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Single-photon atom gradiometry is a powerful experimental technique that can be employed to search
for the oscillation of atomic transition energies induced by ultralight scalar dark matter (ULDM). In the
sub-Hz regime, the background is expected to be dominated by gravity gradient noise (GGN), which arises
as a result of mass fluctuations around the experiment. In this work, we model the GGN as surface Rayleigh
waves, and we construct a likelihood-based analysis that consistently folds GGN into the sensitivity
estimates of vertical atom gradiometers in the frequency window between 10−3 Hz and 1 Hz. We show that
in certain geological settings GGN can be significantly mitigated when operating a multigradiometer
configuration, which consists of three or more atom interferometers in the same baseline. Multigradiometer
experiments, such as future versions of AION and MAGIS-100, have the potential to probe regions of
scalar ULDM parameter space in the sub-Hz regime that have not been excluded by existing experiments.
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I. INTRODUCTION

Atom interferometry is a rapidly-developing and
powerful experimental technique that can be employed
in different configurations for a wide variety of precision
measurements (see e.g., [1–6]). For example, two spatially-
separated atom interferometers (AIs) that are referenced by
the same laser sources can be operated as a gradiometer to
shed light on different topics in fundamental physics.
Specifically, owing to their exquisite sensitivity to timings,
accelerations and changes in atomic structures atom gradi-
ometers could be used for: the detection of gravitational
waves (GW) in the unexplored “midfrequency band”
[7–10], the search of violations of the universality of free
fall arising from static and time-dependent fifth forces
acting on matter [11], the detection of sub-GeV dark matter
through quantum decoherence effects [12,13], and the
search for oscillating atomic transition energies induced
by scalar ultralight dark matter (ULDM) [14,15], which
will be the focus of this paper.
It has been shown that several terrestrial long-baseline

atom gradiometer and atom interferometer network

projects, including AION [16], MAGIS-100 [17], MIGA
[18], ELGAR [19], ZAIGA [20], and space-borne propos-
als, such as STE-QUEST [21] and AEDGE [22], could
probe regions of scalar ULDM parameter space that have
not been excluded by other experiments, such as atomic
clocks [23], torsion balances [24], and the MICROSCOPE
experiment [25]. For example, compact atom gradiom-
eters such as AION-10, where the baseline is ∼10 m, offer
the possibility of detecting scalar ULDM with a mass of
approximately 1015 eV [15], which corresponds to a
signal oscillating at a frequency of approximately 1 Hz.
Longer baseline gradiometers like AION-km [16] and
MAGIS-km [17] could potentially detect ULDM across
an even larger frequency window: from ∼10−3 Hz to
∼103 Hz, corresponding to ULDM masses between
∼1017 eV and 1011 eV [10].
The projected reach of these experiments is ultimately

limited by fundamental noise sources. Vertical gradiom-
eters such as AION and MAGIS-100 are designed to reach
the atom shot-noise limit above ∼1 Hz [17] but would
suffer from gravity gradient noise (GGN) at lower frequen-
cies [14]. This type of phase noise arises as a result of mass
density fluctuations of the ground and atmosphere [26],
which perturb the local gravitational potential around the
atom clouds. In the absence of a well-modeled GGN signal
for vertical atom interferometers, previous projections were
either abruptly interrupted at ∼0.3 Hz [10,14,16], or
arbitrarily extended to lower frequencies by assuming atom
shot noise only [15].
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On the basis of the seminal GGN studies for optical
gravitational wave detectors [27,28], Refs. [29–31] pro-
vided the first characterization of the impact of GGN on a
vertical km-long gradiometer. Within the context of gravi-
tational wave searches, Refs. [29–31] concluded that a pair
of coupled atom interferometers provides a sizable, though
not dramatic, reduction of the GGN between 0.1 Hz and
1 Hz compared to large scale optical interferometers.
Subsequently, Ref. [32] showed how GGN from seismic
activity and pressure variations dominates the sub-Hz
background in the MIGA network of atom interferometers.
In light of the fact that GGN is characterized by an
exponential profile that decays with radial distance from
the Earth’s surface, while a gravitational wave signal scales
linearly with the length of the baseline, Ref. [33] showed
that GGN could, in principle, be distinguished from a
gravitational wave signal by placing several interferometers
along the baseline. Furthermore, Ref. [33] demonstrated
that increasing the number of interferometers along the
baseline provides better suppression of the GGN signal,
in agreement with Ref. [32], which found a similar
suppression for a horizontal configuration. These previous
studies [29–33] have focused on GGN effects in the context
of gravitational wave searches but have not considered the
impact of GGN on generic physics searches, such as
ULDM-dedicated runs, using robust statistical techniques.
In this paper we develop the formalism to consider the

impact of GGN on ULDM searches with a long-baseline
vertical gradiometer. Such a formalism will be of para-
mount importance to characterize the sensitivity of gradi-
ometers, such as long-baseline versions of AION and
MAGIS-100, to scalar ULDM across the frequency range
from 10−3 Hz to 1 Hz. In contrast to previous studies, we
utilize a likelihood-based analysis, which is more com-
monly used in the particle-physics community, so that the
impact of GGN on ULDM searches can be placed on a
more robust statistical footing. In our analysis, we simulta-
neously account for an ULDM signal and a background
dominated by atom shot noise and underground GGN. We
also extend previous studies by robustly quantifying the
extent to which GGN underground can be mitigated in a
multigradiometer experiment that consists of three or more
coupled atom interferometers along the same baseline.
This paper is structured as follows. In Sec. II we briefly

review how atom gradiometers can be used for fundamental
physics searches, and we define the key features of an atom
multigradiometer. In Sec. III we present the statistical
properties of the ULDM signal and backgrounds in an
atom multigradiometer to then construct in Sec. IV the
appropriate likelihood analysis for setting projected upper
limits. In Sec. V we discuss the impact of GGN on ULDM
searches, firstly in the context of a single gradiometer,
before proceeding to show how a multigradiometer con-
figuration can suppress GGN in different configurations.
Finally, we provide a discussion of these results in Sec. VI.

Appendices A–D provide further details and derivations of
calculations to support the results in the main body of
the paper.

II. ATOM GRADIOMETRY FOR PRECISION
MEASUREMENTS

An atom interferometer is an experiment that compares
the phase between coherent spatially delocalized quantum
superpositions of atom clouds [34]. Experimentally, this
can be achieved by constructing a two-level system,
composed of an excited state jei and a ground state jgi
with energy separation ωA.

1 The electronic transitions
jei ↔ jgi, as well as the degree of quantum superposition
and their physical separation, can be controlled by using a
system of lasers. In this paper, we consider single-photon
atom interferometers, which operate with atoms whose
two-level system is controlled by single-photon transitions,
as is the case for the 87Sr isotope: the ground state
corresponds to 5s21S0, the excited state to 5s5p3P0, and
ωA ≈ 2.697 × 1015 rad=s (corresponding to a wavelength
λA ≈ 698 nm). The superposition of ground and excited
states is controlled via π=2-pulses (i.e. beam-splitter
pulses), after which the excited state experiences a momen-
tum kick in the vertical direction that allows for the two
atomic states to spatially separate during propagation. The
atom’s internal state and linear momentum can be reversed
using π-pulses (i.e. mirror pulses).2

To increase the separation between atom clouds, large
momentum transfer (LMT) mirror pulses have been pro-
posed [35]. With our convention, which follows Ref. [15], a
sequence characterized by n LMT “kicks” features 4n − 1
pulses in total, of which two are π=2-pulses and the
remaining 4n − 3 are π-pulses. These are distributed such
that at the beginning and the end of the sequence, there are
(n − 1) π-pulses (the “beam splitter sequence”), while
around time T, known as the interrogation time, there
are (2n − 1) π-pulses (the “mirror sequence”). With our
labeling convention, the π=2-pulses are emitted at times 0
and 2T. An example of a sequence with n ¼ 4 LMT kicks
is shown in the left panel of Fig. 1. For clarity, the time axis
in Fig. 1 is not shown to scale: the typical interrogation time
T is OðsÞ while the time between individual pulses is
typically Oð100 nsÞ [36,37].
In the final stage of the interferometric sequence, each

atom is in a superposition of two velocity states, which thus
spatially separate. After an appropriate drift time, the two
paths spatially separate allowing for the determination of
the atom populations via atom fluorescence and point
source atom interferometry [38,39]. The probability that

1Unless stated otherwise, we use natural units and set
ℏ ¼ c ¼ 1.

2A π=2-pulse is defined as a pulse of resonant radiation that
interacts with the atoms for a time π=ð2ΩÞ, where Ω is the Rabi
frequency. A π-pulse interacts with the atoms for a time π=Ω.
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an atom will be found in a particular output port depends on
the relative phase Φ acquired along the two paths of the
atom interferometer and can be measured from the number
of atoms in the excited or ground states, Ne and Ng,
respectively, as

Ne − Ng

Ng þ Ne
¼ C cosΦ; ð1Þ

where C ≤ 1, which is known in the literature as contrast,
characterizes the amplitude of these oscillations [40,41].
The contrast is maximized when the relative displacement
between the wave packets vanishes at the end of the
interferometric sequence. Hence, knowing the value of
C, the total phase difference Φ can be determined by using
the data collected at the interferometer’s output ports
and Eq. (1).
The phase difference Φ results from both the free-fall

evolution of the quantum state along each path and the local
phase of the laser, which is imprinted onto the atom during
each atom-light interaction. Since the interferometer
sequence compares the motion of the atom to the reference
frame defined by the laser pulses, Φ is highly sensitive to
inertial forces acting on the atom during the interferometer
sequence. In this sense, atom interferometers can be used as
accelerometers. Additionally, since the interferometer
sequence is composed of paths during which the atomic
state changes from the ground to the excited state, Φ is also
highly sensitive to the constants that govern atomic
transitions. In this sense, atom interferometers can be
understood as atomic clocks.
Two spatially separated atom interferometers that are

referenced by the same laser pulse via single-photon atomic
transitions can be operated as a gradiometer [8]. The
distinctive signal of a coherently oscillating ULDM field
[14] and GW passing through the experiment [11] can be
tested with a gradiometer by finding the difference between
the phases measured by two atom interferometers. Vertical
gradiometers like MAGIS-100 and AION, as opposed to
horizontal configurations envisaged for MIGA, ELGAR,
and ZAIGA, consist of interferometers that are positioned
along the direction of the Earth’s gravitational acceleration.
A key advantage of the vertical gradiometer experimental
setup over a lone single-photon atom interferometer relies
on the possibility of effectively attenuating laser noise. By
operating the same laser pulse between both interferome-
ters, the laser noise affecting the experiment’s sensitivity
cancels in a differential measurement [8].

A. Atom multigradiometry

We define an experiment consisting of N ≥ 2 atom
interferometers that are referenced by the same set of lasers
and located within the same baseline of length L as an atom
multigradiometer. This is to be contrasted with two atom
gradiometers operating in different baselines, irrespective

of their synchronization. A schematic representation of this
setup is shown in the right panel of Fig. 1, where the black
squares represent the N AIs along the baseline. We will
assume that the AIs can be situated at any point along the
baseline and, in particular, that they do not have to be
equally spaced.
An atom gradiometer (AG) measurement consists of

taking the difference between the phases collected by two
AIs. Figure 1 shows an example of three AG measure-
ments: using the first and second AIs, the ðN − 1Þth and
N th AIs, and the second and ðN − 1Þth AIs. In total there
are N ðN − 1Þ=2 unique gradiometer measurements that
can be performed. It then follows that a multigradiometer
experiment employing two atom interferometers corre-
sponds to a single atom gradiometer, as considered in
previous works (see e.g., [14–16,42]).3 Since the interfer-
ometers are located within the same baseline and are
referenced by the same laser, the AIs will be characterized
by the same interrogation time and number of LMT kicks.
To simplify the subsequent analysis, we will assume that
the launch velocity and atom number are identical in all of
the AIs.

III. CHARACTERIZING SIGNAL AND NOISE IN
AN ATOM GRADIOMETER

Interactions between scalar ULDM and electrons or
photons can lead to oscillations in fundamental constants
(see e.g., [44–46]). These ULDM-induced oscillations in
turn alter atomic transition energies and can be searched for
with atom interferometer experiments [14,15]. In this
section, we characterize the properties of the ULDM signal
and the backgrounds considered in this work, namely GGN
from seismic effects and atom shot noise, as recorded by an
atom multigradiometer operating in a vertical configura-
tion. While an interferometer’s atom shot noise is an
irreducible noise source and is uncorrelated between
detectors, the ULDM signal and the GGN background
will induce nontrivial cross-correlations between pairs of
interferometers that can be exploited to improve the
sensitivity to low frequency ULDM signals.
An atom interferometer measures a time-dependent

signal by collecting phase differences over a campaign
of duration T int: we refer to this as the integration time, and
it is measured with respect to the first phase measurement.
Measurements are made at a sampling rate 1=Δt, where Δt
is the temporal separation between successive measure-
ments. We assume that Δt takes the same value over the
measurement campaign. The integration time satisfies the
relation T int ¼ ðN − 1ÞΔt, where N is the number of

3The setup envisaged here differs from the interferometer array
planned for the MIGA and ELGAR experiments, where N
independent gradiometer measurements are performed on two
horizontal baselines, which feature 2N interferometers each
[32,43].
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measurements. Since T int is assumed to be OðyearsÞ,
and Δt is typically Oð1sÞ, we will use the approxima-
tion N ≈ T int=Δt.
We define the phase measured by the ith interferometer

(AI-i) at the end of a sequence that starts at time mΔt as

ΦðiÞ
m ¼ ΦðiÞ

Signal;m þΦðiÞ
Noise;m; ð2Þ

where i ∈ f1; 2;…;N g, m ∈ f0; 1;…; N − 1g, ΦðiÞ
Signal;m is

the signal phase, and ΦðiÞ
Noise;m is the noise or background

contribution. The gradiometer phase between the ith and
jth AI, which will be referred to as AG-ði; jÞ, is defined as

Φði;jÞ
m ¼ ΦðiÞ

m −ΦðjÞ
m ¼ Φði;jÞ

Signal;m þΦði;jÞ
Noise;m; ð3Þ

where i; j ∈ f1; 2;…;N g, j > i, and the gradiometer
signal and noise contributions are, respectively, defined as

Φði;jÞ
Signal;m ¼ ΦðiÞ

Signal;m −ΦðjÞ
Signal;m; ð4Þ

Φði;jÞ
Noise;m ¼ ΦðiÞ

Noise;m −ΦðjÞ
Noise;m: ð5Þ

For ULDM searches, Φði;jÞ
Signal;m would correspond to the

differential ULDM phase recorded by the ith and jth AI.
Instead, for GW searches, the phase would correspond to
the GW gradiometer signal. In either case, the phase noise

Φði;jÞ
Noise;m captures all background contributions, including

static effects, such as the Earth’s gravitational field expe-
rienced by the atoms in free fall, and time-dependent
effects, such as GGN and atom shot noise. Because of
the nature of the signal of interest, in this paper we shall
focus on atom shot noise and GGN, as these are expected to
be the dominant noise sources for long-baseline interfer-
ometry at high and low frequencies, respectively.

A. Ultralight dark matter signal

ULDM can be modeled as a temporally and spatially
oscillating nonrelativistic classical field. This follows from
its high occupation number, small mean velocity, and
velocity dispersion, which is characteristic of dark matter
in the MilkyWay [47]. We assume that the ULDM field can
be decomposed into Fourier modes with frequencies
sampled from the ULDM speed distribution and random
phases sampled from a uniform distribution between 0 and
2π. We assume a Maxwellian distribution of ULDM speeds
according to the Standard Halo Model (SHM) [48,49]
given by

fDMðvÞ ¼
vffiffiffiffiffiffi

2π
p

σvvobs
e−ðvþvobsÞ2=ð2σ2vÞ

× ðe4vvobs=ð2σ2vÞ − 1Þ; ð6Þ

FIG. 1. Schematic representation of an atom multigradiometer. The left panel shows the not-to-scale spacetime diagram of the ith atom
interferometer’s sequence with n ¼ 4 LMT kicks, where the atom starts in the ground state at position zi. The atom’s excited (jei) and
ground (jgi) states are shown in blue and cyan, respectively. π=2- and π-pulses are displayed as wavy lines in fuchsia (dashed) and red
(solid), respectively. Atom-light interactions are indicated with black dots. The left panel is to be interpreted as a blow-up of each of the
right panel’s black squares, which represent the atom interferometers along the vertical baseline of length L and are labeled by AI-i,
where i ¼ f1; 2;…;N g. The vertical position of the ith interferometer is labeled by zi. The origin of our coordinate system is at the
Earth’s surface at the center of the interferometer shaft, so the shorted vertical distance from the surface in this underground detector is
z1. Atom gradiometers are represented by braces connecting spatially separated pairs of atom interferometers. The atom gradiometer
composed of the ith and jth atom interferometer is labeled as AG-ði; jÞ.
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where σv is the velocity dispersion which is set, at the
solar position, by the value of the local standard of rest
v0 ¼

ffiffiffi
2

p
σv ≈ 238 km=s, and vobs ≈ 252 km=s is the aver-

age speed of the Earth relative to the halo rest frame [50].
Although the DM speed distribution is characterized by a
cutoff at the escape velocity, vesc ∼ 800 km=s in the Earth’s
frame, and may feature additional anisotropic components
(e.g., [51–54]), the simple form in Eq. (6) with no cutoff
and no anisotropies is sufficient for our discussion.4

The atom interferometer’s integration time sets the
frequency resolution, Δf ¼ 1=T int, which in turn sets the
ULDM speed resolution Δv, since Δf ¼ mϕvΔv=2π,
where mϕ is the mass of the scalar field. The former
relation follows from the properties of the discrete Fourier
transform of the data, while the latter follows from the
ULDM’s kinetic energy definition. In an experiment
capable of resolving the ULDM speed resolution to an
accuracy of Δv, the scalar ULDM field can be written as

ϕðtÞ ¼
ffiffiffiffiffiffiffiffiffi
ρDM

p
mϕ

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
cos ½ωatþ θa�; ð7Þ

where ρDM is the local dark matter density to which we
assign the value 0.3 GeV=cm3, ωa ≃mϕð1þ v2a=2Þ is the
angular frequency of the ULDM wave for a speed va,

FDMðvaÞ ¼
Z

vaþΔv=2

va−Δv=2
dv fDMðvÞ; ð8Þ

and the sum is over experimentally-resolvable speeds,
which are indexed by the variable a [55]. The variable θa ∈
½0; 2πÞ is a random phase, which we assume to be
uniformly distributed, while αa is Rayleigh distributed
with hα2ai ¼ 2; its probability density function is given by

PðαaÞ ¼ αa exp

�
−
α2a
2

�
: ð9Þ

Importantly for the subsequent discussion, the random
phase θa and the Rayleigh variable αa are independent [55].
Equation (7) correctly captures the field’s behavior in the

limit of long and short integration time with respect to the
ULDM’s coherence time, τc ¼ 2π=ðmϕv20Þ. Since fDMðvÞ
is nonvanishing between zero and vesc, and vesc ≳ v0,
Eq. (8) is equal to one for v ∼ v0 and Δv≳ v0 which,

from the relation Δv ¼ 2π=mϕvT int, implies that T int ≲ τc.
Hence, in this limit, Eq. (7) is independent of the speed
distribution, and the DM wave is described in terms of a
single Fourier component [56]. If Δv ≪ v0, then the
signal is expressed in terms of a sum of Fourier modes of
different frequencies. From the relation Δv¼2π=mϕvT int,
this implies that T int≫τc. In this limit, FDMðvaÞ≈
fDMðvaÞΔv, such that Eq. (7) is in agreement with
Refs. [55,57], which consider the limit T int → ∞.
In Eq. (7) we neglected the spatial variation of the

ULDM wave. We justify this by noting that on average the
wave vector is suppressed by a factor of v ∼ 10−3 relative to
the angular frequency. Furthermore, the lengths of the
baselines that we consider are significantly smaller than the
ULDM’s de Broglie wavelength, such that any spatially-
dependent contribution to the phase of the DM wave is
highly subdominant. Indeed, the frequency range of interest
corresponds to ULDM masses between 10−17 eV and
10−10 eV, which would be associated with de Broglie
wavelengths of length 1011 km and 104 km, respectively;
for reference, the experimental baselines considered here
are no longer than 1 km.
In this work, we consider a linearly-coupled scalar

ULDM field that has interactions governed by the
Lagrangian

Lϕ ⊃ ϕðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p �
de
4e2

FμνFμν − dme
meψ̄eψe

�
: ð10Þ

Here, de and dme
are dimensionless and parametrize the

coupling strength relative to the Planck mass 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
,

where GN is Newton’s gravitational constant. These inter-
actions will induce oscillations in an atom’s transition
frequency, which in turn will lead to a phase shift in an
atom gradiometer experiment (see e.g., [44–46]).
Specifically, the phase shift induced by linearly-coupled
scalar ULDM for the gradiometer AG-ði; jÞ, where the two
AIs are separated by a distance Δzði;jÞ ¼ zi − zj, can be
parametrized as

Φði;jÞ
DM;m ¼ Δzði;jÞ

L

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
Aa cosϕa;m: ð11Þ

Here, ϕa;m ⊃ ωamΔtþ θa is the phase of the DM wave at
the end of the sequence. The amplitude Aa is dependent on
the experimental variables n, T, and L characterizing the
interferometric sequence and on phenomenological param-
eters, the most important of which is the ULDM-Standard
Model coupling strength dϕ ∈ fde; dme

g. In the limit
nL ≪ T and ωanL ≪ 1, which are always satisfied in
planned interferometers [16,17],

4The untruncated SHM sets constraints on the ULDM-SM
couplings that are≲0.1%weaker than those determined using the
truncated SHM. As shown for axion haloscopes, which also
analyze the ULDM signal in the frequency domain, the truncated
SHM sets constraints on the ULDM-SM couplings that are ∼8%
weaker than those determined using the truncated SHM++ [51],
which considers different speed parameters and a strongly
radially anisotropic subcomponent due to the Gaia Sausage.
These modified speed parameters are largely responsible for the
size of this correction.
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Aa ∝
dϕnL

ωa
sin2

�
ωaT
2

�
: ð12Þ

The complete expression for Aa is given in Appendix A.
Since αa and θa are independent, over long timescales

the signal is characterized by a vanishing expectation value,

hΦði;jÞ
DM;mi ¼ 0; ð13Þ

and a covariance given by

hΦði;jÞ
DM;mΦ

ði0;j0Þ
DM;m0 i ¼ Δzði;jÞ

L
Δzði0;j0Þ

L

×
X
a

FDMðvaÞA2
a cosðωaΔtðm −m0ÞÞ:

ð14Þ

Both of these expressions follow from the statistical
properties of the amplitude and random phase. A
complete derivation of Eqs. (13) and (14) is provided
in Appendix A 1.

B. Gravity gradient noise from seismic effects

Time-dependent perturbations to the gravitational poten-
tial around the free-falling atom clouds cause a phase shift
to build up between two paths of an atom interferometer.
These perturbations in the gravitational potential originate
from terrestrial density fluctuations close to each atom
interferometer, as illustrated in Fig. 2, and give rise to a
noise source commonly referred to as GGN. For the
experimental configuration and frequency range considered
in this paper, the dominant source of GGN is expected to
consist of ground density perturbations induced by ambient
horizontally-propagating seismic waves that are confined

near the Earth’s surface by horizontal geological strata
[26,27]. The modes responsible for these density fluctua-
tions are referred to as Rayleigh modes, and they are
generated at horizontal discontinuities at strata interfaces,
including the Earth’s surface.
In this work, we employ the homogeneous half-space

model for the ground around the interferometer. This model
implies that the ground is isotropic around the detector and
that only the fundamental Rayleigh mode is present. The
fundamental mode travels horizontally at the Earth-air
interface and is present irrespective of the geological
properties of the site. Following the GGN treatments for
Laser Interferometer Gravitational Wave Observatory
(LIGO) [26,27], we represent the seismic field as an
incoherent superposition of monochromatic plane waves
propagating isotropically at the Earth’s surface. The ampli-
tude of eachwave depends on the vertical displacement ξa at
the Earth’s surface, which depends on the wave frequency,
and is characterized by an exponentially decaying ampli-
tude,whilemoving away from the surface in either direction.
Here, we bound the upper and lower values of the vertical
displacement using Peterson’s new high noise model
(NHNM) and new low noise model (NLNM) [58]. In
Fig. 3, we display the vertical displacement spectrumffiffiffiffiffiffiffiffi
Sξ;a

p
according to Peterson’s model, where Sξ;a ∝ hξ2ai

is the power spectral density of thevertical displacement (see
Sec. IVand appendices referenced therein for more details).
We limit our analysis to frequencies greater than 10−3 Hz
since below this frequency the Earth’s finite size is expected
to significantly alter the properties of the seismic back-
ground and render our analysis based on Rayleigh waves
invalid [26,59,60].
Before moving on to present the results for the induced

phase shift, we briefly consider other potential sources that

FIG. 3. Peterson’s models of the frequency-dependent spectrum
of the vertical displacement ξa at the surface of the Earth between
10−3 Hz and 10 Hz. The orange curve refers to the prediction
from the NHNM, while the blue curve is from the NLNM.

FIG. 2. Schematic representation of the seismic field for a
fundamental Rayleigh mode with angular frequency ωa traveling
horizontally in the direction k̂. The Rayleigh wave will induce
underground density variations δρ at positions labeled by r. The
density variations induce perturbations in the gravitational
potential, which serve as a noise source for the ith interferometer
AI-i.
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could induce time-dependent perturbations to the gravita-
tional potential and thereby contribute to the gravity gradient
noise. Firstly, we do not include the effect from atmospheric
density fluctuations, which dominate over the Rayleigh
wave-induced contribution below ∼0.1 Hz in horizontal
atom interferometer configurations [32]. Secondly, seismic
waves could scatter from the shaft’s surfaces, but these
effects are negligible for cavity radii much smaller than the
wavelength of the seismic waves [26]. For the frequency
range between 10−3 Hz and 1 Hz, the wavelength of these
perturbations falls between ∼40 m and ∼104 m, while the
expected radial size of the access shaft is Oð5 mÞ. Thirdly,
we also neglect the direct effect induced by vibrations on the
laser system since we expect that these vibrations can be
mitigated with suspensions and other techniques widely
used in long-baseline interferometry [17]. Finally, anthropic
sources, such as heavy vehicles, could play a role; owing to
their intrinsic site-specific dependence, they will be con-
sidered in a separate study.
Returning to the assumption that the seismic field arises

from an incoherent superposition of fundamental Rayleigh
modes, we obtain the angle-averaged seismically-induced
gravitational potential experienced by a test mass under-
ground at time t and position ri ¼ ð0; 0; ziÞ by integrating
over all ground density fluctuations around the experiment
(recall that zi is the vertical position from the top of the
interferometer shaft). In Appendix B, we derive the result
that the potential due to seismic fluctuations takes the form

Vðzi; tÞ∝
X
a

ξa

�
−2exp

�
−q

ωazi
cH

�
þð1þ

ffiffiffiffiffiffiffiffi
q=s

p
Þexp

�
−
ωazi
cH

��
cosðωatþ θ̃aÞ;

ð15Þ
where q and s are Oð1Þ dimensionless parameters that
depend exclusively on the geological properties of the
ground, cH is the horizontal speed of the Rayleigh wave, eθa
is a random phase, and the sum is over discrete frequencies
ωa as in the ULDM case [see Eq. (7)]. With this potential,
we find that the GGN phase shift recorded by the ith AI at
the end of a sequence that starts at time mΔt can be
expressed as

ΦðiÞ
GGN;m ¼

X
a

ξa

�
Ãa exp

�
−q

ωazi
cH

�
þ B̃a exp

�
−
ωazi
cH

��
cos ϕ̃a;m; ð16Þ

where Ãa and B̃a depend on experimental and geological
parameters, and ϕ̃a;m ⊃ ωamΔtþ θ̃a is the phase of the
wave at the end of the sequence. In Appendix B we provide
a full derivation of this result, together with complete
expressions for Ãa and B̃a. Up to a coefficient,

Ãa; B̃a ∝
n
ω2
a
sin2

�
ωaT
2

�
; ð17Þ

which implies that the amplitude of the GGN phase, as for
the ULDM phase shift, is a function of n and T.
The random variables θ̃a and ξa that enter Eq. (16) are

uncorrelated random variables. As for the ULDM case, this
means that over long timescales the GGN phase measured
by a gradiometer will be characterized by a vanishing
expectation value,

hΦði;jÞ
GGN;mi ¼ 0; ð18Þ

and, assuming sufficiently similar geological conditions
along the baseline, covariance given by

hΦði;jÞ
GGN;mΦ

ði0;j0Þ
GGN;m0 i ¼

X
a

hξ2ai
2

Fði;jÞ
GGN;aF

ði0;j0Þ
GGN;a

× cosðωaΔtðm −m0ÞÞ; ð19Þ

where

Fði;jÞ
GGN;a ¼ FðiÞ

GGN;a − FðjÞ
GGN;a; ð20Þ

FðiÞ
GGN;a ¼ Ãa exp

�
−q

ωazi
cH

�
þ B̃a exp

�
−
ωazi
cH

�
: ð21Þ

Unlike ULDM, the GGN phase shift depends on the
length scale

λGGN ¼ cH
ωa

≃ 100 m
�
250 ms−1

cH

�−1�2.5 Hz
ωa

�
: ð22Þ

As will be discussed in detail in Sec. V, one can precisely
use λGGN to disentangle the ULDM and GGN gradiometer
phase shifts. In summary, in the regime where λGGN ≫ L,
the GGN [cf. Eqs. (16)–(20)] and ULDM [cf. Eqs. (11)–
(12)] gradiometer phase shifts are both proportional to the
separation between the interferometers, namely Δz; hence
the two phase shifts cannot be distinguished. Instead, in the
regime λGGN < L, the two phase shifts manifestly scale
differently withΔz, which implies that theULDMandGGN
could be disentangled by probing different length scales.
The values of cH, s, and q depend on the precise makeup

of the ground where the interferometer is situated. For
example, Ref. [27] quotes a range of 200 ms−1 ≲ cH ≲
6000 ms−1 depending on the rock and mineral composi-
tion. As we do not have a specific site in mind for this
work, we focus on geological parameter values that will
most clearly highlight the impact of atom multigradiometry
and the benefits of the likelihood formalism to potentially
extend the sensitivity in the sub-Hz frequency range. This
corresponds to the lower range of cH where λGGN ≲ L in
the frequency (f) range between 0.1 Hz and 1 Hz
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(corresponding to the angular frequency (ω) range between
0.6 Hz and 6 Hz). Specifically, our default set of parameters
corresponds to the surface materials at the LIGO Livingston
site [27], where the ground density is 1800 kgm−3, cH ¼
205 ms−1, q ¼ 0.88, and s ¼ 0.36. In Sec. V we will also
briefly consider the scenario where cH is over 1000 ms−1

such that λGGN > L.

C. Atom shot noise

The measurement of the phase recorded by an AI is
ultimately limited by atom shot noise. Indeed, as the
phase shift is extracted from the comparison of atoms in
the ground versus excited state at the end of a sequence, the
Poissonian statistics governing atom number affect the
interferometer phase.
Formally, the atom shot noise (ASN) phase of the ith

interferometer ΦðiÞ
ASN is independently sampled at each

measurement from a normal distribution with zero mean
and variance, σ2Atom ¼ ðC2NAtomÞ−1, for phase differences
close to π=2, where NAtom is the number of atoms in the
cloud, and C ≤ 1 is the interferometer contrast [15,40,41].
For simplicity, in our analysis we set C ¼ 1. Because the
variance σ2Atom and mean are frequency independent, and
given that the noise phase is independent in each meas-
urement, the phase contribution from atom shot noise can
be modeled as white noise. Hence, the atom shot noise
phase statistics can be summarized as

hΦðiÞ
ASN;mi ¼ 0; ð23Þ

hΦðiÞ
ASN;mΦ

ðjÞ
ASN;m0 i ¼ δmm0δijσ2Atom: ð24Þ

The atom shot noise contribution to the gradiometer
phase will inherit the statistical properties of the phases
measured by each interferometer. Recalling that the atom
shot noise phase contribution for the (i, j)th gradiometer is

defined as Φði;jÞ
ASN ¼ ΦðiÞ

ASN −ΦðjÞ
ASN, and using Eqs. (23)–

(24) in the limit of long integration time, the atom shot
noise phase will average to zero,

hΦði;jÞ
ASN;mi ¼ 0; ð25Þ

and is characterized by the covariance

hΦði;jÞ
ASN;mΦ

ðp;qÞ
ASN;m0 i ¼ δmm0 ðδip þ δjq − δiq − δjpÞσ2Atom:

ð26Þ

Unlike the ULDM and GGN phases, Eq. (26) can be
exactly zero when comparing four different interferome-
ters. Hence, in this paper, we expect zero correlations
between some gradiometer pairs to be a unique feature of
atom shot noise. As discussed in Sec. V, it is precisely this
feature that will allow the ∼

ffiffiffiffiffi
N

p
sensitivity enhancement at

high frequencies, where the background is dominated by
atom shot noise, and N is the number of interferometers.

IV. ANALYSIS OF AN ATOM
MULTIGRADIOMETER

Having characterized the signal and noise correlations
of our model, in this section we will present a multi-
gradiometer analysis scheme for DM searches to extract
additional information available to two or more gradiom-
eters, which will be of crucial importance to predict and
improve an experiment’s sensitivity at low frequencies. Our
approach makes use of the machinery developed in
Refs. [55,57] for axion-like particle searches.
Because a DM signal is characterized by a frequency

largely set by its mass, and by a frequency spread that is
dictated by its speed distribution, we will present all of the
subsequent analysis in the frequency domain. Therefore,
the appropriate tool for analyzing the data is the discrete

Fourier transform (DFT) Φ̃ði;jÞ
k of the phase measured by

the ði; jÞth gradiometer, which is defined as

Φ̃ði;jÞ
k ¼

XN−1

m¼0

Φði;jÞ
m exp

�
−
2πιkm
N

�
; ð27Þ

where k ∈ f0; 1;…; N − 1g. Following Ref. [57], we
decompose the DFT in terms of real and imaginary parts,
namely

Rði;jÞ
k ¼ Δtffiffiffiffiffiffiffi

T int
p Re½Φ̃ði;jÞ

k �; ð28Þ

Iði;jÞk ¼ Δtffiffiffiffiffiffiffi
T int

p Im½Φ̃ði;jÞ
k �; ð29Þ

such that the one-sided power spectral density (PSD) Sði;jÞk
of the time series may be written in terms of this decom-
position as

Sði;jÞk ≡ ðΔtÞ2
T int

jΦ̃ði;jÞ
k j2 ¼ jRði;jÞ

k j2 þ jIði;jÞk j2: ð30Þ

The information in the k-frequency component collected by
all gradiometers can then be organized into a N ðN − 1Þ-
dimensional data vector,

dk ¼ ½Rð1;2Þ
k ; Ið1;2Þk ;…; RðN ;N−1Þ

k ; IðN ;N−1Þ
k �T: ð31Þ

Since the phase measured by each interferometer, and
hence gradiometer, has an expectation value of zero
[cf. Eqs. (13), (18), and (23)] and is Gaussian distributed,5

5We quote this result from Refs. [55,57], in which the authors
numerically show that white noise and Rayleigh-distributed data
is described by a multivariable Gaussian distribution.
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the data vectors will be characterized by a symmetric
ðN ðN − 1Þ ×N ðN − 1ÞÞ-dimensional covariance matrix
Σk ¼ hdkdT

k i whose entries will depend on both the noise
and signal covariances presented in the previous section.
Because the noise and signal are uncorrelated, we can use
the statistical properties of the different gradiometer phases
to decompose the covariance matrix Σk into signal Sk and
noise Bk contributions. In Appendix C we further elucidate
this point and provide detailed analytical calculations for
the entries of Bk and Sk given the signal and background
models used in this work.
By defining a modelM with parameter vector θ that has

nuisance parameters θnuis, which describe GGN and ASN
in the individual gradiometers, and signal parameters θsig,
which characterize the ULDM signal contribution, the
likelihood is given by

LðdjM; θÞ ¼
YN−1

k¼1

exp ½− 1
2
dT
k · Σ−1

k ðθÞ · dk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2N jΣkðθÞj

q ; ð32Þ

where d ¼ fdkg is the set of data vectors at each
k-frequency, jΣkðθÞj is the determinant of the covariance
matrix, and θ ¼ fθsig; θnuisg. In our definition of the like-
lihood, we omitted the zeroth frequency component since
the DFT of the data at k ¼ 0 would be polluted by a tower
of static effects, while the ULDM signals considered here
are time dependent. Additionally, the mass of a hypotheti-
cal ULDM candidate in this frequency bin would be
degenerate with any value below 2π=Tint, thus leading to
poor mass resolution.
With this likelihood, we define the following frequentist

tool based on the log profile likelihood:

ΘðθsigÞ ¼ 2½lnLðdjM; fθ̂nuis; θsiggÞ
− lnLðdjM; f ˆ̂θnuis; θsig ¼ 0gÞ�: ð33Þ

Here, θ̂nuis denotes the values of the nuisance parameters
that maximize the likelihood in the signal plus background

hypothesis, while ˆ̂θnuis represents the values of the nuisance
parameters that maximize the likelihood in the background-
only hypothesis.
To set upper limits on couplings to scalar ULDM,

we set θsig ¼ ðmϕ; dϕÞ, where we remind the reader that
mϕ is the dark matter mass, and dϕ is the coupling strength
of the relevant linear interaction between ULDM and SM
operators. Then, Eq. (33) can be used to define a test
statistic for setting upper limits on the ULDM-SM cou-
plings dϕ,

qðmϕ; dϕÞ ¼
(
Θðfmϕ; dϕgÞ − Θðfmϕ; d̂ϕgÞ dϕ ≥ d̂ϕ

0 dϕ < d̂ϕ;

ð34Þ

where d̂ϕ is the value of dϕ that maximizes Θðmϕ; dϕÞ at
fixed mϕ.

6 With this definition, the test statistic q at fixed
mϕ is described by a half chi-squared distribution with one
degree of freedom [55,61] such that, for a given mϕ, the
95% limit on dϕ is set when qðmϕ; dϕ;95%Þ ≈ −2.70 when
T int ≫ τc, and qðmϕ; dϕ;95%Þ ≈ −7.55 when T int ≪ τc,
where τc is the coherence time of the ULDM wave
[56].7 In subsequent sections, for our choice of integration
time, the former regime applies for DM masses above
∼10−17 eV—i.e. frequencies above 10−2 Hz. We have
not investigated the precise value of q for setting 95%
exclusion limits in the regime where T int ∼ τc, which
is beyond the scope of this work; here, we use the
approximation qðmϕ; dϕ;95%Þ ≈ −2.70 when T int > τc, and
qðmϕ; dϕ;95%Þ ≈ −7.55 when T int ≤ τc.

A. Test statistics in the Asimov approach

To infer the expected distribution of the test statistics and
understand the expected sensitivity of the multigradiometer
experiment, many realizations of the experiment can be
generated via Monte Carlo simulations. Alternatively, it is
also possible to infer the asymptotic properties of the test
statistics analytically by taking the dataset to be equal to
the mean predictions of the model under consideration
and neglecting statistical fluctuations, which is known as
the Asimov approach [55,57]. Since the test statistic for
setting upper limits depends on the modified log profile
likelihood, we define the basic frequentist tool in the
Asimov approach as

Θ̃ðθsigÞ ¼ hΘðθsigÞi: ð35Þ

Recalling that we have assumed a covariance
matrix Σk that can be split into signal Sk and noise Bk
contributions, and assuming that the signal is parametri-
cally weaker than the background contributions, we may
express the Asimov test statistic for setting upper limits as
follows:

q̃ðmϕ; dϕÞ ¼
�− 1

2

P
N−1
k¼1 Tr½SkB−1

k SkB−1
k � dϕ ≥ 0

0 dϕ < 0;

ð36Þ

which scales with T2
int when T int ≫ τc, and with τcT int

when T int ≪ τc. In Appendix D we provide a derivation of
Eq. (36); we explain the origin of the behavior of the test
statistic in the two aforementioned regimes, and we show

6In light of Eq. (33), this test statistic is independent of the
background-only hypothesis, which is in agreement with the
literature [61].

7To make contact with the signal-to-noise ratio (SNR) defined
in Refs. [10,15,16], please note that SNR ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qðmϕ; dϕÞ

p
.
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examples of the expected power spectral density for
different values of T int. Since the nonvanishing entries
of Sk are proportional to d2ϕ, while those of Bk, if
assuming atom shot noise only, are proportional to
1=Natom, q̃ is proportional to d4ϕN

2
atom. This is in agreement

with results in Ref. [10] in which dϕ ∝ 1=
ffiffiffiffiffiffiffiffiffiffiffi
Natom

p
.

V. ULDM SEARCHES IN A GGN BACKGROUND

In order to assess the impact of GGN on a gradiometer’s
maximum sensitivity, it is of paramount importance to
understand the relative size of GGN with respect to atom
shot noise. Indeed, it will be precisely this comparison that
will guide our analysis into understanding the benefits of a
multigradiometer experiment to mitigate and, in an ideal
scenario, entirely cancel GGN at particular frequencies.
Additionally, because the GGN background as detected by
an atom interferometer is largely dependent on experimen-
tally tunable parameters, we will provide a discussion in
terms of two vertical gradiometer configurations: an “inter-
mediate” and an “advanced” design, which feature a 100 m

and 1 km baseline, respectively. In Table I we summarize
all of the relevant parameters that will be necessary for
subsequent calculations and discussions. Additionally, we
will restrict our discussion to the impact of GGN on the
sensitivity to scalar ULDM couplings to the electron mass,
i.e. dϕ ¼ dme

. We will begin our discussion with a single
atom gradiometer before considering the advantages
brought by an atom multigradiometer in mitigating the
GGN background.

A. Single atom gradiometer

In the left panel of Fig. 4 we plot the single atom
gradiometer (N ¼ 2) noise PSD as a function of frequency
for the intermediate design defined in Table I. The ASN
contribution is shown with a dashed grey line; the GGN
contributions according to the NHNMs and NLNMs are
shown with orange and blue solid lines, respectively. We
see that the PSD of the gradiometer phase induced by GGN
dominates the low frequency range below ∼0.5 Hz for the
NHNM. This indicates that in an environment where the

FIG. 4. Impact of GGN on a single atom gradiometer (N ¼ 2) for the intermediate design defined in Table I. Left panel: contributions
to the gradiometer noise PSD as a function of frequency from atom shot noise (dashed grey) and GGN according to the NHNM (orange)
and NLNM (blue) scenarios. Right panel: projected 95% C.L. exclusion curves on the ULDM-electron coupling when assuming an
atom shot noise-only background (grey dashed) and when GGN modeled by the NHNM is also included (orange). The NLNM result is
degenerate with the ASN line for frequencies greater than ≈10−3 Hz, so is omitted for clarity. The orange shaded region is excluded by
MICROSCOPE [25]. In high seismic-noise scenarios, GGN can limit an intermediate design’s reach in ULDM parameter space.

TABLE I. The experimental parameters for the different atom interferometer scenarios considered in this work. The “intermediate”
and “advanced” designs could be implemented in versions of future vertical gradiometers, such as AION-100 and MAGIS-100, and
AION-km, respectively. Δzmax refers to the maximum gradiometer length given the choice of interferometer parameters. We also
consider scenarios where Δz is shorter than the maximum value.

Design L (m) T (s) n Δzmax (m) Natom Δt (s) T int (s)

Intermediate 100 1.4 1000 85 108 1.5 108

Advanced 1000 1.7 2500 970 1010 1.0 108
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seismic noise is high, GGN can limit an experiment’s reach
in ULDM parameter space for L ∼Oð100 mÞ.8
We demonstrate the impact of the NHNM model

explicitly in the right panel of Fig. 4, which shows the
sensitivity projections in the ULDM frequency (or mass)
versus ULDM-electron coupling plane for the intermediate
design. Typically, the sensitivity projections oscillate as a
function of the ULDM mass. However, for clarity, we
follow Refs. [14,15] and plot only the envelope of the
oscillations by employing the approximation jsin xj ¼
minfx; 1= ffiffiffi

2
p g in the phase formulas [e.g., Eqs. (A5)

and (B20)]. The dashed grey line shows the projected
95% C.L. exclusion curve in the presence of a background
that only contains atom shot noise. In contrast, the solid
orange line shows the 95% C.L. exclusion curve when
GGN modeled by the NHNM is included. As anticipated
from the left panel, the sensitivity projections are reduced
below ∼0.5 Hz. For clarity the right panel does not show
the projection for the NLNM scenario. As may be antici-
pated from the left panel, the sensitivity projection for the
NLNM is degenerate with the grey line as it is subdominant
to atom shot noise for frequencies greater than ≈10−3 Hz.
We highlight that the shape of the ASN-limited sensi-

tivity curve can be understood by carefully studying the
amplitude of the ULDM gradiometer phase shift
[cf. Eqs. (11)–(12) and (A6)]. The amplitude is maximized
at mϕ ∼ π=T, or equivalently fϕ ∼ 1=2T. In the regime
where mϕ ≪ π=T, the ULDM signal amplitude is propor-
tional to mϕ. Hence, in the limit where mϕ → 0, the
ULDM-induced phase shift vanishes, so the sensitivity

curve rises to large values of dϕ. In the regime where
mϕ ≫ π=T, the ULDM signal amplitude is proportional to
1=m2

ϕ. Hence, in the limit mϕ → ∞, the ULDM-induced
phase shift also vanishes, and the sensitivity curve rises to
large values of dϕ. The discontinuity at ∼10−2 Hz is due to
the abrupt change in the value of q for setting upper limits
(cf. Sec. IV).
Next, we turn to the advanced design, in which the

baseline is 1 km. The left panel of Fig. 5 again shows the
noise PSD for a single atom gradiometer. For this design,
we see that GGN exceeds atom shot noise in the sub-Hz
range. In the NHNM (orange) it is the dominant noise
source below ∼1 Hz, while in the NLNM (blue), differently
from the intermediate design, it dominates below ∼0.5 Hz
as a result of different experimental parameters. Indeed, the
PSD of ASN is inversely proportional to the number of
atoms, while the PSD of GGN, in the low frequency limit,
is roughly proportional to the product n2L2T4. Since the
advanced design features twice as many LMT kicks,
comparable interrogation and sampling time, a ten-fold
increase in the length of the baseline and a one-hundred-
fold increase in the number of atoms with respect to the
intermediate design, the advanced design would be char-
acterized by a larger GGN at low frequencies and smaller
ASN across the frequency range of interest.
The right panel of Fig. 5 shows the impact of GGN in the

ULDMmass versus the ULDM-electron coupling plane. In
the sub-Hz regime, in the NLNM scenario the 95% C.L.
exclusion curve (blue) is weaker by approximately an order
of magnitude with respect to a naive estimate accounting
for atom shot noise only. The loss of sensitivity in the
NHNM is much more dramatic, with a suppression by up to
4 orders of magnitude with respect to the atom shot noise

FIG. 5. Impact of GGN on a single atom gradiometer (N ¼ 2) for the advanced design defined in Table I. Left panel: contributions to
the gradiometer noise PSD as a function of frequency from atom shot noise (dashed grey) and GGN according to the NHNM (orange)
and NLNM (blue) scenarios. Right panel: projected 95% C.L. exclusion curve on the ULDM-electron coupling with an atom shot noise-
only background (grey) and when GGN according to the NHNM (orange) and the NLNM (blue) are also included. The orange shaded
region is excluded by MICROSCOPE [25]. GGN can greatly diminish an advanced design’s reach in ULDM parameter space.

8In the frequency range of interest, GGN does not limit the
sensitivity of L ∼ 10 m baselines, even in the NHNM scenario.
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only result. Hence, we conclude that the sensitivity
of a single atom gradiometer (N ¼ 2) of baseline length
L≳Oð1 kmÞ would be greatly diminished across the
entire low frequency range in both the NHNM and NLNM.
Nevertheless, in light of the ULDM signal’s scaling with L
and n, the advanced design would still be able to probe
larger regions of scalar ULDM parameter space (cf. the
right panel of Fig. 5) than the intermediate design (cf. the
right panel of Fig. 4).
Even within the limits of a single atom gradiometer

(N ¼ 2), there is scope to regain parts of parameter space
by tuning the experimental parameters to minimize the
impact of GGN. We observe that the GGN and the ULDM
signal in an atom interferometer both depend identically on
the number of LMT kicks n and interrogation time T
[cf. Eqs. (12) and (20)], but show different scaling relation-
ships with respect to the vertical position along the base-
line. Hence, we will focus on the impact of changing the
position of the interferometers along the baseline.
Both panels in Fig. 6 show the 95% C.L. exclusion

curves for the advanced design; however, in these panels,
we exploit the freedom to locate the two atom interferom-
eters at different positions along the 1 km baseline. In both
panels the orange line repeats the result from Fig. 5 for the
NHNM GGN scenario in which the distance Δz between
the two interferometers is set to the maximum value,
Δzmax ¼ 970 m. The left panel of Fig. 6 additionally
shows the 95% C.L. exclusion curves when the atom
interferometers are separated by Δz ¼ 100 m and are
situated closer to the Earth’s surface (green) or towards
the bottom of the shaft (purple). While situating the atom

interferometers towards the Earth’s surface brings no
benefit relative to Δzmax, for both values of Δz we observe
a sensitivity improvement for the configuration at the
bottom of the shaft below ∼0.5 Hz. However, this comes
at the cost of losing sensitivity at frequencies greater than
∼0.5 Hz. The right panel of Fig. 6 considers the scenario
where Δz ¼ 600 m, and the green and purple lines again
show the exclusion curves when positioning one of the
interferometers closer to the Earth’s surface and towards the
bottom of the shaft, respectively. In this case, a similar
behavior is observed: the configuration with an AI at the
bottom of the shaft is favored below ∼0.7 Hz but again at
the cost of reduced sensitivity at higher frequencies.
Comparing the left and right panels of Fig. 6 we see that
in a narrow frequency range between ∼0.2 Hz and
∼0.7 Hz, there is a preference for larger Δz values at
the bottom of the shaft.
The frequency-dependent behavior observed in

Fig. 6 can be qualitatively understood by considering the
dependence of the GGN and ULDM phase shifts on the
interferometer position along the baseline with respect to
the Rayleigh wave’s profile underground. At fixed Δz, the
GGN background and ULDM signal scale differently in the
high and low frequency limit. At low frequencies, corre-
sponding to ωa ≪ 1=T and λGGN ≫ Δz, the GGN and
ULDM phase shifts both scale like ωaΔz [cf. Eqs. (16) and
(11)]. Therefore, given the geological parameters used in
this work, little to no sensitivity enhancement is gained
from probing different gradiometer length scales for angu-
lar frequencies ωa ≪ 10−1 Hz, where all curves asymptote
towards the same value.

FIG. 6. Impact on the 95% C.L. exclusion curves for different values of Δz and different atom interferometer positions for a single
atom gradiometer (N ¼ 2) assuming that GGN is modeled by the NHNM. The orange lines in both panels show the advanced design
parameters configuration. We also show exclusion curves with interferometers located towards the Earth’s surface (green) and towards
the bottom of the shaft (purple) assumingΔz ¼ 100 m (left panel) andΔz ¼ 600 m (right panel) and with all other advanced parameters
unchanged. The orange shaded region is excluded by MICROSCOPE [25]. Placing atom interferometers towards the bottom of the shaft
regains parts of parameter space below ∼0.5 Hz but at the cost of reduced sensitivity at higher frequencies.
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In contrast, in the frequency window between ∼0.05 Hz
and ∼0.2 Hz, where GGN dominates the background, and
when λGGN ≲ Δzmax, the ULDM and GGN phase shifts
scale very differently: as Δz=ωa for ULDM and as
jexpð−ωazi=cHÞ−expð−ωazj=cHÞj=ω2

a for GGN. Writing
zj ¼ zi þ Δz, the ratio between the amplitudes of the
ULDM and GGN phase shifts is maximized for zi ¼ L
and Δz small, which implies that the GGN background is
better mitigated when placing the interferometers at the
bottom of the baseline and choosing small gradiometer
separations. At high frequencies where the background is
dominated by atom shot noise, which is frequency inde-
pendent, the maximum reach can be achieved by choosing
the largest possible gradiometer length, Δzmax.
Finally, the preference for larger Δz < Δzmax values at

the bottom of the shaft between ∼0.2 Hz and ∼0.7 Hz
arises as a result of the fact that at these frequencies there
exist positions along the baseline where GGN is subdomi-
nant. This can be seen in Fig. 7, where we show the PSD of
GGN over frequencies for long and short values of Δz <
Δzmax when one of the interferometers is located at 1000 m
below the Earth’s surface. For both Δz ¼ 600 m and
Δz ¼ 100 m, the experiment will be ASN-limited above
∼0.2 Hz, which implies that the experimental sensitivity
will scale like Δz above ∼0.2 Hz. Hence, between ∼0.4 Hz
and ∼1 Hz, the configuration with Δz ¼ 600 m is favored,
as shown in Fig. 6.

B. An atom multigradiometer experiment

In our discussion of a single atom gradiometer, we
observed that GGN can greatly diminish the reach in
ULDM parameter space. Furthermore, we observed that

the impact of GGN could be changed by varying the
position of the atom interferometers and the distance Δz
between them. For instance, the configuration with
Δz ¼ 100 m, where the atom interferometers are posi-
tioned towards the bottom of the 1 km shaft, improved the
sensitivity in the sub-Hz regime but at the cost of a loss in
sensitivity above 1 Hz compared to the Δz ¼ 970 m
configuration. With these observations in mind, we can
immediately see the benefit of considering a multigradi-
ometer experiment since, by positioning multiple interfer-
ometers along the baseline, it will be possible to probe the
long and short Δz configurations simultaneously and
thereby maximize the sensitivity across all frequencies.
Although N ðN − 1Þ=2 unique gradiometer measure-

ments can be performed on N interferometers, at most,
N − 1 gradiometers can be combined in the multigradi-
ometer likelihood-based analysis presented in Sec. IV. This
follows from the nonsingularity condition of the data’s
covariance matrix Σk and can be heuristically understood as
the consequence of requiring that gradiometer measure-
ments in a given set are linearly independent, i.e. that no
gradiometer measurement be written in terms of the sum of
other gradiometer measurements. For example, for three
AIs, three gradiometer measurements can be performed,
namely fΦð1;2Þ;Φð1;3Þ;Φð2;3Þg; since Φði;jÞ ¼ Φði;kÞ −Φðj;kÞ
for i; j; k ∈ f1;…N g, a multigradiometer analysis con-
taining measurement Φð1;2Þ cannot contain both Φð2;3Þ and
Φð1;3Þ, but can contain Φð1;2Þ and either Φð2;3Þ or Φð1;3Þ, so
two gradiometer measurements in total. Alternatively, this
statement can be recast in the language of graph theory.
Mapping an AI to a vertex and a gradiometer measurement
to an edge, a set of gradiometer measurements can be
understood as a graph in which two vertices can be
connected by, at most, one edge and no cycles are present;
the former follows from the requirement that measurements
must not be degenerate, while the latter follows from the
requirement that gradiometer measurements in a set are
linearly independent. Recalling that gradiometer measure-
ments are insensitive to the ordering of interferometer pairs
(i.e. are undirected), the graphs above are defined as trees
(i.e. connected undirected graphs that contains no cycles).
By definition, it then follows that a tree on N vertices
contains N − 1 edges [62], so a set of gradiometer
measurements on N AIs contains N − 1 unique and
linearly-independent elements.
After fixing the interferometers’ positions along the

baseline, the number of sets of cardinalityN − 1 containing
unique and linearly-independent gradiometermeasurements
can be efficiently calculated in graph theory. Indeed, via
Caylely’s formula, the number of trees onN labeled vertices
is NN−2 [62]; hence, the number of sets each containing
N − 1 gradiometer measurements that can be combined in a
multigradiometer likelihood analysis is NN−2.
Any choice of N − 1 gradiometer pairs out of NN−2

possibilities gives the same sensitivity to ULDM. Indeed,

FIG. 7. Contributions to the gradiometer noise PSD from atom
shot noise (dashed grey) and GGN according to the NHNM for an
advanced single atom gradiometer (N ¼ 2) in which the AIs are
positioned at 900 m and 1000 m (Δz ¼ 100 m) and 400 m and
1000 m (Δz ¼ 600 m). We also show the PSD of GGN according
to the NHNM for Δzmax ¼ 970 m, which is identical to the
orange curve in the left panel of Fig. 5.
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for any choice of N − 1 gradiometers there exists a
map, which preserves the value of the test statistic,
from the corresponding data vector to that of any other
choice of N − 1 interferometer pair. For example, let
N ¼ 3; the set of possible gradiometer measurements is
given by fΦð1;2Þ;Φð1;3Þ;Φð2;3Þg. Suppose that we choose
fΦð1;2Þ;Φð1;3Þg in our likelihood; then, using Eq. (29),
the corresponding data vector is dk ¼ ðRð1;2Þ; Ið1;2Þ;
Rð1;3Þ; Ið1;3ÞÞT ∝ ðΦð1;2Þ;Φð1;2Þ;Φð1;3Þ;Φð1;3ÞÞT. Now sup-
pose that we want to perform the multigradiometer
analysis using a different set of measurements, namely
fΦð2;3Þ;Φð1;3Þg, whose corresponding data vector is d0

k ¼
ðRð2;3Þ; Ið2;3Þ;Rð1;3Þ; Ið1;3ÞÞT ∝ ðΦð2;3Þ;Φð2;3Þ;Φð1;3Þ;Φð1;3ÞÞT.
It can be shown that there exists a matrixM which maps dk
to d0

k and effectively corresponds to the index relabeling
1 → 3; 3 → 1 and 2 → 2. In geometric terms, this can be
understood as a relabeling of vertices in a graph. Recalling
that the data’s covariance matrix Σk ¼ hdkdT

k i can be
decomposed into signal and noise contributions as
Σk ¼ Sk þBk, it follows that S0

k ¼ MSkMT and
B0

k ¼ MBkMT . Using the cyclicity of the trace and
Eq. (36), the test statistics for the two different choices
of gradiometer measurements are equal at all frequencies,
i.e. q0k ¼ qk for all k in the spectrum. Hence, an atom
multigradiometer experiment is insensitive to the choice of
interferometer pairs.
Having identified the maximum number of gradiometer

measurements that can be combined in a multigradiometer
analysis, and after elucidating the equivalence in the choice
of gradiometer measurements, we are in a position to
determine which configurations maximize the experimental
reach across the frequency band of interest. The optimal
choice of configuration, however, is noise model dependent
and so warrants a careful analysis. To gain intuition, we will
explore the effect of different interferometer layouts on the
reach of multigradiometer experiments in baselines of
length L ∼Oð1 kmÞ.

1. Example configurations

To facilitate the comparison between different inter-
ferometer configurations, we will focus our analysis
on three distinct multigradiometer layouts: unequally-
spaced interferometers clustered at either end of the
baseline, equally-spaced configurations, and unequally-
spaced configurations in which each end of the baseline
is equipped with an AI and the remaining interferometers
are clustered at the center of the baseline.9 These three
layouts are shown in Fig. 8 for two, three, and seven
interferometers.
In detail, in the unequal spacing (ends) configuration,

the interferometers are clustered at either extremity of the
baseline with the separation between nearest neighbors in
each cluster determined by L=2ðN − 1Þ. The separation
between nearest neighbors in each cluster is shorter
than the shortest separation between interferometers in
different clusters. When N is odd, one additional inter-
ferometer is in the bottom cluster relative to the cluster
near the Earth’s surface. In the equal spacing configura-
tion, the separation between nearest neighbors is given by
L=ðN − 1Þ. Finally, in the unequal spacing (center)
configuration, each extremity of the baseline is equipped
with an AI and the remaining interferometers are clus-
tered at the center of the baseline. The separation between
nearest neighbors in the cluster is given by L=2ðN − 1Þ,
which again implies that the separation between nearest
neighbors in the central cluster is shorter than the shortest
separation between interferometers in the cluster and
at the ends of the baseline. In this case, the interferom-
eters are positioned symmetrically around the baseline’s
midpoint.

FIG. 8. Schematic representation of different interferometer configurations for different interferometer numbers: N ¼ 2, N ¼ 3, and
N ¼ 7. With purple dots we show the positioning of interferometers in “unequal spacing (ends)” configurations. We show in red the
positioning of interferometers in “equal spacing” configurations. In green we show the “unequal spacing (center)” configurations.

9These three configurations are illustrative and have not been
informed by experimental constraints, which will ultimately
dictate the layout of any multigradiometer experiment.
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2. Searches below 1 Hz

In Fig. 9 we show the 95% C.L. exclusion curves in the
ULDM frequency (or mass) versus ULDM-electron cou-
pling plane for different multigradiometer configurations,
assuming the advanced design and under the assumption of
the NHNM GGN scenario. We begin by discussing the left
panel, which compares the equal and unequal (ends)
scenario for N ¼ 3 with the single atom gradiometer
(N ¼ 2) configuration.10 We observe an enhancement in
the N ¼ 3 exclusion curves at frequencies between
∼0.05 Hz and ∼1 Hz. The enhancement has a mild
dependence on the position of the interferometers along
the baseline since, as explained in the previous section,
searches in the ∼ð0.05–0.2Þ Hz frequency range favor the
positioning of an interferometer pair towards the bottom of
the baseline, while above ∼0.2 Hz equally-spaced con-
figurations are preferred.
Below ∼0.05 Hz, we see that the sensitivity is largely

insensitive to the location of the interferometers. This is
because at these low frequencies the GGN length scale is
much larger than the baseline (λGGN ≫ L), so the GGN
gradiometer phase is largely insensitive to the location of
the interferometers. Unlike in Fig. 6, where the enhance-
ment in the sub-Hz regime for a single atom gradiometer
(N ¼ 2) came at the expense of sensitivity loss above 1 Hz,
for N ¼ 3 we find an exclusion curve above 1 Hz that is
comparable to the N ¼ 2 configuration. We will postpone

a more thorough discussion of the regime above 1 Hz to the
next subsection.
The right panel of Fig. 9 compares the equal, unequal

(ends), and unequal (center) scenarios for N ¼ 5 with the
single atom gradiometer (N ¼ 2) configuration. We see a
similar pattern as in the left panel, with an enhancement at
frequencies between ∼0.05 Hz and ∼1 Hz. Again, we find
a mild enhancement below ∼0.2 Hz for the configuration
that has the smallest Δz towards the bottom of the baseline,
namely, the unequal (ends) configuration. Comparing the
left and right panels, we observe a weak dependence (of at
most a factor of a few) on the number of interferometers.
This stems from the fact that N ≫ 1 AIs can simulta-
neously probe a larger array of length scales, which in turn
means that the configurations will asymptotically approach
the optimal gradiometer length and AI vertical position to
maximize the reach across all frequencies. In this frequency
range, the advantage of using N > 3 instead of N ¼ 3
interferometers is minimal.
Therefore, we have shown that since multigradiometer

configurations can simultaneously probe different
length scales and vertical positions, they can achieve a
frequency dependent and weaklyN -dependent sensitivity
enhancement over the single atom gradiometer (N ¼ 2)
configuration.

3. Searches above 1 Hz

At high frequencies, the background of all experiments
considered in this work is dominated by atom shot noise. In
contrast to the GGN and ULDM signals, atom shot noise is
position independent and is inversely proportional to the

FIG. 9. Projected 95% C.L. exclusion curves for an atom multigradiometer using the advanced parameters withN ¼ 3 (left panel) and
N ¼ 5 (right panel) assuming GGN is modeled by the NHNM. The grey and blue lines show the exclusion curve for a single atom
gradiometer (N ¼ 2) for ASN only and in an ASN and GGN background, respectively. The red dot-dashed, purple dashed, and green
solid lines show the atom multigradiometer exclusion curves for the equally-spaced, unequally-spaced (ends), and unequally-spaced
(center) configurations defined in Fig. 8, respectively. The multigradiometer exclusion curves regain parts of parameter space between
∼0.1 Hz and ∼1 Hz and have a similar sensitivity to the N ¼ 2 configuration at higher frequencies. The orange shaded region is
excluded by MICROSCOPE [25].

10The equal spacing and unequal spacing (center) configura-
tions are identical for N ¼ 3.
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number of atoms Natom employed in each interferometer
sequence. As Fig. 9 demonstrates, the sensitivity above
1 Hz is only weakly dependent on the position of the
interferometers along the baseline. Therefore, in the regime
where GGN can be neglected, we can estimate the
sensitivity scaling with the number of interferometers by
making the unphysical assumption that all interferometers
are placed at the extreme ends of the baseline. In this case,
we expect a

ffiffiffiffiffi
N

p
sensitivity scaling since increasing N is

equivalent to increasing Natom in each cloud, and we know
that the sensitivity scales like

ffiffiffiffiffiffiffiffiffiffiffi
Natom

p
in the absence of

GGN (cf. Sec. IVA).
Considering a more realistic multigradiometer configu-

ration with equal spacing between the atom interferome-
ters, we find analytically that the test statistic is related to

the test statistic for a single gradiometer with maximum
gradiometer length and identical parameters by

qmulti
N ¼ 1

9

�
N
2

�
2
�
N þ 1

N − 1

�
2

qN¼2: ð37Þ

Given that the test statistic is proportional to the fourth
power of the ULDM coupling (cf. Sec. IVA), we find
explicitly the

ffiffiffiffiffi
N

p
scaling in the limit of large N . Setting

N ¼ 3 in Eq. (37) shows that there is no sensitivity
enhancement when an additional atom interferometer is
positioned at the midpoint along the baseline. This behavior
is the reason why the unequal spacing (center) configura-
tions, which feature an AI at either end of the baseline
and equally spaced interferometers clustered around the

FIG. 10. Impact of changing the Rayleigh wave’s horizontal ground speed ðcHÞ on the projected 95% C.L. exclusion curves of atom
gradiometers. Upper panels: exclusion curves for a single atom gradiometer (N ¼ 2) for the intermediate (left) and advanced (right)
designs. Solid and dotted lines show cH ¼ 205 ms−1 and cH ¼ 3232 ms−1, respectively. The NHNM and NLNM (upper right only)
scenarios are shown in orange and blue, respectively. Lower panels: comparison of the exclusion curves for N ¼ 2 (blue) and N ¼ 5

(red) assuming that the AIs are equally spaced under the NHNM scenario. When cH ¼ 3232 m=s, theN ¼ 5 configuration provides no
increase in sensitivity relative toN ¼ 2. In all panels the orange shaded region is excluded by MICROSCOPE [25]. The solid grey lines
show the exclusion curves assuming N ¼ 2 and an atom shot noise-only background, while the dotted grey lines show the exclusion
curve assuming a N ¼ 5 ASN-limited and equally-spaced multigradiometer experiment.
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baseline’s midpoint, display a smaller sensitivity increase
than equally-spaced interferometers. Conversely, the
unequal spacing (ends) configuration provides the best
sensitivity at high frequencies since the interferometers are
furthest from the midpoint.

4. Searches in the large cH regime

In the projections shown until this point, we have utilized
a set of geological parameters in which the GGN length
scale λGGN, defined in Eq. (22), is similar in magnitude to
the baseline at frequencies between ∼10−1 Hz and ∼1 Hz.
This was achieved by considering a km-baseline experi-
ment and a ground material in which the Rayleigh wave’s
horizontal speed was cH ∼ 250 ms−1. We now consider the
scenario where λGGN ≳ L. This would occur, for example,
if the ground material consisted of limestone, for which
cH ≃ 3232 ms−1 and λGGN ≃ 1.3 km ð3232 ms−1

cH
Þ−1ð2.5 Hz

ωa
Þ.

The upper panels of Fig. 10 compare the sensitivity reach
between the two values of the horizontal speed: 205 ms−1,
which we show with solid curves, and 3232 ms−1, which
we show with dotted curves. In the upper-left panel, we
focus on a 100 m baseline operating with N ¼ 2 and the
intermediate parameters from Table I. Here, we only
display the projected reach in the NHNM scenario since
the NLNM curve is degenerate with the atom shot noise-
limited curve. In the upper-right panel, we consider the
scenario for a 1 km baseline operating with N ¼ 2 and the
advanced parameters from Table I. Differently from the left
panel, we display the sensitivity curves in both the NHNM
and NLNM scenarios, which we plot in orange and blue,
respectively. Under both the NHNM and NLNM scenarios,
the cH ¼ 3232 ms−1 sensitivity curves are significantly
lower than the cH ¼ 205 ms−1 curves over all frequencies
in the sub-Hz regime for both baselines, which suggests
that geological materials with large cH values can naturally
act as GGN filters owing to the smaller value of λGGN.

11

This follows from the fact that in the regime where
λGGN > L, the GGN gradiometer phase shift is inversely
proportional to λGGN, and so also inversely proportional to
cH; hence, larger values of cH imply a smaller GGN
gradiometer phase shift and, in the limit where the back-
ground is dominated by GGN, better sensitivity to linearly-
coupled scalar ULDM.
The lower panels in Fig. 10 compare the N ¼ 2

configuration shown in blue with the N ¼ 5 equal spacing
multigradiometer configuration, shown in red dot-dashed
and red dashed for cH ¼ 205 ms−1 and cH ¼ 3232 ms−1,
respectively. In both lower panels we focus on the NHNM

scenario. In the lower-left panel, where we study the
intermediate scenario with a 100 m baseline, we observe
that when GGN dominates the background (in the
sub-Hz range), only a small sensitivity enhancement is
observed for N ¼ 5 compared to N ¼ 2 when cH ¼
205 ms−1, and there is essentially no improvement when
cH ¼ 3232 ms−1. This follows because the GGN length
scale of the Rayleigh wave’s profile underground is
already Oð100Þ m when cH ¼ 205 ms−1 and significantly
exceeds the length of the baseline when cH ¼ 3232 ms−1,
so the GGN gradiometer phase is largely insensitive
to the location of the interferometers. In the km-baseline
advanced scenario, shown in the lower-right panel, anN ¼
5 configuration significantly improves the sensitivity in the
∼0.1 Hz to ∼1 Hz frequency range relative toN ¼ 2when
cH ¼ 205 ms−1. However, we again see no such improve-
ment for cH ¼ 3232 ms−1 since at these frequencies
λGGN ≫ L. This highlights the fact that in the λGGN ≫ L
regime, the multigradiometer configuration is a less useful
tool to mitigate GGN.

VI. DISCUSSION AND SUMMARY

Single-photon atom gradiometry is a powerful exper-
imental technique that can be employed to search for
the oscillation of atomic transition energies induced by
ULDM. By developing a robust statistical analysis based
on a likelihood-based frequentist framework, we have
provided a careful treatment that characterizes the impact
of GGN on ULDM searches with vertical atom gradiom-
eters. We have modeled the GGN as arising from an
incoherent superposition of fundamental Rayleigh-wave
modes and used Peterson’s data-driven models to capture
the expected behavior of low and high seismic-noise
scenarios. We find that GGN has the potential to signifi-
cantly impact the sensitivity reach of longer-baseline
experiments, L≳Oð100 mÞ, in the sub-Hz regime.
However, we have shown that vertical atom multigradi-
ometer experiments, consisting of three or more atom
interferometers in the same baseline, can recover significant
parts of parameter space. Our results demonstrate how
robust sensitivity projections for vertical atom gradiome-
ters, such as future versions of AION and MAGIS-100, can
be obtained for frequencies down to 10−3 Hz, correspond-
ing to an ULDM mass of ∼10−17 eV.
There is scope to go beyond the analysis presented in this

work. Firstly, the geological parameters that we used here
have been chosen to be a generic representation, so they
may not accurately describe the geology of the site where
AION-100, MAGIS-100, or other future vertical atom
gradiometers will be located. Secondly, the homogeneous
half-space model for the ground surrounding the experi-
ment may not accurately describe more realistic geological
settings. Indeed, the model does not describe the existence
of geological anisotropies or the presence of different

11There is an 11% difference in the ground density between the
low and high cH scenarios but since the GGN phase scales
linearly with the ground density (Eq. (B20) and the discussion
that follows), this cannot explain the large change observed in
Fig. 10.
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geological strata. For example, it may be the case that
isotropy is broken by a body of water located close to the
shaft, as would occur at the BoulbyUndergroundLaboratory
or at CERN, owing to their vicinity to the North Sea and
LakeGeneva, respectively. Additionally, different geological
strata would give rise to a much richer spectrum of Rayleigh
modes. This is because the additional strata would create
more interfaces for the reflection and propagation of P- and
S-waves, and this would generate Rayleigh wave overtones
beyond the fundamental mode. Thirdly, in addition to the
geological model, our calculations are dependent on the
vertical displacement spectrum in the sub-Hz regime. A
specific site may not follow either of Peterson’s NLNM or
NHNM scenarios, which attempt to bracket the range of
possibilities. Therefore, a site-specific spectrum acquired as
part of a dedicated site characterization campaign would be
preferred. Finally, our model of GGN could be extended to
include the contributions beyond seismic Rayleigh waves,
such as atmospheric pressure-induced perturbations and
seismic body waves that propagate through the Earth. In
summary, to further improve the sensitivity predictions in the
sub-Hz regime for future versions of AION or MAGIS-100,
the homogeneous half-space model should be extended to
account for the possibilities discussed above, and a detailed
site-specific seismic and ground measurement campaign
should be undertaken. We emphasize that a key advantage
of the likelihood-based analysis presented in this work is that
the updated geological models and the site-specific infor-
mation can be straightforwardly incorporated into the analy-
sis procedure.
While our focus has been on scalar ULDM searches, we

highlight that the likelihood-based frequentist framework
developed here can be extended to stochastic gravitational
wave searches with an atom multigradiometer experiment.
A study exploring these signals in the midfrequency band
using this framework will be the focus of future work.
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APPENDIX A: ULDM SIGNAL PHASE

A linearly-coupled scalar ULDM field ϕðtÞ, defined in
Eq. (7), which has interactions governed by the Lagrangian

Lϕ ⊃ ϕðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p �
de
4e2

FμνFμν − dme
meψeψe

�
; ðA1Þ

will induce oscillations in an atom’s transition frequency
(see e.g., [44–46]):

ωAðtÞ¼ωAþΔωA

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
cosðωatþθaÞ: ðA2Þ

Here, de and dme
are dimensionless and parametrize the

coupling strength relative to the Planck mass 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
,

where GN is Newton’s gravitational constant, αa is a
Rayleigh distributed variable, and θa is a random phase.
The sum is carried over DM velocity classes of width Δv
that are weighted by the DM speed distribution. For the
5s21S0 ↔ 5s5p3P1 clock transition in 87Sr, which we
assume throughout this work, ωA ¼ 2.697 × 1015 rad=s,
while

ΔωA

ωA
¼ dϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p ffiffiffiffiffiffiffiffiffi
ρDM

p
mϕ

; ðA3Þ

where the ULDM-Standard Model coupling strength is

dϕ ¼ dme
þ ð2þ ξAÞde; ðA4Þ

and ξA is a calculable parameter that takes the value ξA ≈
0.06 for 87Sr [63].
Following the procedure described in Ref. [15], the

expression for the gradiometer phase in natural units
measured at the end of the mth launch between the ith
and jth AIs, which are separated by the vertical distance
Δzði;jÞ, can be expressed as

Φði;jÞ
DM;m ¼ Δzði;jÞ

L

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
Aa cosϕa;m; ðA5Þ

where we have defined

Aa ¼ 8
ΔωA

ωa
sin

�
ωanL
2

�
sin

�
ωaðT − ðn − 1ÞLÞ

2

�
× sin

�
ωaT
2

�
; ðA6Þ

ϕa;m ¼ ωa

�
2T þ L

2
þmΔt

�
þ θa; ðA7Þ

and, as previously stated, L is the baseline, n is the number
of LMT kicks, while T is the interrogation time. For
definiteness, the random variables that enter Eq. (A5) are αa
and ϕa;m.
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1. Statistical properties

The statistical properties of the ULDM signal follow
straightforwardly from the statistical properties of the
ULDM wave. The expectation value of the ULDM phase
shift is

hΦði;jÞ
DM;mi ¼

Δzði;jÞ

L

X
a

hαa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
Aa cosϕa;mi: ðA8Þ

Since the random phase θa and the Rayleigh distributed
random variable αa are independent, the expectation value
will act on the cosine term and separately on the amplitude,
such that

hΦði;jÞ
DM;mi ¼

Δzði;jÞ

L

X
a

hαai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
Aahcosϕa;mi: ðA9Þ

According to the definition of the Rayleigh distribution,
hαai > 0; however, since ϕa;m depends linearly on the
random phase θa, hcosϕa;mi vanishes, such that

hΦði;jÞ
DM;mi ¼ 0: ðA10Þ

The covariance of the gradiometer also follows from
the statistical properties of the ULDM wave. Neglecting
for brevity the factors depending on the gradiometer
length, using the vanishing expectation value of the
ULDM phase and recalling the fact that αa and θa are
independent random variables, the expected covariance is
proportional to

hΦði;jÞ
DM;mΦ

ði0;j0Þ
DM;m0 i ∝

X
a;a0

hαaαa0 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞFDMðva0 Þ

p
× AaAa0 hcosϕa;m cosϕa0;m0 i: ðA11Þ

Since ϕa;m depends on a random phase θa, the sum over the
velocity classes (labeled by a and a0) is nonzero only when
the random phases are the same, i.e. a0 ¼ a. Hence, we may
write

hΦði;jÞ
DM;mΦ

ði0;j0Þ
DM;m0 i ∝

X
a

hα2aiFDMðvaÞ

× A2
ahcosϕa;m cosϕa;m0 i: ðA12Þ

To further simplify the expression above, we observe that
hcosϕa;m cosϕa;m0 i can be reexpressed in terms of double
angle formulas as

hcosϕa;m cosϕa;m0 i ¼ 1

2
½hcos ðϕa;m − ϕa;m0 Þ

þ cos ðϕa;m þ ϕa;m0 Þi�

¼ 1

2
cos ðωaΔtðm −m0ÞÞ

þ 1

2
hcos ðϕa;m þ ϕa;m0 Þi

¼ 1

2
cos ðωaΔtðm −m0ÞÞ; ðA13Þ

where the second line follows from the definition of ϕa;m

and the last line from the vanishing expectation value of the
cosine of a random phase. Using this result and hα2ai ¼ 2,
and also restoring the dependence on the gradiometer
length, we find that the covariance takes the form

hΦði;jÞ
DM;mΦ

ði0;j0Þ
DM;m0 i

¼ Δrði;jÞ

L
Δrði0;j0Þ

L

X
a

FDMðvaÞA2
a cosðωaΔtðm −m0ÞÞ:

ðA14Þ

APPENDIX B: GGN FROM THE FUNDAMENTAL
RAYLEIGH MODE

Our GGN model assumes that the dominant contribution
arises from the fundamental Rayleigh mode. The funda-
mental Rayleigh mode consists of S-waves with vertical
displacements that are coupled to P-waves. In this appen-
dix, we begin by deriving an expression for the angle-
averaged gravitational potential caused by the fundamental
Rayleigh mode. This potential is used as an input to
calculate the phase shift induced in an atom interferometer.
We then consider the statistical properties of the phase shift.
Our notation largely follows Refs. [27,64], and we also
make extensive use of the discussion in Ref. [26].
We begin with some definitions. The propagation speed

of P-waves, cP, is determined by the material’s density ρ0,
and bulk and shear moduli K and μ, respectively, as

cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4μ=3

ρ0

s
: ðB1Þ

The propagation speed of S-waves, cS, is related to that of
P-waves by

cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ν

2 − 2ν

r
cP; ðB2Þ

where ν is the material’s Poisson ratio, which depends on
the ground’s bulk and shear moduli as
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ν ¼ 3K − 2μ

2ð3K þ μÞ : ðB3Þ

We model the geological surroundings of the experi-
mental site as a homogeneous half-space with constant
ground density ρ0 and Poisson ratio ν across all depths.
This is an idealized scenario which implies that the
Rayleigh waves are isotropic and that only the fundamental
Raleigh mode is present: Rayleigh overtones require
geologically stratified structures, which are not present
in our model. The fundamental Raleigh mode has fre-
quency fa, angular frequency ωa ¼ 2πfa, horizontal wave
number ka, horizontal propagation speed cH ¼ ωa=ka, and
horizontal propagation direction k̂. The horizontal propa-
gation speed cH is related to cS by cH ¼ cS

ffiffiffi
ζ

p
, where ζ is

the real root of the cubic equation

ζ3 − 8ζ2 þ 8

�
2 − ν

1 − ν

�
ζ −

8

ð1 − νÞ ¼ 0: ðB4Þ

It is convenient to introduce the dimensionless ratios
s and q,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðcH=cSÞ2

q
; ðB5Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðcH=cPÞ2

q
; ðB6Þ

which will appear as the vertical e-folding rate to the
horizontal wave number for S-waves and as the vertical
e-folding rate to the horizontal wave number for P-waves,
respectively. Equation (B4) encodes the relation

1þ s2 ¼ 2
ffiffiffiffiffi
qs

p
; ðB7Þ

which we make extensive use of in the manipulations
below.
Finally, the definition of our coordinate system is shown

in Fig. 2. It is convenient to express all vectors in
cylindrical coordinates,

x ¼ ðϱ cos θ; ϱ sin θ; 0Þ; ðB8Þ

r ¼ ðϱ cos θ; ϱ sin θ; zÞ; ðB9Þ

k ¼ ðk cos θ0; k sin θ0; 0Þ: ðB10Þ

In this system, x defines a point on the horizontal plane, and
z defines the depth into the ground. The product of the
horizontal wave number and horizontal distance, k · x, may
be written as

k · x ¼ kϱðcos θ0 cos θ þ sin θ0 sin θÞ ¼ kϱ cosðθ − θ0Þ:
ðB11Þ

Having defined our terms, we now proceed to calculate
the surface and underground density perturbations induced
by the Rayleigh waves. Adapting the expressions from
Ref. [26] to our coordinate system, the Rayleigh wave
displacement vector is given by

ξa;Rðϱ;θ;z;tÞ¼ðξa;HðzÞk̂−ξaðzÞẑÞ
×exp½iðkaϱcosðθ−θ0Þ−ωatþ θ̃aÞ�; ðB12Þ

where θ̃a is a random phase, ẑ is the unit vector pointing
downward, and

ξaðzÞ ¼ ξa

�
1þ s2

1 − s2

��
exp ð−qωaz=cHÞ

−
2

1þ s2
exp ð−sωaz=cHÞ

�
; ðB13Þ

ξa;HðzÞ ¼
iξa
q

�
1þ s2

1 − s2

��
exp ð−qωaz=cHÞ

−
2qs

1þ s2
exp ð−sωaz=cHÞ

�
; ðB14Þ

where ξa is the vertical displacement at the surface, and the
factor i in ξa;HðzÞ ensures that particle motion is retrograde
at the surface. Thus, we see explicitly that the amplitude is
characterized by an exponentially decaying profile while
moving away from the surface.
The displacement field induced by the fundamental

Rayleigh wave produces a fractional density perturbation
at depth z [27],

δρaðz> 0Þ
ρ0

¼ ½ξaδðzÞþRaðzÞ�

×exp½iðkaϱcosðθ−θ0Þ−ωatþ θ̃aÞ�; ðB15Þ

where the first term is the surface contribution and arises
from the displacement normal to the surface (δðzÞ is the
Dirac delta function), while the second term is the con-
tribution from inside the medium and follows from the
ground-mass continuity equation, such that

RaðzÞ ¼ −i
ωa

cH
ξa;HðzÞ þ

∂ξaðzÞ
∂z

ðB16Þ

¼ ωa

cH
ξa

ðq2 − 1Þ
q

�
1þ s2

1 − s2

�
exp ð−qωaz=cHÞ: ðB17Þ

Following Ref. [26], the angle-averaged perturbing gravi-
tational potential induced by a fundamental Rayleigh mode
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of frequency ωa, and experienced by a test mass under-
ground at time t and position r0 ¼ ð0; 0; z0Þ, is

Vaðz0; tÞ ¼ −2πGρ0 cosðωatþ θ̃aÞ

×
Z

ϱdϱdz
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ2 þ ðz − z0Þ2
p

× ½ξaδðzÞ þRaðzÞ�J0ðωaϱ=cHÞ; ðB18Þ

where J0ðωaϱ=cHÞ is the Bessel function of first kind.
Performing the integrals, and summing over all frequen-
cies, we arrive at the expression,

Vaðz0; tÞ ¼ −2πGρ0
X
a

ξa
cH
qωa

�
1þ s2

1 − s2

�
× ½ð1þ

ffiffiffiffiffiffiffiffi
q=s

p
Þ expð−ωaz0=cHÞ

− 2 expð−qωaz0=cHÞ� cosðωatþ θ̃aÞ: ðB19Þ

1. Rayleigh wave signal phase

The leading order phase shift induced by the perturbing
potential on the atom interferometer can be calculated using
the perturbative approach [65], in which the GGN potential
is treated as a perturbation to Minkowski space. In flat
spacetime, the atom trajectories follow straight lines, and
the interferometer can be geometrically thought of as a kite
in spacetime. In this geometry, the separation, laser, and
propagation phases are all zero. Using the standard
approach for perturbative atom interferometer calculations
[65], the leading order phase shift from the fundamental
Rayleigh wave field with angular frequency ωa leaves a
nonzero contribution to the propagation phase. In all
experimental configurations considered here, we take the
launch velocity vin and velocity kick from the n LMT
pulses vkick to be much smaller than the horizontal speed of
the Rayleigh wave, such that vkick=cH, vin=cH ≪ 1.
Additionally, for all frequencies considered in this paper,
the Rayleigh wave’s wavelength is significantly larger than
the length scales probed by the atoms during interferom-
etry, i.e. ωaTvkick=cH ≪ 1, such that the leading order
GGN-induced phase shift measured by the ith AI at the end
of the mth launch takes the form

ΦðiÞ
GGN;m¼

X
a

ξa

�
Ãaexp

�
−q

ωzi
cH

�
þ B̃aexp

�
−
ωzi
cH

��
cosϕ̃a;m: ðB20Þ

In this expression we have defined

Ãa ¼ nkA
16πGρ0

ω2
a

�
1þ s2

1 − s2

�
sin2

�
ωaT
2

�
; ðB21Þ

B̃a ¼ −nkA
8πGρ0
qω2

a

�
1þ s2

1 − s2

�
ð1þ

ffiffiffiffiffiffiffiffi
q=s

p
Þsin2

�
ωaT
2

�
;

ðB22Þ

ϕ̃a;m ¼ ωaðT þmΔtÞ þ θ̃a; ðB23Þ

and assumed that the momentum kick from the LMT
sequence is nkA. For definiteness, the independent random
variables that enter Eq. (B20) are ξa and θ̃a.
With our assumption that the ground composition

is homogeneous down the baseline, it follows that the
GGN gradiometer phase between the ith and jth interfer-
ometers is

Φði;jÞ
GGN;m ¼

X
a

ξa

�
Ãa

�
exp

�
−q

ωzi
cH

�
− exp

�
−q

ωzj
cH

��
þ B̃a

�
exp

�
−
ωzi
cH

�
− exp

�
−
ωzj
cH

���
× cos ϕ̃a;m: ðB24Þ

In Figs. 4–6, and 9 we use the following ground
parameters: ρ0 ¼ 1800 kg=m3, ν ¼ 0.33, cP ¼ 440 m=s,
and cS ¼ 220 m=s. From these, we find s ¼ 0.36,
q ¼ 0.88, and cH ¼ 205 m=s. In Fig. 10 we also show
results with ρ0 ¼ 2000 kg=m3, ν ¼ 0.34, cP ¼ 6964 m=s,
and cS ¼ 3464 m=s, which lead to s ¼ 0.36, q ¼ 0.89, and
cH ¼ 3232 m=s. We stress that these parameters are
representative estimates and that site-specific measure-
ments would be necessary to deduce these parameters.

2. Statistical properties

Since the GGN phase is sourced by a stochastic super-
position of waves, it follows that the statistical properties of
the ULDM signal also characterize the GGN background
contribution. Indeed, since the vertical displacement ξa is
Rayleigh distributed at each angular frequency ωa and,
importantly, is independent of the random phase θa, the
expectation value of the GGN gradiometer phase takes the
form

hΦði;jÞ
GGN;mi¼

X
a

hξai
�
Ãa

�
exp

�
−q

ωzi
cH

�
− exp

�
−q

ωzj
cH

��
þ B̃a

�
exp

�
−
ωzi
cH

�
− exp

�
−
ωzj
cH

���
× hcos ϕ̃a;mi¼ 0; ðB25Þ

where the last equality follows from the fact that ϕ̃a;m

depends linearly on a random phase θ̃a.
The calculation of the covariance also follows identically

from the ULDM case. The only structural difference arises
from the product of the exponential functions in Eq. (B24).
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Hence, using Eqs. (A12)–(A13), it can easily be shown that
the covariance is then given by

hΦði;jÞ
GGN;mΦ

ði0;j0Þ
GGN;m0 i

¼
X
a

hξ2ai
2

Fði;jÞ
GGN;aF

ði0;j0Þ
GGN;a cosðωaΔtðm −m0ÞÞ; ðB26Þ

where

Fði;jÞ
GGN;a ¼ FðiÞ

GGN;a − FðjÞ
GGN;a; ðB27Þ

FðiÞ
GGN;a ¼ Ãa exp

�
−q

ωazi
cH

�
þ B̃a exp

�
−
ωazi
cH

�
: ðB28Þ

It should be noted that, differently from αa, hξ2ai ≠ 2;
hence, we obtain a term hξ2ai=2 that is absent from
Eq. (A14). This is because αa is a dimensionless random
variable described by Eq. (9), such that hα2ai ¼ 2, while ξa
is not.

APPENDIX C: COVARIANCE MATRICES

The covariance matrix of a multidimensional data vector
dk with zero expectation value is simply expressed as
Σk ¼ hdkdT

k i. We remind the reader that the N ðN − 1Þ-
dimensional data vector is defined as

dk ¼ ½Rð1;2Þ
k ; Ið1;2Þk ;…; Rðn;n−1Þ

k ; Iðn;n−1Þk �T; ðC1Þ

in terms of the real and imaginary parts of the DFT, which
we can explicitly write out in terms of noise and signal
phase shifts measured by AG-(i, j) as

Rði;jÞ
k ¼ Δtffiffiffiffiffiffiffi

T int
p

XN−1

m¼0

ðΦði;jÞ
Signal;m þΦði;jÞ

Noise;mÞcm;k ðC2Þ

¼ Rði;jÞ
k;Signal þ Rði;jÞ

k;Noise; ðC3Þ

Iði;jÞk ¼ −
Δtffiffiffiffiffiffiffi
T int

p
XN−1

m¼0

ðΦði;jÞ
Signal;m þΦði;jÞ

Noise;mÞsm;k ðC4Þ

¼ Iði;jÞk;Signal þ Iði;jÞk;Noise: ðC5Þ

For brevity, in Eqs. (C3)–(C5) we use the shorthand
notation for trigonometric functions, namely

cm;k ¼ cos

�
2πkm
N

�
and sm;k ¼ sin

�
2πkm
N

�
: ðC6Þ

Equipped with Eq. (C1) the covariance matrix of the k-
frequency component collected by all gradiometers
can then be organized into a symmetric ðN ðN − 1Þ×
N ðN − 1ÞÞ-dimensional matrix taking the form

Σk ¼

26666664
hRð1;2Þ

k Rð1;2Þ
k i hRð1;2Þ

k Ið1;2Þk i … hRð1;2Þ
k Iðm−1;mÞ

k i
hIð1;2Þk Rð1;2Þ

k i hIð1;2Þk Ið1;2Þk i … hIð1;2Þk Iðm−1;mÞ
k i

..

. . .
. ..

.

hIðm−1;mÞ
k Rð1;2Þ

k i hIðm−1;mÞ
k Ið1;2Þk i … hIðm−1;mÞ

k Iðm−1;mÞ
k i

37777775: ðC7Þ

From Eq. (C7), it is clear that each entry in the
covariance matrix consists of one of three unique products
of imaginary and/or real parts, namely

hRði;jÞ
k Rði0;j0Þ

k i; hRði;jÞ
k Iði

0;j0Þ
k i; hIði;jÞk Iði

0;j0Þ
k i: ðC8Þ

Additionally, from Eqs. (C3)–(C5), each of these entries
will contain terms pairing phases originating from identical
or different sources. For example, using Eq. (C3) and
without loss of generality, we find that

hRði;jÞ
k Rði0;j0Þ

k i¼ hRði;jÞ
k;SignalR

ði0;j0Þ
k;SignaliþhRði;jÞ

k;NoiseR
ði0;j0Þ
k;Noisei

þhRði;jÞ
k;NoiseR

ði0;j0Þ
k;SignaliþhRði;jÞ

k;SignalR
ði0;j0Þ
k;Noisei;

ðC9Þ

where the last two terms mix the signal and noise phases.
Under our working assumption of uncorrelated noise and
signal contributions, these terms vanish. Indeed, using the
expectation value of the models considered in this work, we
find

hRði;jÞ
k;NoiseR

ði0;j0Þ
k;Signali ∝ hΦði;jÞ

Noise;mΦ
ði0;j0Þ
Signal;m0 i

¼ hΦði;jÞ
Noise;mihΦði0;j0Þ

Signal;m0 i ¼ 0: ðC10Þ

The fact that the signal and each noise source are
uncorrelated across the frequency spectrum allows us to
decompose the covariance matrix Σk into a signal Sk and
noise or background Bk contribution. Assuming that each
noise contribution is uncorrelated, we can also decompose
the noise covariance matrix Bk in terms of the GGN and
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atom shot noise contributions. In the following subsections
we will obtain analytical expressions for these covariance
matrices.

1. ULDM covariance matrix

The covariance matrix for the ULDM matrix can be
calculated by recalling the statistical properties of the
ULDM gradiometer phase. Focusing on the covariance
between the real parts of the data’s DFT,

hRði;jÞ
k Rði0;j0Þ

k i¼ðΔtÞ2
T int

XN−1

m;m0¼0

hΦði;jÞ
DM;mΦ

ði0;j0Þ
DM;m0 icm;kcm0;k

¼ðΔtÞ2
T int

Δzði;jÞ

L
Δzði0;j0Þ

L

XN−1

m;m0¼0

X
a

FDMðvaÞ

×A2
acosðωaΔtðm−m0ÞÞcm;kcm0;k; ðC11Þ

where the second equality follows from the covariance of
the ULDM gradiometer phase, shown in Eq. (A14). To
make further progress, we recall that the ULDM speed
indices a can be mapped to those labeling the discrete
frequencies probed by the experiment. Hence, we may
rewrite the sum over m and m0 as

XN−1

m;m0¼0

cos ðωaΔtðm −m0ÞÞcm;kcm0;k

¼
XN−1

m;m0¼0

ðcm;k0cm0;k0 þ sm;k0sm0;k0 Þcm;kcm0;k; ðC12Þ

where we defined the integer k0 as k0 ¼ NωaΔt=2π ¼
T intωa=2π and used the trigonometric expansion of the
cosine of two angles. Rearranging the rhs of the equation
above,

XN−1

m;m0¼0

ðcm;k0cm0;k0 þsm;k0sm0;k0 Þcm;kcm0;k

¼
XN−1

m0¼0

cm0;k0cm0;k

XN−1

m¼0

cm;k0cm;kþ
XN−1

m0¼0

sm0;k0cm0;k

XN−1

m¼0

sm;k0cm;k

¼
�
N
2

�
2

δk0;k; ðC13Þ

where the second equality follows from the orthogonality
relations of trigonometric functions. Using this result and
expressing the sum in terms of frequency indices, Eq. (C11)
can be simplified as

hRði;jÞ
k Rði0;j0Þ

k i ¼ ðΔtÞ2
T int

Δzði;jÞ

L
Δzði0;j0Þ

L

×
X
k0
FDMðvk0 ÞA2

k0

�
N
2

�
2

δk0;k;

¼ π

2

Δzði;jÞ

L
Δzði0;j0Þ

L
FDMðvkÞ

Δω
A2
k; ðC14Þ

where in going to the second line we used the property of
the Kronecker delta and the definition of the experimental
angular frequency resolution Δω ¼ 2π=T int. Finally, writ-
ing the integral FDMðvkÞ in terms of frequencies, we find

hRði;jÞ
k Rði0;j0Þ

k i ¼ π

2

Δzði;jÞ

L
Δzði0;j0Þ

L
A2
k

×
1

Δω

Z
ωkþΔω=2

ωk−Δω=2
dω

fDMðvωÞ
mϕvω

; ðC15Þ

where we defined vω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω=mϕ − 2

p
. For completeness,

we define the PSD of the ULDM signal common to all
gradiometer pairs in terms of all relevant experimental and
phenomenological parameters as

hSDM;ki ¼ 64π
ΔωA

2

ω2
k

sin2
�
ωknL
2

�
× sin2

�
ωkðT − ðn − 1ÞLÞ

2

�
sin2

�
ωkT
2

�
×

1

Δω

Z
ωkþΔω=2

ωk−Δω=2
dω

fDMðvωÞ
mϕvω

; ðC16Þ

where the amplitude of the ULDM-induced oscillation in
the transition frequency ΔωA is defined in Eq. (A3). As a
result of these arguments, it follows that Eq. (C14) can be
expressed as

hRði;jÞ
k Rði0;j0Þ

k i ¼ 1

2

Δzði;jÞ

L
Δzði0;j0Þ

L
hSDM;ki: ðC17Þ

Having determined the form of the covariance matrix
entry involving only the real part of the data’s DFT, we
proceed with computing the terms involving only the
imaginary components using a simple trick. As pointed
out in Ref. [57], the result for the terms involving only
the imaginary components is equivalent to that involving
only the real part under the redefinition cm;k → sm;k and
cm0;k → sm0;k. Since Eq. (C13) holds under this redefinition,
we also find that

hIði;jÞk Iði
0;j0Þ

k i≡ 1

2

Δzði;jÞ

L
Δzði0;j0Þ

L
hSDM;ki: ðC18Þ

Similarly, we can determine the terms in the covariance
matrix involving the product of the imaginary and real
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components of the data’s DFT by using the mapping
cm;k → cm;k and cm0;k → sm0;k. Differently from the other
products, we now find a sum over a product of two
cosines and one sine. Since the sine function has odd
parity and the cosine is of even parity, the sum will vanish
for all values of k:

hRði;jÞ
k Iði

0;j0Þ
k i≡ 0: ðC19Þ

In summary, we find that the entries in the ULDM signal
covariance matrix take the form

hRði;jÞ
k Rði0;j0Þ

k i ¼ 1

2

Δzði;jÞ

L
Δzði0;j0Þ

L
hSDM;ki; ðC20Þ

hIði;jÞk Iði
0;j0Þ

k i ¼ 1

2

Δzði;jÞ

L
Δzði0;j0Þ

L
hSDM;ki; ðC21Þ

hRði;jÞ
k Iði

0;j0Þ
k i ¼ 0: ðC22Þ

a. Behavior under long and short integration times

In light of Eq. (C15), the nonvanishing entries of the
ULDM signal covariance matrix scale differently with the
integration time depending on the frequency resolution
attained by the experimentalist. In the regime where the
integration time T int is much larger than the coherence time
of the signal τc, the experimentalist would be able to
resolve the full frequency width of the ULDM signal. If we
take the limit T int → ∞, then the width of the frequency
bins tends to zero, i.e. Δω → 0, such that

lim
Δω→0

1

Δω

Z
ωkþΔω=2

ωk−Δω=2
dω

fDMðvωÞ
mϕvω

¼ fDMðvωk
Þ

mϕvωk

; ðC23Þ

where ωk ¼ 2πk=T int. Hence, in agreement with
Refs. [15,55], the amplitude of the PSD would be indepen-
dent of the integration time.
In the regime where the integration time T int is shorter

than the coherence time of the signal τc, the experimentalist
would not be able to resolve the full frequency spread of the
ULDM signal. In the regime where T int ≪ τc, this further
implies that the ULDM signal would be contained in one
frequency bin. In this case, Eq. (C15) would be evaluated
over the entire dark matter speed distribution. This implies
that the integral in Eq. (C16) would be equal to one. Thus,
recalling that Δω ¼ 2π=T int and that hSDM;ki ∝ 1=Δω, we
find that the expected ULDM signal PSD would scale
linearly with the integration time, which agrees with
Refs. [15,55].

2. Rayleigh wave covariance matrix

The GGN covariance matrix can be calculated by
recalling the statistical properties of Rayleigh waves.

As for the ULDM signal, we shall first focus on the
covariance between the real parts of the data’s DFT,

hRði;jÞ
k Rði0;j0Þ

k i ¼ ðΔtÞ2
T int

XN−1

m;m0¼0

hΦði;jÞ
GGN;mΦ

ði0;j0Þ
GGN;m0 icm;kcm0;k

¼ ðΔtÞ2
T int

XN−1

m;m0¼0

X
a

hξ2ai
2

Fði;jÞ
GGN;aF

ði0;j0Þ
GGN;a

× cosðωaΔtðm −m0ÞÞcm;kcm0;k; ðC24Þ

where the second equality follows from the covariance of
the GGN gradiometer phase, shown in Eq. (B26). We
remind the reader that we use the convention

Fði;jÞ
GGN;a ¼ FðiÞ

GGN;a − FðjÞ
GGN;a; ðC25Þ

FðiÞ
GGN;a ¼ Ãa exp

�
−q

ωazi
cH

�
þ B̃a exp

�
−
ωazi
cH

�
; ðC26Þ

which was presented in the main body of the paper. Since
the statistics of the ULDM signal are equivalent to those of
the GGN gradiometer phase, we follow the calculations in
Appendix C to determine a simplified analytical form of
Eq. (C24). Specifically, following the steps in Eqs. (C12)–
(C13), we may express the rhs of Eq. (C24) as

hRði;jÞ
k Rði0;j0Þ

k i ¼ π

2

1

Δω
hξ2ki
2

Fði;jÞ
GGN;kF

ði0;j0Þ
GGN;k: ðC27Þ

To make contact with the power spectral density of vertical
displacements SξðωÞ (see Fig. 3), we relate the effective
mean-squared vertical displacement at angular frequency
ωk to hSξðωÞi via

hξ2ki ¼
Z

ωkþΔω=2

ωk−Δω=2
dω hSξðωÞi: ðC28Þ

In light of the fact that the spectrum of vertical displace-
ments varies significantly over frequency scales greater
than ∼10−2 Hz and that Δω ¼ 2π=T int ≈ 6 × 10−6 Hz in
the experiments considered here, we may treat SξðωÞ as
being constant within the integral, such that

hRði;jÞ
k Rði0;j0Þ

k i ¼ π

4
hSξðωkÞiFði;jÞ

GGN;kF
ði0;j0Þ
GGN;k: ðC29Þ

Following the same mapping arguments presented for
the entries of the ULDM signal covariance matrix, the
entries in the GGN covariance matrix take the form

hRði;jÞ
k Rði0;j0Þ

k i ¼ π

4
hSξðωkÞiFði;jÞ

GGN;kF
ði0;j0Þ
GGN;k; ðC30Þ

hIði;jÞk Iði
0;j0Þ

k i ¼ π

4
hSξðωkÞiFði;jÞ

GGN;kF
ði0;j0Þ
GGN;k; ðC31Þ
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hRði;jÞ
k Iði

0;j0Þ
k i ¼ 0: ðC32Þ

3. Atom shot noise covariance matrix

The atom shot noise covariance matrix can be calculated
by recalling the statistical properties of white noise. Using
the statistical properties of atom shot noise as presented in
Eq. (26), we find that the covariance between the real parts
of the data’s DFT takes the form

hRði;jÞ
k Rði0;j0Þ

k i

¼ ðΔtÞ2
T int

XN−1

m;m0¼0

hΦði;jÞ
ASN;mΦ

ði0;j0Þ
ASN;m0 icm;kcm0;k

¼ ðΔtÞ2
T int

XN−1

m;m0¼0

ðδii0 þ δjj
0 − δij

0 − δji
0 Þδmm0σ2Atomcm;kcm0;k

¼ ðΔtÞ2
T int

ðδii0 þ δjj
0 − δij

0 − δji
0 Þσ2Atom

XN−1

m¼0

c2m;k; ðC33Þ

where in going to the last line we performed the sum over
discrete frequencies and used the property of the Kronecker
delta. Recalling the orthogonality relation for cosines, we
find

hRði;jÞ
k Rði0;j0Þ

k i ¼ Δt
2
σ2Atomðδii

0 þ δjj
0 − δij

0 − δji
0 Þ: ðC34Þ

By defining the PSD of atom shot noise in a single
interferometer as hSASN;ki ¼ Δtσ2Atom, we can reexpress
Eq. (C34) as

hRði;jÞ
k Rði0;j0Þ

k i ¼ 1

2
hSASN;kiðδii0 þ δjj

0 − δij
0 − δji

0 Þ: ðC35Þ

Following the same mapping arguments that we presented
for the ULDM signal covariance matrix, we find that the
entries in the atom shot noise covariance matrix take the
form

hRði;jÞ
k Rði0;j0Þ

k i ¼ 1

2
hSASN;kiðδii0 þ δjj

0 − δij
0 − δji

0 Þ; ðC36Þ

hIði;jÞk Iði
0;j0Þ

k i ¼ 1

2
hSASN;kiðδii0 þ δjj

0 − δij
0 − δji

0 Þ; ðC37Þ

hRði;jÞ
k Iði

0;j0Þ
k i ¼ 0: ðC38Þ

APPENDIX D: ASIMOV TEST STATISTICS

In Sec. III we defined the basic frequentist tool in the
Asimov approach as

Θ̃ðθsigÞ ¼ hΘðθsigÞi; ðD1Þ

where ΘðθsigÞ is defined in Eq. (33), and the average is
taken over data realizations. Recalling that we have
assumed a covariance matrix Σk that can be split into
signal Sk and noise Bk contributions, the Asimov test
statistic can be expressed as

hΘðθsigÞi¼
	XN−1

k¼1

�
dT
k ½B−1

k −Σ−1
k �dk− ln

�jΣkj
jBkj

��

; ðD2Þ

where dk is the multidimensional data vector. Because the
entries of each covariance matrix correspond to expectation
values, the average is taken only over the first term in
Eq. (D2). Since the data has zero mean, we can define
Σt
k ≡ hdkdT

k i as the true covariance matrix, such that

hdT
k ½B−1

k − Σ−1
k �dki ¼ TrðΣt

k½B−1
k − Σ−1

k �Þ: ðD3Þ

Using this result and recalling the trace-determinant iden-
tity for symmetric matrices, Eq. (D2) takes the form

Θ̃ðθsigÞ ¼
XN−1

k¼1

TrðΣt
k½B−1

k − Σ−1
k � þ ln ½BkΣ−1

k �Þ: ðD4Þ

Given a fixed background, the true covariance matrix can
be defined as Σt

k ¼ St
k þ Bk, where St

k is the true signal
model. In the limit that the signal is weaker than the
background, i.e. Σ−1

k ≈B−1
k −B−1

k SkB−1
k , we can expand

the natural logarithm of the matrix product close to the
identity matrix such that

Θ̃ðθsigÞ ≈
XN−1

k¼1

Tr

��
St
k −

1

2
Sk

�
B−1

k SkB−1
k

�
: ðD5Þ

For setting upper limits on the ULDM-SM couplings dϕ,
we use the test statistic qðmϕ; dϕÞ. The equivalent test
statistic on the Asimov data set can then be defined as

q̃ðmϕ; dϕÞ ¼
� Θ̃ðfmϕ; dϕgÞ − Θ̃ðfmϕ;cdϕgÞ dϕ ≥ cdϕ
0 dϕ < cdϕ ;

ðD6Þ

where d̂ϕ is the value of dϕ that maximizes Θ̃ðmϕ; dϕÞ at
fixed mϕ. In this case, the appropriate Asimov dataset
contains only the background, such that d̂ϕ ¼ 0, which
implies that the true covariance matrix can be written as
Σt
k ¼ Bk—i.e. St

k ¼ 0. Therefore, in the weak signal limit,
we may express the test statistic for setting upper limits as
follows:
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q̃ðmϕ; dϕÞ ¼
�− 1

2

P
N−1
k¼1 Tr½SkB−1

k SkB−1
k � dϕ ≥ 0

0 dϕ < 0
:

ðD7Þ

1. Behavior under long and short integration times

In practice, the sum in Eq. (D5) is only to be performed
around a small angular frequency window mϕ ≲ ω≲
mϕð1þ v2esc=2Þ, where vesc is the dark matter escape
velocity in the Milky Way. In the regime where T int is
the longest timescale, i.e. T int ≫ τc, the sum over the
relevant frequency bins can be approximated to an integral
over frequency indices, such that, for dϕ ≥ 0, Eq. (D7) is
approximately

q̃ðmϕ; dϕÞ ≈ −
1

2

Z
dkTr½SkB−1

k SkB−1
k �

∼
Z

dkhR2
DM;ki2=hR2

Noise;ki2: ðD8Þ

In addition, since the normalized frequency band over
which the sum is performed is ∼10−6 and GGN is not
expected to vary appreciably over this normalized fre-
quency range, we treat all backgrounds as being constant.
Hence, recalling the relation 2πdk=T int ¼ mϕvdv, we find

q̃ðmϕ; dϕÞ ∼
1

2π

mϕT int

hR2
Noisei2

Z
v dvhR2

DM;vi2

∝
T int

hR2
Noisei2

Z
dv
mϕv

f2DMðvÞ; ðD9Þ

where in going to the second line we used hR2
DM;vi∼

fDMðvÞ=mϕv, which follows from the discussion in
Appendix C 1 a. Because fDM is a Gaussian distribution,
and since vobs ∼ v0, the integral in the last line of this
equation is approximately equal to 1=mϕv20. Recalling the
definition of the coherence time τc ¼ 2π=ðmϕv20Þ, we find

q̃ðmϕ; dϕÞ ∝ T intτc: ðD10Þ
Hence, as derived via Bartlett’s method in Ref. [15], the
sensitivity to ULDM would scale like ðT intτcÞ−1=4.
In the regime where T int ≪ τc, the experiment is unable

to resolve the DM speed distribution. In this case, the signal
is confined to a single frequency bin, such that, for dϕ ≥ 0,
Eq. (D7) is approximately

q̃ðmϕ; dϕÞ ≈ −
1

2
Tr½SkB−1

k SkB−1
k �

∼ hR2
DM;ki2=hR2

Noise;ki2: ðD11Þ

Following the analysis presented in Appendix C 1 a, we
make use of the fact that hR2

DM;ki ∝ 1=Δω ∝ T int to
determine that the test statistic for setting upper limits
scales as T2

int. Hence, in the regime where T int ≪ τc the

sensitivity to ULDM would scale like T−1=2
int , in agreement

with Ref. [15].

2. Example power spectral densities

In Fig. 11 we display the expected power spectral density
in a gradiometer experiment employing the advanced
design (T int ¼ 108 s) and assuming atom shot noise only
in three different regimes: T int < τc (left panel), T int ∼ τc

FIG. 11. Example power spectral densities in a gradiometer experiment employing the advanced design, assuming atom shot noise
only, and taking couplings and DM masses compatible with the 95% C.L. shown in the right panel of Fig. 5. In the left panel, we choose
fϕ ¼ 10−3 Hz and dme

¼ 6.2 × 10−6 (T int < τc); in the central panel, we choose fϕ ¼ 10−2 Hz and dme
¼ 7 × 10−7 (T int ∼ τc); in the

right panel, we set fϕ ¼ 3 × 10−1 Hz and dme
¼ 2.1 × 10−7 (T int > τc).
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(central panel), and T int > τc (right panel). In particular, we
show the expected signal assuming couplings to electron
mass (dme

) and ULDM frequencies (fϕ) that lie on the grey
dashed line in the right panel of Fig. 5, and which therefore
are compatible with the 95% exclusion limits: fϕ ¼
10−3 Hz and dme

¼ 6.2×10−6 (left panel), fϕ ¼ 10−2 Hz
and dme

¼ 7 × 10−7 (central panel), and fϕ ¼ 3 × 10−1 Hz
and dme

¼ 2.1 × 10−7 (right panel).
As discussed in Appendix C 1, when T int > τc, the signal

is spread over many frequency bins; in particular, for
T int ≫ τc, the signal clearly exhibits the qualitative features
of the DM speed distribution. In the regime T int ∼ τc, the
signal is spread over few bins. For T int ≪ τc, the signal is
contained within a single frequency bin centered at about
mϕ, which we display as the zeroth frequency bin in Fig. 11.
Additionally, as shown in Fig. 11, for a fixed value of q

the maximum amplitude of the signal’s PSD decreases as

mϕ increases. This is attributable to the properties of the test
statistic q. In setting upper limits, the test statistic q receives
nonvanishing contributions when the PSD of the ULDM
signal is nonzero. Hence, the larger the signal’s frequency
spread (equivalently the larger mϕ), the larger the number
of bins contributing to q. For a fixed threshold value of q,
an increase in the number of frequency bins, hence, implies
a smaller signal amplitude.
In the extreme case when the ULDM signal is contained

in a single frequency bin (T int ≪ τc), the q test statistic
is a measure of the SNR as defined in Refs. [10,14],
namely the ratio of the signal’s PSD to the background’s
PSD. In this regime, the equality SNR ¼ ffiffiffi

q
p

holds
exactly. As can be seen from the left panel in Fig. 11,
for q ≈ 7.55, the signal PSD at the zeroth frequency bin
(≈5.5 × 10−10 Hz−1) is about

ffiffiffiffiffiffiffiffiffi
7.55

p
times larger than the

noise PSD (≈2 × 10−10 Hz−1).
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