
Preparations for quantum simulations of quantum chromodynamics
in 1 + 1 dimensions. II. Single-baryon β-decay in real time

Roland C. Farrell ,1,* Ivan A. Chernyshev ,1,† Sarah J. M. Powell ,2,‡ Nikita A. Zemlevskiy ,1,§

Marc Illa ,1,∥ and Martin J. Savage 1,¶

1InQubator for Quantum Simulation (IQuS), Department of Physics,
University of Washington, Seattle, Washington 98195, USA

2Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada

(Received 2 November 2022; accepted 17 February 2023; published 30 March 2023; corrected 18 April 2023)

A framework for quantum simulations of real-time weak decays of hadrons and nuclei in a two-flavor
lattice theory in one spatial dimension is presented. A single generation of the Standard Model is found to
require 16 qubits per spatial lattice site after mapping to spin operators via the Jordan-Wigner
transformation. Both quantum chromodynamics and flavor-changing weak interactions are included in
the dynamics, the latter through four-Fermi effective operators. Quantum circuits that implement time
evolution in this lattice theory are developed and run on Quantinuum’s H1-1 20-qubit trapped ion system
to simulate the β-decay of a single baryon on one lattice site. These simulations include the initial state
preparation and are performed for both one and two Trotter time steps. The potential intrinsic error-
correction properties of this type of lattice theory are discussed, and the leading lattice Hamiltonian
required to simulate 0νββ-decay of nuclei induced by a neutrino Majorana mass term is provided.
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I. INTRODUCTION

Aquantitative exploration of hadronic decays and nuclear
reaction dynamics resolved at very short timescales using
quantum simulations will provide a new window into
strong-interaction processes that lies beyond the capabilities
of experiment. In chemistry, the development of femto-
second laser-pulse imaging in the 1980s [1] allowed for
reaction pathways to be studied in real time (for an overview,
see Ref. [2]). Although a similar experimental procedure is
not available for strong processes, it is expected that
quantum simulations will provide analogous insight into
hadronic dynamics. Perhaps the simplest nontrivial class of
such reactions to begin exploring is the β-decay of low-lying
hadrons and nuclei. Single β-decay rates of nuclei have
played a central role in defining the StandardModel (SM) of
strong and electroweak processes [3–6]. They initially
provided evidence that the weak (charged-current) quark
eigenstates differ from the strong eigenstates and, more
recently, are providing stringent tests of the unitarity of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [7,8].

For recent reviews of β-decay, see, e.g., Refs. [9–12]. The
four-Fermi operators responsible for β-decay [13] in the SM
emerge from operator production expansions (OPEs) of the
nonlocal operators coming from the exchange of a charged-
gauge boson (W−) between quarks and leptons.Of relevance
to this work is the four-Fermi operator, which gives rise to
the flavor changing quark process d → ue−ν̄. In the absence
of higher-order electroweak processes, including electro-
magnetism, matrix elements of these operators factorize
between the hadronic and leptonic sectors. This leaves, for
example, a nonperturbative evaluation of n → pe−ν̄ for
neutron decay, which is constrained significantly by the
approximate global flavor symmetries of QCD. Only
recently have the observed systematics of β-decay rates
of nuclei been understood without the need for phenom-
enological rescalings of the axial coupling constant, gA. As
has long been anticipated, the correct decay rates are
recovered when two-nucleon and higher-body interactions
are included within the effective field theories (EFTs) (or
meson-exchange currents) [14–17]. This was preceded by
successes of EFTs in describing electroweak processes of
few-nucleon systems through the inclusion of higher-body
electroweak operators (not constrained by strong inter-
actions alone), e.g., Refs. [18–23]. The EFT framework
describing nuclear β-decays involves contributions from
“potential-pion” and “radiation-pion” exchanges [24,25] (an
artifact of a systemof relativistic and nonrelativistic particles
[26,27]), and real-time simulations of these processes are
expected to be able to isolate these distinct contributions.
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Recently, the first Euclidean-space lattice QCD calculations
of Gamow-Teller matrix elements in light nuclei (at unphys-
ical light quark masses and without fully quantified uncer-
tainties) have been performed [28], finding results that are
consistent with nature.
While β-decay is a well-studied and foundational area of

subatomic physics, the double-β-decay of nuclei continues
to present a theoretical challenge in the search for physics
beyond the SM. For a recent review of the “status and
prospects” of ββ-decay, see Ref. [29]. Although 2νββ-
decay is allowed in the SM and is a second order β-decay
process, 0νββ-decay requires the violation of lepton num-
ber. Strong interactions clearly play an essential role in the
experimental detection of the ββ-decay of nuclei, but such
contributions are nonperturbative and complex, and, for
example, the EFT descriptions involve contributions from
two- and higher-body correlated operators [30–34]. The
ability to study the real-time dynamics of such a decay
process in nuclei would likely provide valuable insight into
the underlying strong-interaction mechanisms, and poten-
tially offer first principles constraints beyond those from
Euclidean-space lattice QCD.1

Significant progress is being made toward quantum
simulations of quantum field theories, both conceptually
and using NISQ quantum simulators and devices [41–167].
Simulations of systems of quarks and gluons with L ¼ 1, 2
spatial sites in one dimension and one or two plaquettes of
Yang-Mills gauge theories are now being performed on
quantum devices [80,105,109,138,142,155,158,159]. The
spatial and temporal extent of such simulations are steadily
increasing as both error-mitigation strategies and device
performance improve. There has also been important
algorithmic development on how decay widths and cross
sections can be extracted from the computation of Green
functions on quantum hardware [168]. Recently, results of
classical and quantum simulations of SUð3Þ gauge theory
with Nf ¼ 1, 2 flavors of quarks in 1þ 1 dimensions were
presented [158,159]. With a layout footprint of six qubits
per flavor per lattice site using the Jordan-Wigner (JW)
mapping [169], one Trotter step of time evolution of one
spatial site was simulated using IBM’s superconducting
quantum computers [170], obtaining uncertainties at the
percent level.
This paper extends our recentwork [158] to include flavor-

changing weak interactions via a four-Fermi operator that
generates the β-decay of hadrons and nuclei. The terms in
the lattice Hamiltonian that generate aMajorana mass for the
neutrinos are also given, although not included in the
simulations. Applying the JW mapping, it is found that a
single generation of the SM (quarks and leptons) maps onto
16 qubits per spatial lattice site. Using Quantinuum’s H1-1
20-qubit trapped-ion quantum computer, the initial state

of a baryon is both prepared and evolved with one and
two Trotter steps on a single lattice site. Despite only
employing a minimal amount of error mitigation, results
at the ∼5%-level are obtained, consistent with the expect-
ations. Finally, we briefly comment on the potential of such
hierarchical dynamics for error-correction purposes in quan-
tum simulations.

II. THE β-DECAYHAMILTONIAN FORQUANTUM
SIMULATIONS IN 1 + 1 DIMENSIONS

In nature, the β-decays of neutrons and nuclei involve
energy and momentum transfers related to the energy scales
of nuclear forces and of isospin breaking. As these are
much below the electroweak scale, β-decay rates are well
reproduced by matrix elements of four-Fermi effective
interactions with V − A structure [13,171], of the form

Hβ ¼
GFffiffiffi
2

p Vudψ̄uγ
μð1− γ5Þψdψ̄eγμð1− γ5Þψνe þH:c:; ð1Þ

where Vud is the element of the CKM matrix for d → u
transitions, and GF is Fermi’s coupling constant that is
measured to be GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 [172].
This is the leading order (LO) SM result, obtained by
matching amplitudes at tree level, where GF=

ffiffiffi
2

p ¼
g22=ð8M2

WÞ, with MW the mass of the W� gauge boson
and g2 the SUð2ÞL coupling constant. Toward simulating
the SM in 3þ 1D, we consider 1þ 1D QCD containing u
quarks, d quarks, electrons, and electron neutrinos. For
simplicity, we model β-decay through a vectorlike four-
Fermi operator,

H1þ1
β ¼ Gffiffiffi

2
p ψ̄uγ

μψdψ̄eγμCψν þ H:c:; ð2Þ

where C ¼ γ1 is the charge-conjugation operator whose
purpose will become clear. Appendices B and C provide
details on calculating the single-baryon β-decay rates in the
infinite volume and continuum limits in the SM and in the
1þ 1D model considered here.
The strong and weak interactions can be mapped onto the

finite-dimensional Hilbert space provided by a quantum
computer by using the Kogut-Susskind (KS) Hamiltonian
formulation of lattice gauge theory [173,174]. The KS
discretization of the fields is such that L spatial lattice sites
are split into 2L fermion sites that separately accommodate
fermions (even sites) and antifermions (odd sites). For
the β-decay of baryons, the strong and the weak KS
Hamiltonian (in axial gauge) has the form [64,109,158,159]

H ¼ Hquarks þHleptons þHglue þHβ; ð3Þ

where
1For discussions of the potential of lattice QCD to impact

ββ-decay, see, e.g., Refs. [31,32,35–40].
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Hquarks ¼
X
f¼u;d

�
1

2a

X2L−2
n¼0

ðϕðfÞ†
n ϕðfÞ

nþ1 þ H:c:Þ þmf

X2L−1
n¼0

ð−1ÞnϕðfÞ†
n ϕðfÞ

n

�
;

Hleptons ¼
X
f¼e;ν

�
1

2a

X2L−2
n¼0

ðχðfÞ†n χðfÞnþ1 þ H:c:Þ þmf

X2L−1
n¼0

ð−1ÞnχðfÞ†n χðfÞn

�
;

Hglue ¼
ag2

2

X2L−2
n¼0

X8
a¼1

�X
m≤n

QðaÞ
m

�
2

;

Hβ ¼
G

a
ffiffiffi
2

p
XL−1
l¼0

½ðϕðuÞ†
2l ϕðdÞ

2l þ ϕðuÞ†
2lþ1ϕ

ðdÞ
2lþ1ÞðχðeÞ†2l χðνÞ2lþ1 − χðeÞ†2lþ1χ

ðνÞ
2l Þ

þ ðϕðuÞ†
2l ϕðdÞ

2lþ1 þ ϕðuÞ†
2lþ1ϕ

ðdÞ
2l ÞðχðeÞ†2l χðνÞ2l − χðeÞ†2lþ1χ

ðνÞ
2lþ1Þ þ H:c:�: ð4Þ

The masses of the u, d quarks, electron, and neutrino (Dirac)
aremu;d;e;ν, and the strong and weak coupling constants are g

andG. The SUð3Þ charges areQðaÞ
m , and ϕðu;dÞ

n are the u- and
d-quark field operators (which both transform in the
fundamental representation of SUð3Þ, and hence, the sum
over color indices has been suppressed). The electron and

neutrino field operators are χðe;νÞn , and for the remainder of
this paper, the lattice spacing, a, will be set to unity. We

emphasize that the absence of gluon fields is due to the
choice of axial gauge, whereas the lack of weak gauge fields
is due to the consideration of a low energy effective theory in
which the heavy weak gauge bosons have been integrated
out. This results in, for example, the absence of parallel
transporters in the fermion kinetic terms.
The JW mapping of the Hamiltonian in Eq. (4) to qubits,

arranged as shown in Fig. 1, is given by

Hquarks →
1

2

XL−1
l¼0

X
f¼u;d

X2
c¼0

mfðZl;f;c − Zl;f̄;c þ 2Þ

−
1

2

XL−1
l¼0

X
f¼u;d

X2
c¼0

½σþl;f;cZ7σ−
l;f̄;c

þ ð1 − δl;L−1Þσþl;f̄;cZ7σ−lþ1;f;c þ H:c:�;

Hleptons →
1

2

XL−1
l¼0

X
f¼e;ν

mfðZl;f − Zl;f̄ þ 2Þ − 1

2

XL−1
l¼0

X
f¼e;ν

½σþl;fZ7σ−
l;f̄

þ ð1 − δl;L−1Þσþl;f̄Z7σ−lþ1;f þ H:c:�;

Hglue →
g2

2

X2L−2
n¼0

ð2L − 1 − nÞ
�X

f¼u;d

QðaÞ
n;fQ

ðaÞ
n;f þ 2QðaÞ

n;uQ
ðaÞ
n;d

�
þ g2

X2L−3
n¼0

X2L−2
m¼nþ1

ð2L − 1 −mÞ
X
f¼u;d

X
f0¼u;d

QðaÞ
n;fQ

ðaÞ
m;f0 ;

Hβ →
Gffiffiffi
2

p
XL−1
l¼0

X2
c¼0

ðσ−l;ν̄Z6σþl;eσ
−
l;d;cZ

2σþl;u;c − σþl;ēZ
8σ−l;νσ

−
l;d;cZ

2σþl;u;c − σ−l;ν̄Z
2−cσ−

l;d̄;c
σþl;ū;cZ

cσþl;e

þ σþl;ēZ
3−cσ−

l;d̄;c
σþl;ū;cZ

1þcσ−l;ν − σ−
l;d̄;c

Z3þcσþl;eσ
−
l;νZ

5−cσþl;u;c − σþl;ēσ
−
l;ν̄σ

−
l;d̄;c

Z10σþl;u;c

− σþl;ū;cZ
cσþl;eσ

−
l;νZ

2−cσ−l;d;c − σþl;ēσ
−
l;ν̄σ

þ
l;ū;cZ

4σ−l;d;c þ H:c:Þ; ð5Þ

FIG. 1. The qubit layout of a L ¼ 2 lattice, where fermions and antifermions are grouped together (which will be preferred if
electromagnetism is included). This layout extends straightforwardly to L > 2.
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where the sums of products of color charges are

QðaÞ
n;fQ

ðaÞ
n;f ¼ 1 −

1

3

X1
c¼0

X
c0>c

Zn;f;cZn;f;c0 ;

QðaÞ
n;fQ

ðaÞ
m;f0 ¼

1

2

X1
c¼0

X
c0>c

ðσþn;f;cZc0−c−1σ−n;f;c0σ
−
m;f0;cZ

c0−c−1σþm;f0;c0 þ H:c:Þ þ 1

24

X2
c¼0

X2
c0¼0

ð3δcc0 − 1ÞZn;f;cZm;f0;c0 ; ð6Þ

and the repeated SUð3Þ adjoint indices, a ¼ 1; 2;…; 8, are
summed over. The index l labels the spatial lattice site, fðf̄Þ
labels the (anti)fermion flavor, and c ¼ 0, 1, 2 corresponds to
red, green, and blue colors. In the staggered mapping, there
are gauge-field links every half of a spatial site and, as a
result, the color charges are labeled by a half site index, n.
The spin raising and lowering operators are σ� ¼
1
2
ðσx � iσyÞ, Z ¼ σz, and unlabeled Zs act on the sites

between the σ�, e.g., σ−l;d;rZ
2σþl;u;r ¼ σ−l;d;rZl;u;bZl;u;gσ

þ
l;u;r.

Constants have been added to themass terms to ensure that all
basis states contribute positive mass.

A. Efficiently mapping the L= 1 Hamiltonian
to qubits

To accommodate the capabilities of current devices, the
quantum simulations performed in this work involve only a

single spatial site, L ¼ 1, where the structure of the
Hamiltonian can be simplified. In particular, without
interactions between leptons, it is convenient to work with
field operators that create and annihilate eigenstates of the
free lepton Hamiltonian, Hleptons. These are denoted by
“tilde operators” [158], which create the open-boundary-
condition (OBC) analogs of plane waves. In the tilde basis
with the JW mapping, the lepton Hamiltonian is diagonal
and becomes

H̃leptons ¼ λνðχ̃ðνÞ†0 χ̃ðνÞ0 − χ̃ðνÞ†1 χ̃ðνÞ1 Þ þ λeðχ̃ðeÞ†0 χ̃ðeÞ0 − χ̃ðeÞ†1 χ̃ðeÞ1 Þ

→
λν
2
ðZν − Zν̄Þ þ

λe
2
ðZe − ZēÞ; ð7Þ

where λν;e ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

ν;e

q
. The β-decay operator in

Eq. (4) becomes

H̃β¼
Gffiffiffi
2

p
�
ðϕðuÞ†

0 ϕðdÞ
0 þϕðuÞ†

1 ϕðdÞ
1 Þ

�
1

2
ðseþsν−−se−sνþÞðχ̃ðeÞ†0 χ̃ðνÞ0 þ χ̃ðeÞ†1 χ̃ðνÞ1 Þþ1

2
ðseþsνþþse−sν−Þðχ̃ðeÞ†0 χ̃ðνÞ1 − χ̃ðeÞ†1 χ̃ðνÞ0 Þ

�

þðϕðuÞ†
0 ϕðdÞ

1 þϕðuÞ†
1 ϕðdÞ

0 Þ
�
1

2
ðseþsνþ−se−sν−Þðχ̃ðeÞ†0 χ̃ðνÞ0 − χ̃ðeÞ†1 χ̃ðνÞ1 Þ−1

2
ðseþsν−þse−sνþÞðχ̃ðeÞ†0 χ̃ðνÞ1 þ χ̃ðeÞ†1 χ̃ðνÞ0 Þ

�
þH:c:

�
; ð8Þ

where sν;e� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�mν;e=λν;e

p
. In our simulations, the initial state of the quark-lepton system is prepared in a strong

eigenstate with baryon number B ¼ þ1 in the quark sector and the vacuum, jΩilepton, in the lepton sector. One of the

benefits of working in the tilde basis is that the vacuum satisfies χ̃ðe;vÞ0 jΩilepton ¼ χ̃ðe;vÞ†1 jΩilepton ¼ 0, and the first and third
terms of Eq. (8) do not contribute to β-decay. For the processes we are interested in, this results in an effective β-decay
operator of the form

H̃β ¼
Gffiffiffi
2

p
�
ðϕðuÞ†

0 ϕðdÞ
0 þ ϕðuÞ†

1 ϕðdÞ
1 Þ

�
1

2
ðseþsνþ þ se−sν−Þðχ̃ðeÞ†0 χ̃ðνÞ1 − χ̃ðeÞ†1 χ̃ðνÞ0 Þ

�

− ðϕðuÞ†
0 ϕðdÞ

1 þ ϕðuÞ†
1 ϕðdÞ

0 Þ
�
1

2
ðseþsν− þ se−sνþÞðχ̃ðeÞ†0 χ̃ðνÞ1 þ χ̃ðeÞ†1 χ̃ðνÞ0 Þ

�
þ H:c:

�
: ð9Þ

The insertion of the charge-conjugation matrix, C, in the continuum operator, Eq. (2), is necessary to obtain a
β-decay operator that does not annihilate the lepton vacuum. To minimize the length of the string of Zs in the JW
mapping, the lattice layout in Fig. 2 is used. In this layout, the hopping piece of Hquarks has only five Zs between the quark
and antiquark raising and lowering operators, and the β-decay operator is

H̃β →
Gffiffiffi
2

p
X

c¼r;g;b

�
1

2
ðseþsνþ þ se−sν−Þðσ−ν̄ σþe − σþē Z2σ−ν Þðσ−d;cZ2σþu;c þ σ−

d̄;c
Z2σþū;cÞ

−
1

2
ðseþsν− þ se−sνþÞðσ−ν̄ σþe þ σþē Z2σ−ν Þðσ−d̄;cZ8σþu;c þ σþū;cZ2σ−d;cÞ þ H:c:

�
: ð10Þ
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In total, the L ¼ 1 system requires 16 (12 quark and 4
lepton) qubits. See Appendix A for the complete L ¼ 1
Hamiltonian in terms of qubits.

B. A Majorana mass for the neutrino

Although not relevant to the simulations performed in
Sec. III, it is of current interest to consider the inclusion

of a Majorana mass term for the neutrinos. A Majorana
mass requires and induces the violation of lepton
number by jΔLj ¼ 2, and is not present in the minimal
SM, defined by dimension-four operators. However,
the Weinberg operator [175] enters at dimension-five
and generates an effective Majorana mass for the
neutrinos,

LWeinberg ¼ 1

2Λ
ðL̄cϵϕÞðϕTϵLÞ þ H:c:; L ¼ ðν; eÞTL; ϕ ¼ ðϕþ;ϕ0ÞT; hϕi ¼ ð0; v=

ffiffiffi
2

p
ÞT; ϵ ¼ iσ2;

→ −
v2

4Λ
ν̄cLνL þ H:c:þ � � � : ð11Þ

where ϕ is the Higgs doublet, Lc denotes the charge-
conjugated left-handed lepton doublet, v is the Higgs
vacuum expectation value, and Λ is a high-energy scale
characterizing physics beyond the SM. The ellipsis denote
interaction terms involving components of the Higgs
doublet fields and the leptons. This is the leading con-
tribution beyond the minimal SM but does not preclude
contributions from other sources. On a 1þ 1D lattice, there
is only a single jΔLj ¼ 2 local operator with the structure
of a mass term and, using the JW mapping along with qubit
layout in Fig. 1

HMajorana ¼
1

2
mM

X2L−2
n¼even

ðχðνÞn χðνÞnþ1 þ H:c:Þ

→
1

2
mM

XL−1
l¼0

ðσþl;νZ7σþl;ν̄ þ H:c:Þ: ð12Þ

While the operator has support on a single spatial lattice
site, it does not contribute to 0νββ-decay on a lattice with
only a single spatial site. This is because the processes that
it could potentially induce, such as Δ−Δ− → Δ0Δ0e−e−,
are Pauli blocked by the single electron site. At least two
spatial sites are required for any such process producing
two electrons in the final state.

III. QUANTUM SIMULATIONS
OF THE β-DECAY OF ONE BARYON

ON ONE LATTICE SITE

In this section, quantum simulations of the β-decay of a
single baryon are performed in Nf ¼ 2 flavor QCD with
L ¼ 1 spatial lattice site. The required quantum circuits to
perform one and two Trotter steps of time evolution were
developed and run on the Quantinuum H1-1 20 qubit

FIG. 2. The L ¼ 1 lattice qubit layout of one generation of the SM that is used in this paper for quantum simulation. Fermion
(antifermion) sites are occupied when the spin is up (down), and the spins at the lepton sites represent occupation in the tilde basis.
Specifically, the example of jdbdgdri (upper lattice) decaying to j ˜̄ν ẽijdgdrubi (lower lattice) through one application of H̃β in Eq. (10)
is shown.

PREPARATIONS FOR …. II. SINGLE-BARYON … PHYS. REV. D 107, 054513 (2023)

054513-5



trapped ion quantum computer and its simulator H1-1E
[176,177].

A. Preparing to simulate β-decay

It is well known that, because of confinement, the energy
eigenstates (asymptotic states) of QCD are color-singlet
hadrons, which are composite objects of quarks and gluons.
On the other hand, the operators responsible for β-decay,
given in Eq. (10), generate transitions between d and u
quarks. As a result, observable effects of H̃β, in part, are
found in transitions between hadronic states whose matrix
elements depend on the distribution of the quarks within.
Toward quantum simulations of the β-decay of neutrons
and nuclei more generally, the present work focuses on the
decay of a single baryon.
Generically, three elements are required for real-time

quantum simulations of the β-decay of baryons:
(1) Prepare the initial hadronic state that will sub-

sequently undergo β-decay. In this work, this is
one of the single-baryon states (appropriately se-
lected in the spectrum) that is an eigenstate of the
strong Hamiltonian alone; i.e., the weak coupling
constant is set equal to G ¼ 0.

(2) Perform (Trotterized) time evolution using the full
(G ≠ 0) Hamiltonian.

(3) Measure one or more of the lepton qubits. If leptons
are detected, then β-decay has occurred.

In 1þ 1D, Fermi statistics preclude the existence of a light
isospin I ¼ 1=2 nucleon, and the lightest baryons are in an
I ¼ 3=2 multiplet ðΔþþ;Δþ;Δ0;Δ−Þ (using the standard
electric charge assignments of the up and down quarks). We
have chosen to simulate the decay Δ− → Δ0 þ eþ ν̄,
which, at the quark level, involves baryon-interpolating
operators with the quantum numbers of ddd → udd.
In order for β-decay to be kinematically allowed, the

input-parameters of the theory must be such that
MΔ− > MΔ0 þMν̄ þMe. This is accomplished through
tuning the parameters of the Hamiltonian. The degeneracy
in the iso-multiplet is lifted by using different values for the
up and down quark masses. It is found that the choice of
parameters, mu ¼ 0.9, md ¼ 2.1, g ¼ 2, and me;ν ¼ 0

results in the desired hierarchy of baryon and lepton
masses. The relevant part of the spectrum, obtained from
an exact diagonalization of the Hamiltonian, is shown in
Table I. Although kinematically allowed, multiple instances
of β-decay cannot occur for L ¼ 1 as there can be at most
one of each (anti)lepton. Note that even though me;ν ¼ 0,
the electron and neutrino are gapped due to the finite spatial
volume.
To prepare theΔ− initial state, we exploit the observation

made in Ref. [158] that the stretched-isospin eigenstates of
theΔ-baryons, with third component of isospin I3 ¼ �3=2,
factorize between the u and d flavor sectors for L ¼ 1.
Therefore, the previously developed variational quantum
eigensolver (VQE) [178] circuit [158] used to prepare the

one-flavor vacuum can be used to initialize the two-flavor
Δ− wave function. This is done by initializing the vacuum
in the lepton sector, preparing the state jdrdgdbi in the
d sector, and applying the VQE circuit to produce the
u-sector vacuum. In the tilde basis, the lepton vacuum is
the unoccupied state (trivial vacuum), and the complete
state-preparation circuit is shown in Fig. 3, where θ is
shorthand for RY(θ). The rotation angles are related by

θ0 ¼ −2 sin−1½tanðθ=2Þ cosðθ1=2Þ�;
θ00 ¼ −2 sin−1½tanðθ0=2Þ cosðθ01=2Þ�;
θ01 ¼ −2 sin−1½cosðθ11=2Þ tanðθ1=2Þ� ð13Þ

and, for mu ¼ 0.9 and g ¼ 2,2

θ ¼ 0.2256; θ1 ¼ 0.4794; θ11 ¼ 0.3265: ð14Þ
In total, state preparation requires the application of nine
CNOT gates.
Once the Δ− baryon state has been initialized on the

register of qubits, it is then evolved in time with the full
Hamiltonian. The quantum circuits that implement the
Trotterized time-evolution induced by Hquarks and Hglue

were previously developed in Ref. [158], where it was
found that, by using an ancilla, each Trotter step can be
implemented using 114 CNOTs. The lepton Hamiltonian,
H̃leptons, has just single Zs, which are Trotterized with
single qubit rotations. The circuits required to implement a
Trotter step from H̃β are similar to those developed in
Ref. [158], and their construction is outlined in
Appendix E. For the present choice of parameters, the
main contribution to the initial (Δ−) wave function is
jdbdgdri, i.e., the quark configuration associated with the

TABLE I. The energy gap above the vacuum of states relevant
for β-decays of single baryons with mu ¼ 0.9, md ¼ 2.1, g ¼ 2,
and me;ν ¼ 0. The leptons are degenerate in energy and collec-
tively denoted by l.

Energy of states relevant for β-decay (above the vacuum)

State Energy gap

Δþþ 2.868
Δþþ þ 2l 3.868
Δþ 4.048
Δþþ þ 4l 4.868
Δþ þ 2l 5.048
Δ0 5.229
Δþ þ 4l 6.048
Δ0 þ 2l 6.229
Δ− 6.409

2The ū and u parts of the lattice are separated by a fully packed
d sector, which implies that the part of the wave functions with
odd numbers of anti-up quarks have relative minus signs
compared to the one-flavor vacuum wave function.
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“bare” baryon in the d sector and the trivial vacuum in the u
sector. This implies that the dominant contribution to the

β-decay is from the ϕðuÞ†
0 ϕðdÞ

0 χ̃ðeÞ†0 χ̃ðνÞ1 term3 in Eq. (8),
which acts only on valence quarks, and the β-decay
operator can be approximated by

H̃val
β ¼ Gffiffiffi

2
p

�
σ−ν̄ σ

þ
e

X
c¼r;g;b

σ−d;cZ
2σþu;c þ H:c:

�
; ð15Þ

for these parameter values. SeeAppendixH for details on the
validity of this approximation. All of the results presented in
this section implement this interaction, the Trotterization of
which requires 50 CNOTs. Notice that, if the Trotterization
of H̃val

β is placed at the end of the first Trotter step, then

UðtÞ ¼ expð−iH̃val
β tÞ×exp ½−iðH̃leptonsþHquarksþHglueÞt�,

and the initial exponential (corresponding to strong-
interaction evolution) can be omitted as it acts on an
eigenstate (the Δ−). This reduces the CNOTs required for
one and two Trotter steps to 50 and 214, respectively. For an
estimate of the number of CNOTs required to time evolve
with the β-decay Hamiltonian on larger lattices, see
Appendix F. The probability of β-decay, as computed both
through exact diagonalization of the Hamiltonian and
through Trotterized time evolution using the qiskit
classical simulator [179], is shown in Fig. 4. The periodic
structure is a finite volume effect, and the probability of
β-decay is expected to tend to an exponential in time as L
increases; see Appendix D.

FIG. 3. A quantum circuit that can be used to prepare the Δ−-baryon on L ¼ 1 spatial site.

FIG. 4. The probability of β-decay, Δ− → Δ0 þ eþ ν̄, with
mu ¼ 0.9,md ¼ 2.1,me;ν ¼ 0, g ¼ 2, andG ¼ 0.5 computed via
exact diagonalization (dotted black line) and on the qiskit
quantum simulator [179] using 1,2,5,20 Trotter steps.

FIG. 5. The linear entanglement entropy, SL, between quarks
and antiquarks plus leptons during the β-decay of an initial
Δ−-baryon.

3Note that the ϕðuÞ†
0 ϕðdÞ

0 χ̃ðeÞ†1 χ̃ðνÞ0 term is suppressed since the
lepton vacuum in the tilde basis satisfies χ̃ðe;νÞ†1 jΩilep ¼
χ̃ðe;νÞ0 jΩilep ¼ 0.
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Entanglement in quantum simulations of lattice
gauge theories is a growing area of focus; see, e.g.,
Refs. [180–183], and it is interesting to examine the
evolution of entanglement during the β-decay process.
Before the decay, the quarks and antiquarks are together in
a pure state as the leptons are in the vacuum, and subsequent
time evolution of the state introduces components into the
wave function that have nonzero population of the lepton
states. One measure of entanglement is the linear entropy,

SL ¼ 1 − Tr½ρ2q�; ð16Þ

between the quarks and antiquarks plus leptons. It is con-
structed by tracing the full density matrix, ρ, over the
antiquark and lepton sector to form the reduced density
matrix ρq ¼ Trq̄;leptons½ρ�. Figure 5 shows the linear entropy
computed through exact diagonalization of the Hamiltonian
with the parameters discussed previously in the text. By
comparingwith the persistence probability in Fig. 4, it is seen
that the entanglement entropy evolves at twice the frequency
of the β-decay probability. This is because β-decay primarily
transitions the baryon between the ground state of theΔ− and
Δ0. It is expected that these states will have a comparable
amount of entanglement, and so the entanglement is approx-
imately the same when the decay probabilities are 0 and 1.
While this makes this particular example somewhat unin-
teresting, it does demonstrate that when multiple final states
are accessible, the time dependence of the entanglement
structure might be revealing.

B. Simulations using Quantinuum’s H1-1 20 qubit
trapped ion quantum computer

Both the initial state preparation and one and two steps
of Trotterized time evolution were executed using
Quantinuum’s H1-1 20 qubit trapped ion quantum

computer [176] and its simulator H1-1E4 (for details on
the specifications of H1-1, see Appendix G). After
transpilation onto the native gate set of H1-1, a single
Trotter step requires 59 ZZ gates, while two Trotter steps
requires 212 ZZ gates.5 By postselecting results on “physi-
cal” states with baryon number B ¼ 1 and lepton number
L ¼ 0 to mitigate single-qubit errors (e.g., Ref. [80]),
approximately 90% (50%) of the total events from the
one (two) Trotter step circuit remained. Additionally, for
the two Trotter step circuit, results were selected where the
ancilla qubit was in the j0i state (around 95%).6

The results of the simulations are shown in Fig. 6 and
given in Table II. By comparing the results from H1-1 and
H1-1E (using 200 shots) it is seen that the simulator is able
to faithfully reproduce the behavior of the quantum
computer. The emulator was also run with 400 shots and
clearly shows convergence to the expected value, verifying
that the agreement between data and theory was not an
artifact due to low statistics (and large error bars).
Compared with the results presented in Ref. [158] that
were performed using IBM’s ibmq_jakarta and
ibm_perth, error mitigation techniques were not applied
to the present simulations due to the overhead in resource
requirements. Specifically, Pauli twirling, dynamical
decoupling, decoherence renormalization, and measure-
ment error mitigation were not performed. This is practical

FIG. 6. The probability of β-decay,Δ− → Δ0 þ eþ ν̄, withmu ¼ 0.9,md ¼ 2.1,me;ν ¼ 0, g ¼ 2, and G ¼ 0.5, using one (left panel)
and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black curves show the
expected result from Trotterized time evolution, corresponding to the blue circles (orange triangles) in Fig. 4 for one (two) Trotter steps.
The blue circles correspond to the data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each
obtained from 200 shots (400 shots). The points have been shifted slightly along the t axis for clarity. Error mitigation beyond physical-
state postselection has not been performed. The weak Hamiltonian in the time evolution responsible for the decay is given in Eq. (15).

4The classical simulator H1-1E includes depolarizing gate
noise, leakage errors, cross talk noise, and dephasing noise due to
transport and qubit idling [177].

5The number of ZZ gates could be further reduced by five by
not resetting the ancilla.

6For this type of error, the midcircuit measurement and
reinitialization option available for H1-1 could have been used
to identify the case where the bit flip occurred after the ancilla
was used, and the error had no effect on the final results.
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because the two-qubit gate, state preparation, and meas-
urement (SPAM) errors are an order of magnitude smaller
on Quantinuum’s trapped-ion system compared to those of
IBM’s superconducting qubit systems (and a similar error
rate on the single-qubit gates) [184].

IV. SPECULATION ABOUT QUANTUM
SIMULATIONS WITH A HIERARCHY

OF LENGTH SCALES

It is interesting to consider how a hierarchy of length
scales, as present in the SM, may be helpful in error
correction. In the system we have examined, the low energy
strong sector is composed of mesons, baryons, and nuclei,
with both color singlet and nonsinglet excitations (existing
at higher energies). As observed in Ref. [158], OBCs allow
for relatively low-energy colored “edge” states to exist near
the boundary of the lattice. The energy of a color nonsinglet
grows linearly with its distance from the boundary, leading
to a force on colored objects. This will cause colored errors
in the bulk to migrate to the edge of the lattice where they
could be detected and possibly removed. This is one benefit
of using axial gauge, where Gauss’s law is automatically
enforced, and a colored “error" in the bulk generates a color
flux tube that extends to the boundary.
Localized two-bit-flip errors can create color-singlet

excitations that do not experience a force toward the
boundary, but which are vulnerable to weak decay. For
sufficiently large lattices, color singlet excitations will decay
weakly down to stable states enabled by the near continuum
of lepton states. In many ways, this resembles the quantum
imaginary-time evolution (QITE) [185–187] algorithm,
which is a special case of coupling to open systems, where
quantum systems are driven into their ground state by
embedding them in a larger system that acts as a heat
reservoir. One can speculate that, in the future, quantum
simulations of QCDwill benefit from also including electro-
weak interactions as a mechanism to cool the strongly
interacting sector from particular classes of errors.

This particular line of investigation is currently at a
“schematic” level, and significantly more work is required
to quantify its utility. Given the quantum resource require-
ments, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.

V. SUMMARY AND CONCLUSIONS

Quantum simulations of SM physics is in its infancy
and, for practical reasons, has been previously limited to
either QCD or QED in one or two spatial dimensions. In
this work, we have started the integration of the electro-
weak sector into quantum simulations of QCD by exam-
ining the time evolution of the β-decay of one baryon. In
addition to the general framework that allows for simu-
lations of arbitrary numbers of lattice sites in one dimen-
sion, we present results for L ¼ 1 spatial lattice site, which
requires 16 qubits. Explicitly, this work considered quan-
tum simulations of Δ− → Δ0eν̄ in two flavor 1þ 1D QCD
for L ¼ 1 spatial lattice site. Simulations were performed
using Quantinuum’s H1-1 20-qubit trapped ion quantum
computer and classical simulator H1-1E, requiring 17 (16
system and one ancilla) qubits. Results were presented for
both one and two Trotter steps, including the state
preparation of the initial baryon, requiring 59 and 212
two-qubit gates, respectively. Even with 212 two-qubit
gates, H1-1 provided results that are consistent with the
expected results, within uncertainties, without error-
mitigation beyond physical-state postselection. While
not representative of β-decay in the continuum, these
results demonstrate the potential of quantum simulations
to determine the real-time evolution of decay and reaction
processes in nuclear and high-energy processes. High
temporal-resolution studies of the evolution of the
quarks and gluons during hadronic decays and nuclear
reactions are expected to provide new insights into the
mechanisms responsible for these processes and lead to
new strategies for further reducing systematic errors in
their prediction.

TABLE II. The probability of β-decay, Δ− → Δ0 þ eþ ν̄, on L ¼ 1 spatial lattice with mu ¼ 0.9, md ¼ 2.1, me;ν ¼ 0, g ¼ 2, and
G ¼ 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation and
subsequent time evolution under one and two Trotter steps. The results are displayed in Fig. 6. The columns labeled (×2 stats) were
obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming the results follow a
binomial distribution.

Single-baryon decay probabilities using Quantinuum’s H1-1 and H1-1E

One trotter step Two trotter steps

t H1-1 H1-1E H1-1E (×2 stats) Theory H1-1 H1-1E H1-1E (×2 stats) Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088
1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270
1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391
2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547
2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792
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APPENDIX A: THE COMPLETE SPIN HAMILTONIAN FOR L= 1

After the JW mapping of the Hamiltonian to qubits, and using the tilde basis for the leptons, the four contributing
terms are

H ¼ Hquarks þ H̃leptons þHglue þ H̃β; ðA1aÞ

Hquarks ¼
1

2
½muðZ0 þ Z1 þ Z2 − Z6 − Z7 − Z8 þ 6Þ þmdðZ3 þ Z4 þ Z5 − Z9 − Z10 − Z11 þ 6Þ�

−
1

2
ðσþ6 Z5Z4Z3Z2Z1σ

−
0 þ σ−6Z5Z4Z3Z2Z1σ

þ
0 þ σþ7 Z6Z5Z4Z3Z2σ

−
1 þ σ−7Z6Z5Z4Z3Z2σ

þ
1

þ σþ8 Z7Z6Z5Z4Z3σ
−
2 þ σ−8Z7Z6Z5Z4Z3σ

þ
2 þ σþ9 Z8Z7Z6Z5Z4σ

−
3 þ σ−9Z8Z7Z6Z5Z4σ

þ
3

þ σþ10Z9Z8Z7Z6Z5σ
−
4 þ σ−10Z9Z8Z7Z6Z5σ

þ
4 þ σþ11Z10Z9Z8Z7Z6σ

−
5 þ σ−11Z10Z9Z8Z7Z6σ

þ
5 Þ; ðA1bÞ

H̃leptons ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

e

q
ðZ13 − Z15Þ þ

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

ν

q
ðZ12 − Z14Þ

Hglue ¼
g2

2

�
1

3
ð3 − Z1Z0 − Z2Z0 − Z2Z1Þ þ σþ4 σ

−
3 σ

−
1 σ

þ
0 þ σ−4 σ

þ
3 σ

þ
1 σ

−
0 þ σþ5 Z4σ

−
3 σ

−
2Z1σ

þ
0 þ σ−5Z4σ

þ
3 σ

þ
2 Z1σ

−
0

þ σþ5 σ
−
4 σ

−
2 σ

þ
1 þ σ−5 σ

þ
4 σ

þ
2 σ

−
1

þ 1

12
ð2Z3Z0 þ 2Z4Z1 þ 2Z5Z2 − Z5Z0 − Z5Z1 − Z4Z2 − Z4Z0 − Z3Z1 − Z3Z2Þ

�
; ðA1cÞ

H̃β ¼
Gffiffiffi
2

p
�
1

2
ðseþsνþ þ se−sν−Þ½ðσ−14σþ13 − σþ15Z14Z13σ

−
12Þðσ−3Z2Z1σ

þ
0 þ σ−4Z3Z2σ

þ
1 þ σ−5Z4Z3σ

þ
2 þ σ−9Z8Z7σ

þ
6

þ σ−10Z9Z8σ
þ
7 þ σ−11Z10Z9σ

þ
8 Þ þ ðσþ14σ−13 − σ−15Z14Z13σ

þ
12Þðσþ3 Z2Z1σ

−
0 þ σþ4 Z3Z2σ

−
1 þ σþ5 Z4Z3σ

−
2

þ σþ9 Z8Z7σ
−
6 þ σþ10Z9Z8σ

−
7 þ σþ11Z10Z9σ

−
8 Þ�

−
1

2
ðseþsν− þ se−sνþÞ½ðσ−14σþ13 þ σþ15Z14Z13σ

−
12Þðσ−9Z8Z7Z6Z5Z4Z3Z2Z1σ

þ
0 þ σ−10Z9Z8Z7Z6Z5Z4Z3Z2σ

þ
1

þ σ−11Z10Z9Z8Z7Z6Z5Z4Z3σ
þ
2 þ σþ6 Z5Z4σ

−
3 þ σþ7 Z6Z5σ

−
4 þ σþ8 Z7Z6σ

−
5 Þ

þ ðσþ14σ−13 þ σ−15Z14Z13σ
þ
12Þðσþ9 Z8Z7Z6Z5Z4Z3Z2Z1σ

−
0 þ σþ10Z9Z8Z7Z6Z5Z4Z3Z2σ

−
1

þ σþ11Z10Z9Z8Z7Z6Z5Z4Z3σ
−
2 þ σ−6Z5Z4σ

þ
3 þ σ−7Z6Z5σ

þ
4 þ σ−8Z7Z6σ

þ
5 Þ�

�
: ðA1dÞ

In the mapping, the qubits are indexed right to left and, for example, qubit zero (one) corresponds to a red (green) up quark.
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APPENDIX B: β-DECAY IN THE
STANDARD MODEL

To put our simulations in 1þ 1D into context, it is
helpful to outline relevant aspects of single-hadron
β-decays in the SM in 3þ 1D. Far below the electroweak
symmetry-breaking scale, charged-current interactions can
be included as an infinite set of effective operators in a
systematic EFT description, ordered by their contributions
in powers of low-energy scales divided by appropriate
powers of MW . For instance, β-decay rates between
hadrons scale as ∼ΛðGFΛ2Þ2ðΛ=MWÞn, where Λ denotes

the low-energy scales, GFffiffi
2

p ¼ g2
2

8M2
W
is Fermi’s constant, and

LO (in Λ=MW) corresponds to n ¼ 0. By matching
operators at LO in SM interactions, the β-decay of the
neutron is induced by an effective Hamiltonian density of
the form [13,171]

Hβ ¼
GFffiffiffi
2

p Vudψ̄uγ
μð1 − γ5Þψdψ̄eγμð1 − γ5Þψνe þ H:c:;

ðB1Þ

where Vud is the element of the CKM matrix for d → u
transitions. As Hβ factors into contributions from lepton
and quark operators, the matrix element factorizes into a
plane-wave lepton contribution and a nonperturbative
hadronic component requiring matrix elements of the quark
operator between hadronic states. With the mass hierarchies
and symmetries in nature, there are two dominant form
factors, so that

hpðppÞjψ̄uγ
μð1 − γ5ÞψdjnðpnÞi

¼ Ūp½gVðq2Þγμ − gAðq2Þγμγ5�Un; ðB2Þ

where q is the four-momentum transfer of the process,
gVð0Þ¼1 in the isospin limit, and gAð0Þ¼1.2754ð13Þ [196]
as measured in experiment. The matrix element for
n → pe−ν̄e calculated from the Hamiltonian in Eq. (B1) is

jMj2 ¼ 16G2
FjVudj2MnMpðg2V þ 3g2AÞ

×

�
EνEe þ

g2V − g2A
g2V þ 3g2A

pe · pν̄

�
; ðB3Þ

which leads to a neutron width of (at LO in ðMn −MpÞ=Mn

and me=Mn)

Γn ¼
G2

FjVudj2ðMn −MpÞ5
60π3

ðg2V þ 3g2AÞf0ðyÞ; ðB4Þ

where f0ðyÞ is a phase-space factor,

f0ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q �
1 −

9

2
y2 − 4y4

�

−
15

2
y4 log

�
yffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

þ 1

�
; ðB5Þ

and y ¼ me=ðMn −MpÞ. Radiative effects, recoil effects,
and other higher-order contributions have been neglected.

APPENDIX C: β-DECAY IN 1+ 1 DIMENSIONS:
THE L=∞ AND CONTINUUM LIMITS

In 1þ 1D, the fermion field has dimensions ½ψ � ¼ 1
2
, and

a four-Fermi operator has dimension ½θ̂� ¼ 2. Therefore,
while in 3þ 1D ½GF� ¼ −2, in 1þ 1D, the coupling has
dimension ½G� ¼ 0. For our purposes, to describe the
β − Decay of a Δ−-baryon in 1þ 1D, we have chosen
to work with an effective Hamiltonian of the form

H1þ1
β ¼ Gffiffiffi

2
p ψ̄uγ

μψdψ̄eγμψν̄ þ H:c:

¼ Gffiffiffi
2

p ψ̄uγ
μψdψ̄eγμCψν þ H:c:; ðC1Þ

where we have chosen the basis

γ0 ¼
�
1 0

0 −1

�
; γ1 ¼

�
0 1

−1 0

�
¼ C; γ0γ

†
μγ0 ¼ γμ;

γ0C†γ0 ¼ C; fγμ; γνg ¼ 2gμν: ðC2Þ

For simplicity, the CKMmatrix element is set equal to unity
as only one generation of particles is considered.
In the limit of exact isospin symmetry, which we assume

to be approximately valid in this appendix, the four Δ
baryons form an isospin quartet and can be embedded
in a tensor Tabc (as is the case for the Δ resonances in
nature) as T111 ¼ Δþþ, T112 ¼ T121 ¼ T211 ¼ Δþ=

ffiffiffi
3

p
,

T122 ¼ T221 ¼ T212 ¼ Δ0=
ffiffiffi
3

p
, T222 ¼ Δ−. Matrix ele-

ments of the isospin generators are reproduced by an
effective operator of the form

ψ̄qγ
μταψq → 3T̄abcγ

μðταÞcdTabd; ðC3Þ

which provides a Clebsch-Gordan coefficient for isospin
raising operators,

ψ̄qγ
μτþψq →

ffiffiffi
3

p
ΔþþγμΔþ þ 2ΔþγμΔ0

þ
ffiffiffi
3

p
Δ0γμΔ−: ðC4Þ

The matrix element for β-decay factorizes at LO in the
electroweak interactions. The hadronic component of the
matrix element is given by
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hΔ0ðp0Þjψ̄uγ
αψdjΔ−ðp−Þi ¼

ffiffiffi
3

p
gVðq2ÞŪΔ0γαUΔ− ¼ Hα;

HαHβ† ¼ 3jgVðq2Þj2Tr½γαðp− þMΔ−Þγβðp0 þMΔ0Þ�
¼ 6jgVðq2Þj2½pα

−p
β
0 þ pα

0p
β
− − gαβðp− · p0Þ þMΔ−MΔ0gαβ� ¼ Hαβ; ðC5Þ

and the leptonic component of the matrix element is given by, assuming that the electron and neutrino are massless,

he−ν̄ejψ̄eγ
αCψνj0i ¼ Ūeγ

αCVν ¼ Lα;

LαLβ† ¼ Tr½γαCpνCγβp=e� ¼ Tr½γαpνγ
βpe� ¼ 2½p̄α

νp
β
e þ p̄β

νpα
e − gαβðp̄ν · peÞ� ¼ Lαβ; ðC6Þ

where p ¼ ðp0;þp1Þ and p̄ ¼ ðp0;−p1Þ. Therefore, the squared matrix element of the process is

jMj2 ¼ G2

2
HαβLαβ ¼ 12G2g2VMΔ−ðMΔ− − 2Eν̄ÞðEeEν̄ − pe · pν̄Þ; ðC7Þ

from which the delta decay width can be determined by standard methods,

ΓΔ− ¼ 1

2MΔ−

Z
dpe

4πEe

dpν̄

4πEν̄

dp0

4πE0

ð2πÞ2δ2ðp− − p0 − pe − pν̄ÞjMj2

¼ 3
G2g2V
2π

Z
dEedEν̄δðQ − Ee − Eν̄Þ þOðQn=Mn

ΔÞ

¼ 3
G2g2VQ
2π

þOðQn=Mn
ΔÞ; ðC8Þ

where Q ¼ MΔ− −MΔ0 , and we have retained only the
leading terms in an expansion in Q=MΔ and evaluated the
vector form factor at gVðq2 ¼ 0Þ≡ gV . The electron and
neutrino masses have been set to zero, and the inclusion of
nonzero masses will lead to a phase-space factor, f1,
reducing the width shown in Eq. (C8), and which becomes
f1 ¼ 1 in the massless limit.

APPENDIX D: β-DECAY IN 1+ 1 DIMENSIONS:
FINITE L AND NONZERO SPATIAL

LATTICE SPACING

The previous appendix computed the β-decay rate in
1þ 1D in infinite volume and in the continuum. However,
lattice calculations of such processes will necessarily be
performed with a nonzero lattice spacing and a finite
number of lattice points. For calculations done on a
Euclidean-space lattice, significant work has been done
to develop the machinery used to extract physically mean-
ingful results. This formalism was initially pioneered
by Lüscher [197–199] for hadron masses and two-
particle scattering and has been extended to more complex
systems relevant to electroweak processes (Lellouch-
Lüscher) [200–215] and to nuclear physics [201,208,216–227].
Lüscher’s method was originally derived from an analysis
of Hamiltonian dynamics in Euclidean space and later
from a field theoretic point of view directly from correla-
tion functions. The challenge is working around the
Maiani-Testa theorem [228] and reliably determining

Minkowski-space matrix elements from Euclidean-space
observables. This formalism has been used successfully for
a number of important quantities and continues to be the
workhorse for Euclidiean-space computations.
As quantum simulations provide observables directly in

Minkowski space, understanding the finite-volume and
nonzero lattice spacing artifacts requires a similar but
different analysis than in Euclidean space.7 While the
method used in Euclidean space of determining S-matrix
elements for scattering processes from energy eigenvalues
can still be applied, Minkowski space simulations will
also allow for a direct evaluation of scattering processes,
removing some of the modeling that remains in Euclidean-
space calculations.8 Neglecting electroweak interactions
beyond β-decay means that the final state leptons are non
interacting (plane waves when using periodic boundary
conditions), and therefore the modifications to the density
of states due to interactions, as encapsulated within the
Lüscher formalism, are absent.
With Hamiltonian evolution of a system described

within a finite-dimensional Hilbert space, the persistence
amplitude of the initial state coupled to final states via the

7Estimates of such effects in model 1þ 1 dimensional sim-
ulations can be found in Ref. [229].

8For example, the energies of states in different volumes are
different, and so the elements of the scattering matrix are
constrained over a range of energies and not at one single energy,
and a priori unknown interpolations are modeled.
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weak Hamiltonian will be determined by the sum over
oscillatory amplitudes. For a small number of final states,
the amplitude will return to unity after some finite period
of time. As the density of final states near the energy of the
initial state becomes large, there will be cancellations
among the oscillatory amplitudes, and the persistence
probability will begin to approximate the “classic” expo-
nential decay over some time interval. This time interval
will extend to infinity as the density of states tends to a
continuous spectrum. It is important to understand how to
reliably extract an estimate of the decay rate, with a
quantification of systematic errors, from the amplitudes
measured in a quantum simulation. This is the subject of
future work, but here, a simple model will be used to
demonstrate some of the relevant issues.
Consider the weak decay of a strong eigenstate in one

sector to a strong eigenstate in a different sector (a sector is
defined by its strong quantum numbers). For this demon-
stration, we calculate the persistence probability of the
initial state, averaged over random weak and strong
Hamiltonians and initial states, as the number of states
below a given energy increases (i.e., increasing density of
states). Concretely, the energy eigenvalues of the initial
strong sector range from 0 to 1.1, and 10 are selected
randomly within this interval. The initial state is chosen to
be the one with the fifth lowest energy. The eigenvalues in
the final strong sector range between 0 and 2.03, and Yf ¼
20 to 400 are selected. The weak Hamiltonian that induces
transitions between the 10 initial states to the Yf final states
is a dense matrix with each element selected randomly. The
weak coupling constant is scaled so that G2ρf is indepen-
dent of the number of states, where ρf is the density of
states. This allows for a well-defined persistence proba-
bility as Yf → ∞. For this example, the elements of the
weak Hamiltonian were chosen between �wf, where
wf ¼ 1=ð2 ffiffiffiffiffiffi

YF
p Þ. Figure 7 shows the emergence of the

expected exponential decay as the number of available final
states tends toward a continuous spectrum. In a quantum
simulation of a lattice theory, the density of states increases
with L, and the late-time deviation from exponential decay
will exhibit oscillatory behavior, as opposed to the plateaus
found in this statistically averaged model. The very early
time behavior of the probability is interesting to note and
exhibits a well-known behavior, e.g., Refs. [230,231]. It is,

as expected, not falling exponentially, which sets in over
timescales set by the energy spectrum of final states.
Only small lattices are practical for near-term simulation,

and lattice artifacts will be important to quantify. Relative to
the continuum, a finite lattice spacing modifies the energy-
momentum relation and introduces a momentum cutoff on
the spectra. However, if the initial particle has a mass that is
much less than the cutoff, these effects should be minimal as
the energy of each final state particle is bounded above by the
mass of the initial particle. As has been shown in this
appendix, working on a small lattice with its associated
sparse number of final states will lead to significant system-
atic errors when extracting the decay rates directly from the
persistence probabilities. Further work will be necessary to
determine how to reliably estimate these errors.

APPENDIX E: β-DECAY CIRCUITS

The quantum circuits that implement the Trotterized time
evolution of the β-decay Hamiltonian are similar to those
presented in Ref. [158] to implement the strong-interaction
dynamics, and here, the differences between the two will be
highlighted. The β-decay Hamiltonian in both the standard
and tilde layouts, Eqs. (5) and (10), contains terms of the
form

Hβ ∼ ðσ−σþσ−σþ þ H:c:Þ þ ðσ−σþσþσ− þ H:c:Þ

¼ 1

8
ðXXXX þ YYXX − YXYX þ YXXY þ XYYX − XYXY þ XXYY þ YYYYÞ

þ 1

8
ðXXXX þ YYXX þ YXYX − YXXY − XYYX þ XYXY þ XXYY þ YYYYÞ; ðE1Þ

which can be diagonalized by the GHZ state-preparation circuits, G and Ĝ, shown in Fig. 8. In the GHZ basis, it is
found that

FIG. 7. Ensemble averages (over 2000 random samples) of the
persistence probability of an initial state in one sector of a strong
Hamiltonian undergoing weak decay to states in a different
sector, as described in this appendix. The different colored points
are results from calculations with an increasing number of final
states, YF. The weak coupling scales so that the decay probability
converges to a well-defined value as the density of final states
tends to a continuum.
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G†ðXXXX þ YYXX − YXYX þ YXXY þ XYYX − XYXY þ XXYY þ YYYYÞG
¼ IIIZ − ZIIZ þ ZZIZ − ZZZZ − IZIZ þ IZZZ − IIZZ þ ZIZZ; ðE2Þ

and

Ĝ†ðXXXX þ YYXX þ YXYX − YXXY − XYYX þ XYXY þ XXYY þ YYYYÞĜ
¼ IIZI − ZIZI − ZZZZ þ ZZZI þ IZZZ − IZZI − IIZZ þ ZIZZ: ðE3Þ

Once diagonalized, the circuit is a product of diagonal
rotations; see Fig. 9 for an example of the quantum circuit
that provides the time evolution associated with
σ−ν̄ σ

þ
e σ

−
d;rZu;bZu;gσ

þ
u;r. By diagonalizing with both G and

Ĝ and arranging terms in the Trotterization so that operators
that act on the same quarks are next to each other,many of the
CNOTs can bemade to cancel. Also, an ancilla can be used to
efficiently store the parity of the string ofZs between the σ�.

APPENDIX F: RESOURCE
ESTIMATES FOR SIMULATING

β-DECAY DYNAMICS

For multiple lattice sites, it is inefficient to work with
leptons in the tilde basis. This is due to the mismatch
between the local four-Fermi interaction and the non-
local tilde basis eigenstates. As a result, the number of
terms in the β-decay component of the Hamiltonian will

FIG. 8. Two GHZ state preparation circuits.

FIG. 9. A quantum circuit that provides the time evolution associated with the σ−ν̄ σ
þ
e σ

−
d;rZu;bZu;gσ

þ
u;r operator in the β-decay

Hamiltonian, with α ¼ ffiffiffi
2

p
Gt=8.

FIG. 10. A qubit layout that is efficient for the simulation of β-decay. Shown is an example for L ¼ 2.
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scale as OðL2Þ in the tilde basis, as opposed to OðLÞ in
the local occupation basis. This appendix explores a
layout different from the one in Fig. 1, which is
optimized for the simulation of β-decay on larger

lattices. To minimize the length of JW Z strings, all
leptons are placed at the end of the lattice; see Fig. 10.
After applying the JW mapping, the β-decay operator
becomes

Hβ →
Gffiffiffi
2

p
XL−1
l¼0

X2
c¼0

ðσ−l;ν̄σþl;eσ−l;d;cZ2σþl;u;c − σþl;ēZ
2σ−l;νσ

−
l;d;cZ

2σþl;u;c þ σ−l;ν̄σ
þ
l;eσ

−
l;d̄;c

Z2σþl;ū;c

− σþl;ēZ
2σ−l;νσ

−
l;d̄;c

Z2σþl;ū;c þ σþl;eσ
−
l;νσ

−
l;d̄;c

Z8σþl;u;c − σþl;ēσ
−
l;ν̄σ

−
l;d̄;c

Z8σþl;u;c

þ σþl;eσ
−
l;νσ

þ
l;ū;cZ

2σ−l;d;c − σþl;ēσ
−
l;ν̄σ

þ
l;ū;cZ

2σ−l;d;c þ H:c:Þ: ðF1Þ

Using the techniques outlined in Appendix E to construct
the relevant quantum circuits, the resources required per
Trotter step of Hβ are estimated to be

RZ∶192L;

Hadamard∶48L;

CNOT∶436L: ðF2Þ
For small lattices, L≲ 5, it is expected that use of the tilde
basis will be more efficient, and these estimates should be
taken as an upper bound. Combining this with the resources
required to time evolve with the rest of the Hamiltonian, see
Ref. [158], the total resource requirements per Trotter step
are estimated to be

RZ∶264L2 − 54Lþ 77;

Hadamard∶48L2 þ 20Lþ 2;

CNOT∶368L2 þ 120Lþ 74: ðF3Þ
It is important to note that the addition of Hβ does not
contribute to the quadratic scaling of resources as it is a
local operator. Recently, the capability to produce multi-
qubit gates natively with similar fidelities to two-qubit
gates has also been demonstrated [232–234]. This could
lead to dramatic reductions in the resources required and,
for example, the number of multiqubit terms in the
Hamiltonian scales as

Multiqubit terms∶96L2 − 68Lþ 22: ðF4Þ

The required number of CNOTs and, for comparison, the
number of multiqubit terms in the Hamiltonian, for a
selection of different lattice sizes are given in Table III.
Note that these estimates do not include the resources
required to prepare the initial state.

APPENDIX G: TECHNICAL DETAILS ON THE
QUANTINUUM H1-1 QUANTUM PROCESSOR

For completeness, this appendix contains a brief descrip-
tion of Quantinuum’s H1-1 20 trapped ion quantum
computer (more details can be found in [235]). The H1-1
system uses the System Model H1 design, where unitary
operations act on a single line of 172Yþ ions induced by lasers.
The qubits are defined as the two hyperfine clock states in the
2S1=2 ground state of 172Yþ. Since the physical position of the
ions can bemodified, it is possible to apply two-qubit gates to
any pair of qubits, endowing the device with all-to-all
connectivity. Moreover, there are five different physical
regions where these gates can be applied in parallel.
Although we did not use this feature, it is also possible to
perform amidcircuit measurement of a qubit, i.e., initialize it
and reuse it (if necessary).
The native gate set for H1-1 is the following,

U1qðθ;ϕÞ ¼ e−i
θ
2
½cosðϕÞXþsinðϕÞY�; RZðλÞ ¼ e−i

λ
2
Z;

ZZ ¼ e−i
π
4
ZZ; ðG1Þ

where θ in U1qðθ;ϕÞ can only take the values fπ
2
; πg,

and arbitrary values of θ can be obtained by
combining several single-qubit gates, Ũ1qðθ;ϕÞ ¼
U1qðπ2 ;ϕþ π

2
Þ:RZðθÞ:U1qðπ2 ;ϕ − π

2
Þ. Translations betweenTABLE III. The CNOT-gate requirements to perform one

Trotter step of time evolution of β-decay for a selection of lattice
sizes. For comparison, the number of multiqubit terms in the
Hamiltonian is also given.

L CNOTS Multiqubit terms

5 9874 2082
10 38,074 8942
50 926,074 236,622
100 3,692,074 953,222

TABLE IV. Errors on the single-qubit, two-qubit, and SPAM
operations, with their minimum, average, and maximum values.

Min Average Max

Single-qubit infidelity 2 × 10−5 5 × 10−5 3 × 10−4

Two-qubit infidelity 2 × 10−3 3 × 10−3 5 × 10−3

SPAM error 2 × 10−3 3 × 10−3 5 × 10−3
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the gates used in the circuits shown in the main text and
appendices to the native ones are performed automatically
by pytket [195]. The infidelity of the single- and two-
qubit gates, as well as the error of the SPAM operations, are
shown in Table IV.

APPENDIX H: TIME EVOLUTION UNDER
THE FULL β-DECAY OPERATOR

The simulations performed in Sec. III kept only the terms
in the β-decay Hamiltonian, which act on valence quarks,
see Eq. (15). This appendix examines how well this valence
quark β-decay operator approximates the full operator,
Eq. (10), for the parameters used in the main text. Shown in
Fig. 11 is the decay probability when evolved with both the
approximate and full operator as calculated through exact
diagonalization of the Hamiltonian. The full β-decay
operator has multiple terms that can interfere leading to

a more jagged decay probability. The simulations ran on
H1-1 only went out to t ¼ 2.5 where the error of the
approximate operator is ∼20%.
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