- The WCs corresponding

to these operators are listed in Table X.
Loop-induced and/or higher order contribution:

o8 o o8 o B

w2 HYD,1> TyPHYD2’ TwiDH,1’ TyiDH?2’ “TywlHD? 2’

o8 o B

X YW H Y tE,
to these operators are listed in the Mathematica
notebook [53].

(@)

,- The WCs corresponding

B. General two-Higgs doublet model

One of the simplest and well-motivated extensions of the
SM Higgs sector is the inclusion of an additional SU(2),

TABLE IX. WCs of dimension-six SMEFT operators in the SILH set after integrating out the complex triplet scalar Eq. (4.1). The
terms within braces ({}) denote the contribution from pure heavy loops, whereas the brackets ([]) mark the contribution from light-
heavy mixed loops. We only use the uncolored coefficients for further calculation here. The complete calculation can be found in the

provided Mathematica notebook [53].

SILH SILH
operator Wilson coefficients operator Wilson coefficients
Os WB R { pE BB BB B MR R Oy % { 2 } [3A3AZA A R
2my my 277my  64xtmy wm} Pmy  2mmy  Axmy m} 32mm? d?ml " 8zPmi T 8wm}  272mS!
SRBA LA SR SBASWiL SR | 24 Oy EY ST S, S )
Bz2mi  2Pmk  mPmi 64mmy  o'mS 2w 2m§ my my  omi ' 7687 m?
| Al LR 4 62 74,12] H B AR 3 an |
4z2m} 2m} 8m2mS  wm§ T mmd 2rPmy  24x'my  8x'my ' 3mPm§
10) 42 AR 2R 2 N Y LY L Ow 2
K m_z + {ﬂzm‘z + m} + 384ﬂ2mi} - Bz2mi " 6xPmd T 2nPmd - 3n2mg] _[721‘[2”12}
2
Op [ 17 ]
2477 my
o, 2 Oww P 2512
[8ﬂ2m‘2] 967‘[2mzA} + []92752111‘2}
O y) 1322 O 2 1123
WB M L [__TTA BB 3 A
{384n2m§} [%azmg] 647r2m2A} + [647r2m‘2}
OZW { 9%&/ 7} Oz B { !I% }
240ﬂ2m3 1607rmzA
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TABLE X. Total dimension-eight tree-level contribution after integrating out the complex triplet scalar of Eq. (4.1). Complete results
at one loop with additional operators are presented in the Mathematica notebook [53].

Operator Wilson coefficients Operator Wilson coefficients

Osﬁ)vz,l 8(13;;)& - % Osﬁ)Dz,z - 8(4/17:; Bl + %

O(Ft;) 2(16AZ+4/1(/13—n/11%)+(A3—/14)Z)AA S(ZMHItiSA_MHOﬂ 4 208 2081(’ O.(;)H»* (2<8/1+jj2—/14)12 3624 )YSM
O(I-fzﬁ.l %

Ol(,i)H‘D’ - % Ysm 05/84)}12,1 lf Y%M

scalar doublet (H) with hypercharge Y = 1/2, the well-
known two-Higgs doublet model [62,63]. Many UV
complete theories contain a two-Higgs doublet model in
their minimal versions. This model has also been well
discussed within SMEFT framework by integrating out the
additional heavy Higgs doublet leading to dimension-six
effective operators at one loop [64—66]. The relevant part of
the BSM Lagrangian reads

Ly D (D,HY)(DMH) — m3HIH — (HTH)
+ (nu(H' ) H(HTH))(HTH +H'H)
— 2 (HH)(H' )2 —ﬂz(H"'FI)(FITH)

= A[(H"H)* + (HTH)?]. (4.3)

The Wilson coefficients of dimension-six operators in
the SILH set are presented in Table XI. After integrating

TABLE XI.

out at tree-level the nonzero dimension-eight coefficients
are given by

2 2
(=T g o), P =T
H my
2
(8) Mu
=——. 4.4
a - (44)
We split the operators into our categones
(1) Tree-level contribution: 05161) 1,(9(8> 0(82) s. The
w-H>
WCs corresponding to these operators are listed in
Table XII.
(2) Loop-induced and/or higher order contribution:
(8) (8) (8) (8) (8)
OH6D2,2’ C91,/2114D,1’ Ow2H4D,2’ OyﬂDH,l’ Oy/4DH,2’
(8) (8) (8) (8) (8)
OVIZH3D2.1’ OW2H3D2,2’ OH4X2’ OI/IZXZH’ OI/I4H2,1’
o®
wiH? 2"

WCs of dimension-six SMEFT operators in the SILH set after integrating out an additional Higgs doublet, Eq. (4.3). The

terms within braces ({}) denote the contribution from pure heavy loops, whereas the brackets ([]) mark the contribution from light-
heavy mixed loops. We only use the uncolored coefficients for further calculation here. The complete calculation can be found in the

Mathematica notebook [53].

SILH operator Wilson coefficients

SILH operator

Wilson coefficients

(96 i 3 2n 3nunydy 3nunyia OH 3’7H’1H Sy
» T+ {32}11%{7[2 8m2, 48m 21 8m?2,7* - 87%m2, + 48n’m2 + 487[ mH ‘ 1927[2m§{ + 487r2m§{} + [167r2m !
B A 2 Wi Oyp { }
32mia’  96m2n’ 8m7 7t2 8m§1n2 96Om§{712
2
_~_[|5;1H,1 3;1;,11 Bk 7;7;,/13]
8m2 7* 4m 7’ 167'{2 2 AW
Og 30y i Oy 5 A
8m$1ﬂz 96m pa + 24m2 T[z} + [8m 2 } {192m;ﬂ2 48;7172_[7[2}
@) @ S R S
ww {384171,2}17[2 + 768m,7;1ﬂ2} BB {384171317[2 + 768m%7rz}
O _ O !]%v
v {384’"51”2} v {960m%1/r2}
TABLE XII. Total dimension-eight tree-level contribution after integrating out additional an Higgs Doublet, Eq. (4.3). Complete

contributions at one-loop including additional operators are presented in the Mathematica notebook [53].

Operator Wilson coefficients Operator Wilson coefficients Operator Wilson coefficients
8 2 (44—Ay —Ay =21 8 2 8 _m
O;—I) Ll ,,11;1 22 (91(,,2)11-s %YSM OE-I(?DZJ iy
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The WCs corresponding to these operators are
provided in the Mathematica notebook [53].

C. Complex quartet scalar (hypercharge Y=3/2)

To generate neutrino masses through higher dimensional
operators, an SU(2), quartet (X) with hypercharge
Y =3/2 can be added to the SM [67-69]. Focusing on
this part of the BSM Lagrangian,

Ls D (D) (D'E) - M3E'E + (sl H/H*H' + H.c.)
— ks, (H'H)(Z'Z) — kg, (HH") (2], 274m)

— 25, (Z'2)? — 2, (BTT%)?, (4.5)
we can integrate out the heavy scalar and match to the
dimension-six SMEFT operators (see also [30,65,66]).
After matching we obtain the effective operators and
associated WCs in terms of the UV parameters, shown
in Table XIII. Tree-level matching generates the following
dimension-eight operators coefficients:

(:(8) _ ns|*(ks, + ks,) 4,(8) _ _6|’72’2
1 M% ’ 2 M% )
6|’72|2
¢ = - : (4.6)
3 Mé

Again, we split the operators into the two categories:

(1) Tree-level contribution: OH6D2 i O(S) Oggpz ,- The
WCs corresponding to these operators are listed in

Table XIV.

TABLE XIII.

(2) Loop-induced and/or higher order contribution:

(8) (8) (8) (8) (8)
OV/ZHS > OV/2H4D. I Ot//zH“D,Z’ Oy/4DH,1 ’ Oy/“DH,Z’

(8) (8) (8) (8) (8)
OIIIZH}DZ.I’ OWZHBDZ,Z’ OH4X2’ OI/IZXZH’ OI/I4H2,1’
(’)5/82112’2. The WCs corresponding to these operators

are shown in the Mathematica notebook [53].

D. Real singlet scalar model

The addition of a real singlet scalar to the SM is
motivated by a range of SM shortcomings, related to dark
matter, baryogenesis, and the electroweak hierarchy
problem [70-72]. This model has been discussed exten-
sively within the EFT framework through a complete
one-loop matching to the SMEFT up to dimension six
[36,38,59,65,66,73]. Here, we systematically extend these
results. The Lagrangian involving the real singlet scalar
field (S) is given by

1

‘CS D= (0 8) —§M§82 —ﬂs(HIH>S

—ks(H'H)S* — %1384. (4.7)
After integrating out the heavy field S, we obtain an
additional contribution to the quartic coupling of Higgs:
4= —n%/M%, along with the dimension-six SILH set
operators as shown in Table XV. Since no redundant
operator at dimension six is generated at tree level, there
is no tree-level contribution to dimension-eight operators
from dimension six. Thus the dominant contribution arises
solely from removing redundancies at dimension-eight

WCs of dimension-six SMEFT operators in the SILH set after integrating out the quartet scalar of

Eq. (4.5). The terms within braces ({}) denote the contribution from pure heavy loops, whereas the brackets ([])
mark the contribution from light-heavy mixed loops. We only use the uncolored coefficients for further calculation
here. The complete calculation can be found in the Mathematica notebook [53].

SILH operator Wilson coefficients

SILH operator Wilson coefficients

2 3 2
Os BBk B TeE L 9Rk
M2 167: MZ  24n’M%  1447°M3% 872 M2
z z
I Snzls, 15;72/122} [19;@1(22
727[2M’ 87[2M2 32/12M2 167[2M§
OR 3'7
z
{432 } + [4 2M2
O Sky Sky,
wWwW 1 2
{19271' M2 + %84H2M2}
O 5k22
wE 192n2M§_}

Oy K n kzlkzz V4| [ 3 ]
24;:2M2 2472 M3, 967[2M2 82° M3
(@) 39)/
2B 1607:2M2}
©r } — ]
8647:2M2 8m>M%
O Bks, 3ky,
64’ M2 + ez 1287 M2
Oy Ty }
967[2M2E

TABLE XIV. Total dimension-eight tree-level contribution after integrating out the quartet scalar of Eq. (4.5).
Complete one-loop results including additional operators are available from the Mathematica notebook [53].

Operator ~ Wilson coefficients Operator ~ Wilson coefficients ~ Operator ~ Wilson coefficients
o1 o113 nsks  nsks
8 — = 8 % 8 =2 e
OE‘I")DZ 1 ms, O;Ibpz m, qu) ms, ms
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TABLE XV. WCs of dimension-six SMEFT operators in the SILH set after integrating out the real singlet scalar of
Eq. (4.7). The terms within braces ({}) denote the contribution from pure heavy loops, whereas the brackets ([])

mark the contribution from light-heavy mixed loops.

nksis

Oé _AsTs (187875 _}
M 16x°M%,  24m> M3
2 6
+[11;7Sk 3Tntks  3ned I
Br2My T 162°MS  22°MSG T 48a7 M
3’751‘34_’_ 9772/12 _ ’7%/15 1
207 MY 16;:2M‘}q 322MY!
Op [ - s ] Ows [L}
96> M 1287 M,

On

Wsls

+ {16;: M 48nZSM§}
[17;75 ks | 9n5 S }
Tarul T neMy T 128 MG
e O [l
288> M 288n2M4
() 3 )
ww bz 5 st

level itself. The nonzero coefficients of dimension-eight
operators generated via integrating out are

) _2sks _ Asts ) _Hisks w20
: M 24MY 7P MS Tt MY
0 _2sks m _2sks - m _tsks ks
! Mg 2 MS ot oM T MG
(4.8)

We use Eq. (2.7) to remove the redundancies from the
above equation and rewrite them in the complete basis
of Table III; the coefficients of nonredundant SMEFT
dimension-eight operators are shown in Table XVIL
Expressed in the categories detailed above we arrive at

(1) Tree-level contribution: OH6D2 . oY, o 82)H3D2 T
8 8
01(1/4)H2,1’ OS/Z)HS’ Oz(,ﬂ)HZ The WCs corresponding

to these operators are listed in Table XIV.
Loop-induced and/or higher order contribution:
There is no redundancy at the dimension-six level,
and no loop induced operators can be generated by
the equation of motion. We can generate dimension-
eight operators at one-loop-level itself by integrating
out the heavy degree of freedom. This is beyond
the scope of this paper, and we will leave this for
future work.

@)

E. Scalar leptoquark

Next, we consider the BSM model where the
SM is extended by a scalar leptoquark, having
quantum numbers (3,2, 1/6) under the SM gauge group

SU(3)c x SU(2), x U(1)y. This scenario has recently
received lots of attention as it can potentially address
observed anomalies in B-meson decays [74,75]. This
model has also been analyzed within the EFT framework,
see Refs. [59,65]. We focus on the scalar interaction part of
the Lagrangian for our discussion, which reads

Lo > (D,0)(D46) - M3(016) 1o, (©'0)(H'H)
—1e, (O@''®)(H'T'H) — o, (070)?
— Jo,(0'710)(0776). (4.9)

No linear coupling of the Higgs field is present, and we do
not obtain effective operators at tree level. Note that
although dimension-eight one-loop-level operators are
beyond the scope of this work, we can still capture
contributions to dimension-eight operators using our for-
malism. Table XVII shows the one-loop generated oper-
ators and the corresponding WCs. Table X VIII contains the
WCs contribution coming from the loop induced operators
at dimension six only. The two operators quoted there is not
an exhaustive list but serves the purpose of demonstrating
that we can still obtain nonzero WCs from dimension-six
operators without dimension-eight one-loop-level match-
ing. Categorizing the WCs as above we find
(1) Tree-level contribution: No tree-level contribution.
(2) Loop-induced and/or higher order contribution:
There is only loop induced contribution in this case.
Table XVIII captures only a subset of operators
which gets contribution from the lower dimension

(8) (8)
operators. The others are o® HOD? 20 (’)W2 p sz D21
(8) (8) (8) (8) (8)
OV/2H3D2,2’ 01//4H2.1’ O(//4H2,2’ O(//ZH4D,1 ’ Ol//zH4D,2’

TABLE XVI. Nonredundant SMEFT dimension-eight operators and their corresponding coefficients after integrating out the real
singlet scalar of Eq. (4.7).
8) 25K% Bikksd | 8niksd® | 16EksA 8Sks (8) dntks  8Ankk
(’)( ngks _ Bugks n%ksi? neks ks o) nsks  8Angks
H P S z4m8 T = HOD? 1 s mS
®) 215
OH“D“S e
(8) 25ksYsu(1-22) | 4iiksYsm
(Q‘I/ZH5 - mS, + Smg
(8) 2rsksYsm (8) 2572 ®) ° P2
o 2 17372 T ) P Nsks¥sm @) Fn ks 'sm
W HD2 1 s W H22 2m0 WA H 1 p

S S
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TABLE XVII. WCs of dimension-six SMEFT operators in the SILH set for the scalar leptoquark of Eq. (4.9). The terms within braces
({}) denote the contribution from pure heavy loops.
SILH operator Wilson coef. SILH operator Wilson coef. SILH operator Wilson coef.
Os {- To, o } On To, } Or o, }
l6x°M} 256> M} 167> M, 12872 M}

2 e e

or 25!;?2211/12 1 Oww 123”211"12)} Oss 1522372
e

e

Ows Caindl Oaw {néfrz—ngg} Oz {zgsogzﬁ}

TABLE XVIIL

Contribution to dimension-eight operators from dimension-six operators. This table does not capture the full

contribution. Full results are available from our Mathematica notebook [53].

Operator Wilson coefficients
o®) iz n Gy Iy Gwdy e n Mooy Medwh e
HD?.1 147456007* m‘(‘_) YéM 73728007 m?_) Ysm 36864007* m?_) 204807* mgl 1310727* mg 204807‘[4}114@ Ysm 327680/{4ng Ysm
4 e _ i Y S Y'; S (V/; 2 Moo Gy
262144007 my Y2, 6553600z*mgYsy ~ 52428807"m¢  184320z%mg  230407*mg Yy | 36864077 m Yy
2
n 9,4 T gy 4 Moty ey
33177600n mg Y2, | 41472002 mg Yy | 1024n7mg  65536x%mg)
o® _ A g MG d | etk iy eyl Moo Wk egwh
H 1843200 mg,  1228800n*mg Yoy 7372800x%mg Y3y ' 10240z*mg  40960z*m¢ — 655360z*m¢ ' 65536x%mg  2621440x*mg T 102407* mg Yy
_ negwh  newmepdyd | Tmepdyk TR Doy eyl Moy Mg gy
409607 m Yoy 655360 mgYsy | 163840z*mgYsy  3276800x*miYsy  13107200n*mg Y2, ' 92160x*mg | 115202 m{ Yy 153607* mg Yy
_ o1 gy U Za 9y H# _ Morleph ey | IMeriey _ Snegh
81920n* mg Yoy ' 1843207 mg Yy 2073600z*mg) Yoy ' 16588800n*mg Y3\ 512z*mg | 2048x*mg, ' 32768z mg  32768x*mg

o o B B

vior Oyivra Opixs Opoyey The full contri-
bution can be accessed from the Mathematica
notebook [53].

V. IMPACT OF DIMENSION-EIGHT
OPERATORS ON BSM SCENARIOS

Given the plethora of data available after LHC run-II
and run-I1I, we broadly classify the above UV theories by
investigating their low-energy phenomenology in this
section, emphasizing the relevance of the dimension-eight
operators.

Different observables and precision measurements
provide strong discriminators between UV scenarios
when using matched EFT results. In this sense, the
dimension-eight effects provide quantitatively crucial
additional information. To gain a qualitative understanding
of UV discrimination employing the results above, we
consider three categories of experimental observables for
guidance: (i) electroweak precision observables (EWPOs),
(ii) Higgs signal strength (HSS) measurements, and
(iii) vector boson scattering (VBS) measurements. We
analyze the cases discussed in Sec. IV, reviewing the
interplay of (i)—(iii) as shown in Fig. 2.

The characteristics of different models can be analyzed
by adjudging their responses to the following questions.
First, one needs to note which effective operators emerge
from each model under consideration. As the observables

can be parametrized in terms of the effective operators, the
observable-model correspondence can be set up directly.
Based on that, one can classify different UV models by

EWPO

HSS
VBS

6® o® o®

H'@41  H*242  H*®43 )/

FIG. 2. Interplay of different observables for the categorization
of complete models based on their sensitivity towards specific
observable(s). {®, A, H,Z, S} produce any one or both from the

set {(’)<8> o®

H®D?1’ ~ HD?
observables and are therefore severely constrained by EWPO.

{024)134’ Oﬁp‘“ (’)S}W} are mainly constrained with VBS data,
and filter out {H, X}, which do not produce these operators. We
highlight the operators produced by {®} that contribute to all

observables with a box, these are loop suppressed.

,} at tree level. They contribute to all
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carefully scrutinizing the overlapping sets of operators
contributing to a set of observables. The second question
relates to the order of the perturbative expansion at which
the operators are being produced. That will give a hint of
their possible sensitivity towards the observables. Keeping
all these points in mind, we have clubbed those models that
show degenerate sensitivity and prepared the different
classes. Each class contains degenerate models with
respect to their response to that particular observable in
consideration.

The first question points to the need for new measure-
ments with distinct features to correctly classify a wide
range of complete models. The second one emphasizes the
ability of existing measurements to constrain the under-
lying UV parameter spaces determines the measurements’
BSM UV sensitivity.

Such an observable-based categorization has been stud-
ied recently (see, e.g., [76]) for dimension-six operators up
to one loop, mainly in the Warsaw basis. Bringing
dimension-eight operators into the picture helps resolve
model degeneracies at the dimension-six level even without
introducing new measurements. However, since the num-
ber of independent structures increases rapidly beyond
dimension six, we confine our discussion only to the
structures emerging for the six scalar extensions discussed
in Secs. III and IV.

A. Electroweak precision observables

The precise measurements of the electroweak observ-
ables naturally calls for improvements on the theoretical
side. This can be achieved by performing theoretical
computations at next-to-leading order (NLO) and by
extending the effective series expansion. As described in
Refs. [19,50,77], we organize the operators below into lists
based on how they contribute to EWPOs:

Dimension-six LO:{Oxp, Oywa, Ones Onus Onas (’)2;,
3 1) A3

Dimension-six NLO: {OD, OHB’ OHW’ Ow, 01437 OMW7
Ogda Oeev Oeu? Olu’ Old’ Ol@’ OE;)’
3 1 3 1 1
0,).0,,.0).05). 0404,

lq k) qge»

O O Oua}s (5.2)

Dimension-eight LO:{O,ps, OS)D’Z, O(f?)D’z, Ol(l,lz)Hap,

0(2)

1//4H2 N

(5.3)

0(2)

W2H4D’

0H4WB, O(l>

l//4H2 ’

Contrary to the ® and A extensions, wherein {Oyp} and
{Oup, Oy}, respectively, are produced at tree level (see,

e.g., Refs. [66,76]) and therefore provide the dominant
contribution to the observable, other operators in Eq. (5.1)
are generally sourced by heavy one-loop insertions. Their
subleading contributions are comparable to the ones
resulting from the operators produced at the tree-level
and contribute to the observable at NLO [noted in
Eq. (5.2)]. This implies that the BSM parameter space
of such an extension is less sensitive to EWPOs than other
observables when only dimension six is considered, which
includes the models {H,X,S}. The situation can be
remedied by taking dimension-eight operators shown in
Eq. (5.3) into account. In this case, if these operators appear
at the tree level, the constraints can be improved signifi-
cantly. Hence based on sensitivity towards EWPO, we can
divide all the models into two broad categories:

Class A:{®,A, H, %, S},
Class B: {0©}.

B. Higgs signal strength measurements

HSSs are inherently connected to the interplay of
fundamental mass generation in the SM and electroweak
symmetry breaking. Therefore, the analysis of the HSSs is a
relevant discriminator in the space of Higgs sector exten-
sions. Certain dimension-eight operators imply non-
negligible effects when constraining the BSM parameter
space through HSS measurements, for instance, when the
new physics occurs at a relatively low scale or if new
couplings occur at tree level after BSM states have been
integrated out. According to Refs. [66,78,79], the operators
that affect the HSS measurements are listed below:

Dimension six: {OH’ OHD’ OHD? OHB! OHW’ OHWB? OEH’

Oqu Ode OHev OHLH OHd7 05-111);7 OS()W

1) 3
Ol O)}; (5.4)
Dimension eight: {OS) , Ogﬁ)pz’l, Of,?pz,z, Opos. Oppe,

Oniwr, Opawg - (5.5)

Since the models {®, A, H, S} produce subsets of these
operators {Oy, Our, Oups Ourrs Oy, O} at tree level,
while for {X,0} they are generated at one loop (see
Ref. [76]), these models are seemingly less sensitive to
HSS measurements at dimension-six. Following a similar
approach as the one described in Sec. VA, we can infer that
the impact of the operators given in Eq. (5.5) should be
considered to properly explore the parameter space of

{Z,0}. The fact that ¥ generates (’)S), Oggpz’l, and
OSQDZZ at tree level, as shown in Table XIV, leads to
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similar a priori sensitivity of Higgs measurements as for
{®, A, ’H,S}. HSSs therefore discriminate:

Class A:{®,A, H, %, S},
Class B:{0}.

C. Vector boson scattering measurements

Vector boson scattering measurements have been very
crucial in the study of the electroweak sector, particularly in
constraining anomalous gauge couplings, which have been
discussed in detail in SMEFT at dimension six [80-83].
Individual bounds on dimension-eight couplings have been
derived from VBS data as well [84—-86]. At dimension-six,
a total of nine operators contribute to the modification of
observables through gauge-self couplings ({Oy }), gauge-
Higgs couplings ({Owp, Ouw, Ong, Oxws}), and fer-
mion-gauge couplings ({OS},OS},O}};,OS;}). Among
these, Oyp and the two-fermionic operators are mainly
constrained from EWPO observables [87], while the
operators {Oy, Opw, Opp, Ogwp} remain to be con-
strained by VBS measurements [88]. These are typically
produced at the one-loop level (see Ref. [76]). For a low
enough cutoff scale, these can be comparable to dimension-
eight tree-level contributions:

Dimension six: {Oy, Oy, Opw. Ouws};  (5.6)

Dimension eight: {0252, Og%),z, (’)24)734, (9(;4)@4 (92294}
(5.7)

We note that, { O(FPD,Z’ Og)p.z} contribute to the electroweak
sector through the modification of gauge boson masses (see
Appendix D of Ref. [79] for more details). Thus they are
mostly constrained by EWPOs. Models that produce the
full or a subset of the rest of the mentioned dimension-eight
operators (i.e., {®, A, S}) can be efficiently constrained by
VBS measurements:

Class-A: {®, A, S},

Class-B: {H, X, 0}. (5.8)

VI. CONCLUSIONS

The indirect search for new physics using EFT, while
providing an ingenious way to uncover the physics that
might lie just beyond our reach, faces several critical
challenges when tracing constraints to possible complete
and renormalizable UV scenarios. Moreover, since one
encounters new signatures at dimension eight that may
unravel the microscopic nature of new interactions, includ-
ing their effects, can become vital when looking for new
physics in a model-independent way. However, performing
a global analysis of the entire parameter space of

dimensions six and eight SMEFT is unrealistic. Broad
model-dependent correlations can then help to hone the
sensitivity to new interactions. This requires a transparent
and effective way to perform matching to new physics
scenarios beyond dimension six. In this work, we have
explored these two issues in detail.

We present an easy-to-implement approach to compute
the dimension-eight matching coefficients, capturing loop
effects consistently. Furthermore, the method employs
EOMs instead of the traditional field-redefinition forma-
lism. The “missing piece” of the EOM that elevates it to a
similar footing with field redefinition is included in a
model-independent manner. It must be stressed that, while
removing the redundant structures at dimension six, we
obtain one-loop or two-loop equivalent contributions to
dimension-eight structures due to the interference among
the pieces generated at the tree and one-loop order.

We have applied this method to six different scalar
extensions of the SM at one-loop order of the dimension-
six coefficients considering both heavy-heavy and heavy-
light loop propagators, validating our approach against
results documented in the literature. Finally, we have
clarified the relevance of dimension-eight operators for
classifying UV-complete models given Higgs and electro-
weak measurements and VBS data.
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APPENDIX A: RELEVANT
OPERATOR STRUCTURES

Here we discuss the operator structure that differs from
the Green’s set as defined in Ref. [42]. At dimension six
there are four structures in the ®*D? operator class. The
operators are the following:

Ouyn = (H'H)O(H'H),
Olp = (H'H)(D*H'D, H),

OHD = |HTD/4H|27

Ofp = (H*H)’D”(HTiD”H). (A1)
Among the above structures, the first two (Oyg, Oyp) are
considered to be the independent and part of the complete
Warsaw basis. We can ignore the last one, O’A,D, which is
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TABLE XIX. Dimension-six operator structures in the SILH set.

Operator Operator structure Operator Operator structure
oy 10,(H H)o*(H'H) (o |H|°

o (H'H)(D,H' D" H) o VH'D H)[HD H]
9p (D°H')(D*H) Qow -1(DW,)?

Qap =3(0,B.) Qw igW(HTT“%”H)D”W;‘D
Qp igy (HTZ%”H)aDBW Qww g% (H H) Wi, Wer
Ops g%(H'H)B,, B" Qs 29wy (H t*H)W4, B

TABLE XX. Structures of the dimension-eight operators in the nonredundant basis discussed throughout this work. y denotes any SM

fermion (y € {q,u.d,l, e}).

Operator Operator structure Operator Operator structure
OF (H'H)* o) (H'H ) (7 ;H)
H WA HS
o (H'H)*(D,H D"H) o®) (H"H)(H'D,HD"H'H)
(8) . © (8) . <1
O i(HT H) v 7,05) (D, H) O, i(HT H) (e (D, H)
O;i)DH.l l(l/_/ly#l//])[(l/_/kWI)IDﬂH} Ol(;?DH.Z i(l/_/[}’”Tll//_i)[(l[_/kl//l)TID‘uH}
2 172 )
(i (H'H)*B,,B" o . (HHY2 WL, W
0¥, (HH) (H 2 H) W, B o (e W, B
OI(IISZ)BZH (7)) HB,, B" Ol(fz)WZH (raw ;) HW, W !
O$2)H3D2.1 (V?inH)(D”HTD”H) OS;)H3D2,2 (HTDﬂH)(lZ’iV/jD”H)
Ol(;)ﬂz,l (HH) (@ j 1) Ox(,i)HZ,z (B i H) (H )

CP violating and does not appear in our analysis.
The redundant operator O, is the important structure
for our analysis. In order to remove this redundancy,
we derive the contribution to higher dimension, i.e.,
dimension eight in our case. Instead of using this exact
structure, we use the following relation to convert it to a
suitable form

(H'H

~—

(D,H'D*H)

(H'H)O(H'H) — (H'H)(D*H'H + H'D’H))].

0| —

(A2)

Since we are replacing one redundant structure with another
that is related to the former by the integration by parts, we
term it a Green’s set-like structure. We collect all relevant
dimension-six operators in Table XIX. Dimension eight can
be found in Table XX.

APPENDIX B: RENORMALIZABLE
SM LANGRANGIAN AND EOM

The renormalizable SM Lagrangian is

1 1 1
Loy = —ZGﬁUGA” _ZW’I‘”WIH —ZBWBf
+(DH)D'H)+ Y §ipy—AH'H)?

w=q,u,d,le
-Y,HYdg;+Y,HYug;+Y,H'el,+Hc]. (Bl)

Here, we have ignored the (negative) mass term for the
Higgs field which is not relevant for our analysis. We can
calculate the EOMs for various fields using Eq. (B1). These
EOMs constitute the first-order approximation of the full
EOM, and they can be used to transform one set to another
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at a given mass dimension. The first-order EOM for Higgs
field is [13,28]

D2H, + 2A(H H)H, + Y, = 0,
where Y, = Yig/uej + Yqdg, + Y,el,,  (B2)

and the EOMs for the fermions are [13,28]

iPq; = YiuH; + YidH,,  ipd=Y.q;H",
iPu=Y,q;H7, ipl; = YieH,,

with Yukawa couplings Y; = Ygy ;. The EOMs for the
gauge fields are [13,28]

(D%, Gopl* = 96 Z @ Ty,

y=u.d.q
I 1, 1=, ! +7y
[Da’ Waﬁ] = gdw Eq’[ }/ﬂq + EZT }/ﬂl + EH lDﬁH s
(D%, Byl = gy( S wyirw + H*iD/;H>, (B4)

y=u.d.q.e.l

where y; denotes the U(1)y hypercharges of the fermions.
We have also used the following the notation [13,22]

HTi'BﬁH = iH'(DyH) — i(DgH")H,
<]
H'iDsH = iH't!(DyH) — i(DgH')c'H,  (BS5)

to write the operators in the well-known compact forms.
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