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Tools necessary for quantum simulations of 1þ 1 dimensional quantum chromodynamics are
developed. When formulated in axial gauge and with two flavors of quarks, this system requires 12
qubits per spatial site with the gauge fields included via nonlocal interactions. Classical computations and
D-wave’s quantum annealer Advantage are used to determine the hadronic spectrum, enabling a
decomposition of the masses and a study of quark entanglement. Color “edge” states confined within
a screening length of the end of the lattice are found. IBM’s seven-qubit quantum computers,
ibmq_jakarta and ibm_perth, are used to compute dynamics from the trivial vacuum in one-
flavor QCD with one spatial site. More generally, the Hamiltonian and quantum circuits for time evolution
of 1þ 1 dimensional SUðNcÞ gauge theory with Nf flavors of quarks are developed, and the resource
requirements for large-scale quantum simulations are estimated.
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I. INTRODUCTION

Simulations of the real-time dynamics of out-of-
equilibrium, finite density quantum systems is a major
goal of Standard Model (SM) [1–6] physics research and is
expected to be computed efficiently [7] with ideal quantum
computers [8–16]. For recent reviews, see Refs. [17–19].
Developing such capabilities would enable precision pre-
dictions of particle production and fragmentation in beam-
beam collisions at the LHC and RHIC, of the matter-
antimatter asymmetry production in the early universe, and
of the structure and dynamics of dense matter in supernova
and the neutrino flavor dynamics therein. They would also
play a role in better understanding protons and nuclei,
particularly their entanglement structures and dynamics,
and in exploring exotic strong-interaction phenomena
such as color transparency. First steps are being taken
toward simulating quantum field theories (QFTs) using cur-
rently available, noisy intermediate scale quantum (NISQ)
era quantum devices [20] by studying low-dimensional
and truncated many-body systems (see for example,
Refs. [21–76]). These studies are permitting first quantum

resource estimates to be made for more realistic simula-
tions. There has already been a number of quantum simu-
lations of latticized 1þ 1D quantum electrodynamics
(QED, the lattice Schwinger model), starting with the
pioneering work of Martinez et al. [25]. The Schwinger
model shares important features with quantum chro-
modynamics (QCD), such as charge screening, a non-
zero fermion condensate, nontrivial topological charge
sectors, and a θ-term. Quantum simulations of the
Schwinger model have been performed using quantum
computers [25,31,66,77–79], and there is significant
effort being made to extend this progress to higher-
dimensional QED [23,28,60,73,80–94]. These, of course,
build upon far more extensive and detailed classical simu-
lations of this model and analytic solutions of the cont-
inuum theory. There is also a rich portfolio of classical and
analytic studies of 1þ 1D SUðNcÞ gauge theories [95–99],
with some seminal papers preparing for quantum simula-
tions [35,50,82,93,100–104], with the recent appearance of
quantum simulations of a one-flavor (Nf ¼ 1) 1þ 1DSUð2Þ
lattice gauge theory [105]. An attribute that makes such
calculations attractive for early quantum simulations is that
the gauge field(s) are uniquely constrained by Gauss’s law at
each lattice site. However, this is also a limitation for under-
standing higher-dimensional theories where the gauge field is
dynamical. After pioneering theoretical works developing the
formalism and also end-to-end simulation protocols nearly a
decade ago, it is only recently that first quantum simulations
of the dynamics of a few plaquettes of gauge fields have been
performed [35,50,71,105].
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Due to its essential features, quantum simulations of the
Schwinger model provide benchmarks for QFTs and quan-
tum devices for the foreseeable future. Moving toward
simulations of QCD requires including non-Abelian local
gauge symmetry and multiple flavors of dynamical quarks.
Low-energy, static and near-static observables in the con-
tinuum theory in 1þ 1D are well explored analytically and
numerically, with remarkable results demonstrated, particu-
larly in the ’t Hooft model of large-Nc [106,107], where the
Bethe-Salpeter equation becomes exact. For a detailed
discussion of 1þ 1D Uð1Þ and SUðNcÞ gauge theories,
see Refs. [108,109]. Extending such calculations to inelastic
scattering to predict, for instance, exclusive processes in
high-energy hadronic collisions is a decadal challenge.
In 3þ 1D QCD, the last 50 years have seen remarkable

progress in using classical high-performance computing to
provide robust numerical results using lattice QCD, e.g.,
Refs. [110,111], where the quark and gluon fields are
discretized in spacetime. Lattice QCD is providing com-
plementary and synergistic results to those obtained in
experimental facilities, moving beyond what is possible
with analytic techniques alone. However, the scope of
classical computations, even with beyond-exascale com-
puting platforms [110,112,113], is limited by the use of a
less fundamental theory (classical) to simulate a more
fundamental theory (quantum).
Building upon theoretical progress in identifying candi-

date theories for early exploration (e.g., Ref. [114]), quantum
simulations of 1þ 1Dnon-Abelian gauge theories including
matter were recently performed [105] for a Nc ¼ 2 local
gauge symmetry with one flavor of quark, Nf ¼ 1. The
Jordan-Wigner (JW) mapping [115] was used to define
the lattice theory, and variational quantum eigensolver
(VQE) [116] quantum circuits were developed and used
on IBM’s quantum devices [117] to determine the vacuum
energy, along with meson and baryon masses. Further, there
have been previous quantum simulations of one- and two-
plaquette systems in Nc ¼ 2, 3 Yang-Mills lattice gauge
theories [57,74,118–120] that did not include quarks. Simu-
lations of such systems are developing rapidly [71,120] due to
algorithmic and hardware advances. In addition, distinct
mappings of these theories are being pursued [121–127].
This work focuses on the quantum simulation of 1þ 1D

SUðNcÞ lattice gauge theory for arbitrary Nc and Nf. Cal-

culations are primarily done in AðaÞ
x ¼ 0 axial (Arnowitt-

Fickler) gauge,1 which leads to nonlocal interactions in order
to define the chromo-electric field contributions to the energy
density via Gauss’s law. This is in contrast to Weyl gauge,

AðaÞ
t ¼ 0, where contributions remain local. The resource

estimates for asymptotic quantum simulations of the
Schwinger model in Weyl gauge have been recently per-
formed [129] and also for Yang-Mills gauge theory based
upon the Byrnes-Yamamoto mapping [130]. Here, the focus

is on near-term, and hence nonasymptotic, quantum simu-
lations to better assess the resource requirements for quantum
simulations of non-Abelian gauge theories with multiple
flavors of quarks. For concreteness, Nf ¼ 2 QCD is studied
in detail, including the mass decomposition of the low-lying
hadrons (the σ- and π-meson, the single baryon and the two-
baryon bound state), color edge states, entanglement struc-
tures within the hadrons, and quantum circuits for time
evolution. Further, results are presented for the quantum simu-
lation of a Nf ¼ 1, single-site system, using IBM’s quantum
computers [117]. Suchquantumsimulationswill play a critical
role in evolving the functionality, protocols, and workflows
to be used in 3þ 1D simulations of QCD, including the
preparationof scattering states, timeevolution, and subsequent
particle detection.As a step in this direction, in a companion to
the present paper, the results of this work have been applied
to the quantum simulation of β-decay of a single baryon in
1 þ 1DQCD [131].Motivated by the recent successes in co-
designing efficient multiqubit operations in trapped-ion sys-
tems [132,133], additional multiqubit or qudit operations are
identified, specific to lattice gauge theories, that would benefit
from being native operations on quantum devices.

II. QCD WITH THREE COLORS
AND TWO FLAVORS IN 1+ 1D

In 3þ 1D, the low-lying spectrum of Nf ¼ 2 QCD is
remarkably rich. The lightest hadrons are the πs, which
are identified as the pseudo-Goldstone bosons associated
with the spontaneous breaking of the approximate global
SUð2ÞL ⊗ SUð2ÞR chiral symmetry, which becomes exact
in the chiral limit where the πs are massless. At slightly
higher mass are the broad I ¼ 0 spinless resonance, σ, and
the narrow I ¼ 0, ω, and I ¼ 1, ρ, vector resonances as well
as the multimeson continuum. The proton and neutron,
which are degenerate in the isospin limit and the absence
of electromagnetism, are the lightest baryons, forming an
I ¼ J ¼ 1=2 iso-doublet. The next lightest baryons, which
becomedegeneratewith thenucleons in the large-Nc limit (as
part of a large-Nc tower), are the four I ¼ J ¼ 3=2 Δ
resonances. The nucleons bind together to form the periodic
table of nuclei, the lightest being the deuteron, an I ¼ 0,
J ¼ 1 neutron-proton bound state with a binding energy of
∼2.2 MeV, which is to be compared to the mass of the
nucleon MN ∼ 940 MeV. In nature, the low-energy two-
nucleon systems have S-wave scattering lengths that are
much larger than the range of their interactions, rendering
themunnatural. Surprisingly, this unnaturalness persists for a
sizable range of light-quark masses, e.g., Refs. [134–138].
In addition, this unnaturalness, and the nearby renormaliza-
tion-group fixed point [139,140], provides the starting
point for a systematic effective field theory expansion about
unitarity [139–142]. Much of this complexity is absent in a
theory with only one flavor of quark.
As a first step toward 3þ 1D QCD simulations of real-

time dynamics of nucleons and nuclei, we will focus on
preparing to carry out quantum simulations of 1þ 1DQCD

1For a discussion of Yang-Mills in axial gauge, see, for
example, Ref. [128].
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with Nf ¼ 2 flavors of quarks. While the isospin structure
of the theory is the same as in 3þ 1D, the lack of spin and
orbital angular momentum significantly reduces the rich-
ness of the hadronic spectrum and S matrix. However,
many of the relevant features and processes of 3þ 1DQCD
that are to be addressed by quantum simulation in the
future are present in 1þ 1D QCD. Therefore, quantum
simulations in 1þ 1D are expected to provide inputs to the
development of quantum simulations of QCD.

A. Mapping 1 + 1D QCD onto qubits

The Hamiltonian describing non-Abelian lattice gauge
field theories in arbitrary numbers of spatial dimen-
sions was first given by Kogut and Susskind (KS) in the
1970s [143,144]. For 1þ 1D QCD with Nf ¼ 2 discre-
tized onto L spatial lattice sites, which are mapped to 2L q,
q̄ sites to separately accommodate quarks and antiquarks,
the KS lattice Hamiltonian is

HKS ¼
X
f¼u;d

�
1

2a

X2L−2
n¼0

ðϕðfÞ†
n Unϕ

ðfÞ
nþ1 þ H:c:Þ þmf

X2L−1
n¼0

ð−1ÞnϕðfÞ†
n ϕðfÞ

n

�
þ ag2

2

X2L−2
n¼0

X8
a¼1

jEðaÞ
n j2

−
μB
3

X
f¼u;d

X2L−1
n¼0

ϕðfÞ†
n ϕðfÞ

n −
μI
2

X2L−1
n¼0

ðϕðuÞ†
n ϕðuÞ

n − ϕðdÞ†
n ϕðdÞ

n Þ: ð1Þ

The masses of the u and d quarks are mu;d, g is the strong
coupling constant at the spatial lattice spacing a, Un is the

spatial link operator in Weyl gauge AðaÞ
t ¼ 0, ϕðu;dÞ

n are
the u- and d-quark field operators, which transform in the

fundamental representation of SUð3Þ, and EðaÞ
n is the

chromo-electric field associated with the SUð3Þ generator,
Ta. For convention, we write, for example, ϕðuÞ

n ¼
ðun;r; un;g; un;bÞT to denote the u quark field(s) at the
nth site in terms of three colors r, g, b. With an eye
toward simulations of dense matter systems, chemical
potentials for baryon number, μB, and the third component
of isospin, μI, are included. For most of the results
presented in this work, the chemical potentials will be
set to zero, μB ¼ μI ¼ 0, and there will be exact isospin
symmetry, mu ¼ md ≡m. In Weyl gauge and using the
chromo-electric basis of the link operator jR; α; βin, the
contribution from the energy in the chromo-electric field

from each basis state is proportional to the Casimir of
the irrep R.2 The fields have been latticized such that the
quarks reside on even-numbered sites, n ¼ 0; 2; 4; 6;…, and
antiquarks reside on odd-numbered sites, n ¼ 1; 3; 5;….
Open boundary conditions (OBCs) are employed in the
spatial direction, with a vanishing background chromo-
electric field. For simplicity, the lattice spacing will be set
equal to 1.
The KS Hamiltonian in Eq. (1) is constructed in Weyl

gauge. A unitary transformation can be performed on Eq. (1)
to eliminate the gauge links [114], with Gauss’s Law uni-
quely providing the energy in the chromo-electric field in
terms of a nonlocal sum of products of charges, i.e., the
Coulomb energy. This is equivalent to formulating the system

in axial gauge [145,146], AðaÞ
x ¼ 0, from the outset. The

Hamiltonian in Eq. (1), when formulated with AðaÞ
x ¼ 0,

becomes

H ¼
X
f¼u;d

�
1

2

X2L−2
n¼0

ðϕðfÞ†
n ϕðfÞ

nþ1 þ H:c:Þ þmf

X2L−1
n¼0

ð−1ÞnϕðfÞ†
n ϕðfÞ

n

�
þ g2

2

X2L−2
n¼0

X8
a¼1

�X
m≤nQ

ðaÞ
m

�
2

−
μB
3

X
f¼u;d

X2L−1
n¼0

ϕðfÞ†
n ϕðfÞ

n −
μI
2

X2L−1
n¼0

ðϕðuÞ†
n ϕðuÞ

n − ϕðdÞ†
n ϕðdÞ

n Þ; ð3Þ

2For an irrep, R, represented by a tensor with p upper indices and q lower indices, T
a1���ap
b1���bq , the Casimir provides

X8
b¼1

jEðaÞ
n j2jR; α; βin ¼

1

3
ðp2 þ q2 þ pqþ 3pþ 3qÞjR; α; βin: ð2Þ

The indices α and β specify the color state in the left (L) and right (R) link Hilbert spaces, respectively. States of a color irrep R
are labeled by their total color isospin T, third component of color isospin Tz, and color hypercharge Y, i.e., α ¼ ðTL; T

z
L; YLÞ

and β ¼ ðTR; T
z
R; YRÞ.
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where the color charge operators on a given lattice site are
the sum of contributions from the u and d quarks,

QðaÞ
m ¼ ϕðuÞ†

m TaϕðuÞ
m þ ϕðdÞ†

m TaϕðdÞ
m : ð4Þ

To define the fields, boundary conditions with AðaÞ
0 ðxÞ ¼ 0

at spatial infinity and zero background chromo-electric
fields are used, with Gauss’s law sufficient to determine
them at all other points on the lattice,

EðaÞ
n ¼

X
m≤n

QðaÞ
m : ð5Þ

In this construction, a state is completely specified by the
fermionic occupation at each site. This is to be contrasted

with the Weyl gauge construction where both fermionic
occupation and the SUð3Þ multiplet defining the chromo-
electric field are required.
There are a number of ways that this system, with the

Hamiltonian given in Eq. (3), could be mapped onto the
register of a quantum computer. In this work, both a stag-
gered discretization and a JW transformation [147] are
chosen to map the Nc ¼ 3 and Nf ¼ 2 quarks to six
qubits, with ordering db, dg, dr, ub, ug, ur, and the
antiquarks associated with the same spatial site adjacent
with ordering d̄b; d̄g; d̄r; ūb; ūg; ūr. This is illustrated in
Fig. 1 and requires a total of 12 qubits per spatial lattice site
(see Appendix A for more details). The resulting
JW-mapped Hamiltonian is the sum of the following
five terms:

H ¼ Hkin þHm þHel þHμB þHμI ; ð6aÞ

Hkin ¼ −
1

2

X2L−2
n¼0

X1
f¼0

X2
c¼0

�
σþ6nþ3fþc

�
⊗
5

i¼1
σz6nþ3fþcþi

�
σ−
6ðnþ1Þþ3fþc þ H:c:

�
; ð6bÞ

Hm ¼ 1

2

X2L−1
n¼0

X1
f¼0

X2
c¼0

mf½ð−1Þnσz6nþ3fþc þ 1�; ð6cÞ

FIG. 1. The encoding of Nf ¼ 2 QCD onto a lattice of spins describing L ¼ 2 spatial sites. Staggering is used to discretize the quark
fields, which doubles the number of lattice sites, with (anti)quarks on (odd) even sites. The chromo-electric field resides on the links
between quarks and antiquarks. Color and flavor degrees of freedom of each quark and antiquark site are distributed over six qubits with
a JW mapping, and axial gauge along with Gauss’s law are used to remove the chromo-electric fields. A quark (antiquark) site is
occupied if it is spin up (down), and the example spin configuration corresponds to the state jūbdbi.
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Hel ¼
g2

2

X2L−2
n¼0

ð2L − 1 − nÞ
�X1

f¼0

QðaÞ
n;fQ

ðaÞ
n;f þ 2QðaÞ

n;0Q
ðaÞ
n;1

�

þ g2
X2L−3
n¼0

X2L−2
m¼nþ1

ð2L − 1 −mÞ
X1
f¼0

X1
f0¼0

QðaÞ
n;fQ

ðaÞ
m;f0 ; ð6dÞ

HμB ¼ −
μB
6

X2L−1
n¼0

X1
f¼0

X2
c¼0

σz6nþ3fþc; ð6eÞ

HμI ¼ −
μI
4

X2L−1
n¼0

X1
f¼0

X2
c¼0

ð−1Þfσz6nþ3fþc; ð6fÞ

where now repeated adjoint color indices, (a), are summed over, the flavor indices, f ¼ 0, 1, correspond to u- and d-quark
flavors, and σ� ¼ ðσx � iσyÞ=2. Products of charges are given in terms of spin operators as

QðaÞ
n;fQ

ðaÞ
n;f ¼

1

3
ð3 − σz6nþ3fσ

z
6nþ3fþ1 − σz6nþ3fσ

z
6nþ3fþ2 − σz6nþ3fþ1σ

z
6nþ3fþ2Þ;

QðaÞ
n;fQ

ðaÞ
m;f0 ¼

1

4

�
2ðσþ6nþ3fσ

−
6nþ3fþ1σ

−
6mþ3f0σ

þ
6mþ3f0þ1

þ σþ6nþ3fσ
z
6nþ3fþ1σ

−
6nþ3fþ2σ

−
6mþ3f0σ

z
6mþ3f0þ1

σþ
6mþ3f0þ2

þ σþ6nþ3fþ1σ
−
6nþ3fþ2σ

−
6mþ3f0þ1

σþ
6mþ3f0þ2

þ H:c:Þ þ 1

6

X2
c¼0

X2
c0¼0

ð3δcc0 − 1Þσz6nþ3fþcσ
z
6mþ3f0þc0

�
: ð7Þ

A constant has been added to Hm to ensure that all basis
states contribute positive mass. The Hamiltonian for
SUðNcÞ gauge theory with Nf flavors in the fundamental
representation is presented in Sec. IV. Note that choosing

AðaÞ
x ¼ 0 gauge and enforcing Gauss’s law has resulted in

all-to-all interactions, the double lattice sum in Hel.
For any finite lattice system, there are color nonsinglet

states in the spectrum, which are unphysical and have
infinite energy in the continuum and infinite-volume limits.
For a large but finite system, OBCs can also support finite-
energy color nonsinglet states, which are localized to the
end of the lattice (color edge states).3 The existence of such
states in the spectrum is independent of the choice of gauge
or fermion mapping. The naive ways to systematically
examine basis states and preclude such configurations are
found to be impractical due to the non-Abelian nature of the
gauge charges and the resulting entanglement between
states required for color neutrality. A practical way to deal
with this problem is to add a term to the Hamiltonian that
raises the energy of color nonsinglet states. This can be
accomplished by including the energy density in the
chromo-electric field beyond the end of the lattice with a

large coefficient h. This effectively adds the energy density
in a finite chromo-electric field over a large spatial extent
beyond the end of the lattice. In the limit h → ∞, only
states with a vanishing chromo-electric field beyond the
end of the lattice remain at finite energy, rendering the
system within the lattice to be a color singlet. This new term
in the Hamiltonian is

H1 ¼
h2

2

X2L−1
n¼0

�X1
f¼0

QðaÞ
n;fQ

ðaÞ
n;f þ 2QðaÞ

n;0Q
ðaÞ
n;1

�

þ h2
X2L−2
n¼0

X2L−1
m¼nþ1

X1
f¼0

X1
f0¼0

QðaÞ
n;fQ

ðaÞ
m;f0 ; ð8Þ

which makes a vanishing contribution when the sum of
charges over the whole lattice is zero; otherwise, it makes a
contribution ∼h2.

B. Spectra for L= 1, 2 spatial sites

The spectra and wave functions of systems with a small
number of lattice sites can be determined by diagonaliza-
tion of the Hamiltonian. In terms of spin operators, the
Nf ¼ 2 Hamiltonian in Eq. (6) decomposes into sums of
tensor products of Pauli matrices. The tensor product
factorization can be exploited to perform an exact diago-
nalization relatively efficiently. This is accomplished by
first constructing a basis by projecting onto states with

3Low-energy edge states that have global charge in a confining
theory can also be found in the simpler setting of the Schwinger
model. Through exact and approximate tensor methods, we have
verified that these states exist on lattices up to length L ¼ 13, and
they are expected to persist for larger L.
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specific quantum numbers and then building the
Hamiltonian in that subspace. There are four mutually
commuting symmetry generators that allow states to be
labeled by ðr; g; b; I3Þ: redness, greenness, blueness, and
the third component of isospin. In the computational
(occupation) basis, states are represented by bit strings
of 0s and 1s. For example, the L ¼ 1 state with no
occupation is j000000111111i.4 Projecting onto eigen-
states of ðr; g; b; I3Þ amounts to fixing the total number
of 1s in a substring of a state. The Hamiltonian is formed by
evaluating matrix elements of Pauli strings between
states in the basis and only involves 2 × 2 matrix multi-
plication. The Hamiltonian matrix is found to be sparse, as
expected, and the low-energy eigenvalues and eigenstates
can be found straightforwardly. As the dimension of the
Hamiltonian grows exponentially with the spatial extent of
the lattice, this method becomes intractable for large system
sizes, as is well known.

1. Exact Diagonalizations, color edge states and mass
decompositions of the hadrons

For small enough systems, an exact diagonalization of
the Hamiltonian matrix in the previously described basis
can be performed. Without chiral symmetry and its sponta-
neous breaking, the energy spectrum in 1þ 1D does not
contain a massless isovector state (corresponding to the

QCD pion) in the limit of vanishing quark masses. In the
absence of chemical potentials for baryon number, μB ¼ 0,
or isospin, μI ¼ 0, the vacuum, jΩi, has B ¼ 0 (baryon
number zero) and I ¼ 0 (zero total isospin). The I ¼ 0
σ-meson is the lightest meson, while the I ¼ 1 π-meson is
the next lightest. The lowest-lying eigenstates in the B ¼ 0
spectra for L ¼ 1, 2 (obtained from exact diagonalization
of the Hamiltonian) are given in Table I. The masses are
defined by their energy gap to the vacuum, and all results in
this section are for mu ¼ md ¼ m ¼ 1. By examining the
vacuum energy density EΩ=L, it is clear that, as expected,
this number of lattice sites is insufficient to fully contain
hadronic correlation lengths. While Table I shows the
energies of color-singlet states, there are also nonsinglet
states in the spectra with similar masses, which become
increasingly localized near the end of the lattice, as
discussed in the previous section.
It is informative to examine the spectrum of the L ¼ 1

system as both g and h are slowly increased and, in
particular, take note of the relevant symmetries. For
g ¼ h ¼ 0, with contributions from only the hopping
and mass terms, the system exhibits a global SUð12Þ
symmetry where the spectrum is that of free quasiparticles;
see Appendix B. The enhanced global symmetry at this
special point restricts the structure of the spectrum to the 1
and 12 of SUð12Þ as well as the antisymmetric combina-
tions of fundamental irreps, 66; 220;…. For g > 0, these
SUð12Þ irreps split into irreps of color SUð3Þc and flavor
SUð2Þf. The 12 corresponds to single quark (q) or
antiquark (q̄) excitations (with fractional baryon number)
and splits into 3c ⊗ 2f for quarks and 3̄c ⊗ 2f for
antiquarks. In the absence of OBCs, these states would
remain degenerate, but the boundary condition of the
vanishing background chromo-electric field is not invariant
under q ↔ q̄, and the quarks get pushed to higher mass. As
there is no chromo-electric energy associated with exciting
an antiquark at the end of the lattice in this mapping, the
3̄c ⊗ 2f states remains low in the spectrum until h ≫ 0.
The 66 corresponds to two-particle excitations and contains
all combinations of qq, q̄q, and q̄ q̄ excitations. The mixed
color symmetry (i.e., neither symmetric or antisymmetric)
of q̄q excitations allows for states with 1c ⊗ 1f ⊕ 1c ⊗
3f ⊕ 8c ⊗ 1f ⊕ 8c ⊗ 3f, while the qq excitations with
definite color symmetry allow for 6c ⊗ 1f ⊕ 3̄c ⊗ 3f, and
q̄ q̄ excitations allow for 6̄c ⊗ 1f ⊕ 3c ⊗ 3f, saturating the
66 states in the multiplet. When g > 0, these different
configurations split in energy, and when h ≫ 0, only color-
singlet states are left in the low-lying spectrum. Figure 2
shows the evolution of the spectrum as g and h increase.
The increase in mass of nonsinglet color states with h is
proportional to the Casimir of the SUð3Þc representation,
which is evident in Fig. 2 where, for example, the increase
in the mass of the 3cs and 3̄cs between h2 ¼ 0 and
h2 ¼ 0.64 are the same.

TABLE I. The vacuum energy and the masses of the σ- and
π-mesons for 1þ 1D QCD with Nf ¼ 2 for systems with
L ¼ 1, 2 spatial sites. These results are insensitive to h as they
are color singlets.

L ¼ 1

g2 EΩ Mσ Mπ

8 −0.205 5.73 5.82
4 −0.321 4.37 4.47
2 −0.445 3.26 3.30
1 −0.549 2.73 2.74
1=2 −0.619 2.48 2.48
1=4 −0.661 2.35 2.36
1=8 −0.684 2.29 2.30

L ¼ 2

g2 EΩ Mσ Mπ

8 −0.611 5.82 5.92
4 −0.949 4.41 4.49
2 −1.30 3.27 3.31
1 −1.58 2.72 2.74
1=2 −1.77 2.45 2.46
1=4 −1.88 2.30 2.31
1=8 −1.94 2.22 2.22

4Qubits are read from right to left, e.g., jq11q10…q1q0i. Spin
up is j0i, and spin down is j1i.
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The antiquark states are particularly interesting as they
correspond to edge states that are not “penalized” in energy
by the chromo-electric field when h ¼ 0. These states have
an approximate SUð6Þ symmetry where the six antiquarks
transform in the fundamental. This is evident in the
spectrum shown in Fig. 3 by the presence of a 3̄c ⊗ 2f
and nearly degenerate 6̄c ⊗ 1f and 3c ⊗ 3f, which are
identified as states of a 15 [an antisymmetric irrep of
SUð6Þ] that do not increase in mass as g increases. This
edge-state SUð6Þ symmetry is not exact due to interactions
from the hopping term that couple the edge q̄s to the rest of
the lattice. These colored edge states are artifacts of OBCs
and will persist in the low-lying spectrum for larger lattices.
Figures 2 and 3 reveal the near-degeneracy of the σ- and

π-mesons throughout the range of couplings g and h,
suggesting another approximate symmetry, which can be
understood in the small and large g limits. For small g2, the

effect of Hel ¼ g2

2
ðQðaÞ

0;u þQðaÞ
0;dÞ2 on the SUð12Þ-symmetric

spectrum can be obtained through perturbation theory. To
first order in g2, the shift in the energy of any state is equal
to the expectation value of Hel. The σ- and π-meson states
are both quark-antiquark states in the 66 irrep of SUð12Þ,

and therefore, both have a 3c color charge on the quark site
and receive the same mass shift.5 For large g2, the only
finite-energy excitations of the trivial vacuum (all sites
unoccupied) are bare baryons and antibaryons, and the
spectrum is one of noninteracting color-singlet baryons.
Each quark (antiquark) site hosts four distinct baryons
(antibaryons) in correspondence with the multiplicity of the
I ¼ 3=2 irrep. As a result, the σ, π, I ¼ 2, 3 mesons,
deuteron, and antideuteron are all degenerate.
The σ- and π-meson mass splitting is shown in Fig. 4

and has a clear maxima for g ∼ 2.4. Intriguingly, this
corresponds to the maximum of the linear entropy between
quark and antiquarks (as discussed in Sec. II B 3) and
suggests a connection between symmetry, via degen-
eracies in the spectrum, and entanglement. This shares
similarities with the correspondence between Wigner’s
SUð4Þ spin-flavor symmetry [148–150], which becomes
manifest in low-energy nuclear forces in the large-Nc limit

FIG. 2. The spectrum of the Hamiltonian as the couplings g and h increase. For g ¼ h ¼ 0, there is an exact SUð12Þ symmetry and the
color-singlet σ- and π-mesons are a part of the antisymmetric 66 irrep. When g > 0 and h ¼ 0, the spectrum splits into irreps of global
SUð3Þc ⊗ SUð2Þf with color nonsinglet states among the low-lying states. Increasing h > 0 pushes nonsinglet color states out of the
low-lying spectrum. Notice that the σ- and π-masses are insensitive to h, as expected.

5This also explains why there are three other states nearly
degenerate with the mesons, as seen in Fig. 2. Each of these states
carry a 3c or 3̄c color charge on the quark site and consequently,
have the same energy at first order in perturbation theory.
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of QCD [151,152], and entanglement suppression in
nucleon-nucleon scattering found in Ref. [153] (see also
Refs. [154–156]).
Color singlet baryons are also present in this system,

formed by contracting the color indices of three quarks with
a Levi-Civita tensor (and antibaryons are formed from three

antiquarks). A baryon is composed of three I ¼ 1=2 quarks
in the (symmetric) I ¼ 3=2 configuration and in a (anti-
symmetric) color singlet. It will be referred to as the Δ,
highlighting its similarity to the Δ-resonance in 3þ 1D
QCD. Interestingly, there is an isoscalar ΔΔ bound state,
which will be referred to as the deuteron. The existence of a

FIG. 3. The spectrum of the Hamiltonian as g increases for h ¼ 0. When g ¼ h ¼ 0, there is an exact SUð12Þ symmetry and the σ- and
π-mesons are a part of the antisymmetric 66 irrep. When g > 0 but h ¼ 0, the spectrum splits into irreps of global SUð3Þc ⊗ SUð2Þf,
and nonsinglet color states remain in the low-lying spectrum. Increasing g shifts all but the antiquark jedgei (states) to higher mass.

FIG. 4. The mass splitting between the σ- and π-mesons for L ¼ 1 (left panel) and L ¼ 2 (right panel).
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deuteron makes this system valuable from the standpoint of
quantum simulations of the formation of nuclei in a model
of reduced complexity. The mass of the Δ, MΔ, and the
binding energy of the deuteron, BΔΔ ¼ 2MΔ −MΔΔ, are
shown in Table II for a range of strong couplings.
Understanding and quantifying the structure of the

lowest-lying hadrons is a priority for nuclear physics
research [157]. Great progress has been made, experi-
mentally, analytically, and computationally, in dissecting
the mass and angular momentum of the proton (see, for
example, Refs. [158–165]). This provides, in part, the
foundation for anticipated precision studies at the future
electron-ion collider (EIC) [166,167] at Brookhaven
National Laboratory. Decompositions of the vacuum energy
and the masses of the σ, π, and Δ are shown in Fig. 5
where, for example, the chromo-electric contribution to
the σ is hHeli ¼ hσjHeljσi − hΩjHeljΩi. These calculations

demonstrate the potential of future quantum simulations in
being able to quantify decompositions of properties of the
nucleon, including in densematter. For the baryon states, it is
Hel that is responsible for the system coalescing into
localized color singlets in order to minimize the energy in
the chromo-electric field (between spatial sites).
The deuteron binding energy is shown in the left panel of

Fig. 6 as a function of g. While the deuteron is unbound at
g ¼ 0 for obvious reasons, it is also unbound at large g
because the spectrum is that of noninteracting color-singlet
(anti)baryons. Therefore, the nontrivial aspects of deuteron
binding for these systems is for intermediate values of g.
The decomposition of BΔΔ is shown in the right panel of
Fig. 6, where, for example, the chromo-electric contribu-
tion is

hHeli ¼ 2ðhΔjHeljΔi − hΩjHeljΩiÞ
− ðhΔΔjHeljΔΔi − hΩjHeljΩiÞ: ð9Þ

The largest contribution to the binding energy is hHkini,
which is the term responsible for creating qq̄ pairs. This
suggests that meson exchange may play a significant role
in the attraction between baryons, as is the case in 3þ 1D
QCD, but larger systems will need to be studied before
definitive conclusions can be drawn. One consequence of
the lightest baryon being I ¼ 3=2 is that, for L ¼ 1, the
I3 ¼ þ3=2 state completely occupies the up-quark sites.
Thus, the system factorizes into an inert up-quark sector
and a dynamic down-quark sector, and the absolute
energy of the lowest-lying baryon state can be written
as EΔ ¼ MΔ þ E2f

Ω ¼ 3mþ E1f
Ω , where E1;2f

Ω is the vac-
uum energy of the Nf ¼ 1, 2 flavor systems. Analogously,
the deuteron absolute energy is EΔΔ ¼ 6m, and therefore,
the deuteron binding energy can be written as BΔΔ ¼
2ð3mþ E1f

Ω − E2f
Ω Þ − ð6m − E2f

Ω Þ ¼ 2E1f
Ω − E2f

Ω . This is
quite a remarkable result because, in this system, the
deuteron binding energy depends only on the difference
between the Nf ¼ 1 and Nf ¼ 2 vacuum energies, being

bound when 2E1f
Ω − E2f

Ω > 0. As has been discussed
previously, it is the qq̄ contribution from this difference
that dominates the binding.

TABLE II. The mass of the Δ and the binding energy of the
deuteron in 1þ 1D QCD with Nf ¼ 2 for systems with L ¼ 1, 2
spatial sites.

L ¼ 1

g2 MΔ BΔΔ

8 3.10 2.61 × 10−4

4 3.16 5.48 × 10−4

2 3.22 6.12 × 10−4

1 3.27 3.84 × 10−4

1=2 3.31 1.61 × 10−4

1=4 3.33 5.27 × 10−5

1=8 3.34 1.52 × 10−5

L ¼ 2

g2 MΔ BΔΔ

8 3.10 2.50 × 10−4

4 3.16 4.95 × 10−4

2 3.21 5.07 × 10−4

1 3.24 4.60 × 10−4

1=2 3.25 1.53 × 10−3

1=4 3.23 3.91 × 10−3

1=8 3.20 3.35 × 10−3

FIG. 5. The decomposition of vacuum energy (EΩ) and the masses of the lightest hadrons (Mσ , Mπ , and MΔ) into contributions from
the mass, the kinetic, and the chromo-electric field terms in the Hamiltonian, defined in axial gauge, for 1þ 1D QCD with Nf ¼ L ¼ 2

and m ¼ g ¼ 1.
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2. The low-lying spectrum using D-wave’s
quantum annealers

The low-lying spectrum of this system can also be
determined through annealing by using D-wave’s quantum
annealer (QA) Advantage [168], a device with 5627 super-
conducting flux qubits, with a 15-way qubit connectivity
via Josephson junctions rf-SQUID couplers [169]. Not
only did this enable the determination of the energies of
low-lying states, but it also assessed the ability of this
quantum device to isolate nearly degenerate states. The
time-dependent Hamiltonian of the device, which our
systems are to be mapped, are of the form of an Ising
model, with the freedom to specify the single- and two-
qubit coefficients. Alternatively, the Ising model can be
rewritten in a quadratic unconstrained binary optimization
(QUBO) form, fQðxÞ ¼

P
ij Qijxixj, where xi are binary

variables, and Qij is a QUBO matrix, which contains the
coefficients of single-qubit (i ¼ j) and two-qubit (i ≠ j)
terms. The QUBO matrix is the input that is submitted to
Advantage, with the output being a bit string that minimizes
fQ. Due to the qubit connectivity of Advantage, multiple
physical qubits are chained together to recover the required
connectivity, limiting the system size that can be annealed.

The QA Advantage was used to determine the lowest
three states in the B ¼ 0 sector of the L ¼ 1 system, with
m ¼ g ¼ 1 and h ¼ 2, following techniques presented in
Ref. [74]. In that work, the objective function to be
minimized is defined as F ¼ hΨjH̃jΨi − ηhΨjΨi [170],
where η is a parameter that is included to avoid the null
solution, and its optimal value can be iteratively tuned to
be as close to the ground-state energy as possible. The
wave function is expanded in a finite dimensional ortho-
normal basis ψα, jΨi ¼

Pns
α aαjψαi, which, in this case,

reduces the dimensionality of H to 88, defining H̃, thus
making it feasible to study with Advantage. The procedure
to write the objective function in a QUBO form can be
found in Ref. [74] (and briefly described in Appendix C),
where the coefficients aα are digitized using K binary
variables [170], and the adaptive QA eigenvalue solver is
implemented by using the zooming method [57,171]. To
reduce the uncertainty in the resulting energy and wave
function, due to the noisy nature of this QA, the iterative
procedure described in Ref. [74] was used, where the
(low-precision) solution obtained from the machine after
several zooming steps constituted the starting point of a
new anneal. This led to a reduction of the uncertainty by

FIG. 6. The left panel shows the deuteron binding energy, BΔΔ, form ¼ 1 and L ¼ 2. The right panel shows the decomposition of BΔΔ
into contributions from the Hamiltonian for g ¼ 1.

FIG. 7. Iterative convergence of the energy, masses and wave functions for the three lowest-lying states in the B ¼ 0 sector of 1þ 1D
QCD with Nf ¼ 2 and m ¼ g ¼ L ¼ 1: vacuum (left), σ-meson (center), and π-meson (right). The different colors correspond to
different steps of the iterative procedure that is described in the main text. The oscillatory behavior seen in the right panel around the 15th
zoom step is discussed in Appendix C. The blue icons in the upper right indicate that this calculation was done on a quantum device [38].
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an order of magnitude (while effectively only doubling the
resources used).
Results obtained using Advantage are shown in Fig. 7,

where the three panels show the convergence of the
energy of the vacuum state (left), the mass of the σ-meson
(center), and the mass of the π-meson (right) as a function
of zoom steps, as well as comparisons to the exact wave
functions. The bands in the plot correspond to 68% con-
fidence intervals determined from 20 independent runs of
the annealing workflow, where each corresponds to 103

anneals with an annealing time of tA ¼ 20 μs, and the
points correspond to the lowest energy found by the QA.
The parameter K in the digitization of aα is set to K ¼ 2.
The parameter η is first set close enough to the correspond-
ing energy (e.g., η ¼ 0 for the ground-state), and for the
subsequent iterative steps, it is set to the lowest energy

found in the previous step. The first two excited states are
nearly degenerate, and after projecting out the ground state,
Advantage finds both states in the first step of the iterative
procedure (as shown by the yellow lines in the π wave
function of Fig. 7). However, after one iterative step, the
QA converges to one of the two excited states. It first finds
the second excited state (the π-meson), and once this state is
known with sufficient precision, it can be projected out to
study the other excited state. The converged values for the
energies and masses of these states are shown in Table III,
along with the exact results. The uncertainties in these
values should be understood as uncertainties on an upper
bound of the energy (as they result from a variational
calculation). For more details, see Appendix C.

3. Quark-antiquark entanglement in the spectra
via exact diagonalization

With h ≫ g, the eigenstates of the Hamiltonian are color
singlets and irreps of isospin. As these are global quantum
numbers (summed over the lattice), the eigenstates are
generically entangled among the color and isospin com-
ponents at each lattice site. With the hope of gaining insight
into 3þ 1D QCD, aspects of the entanglement structure of
the L ¼ 1 wave functions are explored via exact methods.
An interesting measure of entanglement for these systems
is the linear entropy between quarks and antiquarks,
defined as

SL ¼ 1 − Tr½ρ2q�; ð10Þ

TABLE III. Energies and masses of the three lowest-lying states
in the B ¼ 0 sector of 1þ 1D QCD with Nf ¼ 2 and
m ¼ g ¼ L ¼ 1. Shown are the exact results from diagonaliza-
tion of the Hamiltonian matrix and those obtained fromD-wave’s
Advantage.

L ¼ 1

jΩi jσi jπi
Exact Energy −0.5491067 2.177749 2.1926786

Mass � � � 2.726855 2.7417853
Advantage Energy −0.5491051ð6Þ 2.177760(4) 2.1926809(7)

Mass � � � 2.726865(4) 2.7417860(9)

FIG. 8. The linear entropy between quarks and antiquarks in jΩi, jΔI3¼3=2i, jσi, and jπI3¼1i for m ¼ L ¼ 1.
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where ρq ¼ Trq̄½ρ�, and ρ is a density matrix of the system.
Shown in Fig. 8 is the linear entropy between quarks and
antiquarks in jΩi, jσi, jπI3¼1i and jΔI3¼3=2i as a function of
g. The deuteron is not shown as there is only one basis state
contributing for L ¼ 1.
The scaling of the linear entropy in the vacuum and

baryon with g can be understood as follows. As g
increases, color singlets on each site have the least
energy density. The vacuum becomes dominated by
the unoccupied state, and the Δ becomes dominated
by the “bare” Δ with all three quarks located on one site
in a color singlet. As the entropy generically scales with
the number of available states, the vacuum and baryon
have decreasing entropy for increasing g. The situation
for the π and σ is somewhat more interesting. For small
g, their wave functions are dominated by qq̄ excitations
on top of the trivial vacuum, which minimizes the
contributions from the mass term. However, color singlets
are preferred as g increases, and the mesons become

primarily composed of baryon-antibaryon (BB̄) excita-
tions. There are more qq̄ states than BB̄ states with a
given I3, and therefore, there is more entropy at small g
than large g. The peak at intermediate g occurs at the
crossover between these two regimes where the meson
has a sizable contribution from both qq̄ and BB̄ exci-
tations. To illustrate this, the expectation value of total
quark occupation (number of quarks plus the number of
antiquarks) is shown in Fig. 9. For small g, the
occupation is near 2 since the state is mostly composed
of qq̄, while for large g, it approaches 6 as the state
mostly consists of BB̄. This is a transition from the
excitations being “color-flux tubes” between quark and
antiquark of the same color to bound states of color-
singlet baryons and antibaryons.

C. Digital quantum circuits

The Hamiltonian for 1þ 1D QCD with arbitrary Nc and
Nf, when written in terms of spin operators, can be
naturally mapped onto a quantum device with qubit
registers. In this section, the time evolution for systems
with Nc ¼ 3 and Nf ¼ 2 are developed.

1. Time evolution

To perform time evolution on a quantum computer,
the operator UðtÞ ¼ expð−iHtÞ is reproduced by a
sequence of gates applied to the qubit register.
Generally, a Hamiltonian cannot be directly mapped to
such a sequence efficiently, but each of the elements in a
Trotter decomposition can, with systematically reducible
errors. Typically, the Hamiltonian is divided into Pauli
strings whose unitary evolution can be implemented
with quantum circuits that are readily constructed. For a
Trotter step of size t, the circuit that implements the time
evolution from the mass term, UmðtÞ ¼ expð−iHmtÞ, is
shown in Fig. 10. The staggered mass leads to quarks
being rotated by a positive angle and antiquarks being
rotated by a negative angle. Only single qubit rotations
about the z axis are required for its implementation, with

FIG. 9. The expectation value of quark occupation in the jσi and jπI3¼1i for m ¼ L ¼ 1.

FIG. 10. The quantum circuit that implements time evolution
by the mass term, UmðtÞ ¼ expð−iHmtÞ.
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RZðθÞ ¼ expð−iθZ=2Þ. The circuit that implements the
evolution from the baryon chemical potential, μB, UμBðtÞ ¼
expð−iHμBtÞ, is similar to UmðtÞ with m → μB=3 and with
both quarks and antiquarks rotated by the same angle.
Similarly, the circuit that implements the evolution from
the isospin chemical potential, μI ,UμIðtÞ ¼ expð−iHμI tÞ, is
similar to UmðtÞ with m → μI=2 and up (down) quarks
rotated by a negative (positive) angle.
The kinetic piece of the Hamiltonian, Eq. (6b), is

composed of hopping terms of the form

Hkin ∼ σþZZZZZσ− þ H:c: ð11Þ

The σþ and σ− operators enable quarks and antiquarks to
move between sites with the same color and flavor (create
q̄αi q

i
α pairs), and the string of Z operators incorporates the

signs from Pauli statistics. The circuits for Trotterizing
these terms are based on circuits in Ref. [172]. We
introduce an ancilla to accumulate the parity of the JW
string of Zs. This provides a mechanism for the different
hopping terms to reuse previously computed (partial)
parity.6 The circuit for the first two hopping terms is shown
in Fig. 11. The first circuit operations initialize the ancilla to
store the parity of the string of Zs between the first and last
qubit of the string. Next, the system is evolved by the
exponential of the hopping term. After the exponential of
each hopping term, the ancilla is modified for the parity of
the subsequent hopping term (the CNOTs highlighted in
blue). Note that the hopping of quarks, or antiquarks, of
different flavors and colors commute, and the Trotter
decomposition is exact (without Trotterization errors) over
a single spatial site.
Implementation of the time evolution induced by the

energy density in the chromo-electric field, Hel, given in
Eq. (7), is the most challenging due to its inherent non-
locality in axial gauge. There are two distinct types of

contributions: One is from same-site interactions, and the
other from interactions between different sites. For the
same-site interactions, the operator is the product of

charges QðaÞ
n;fQ

ðaÞ
n;f, which contains only ZZ operators,

and is digitized with the standard two CNOT circuit.7

The QðaÞ
n;fQ

ðaÞ
m;f0 operators contain four-qubit interactions

of the form ðσþσ−σ−σþ þ H:c:Þ and six-qubit interactions
of the form ðσþZσ−σ−Zσþ þ H:c:Þ, in addition to ZZ
contributions. The manipulations required to implement the
six-qubit operators parallel those required for the four-qubit
operators, and here, only the latter is discussed in detail.
These operators can be decomposed into eight mutually
commuting terms,

σþσ−σ−σþ þ H:c: ¼ 1

8
ðXXXX þ YYXX þ YXYX

− YXXY − XYYX þ XYXY

þ XXYY þ YYYYÞ: ð12Þ

The strategy for identifying the corresponding time evo-
lution circuit is to first apply a unitary that diagonalizes
every term, apply the diagonal rotations, and finally, act
with the inverse unitary to return to the computational
basis. By only applying diagonal rotations, many of the
CNOTs can be arranged to cancel. Each of the eight Pauli
strings in Eq. (12) takes a state in the computational basis to
the corresponding bit-flipped state (up to a phase). This
suggests that the desired eigenbasis pairs together states
with their bit-flipped counterpart, which is an inherent
property of the GHZ basis [172]. In fact, any permutation of
the GHZ state-preparation circuit diagonalizes the inter-
action. The two that will be used, denoted by G and G̃, are
shown in Fig. 12. In the diagonal bases, the Pauli strings in
Eq. (12) become

FIG. 11. A circuit that implements the time evolution from two sequential hopping terms. Implementing expð−iHkintÞ in Eq. (6b) is a
straightforward extension of this circuit.

6An ancilla was used similarly in Ref. [173].

7Using the native ZX gate on IBM’s devices allows this to be
done with a single two-qubit entangling gate [174].
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G†ðσþσ−σ−σþ þ H:c:ÞG ¼ 1

8
ðIIZI − ZIZZ − ZZZZ þ ZIZI þ IZZI − IIZZ − IZZZ þ ZZZIÞ;

G̃†ðσþσ−σ−σþ þ H:c:ÞG̃ ¼ 1

8
ðIIIZ − IZZZ − IIZZ þ ZIIZ þ IZIZ − ZZZZ − ZIZZ þ ZZIZÞ: ð13Þ

Another simplification comes from the fact that ZZ in the
computational basis becomes a single Z in a GHZ basis if
the GHZ state-preparation circuit has a CNOT connecting
the two Zs. For the case at hand, this implies

G†ðIZZI þ IZIZ þ ZIIZÞG ¼ IZII þ IIIZ þ ZIII;

G̃†ðZIZI þ IZZI þ ZIIZÞG̃ ¼ IIZI þ IZII þ ZIII: ð14Þ

As a consequence, all nine ZZ terms in QðaÞ
n;fQ

ðaÞ
m;f0 become

single Zs in a GHZ basis, thus requiring no additional
CNOT gates to implement. Central elements of the circuits

required to implement time evolution of the chromo-
electric energy density are shown in Fig. 13, which extends
the circuit presented in Fig. 4 of Ref. [172] to non-Abelian
gauge theories. More details on these circuits can be found
in Appendix D.

2. Trotterization, color symmetry, and color twirling

After fixing the gauge, the Hamiltonian is no longer
manifestly invariant under local SUð3Þ gauge trans-
formations. However, as is well known, observables of
the theory are correctly computed from such a gauge-fixed
Hamiltonian, which possesses a remnant global SUð3Þ
symmetry. This section addresses the extent to which this
symmetry is preserved by Trotterization of the time-
evolution operator. The focus will be on the Nf ¼ 1 theory
as including additional flavors does not introduce new
complications.
Trotterization of the mass and kinetic parts of the

Hamiltonian, while having nonzero commutators between
some terms, preserves the global SUð3Þ symmetry.FIG. 12. Two GHZ state-preparation circuits.

FIG. 13. The circuits that implement the time evolution of expð−8iαQðaÞ
n;fQ

ðaÞ
m;f0 Þ. Specifically, the upper circuit implements

expf−i4α½ðσþσ−σ−σþ þH:c:Þ þ 1
12
ð2IZIZ − IZZI −ZIIZÞ�g, while the lower circuit implements expf−i4α½ðσþZσ−σ−Zσ−þH:c:Þ þ

1
12
ð2ZIIZII−IIZZII−ZIIIIZÞ�g. The CNOTs highlighted in red account for the Zs in σþZσ−σ−Zσþ. For SUð3Þ with Nf ¼ 2 and

L ¼ 1, the required evolution operators have α ¼ tg2=8.
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The time evolution of QðaÞ
n QðaÞ

n can be implemented in a
unitary operator without Trotter errors and, therefore,
does not break SUð3Þ. On the other hand, the time

evolution induced by QðaÞ
n QðaÞ

m is implemented by the

operator being divided into four terms: ðQð1Þ
n Qð1Þ

m þ
Qð2Þ

n Qð2Þ
m Þ, ðQð4Þ

n Qð4Þ
m þQð5Þ

n Qð5Þ
m Þ, ðQð6Þ

n Qð6Þ
m þQð7Þ

n Qð7Þ
m Þ,

and ðQð3Þ
n Qð3Þ

m þQð8Þ
n Qð8Þ

m Þ. In order for global SUð3Þ to
be unbroken, the sum over the entire lattice of each of the
eight gauge charges must be unchanged under time evolu-
tion. Therefore, the object of interest is the commutator

C ¼
�X2L−1
n¼0

QðaÞ
n ; Qðb̃Þ

m ·Qðb̃Þ
l

�
; ð15Þ

where b̃ is summed over the elements of one of the pairs in
fð1; 2Þ; ð4; 5Þ; ð6; 7Þ; ð3; 8Þg. It is found that this commuta-
tor only vanishes if a ¼ 3 ora ¼ 8, or if b̃ is summed over all
eight values (as is the case for the exact time evolution
operator). Therefore, Trotter time evolutiondoes not preserve
the global off-diagonal SUð3Þ charges, and, for example,
color singlets can evolve into noncolor singlets. Equivalently,
the Trotterized time evolution operator is not in the trivial
representation of SUð3Þ. To understand this point in more
detail, consider the transformation of ðTaÞijðTaÞkl for any
given a. Because of the symmetry of this product of
operators, each transforming as an 8, the product must
decompose into 1 ⊕ 8 ⊕ 27, where the elements of each
of the irreps can be found from

ðTaÞijðTaÞkl ¼ ðÔa
27Þikjl −

2

5
½δijðÔa

8Þkl þ δkl ðÔa
8Þij� þ

3

5
½δilðÔa

8Þkj þ δkjðÔa
8Þil� þ

1

8

�
δilδ

k
j −

1

3
δijδ

k
l

�
Ôa

1; ð16Þ

where

ðÔa
27Þikjl ¼

1

2
½ðTaÞijðTaÞkl þ ðTaÞilðTaÞkj � −

1

10
½δijðÔa

8Þkl þ δilðÔa
8Þkj þ δkjðÔa

8Þil þ δkl ðÔa
8Þij� −

1

24
ðδijδkl þ δilδ

k
jÞÔa

1;

ðÔa
8Þij ¼ ðTaÞiβðTaÞβj −

1

3
δijÔ

a
1; Ôa

1 ¼ ðTaÞαβðTaÞβα ¼ 1

2
: ð17Þ

When summed over a ¼ 1;…; 8, the contributions from
the 8 and 27 vanish, leaving the familiar contribution
from the 1. When only partials sums are available,
as is the situation with individual contributions to the
Trotterized evolution, each of the contributions is the
exponential of 1 ⊕ 8 ⊕ 27, with only the singlet contri-
butions leaving the lattice a color singlet. The leading term
in the expansion of the product of the four pairs of
Trotterized evolution operators sum to leave only the
singlet contribution. In contrast, higher-order terms do
not cancel and nonsinglet contributions are present.
This is a generic problem that will be encountered

when satisfying Gauss’s law leads to nonlocal charge-
charge interactions. This is not a problem for Uð1Þ,
and surprisingly, is not a problem for SUð2Þ because

ðQð1Þ
n Qð1Þ

m ;Qð2Þ
n Qð2Þ

m ;Qð3Þ
n Qð3Þ

m Þ are in the Cartan sub-algebra
of SUð4Þ and therefore, mutually commuting. However, it
is a problem for Nc > 2. One way around the breaking
of global SUðNcÞ is through the co-design of unitaries

that directly (natively) implement expðiαQðaÞ
n QðaÞ

m Þ; see
Sec. II C 4. Without such a native unitary, the breaking
of SUðNcÞ appears as any other Trotter error and can be
systematically reduced in the same way. A potential caveat
to this is if the time evolution operator took the system into
a different phase, but our studies of L ¼ 1 show no
evidence of this.
It is interesting to note that the terms generated by the

Trotter commutators form a closed algebra. In principle, a

finite number of terms could be included to define an
effective Hamiltonian whose Trotterization exactly maps
onto the desired evolution operator (without the extra terms).
It is straightforward towork out the terms generated order by
order in the Baker-Campbell-Hausdorff formula. Aside from
renormalizing the existing charges, there are nine new
operator structures produced. For example, the leading-order
commutators generate the three operators, Oi, in Eq. (18),

Oi ¼

8>><
>>:

ðσþIσ−σ−Zσþ − σþZσ−σ−IσþÞ − H:c:;

ðIσ−σþZσþσ− − Zσ−σþIσþσ−Þ − H:c:;

ðσþσ−Zσ−σþI − σþσ−Iσ−σþZÞ − H:c:

ð18Þ

In general, additional operators are constrained only by (anti)
hermiticity, symmetry with respect to n ↔ m and preserva-
tion of ðr; g; bÞ, and should generically be included in the
same spirit as terms in the Symanzik-action [175,176] for
lattice QCD.
With Trotterization of the gauge field introducing vio-

lations of gauge symmetry and the presence of bit- and
phase-flip errors within the device register, it is worth
briefly considering a potential mitigation strategy. A single
bit-flip error will change isospin by jΔI3j ¼ 1=2 and color
charge by one unit of red or green or blue. After each Trotter
step on a real quantum device, such errors will be encoun-
tered, and a mitigation or correction scheme is required.
Without the explicit gauge-field degrees of freedom and
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local charge conservation checks enabled by Gauss’s law,
such errors can only be detected globally and hence,
cannot be actively corrected during the evolution.8

Motivated by this, consider introducing a twirling phase
factor into the evolution, expð−iθaQðaÞÞ, where QðaÞ is
the total charge on the lattice. If applied after each Trotter
step, with a randomly selected set of eight angles, θa, the
phases of color-nonsinglet states become random for each
member of an ensemble, mitigating errors in some
observables. Similar twirling phase factors could be
included for the other charges that are conserved or
approximately conserved.

3. Quantum resource requirements
for time evolution

It is straightforward to extend the circuits presented in
the previous section to arbitrary Nc and Nf. The quantum
resources required for time evolution can be quantified
for small, modest, and asymptotically large systems. As
discussed previously, a quantum register with Nq ¼
2LNcNf qubits9 is required to encode one-dimensional
SUðNcÞ gauge theory with Nf flavors on L spatial lattice
sites using the JW transformation. For SUð3Þ gauge
theory, this leads to, for example, Nq ¼ 6L with only
u quarks and Nq ¼ 18L with u, d, s quarks. The five
distinct contributions to the resource requirements, cor-
responding to application of the unitary operators pro-
viding a single Trotter step associated with the quark
mass, Um, the baryon chemical potential, UμB , the
isospin chemical potential, UμI , the kinetic term, Ukin,
and the chromo-electric field, Uel, are given in terms of
the number of single-qubit rotations, denoted by “RZ”,
the number of Hadamard gates, denoted by “Hadamard”,
and the number of CNOT gates, denoted by “CNOT”. It
is found that10

Um∶ 2NcNfL jRZ;

UμB∶ 2NcNfL jRZ;

UμI∶ 2NcNfL jRZ;

Ukin∶ 2NcNfð2L−1ÞjRZ;

2NcNfð2L−1ÞjHadamard;

2NcNfð8L−3Þ−4 jCNOT;

Uel∶
1

2
ð2L−1ÞNcNf½3−4NcþNfð2L−1Þð5Nc−4Þ�jRZ;

1

2
ð2L−1ÞðNc−1ÞNcNf½Nfð2L−1Þ−1� jHadamard;

1

6
ð2L−1ÞðNc−1ÞNcNf½ð2L−1Þð2Ncþ17Þ
×Nf−2Nc−11� jCNOT: ð21Þ

It is interesting to note the scaling of each of the
contributions. The mass, chemical potential, and kinetic
terms scale as OðL1Þ, while the nonlocal gauge-field
contribution is OðL2Þ. As anticipated from the outset,
using Gauss’s law to constrain the energy in the gauge
field via the quark occupation has given rise to circuit
depths that scale quadratically with the lattice extent,
naively violating one of the criteria for quantum simula-
tions at scale [182,183]. This volume scaling is absent
for formulations that explicitly include the gauge field
locally, but with the trade-off of requiring a volume-
scaling increase in the number of qubits or qudits or
bosonic modes.11 We expect that the architecture of
quantum devices used for simulation and the resource
requirements for the local construction will determine the
selection of local versus nonlocal implementations.
For QCD with Nf ¼ 2, the total requirements are

RZ∶ ð2L − 1Þð132L − 63Þ þ 18;

Hadamard∶ ð2L − 1Þð24L − 6Þ;
CNOT∶ ð2L − 1Þð184L − 78Þ þ 8; ð22Þ

and further, the CNOT requirements for a single Trotter
step of SUð2Þ and SUð3Þ for Nf ¼ 1, 2, 3 are shown in
Table IV. These resource requirements suggest that systems
with up to L ¼ 5 could be simulated, with appropriate error
mitigation protocols, using this nonlocal framework in the

8When local gauge fields are present, previousworks have found
that including a quadratic “penalty term” in the Hamiltonian is
effective in mitigating violation of Gauss’s law [21,177–179]. See
also Refs. [180,181].

9The inclusion of an ancilla for the kinetic term increases the
qubit requirement to Nq ¼ 2LNcNf þ 1.

10For Nc ¼ 2, only three of the ZZ terms can be combined into
QðaÞ

n;fQ
ðaÞ
m;f0 and the number of CNOTs for one Trotter step ofUel is

Uel∶ ð2L − 1ÞNf½9ð2L − 1ÞNf − 7� jCNOT: ð19Þ

Additionally, for NcNf < 4, the Trotterization of Ukin is more
efficient without an ancilla, and the number of CNOTs required is

Ukin∶ 2ð2L − 1ÞNcðNc þ 1Þ jCNOT: ð20Þ

The construction of the circuit that implements the time evolution
of the hopping term for Nc ¼ 3 and Nf ¼ 1 is shown in Fig. 19.

11The local basis on each link is spanned by the possible color
irreps and the states of the left and right Hilbert spaces (see
footnote 2). The possible irreps are built from the charges of the
preceding fermion sites, and therefore, the dimension of the link
basis grows polynomially in L. This can be encoded in OðlogLÞ
qubits per link and OðL logLÞ qubits in total. The hopping
and chromo-electric terms in the Hamiltonian are local, and
therefore, one Trotter step will requireOðLÞ gate operations up to
logarithmic corrections.
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near future. Simulations beyond L ¼ 5 appear to present a
challenge in the near term.
The resource requirements in Table IV do not include

those for a gauge link beyond the end of the lattice.
As discussed previously, such additions to the time
evolution could be used to move color-nonsinglet
contributions to high frequency, allowing the possibility
that they are filtered from observables. Such terms
contribute further to the quadratic volume scaling of
resources. Including chemical potentials in the time
evolution does not increase the number of required
entangling gates per Trotter step. Their impact upon
resource requirements may arise in preparing the initial
state of the system.

4. Elements for future co-design efforts

Recent work has shown the capability of creating many-
body entangling gates natively [132,133], which have
similar fidelity to two qubit gates. This has multiple
benefits. First, it allows for (effectively) deeper circuits
to be run within coherence times. Second, it can eliminate
some of the Trotter errors due to noncommuting terms. The
possibility of using native gates for these calculations is
particularly interesting from the standpoint of eliminating

or mitigating the Trotter errors that violate the global SUð3Þ
symmetry, as discussed in Sec. II C 2. Specifically, it would
be advantageous to have a “black box” unitary operation of
the form,

e−iαQ
ðaÞ
n QðaÞ

m ¼ exp

�
−i

α

2

�
σþn σ−nþ1σ

−
mσ

þ
mþ1 þ σ−nσ

þ
nþ1σ

þ
mσ

−
mþ1 þ σþnþ1σ

−
nþ2σ

−
mþ1σ

þ
mþ2 þ σ−nþ1σ

þ
nþ2σ

þ
mþ1σ

−
mþ2

þ σþn σznþ1σ
−
nþ2σ

−
mσ

z
mþ1σ

þ
mþ2 þ σ−nσ

z
nþ1σ

þ
nþ2σ

þ
mσ

z
mþ1σ

−
mþ2 þ

1

6
ðσznσzm þ σznþ1σ

z
mþ1 þ σznþ2σ

z
mþ2Þ

−
1

12
ðσznσzmþ1 þ σznσ

z
mþ2 þ σznþ1σ

z
m þ σznþ1σ

z
mþ2 þ σznþ2σ

z
m þ σznþ2σ

z
mþ1Þ

��
; ð23Þ

for arbitrary α and pairs of sites, n and m (sum on a is
implied). A more detailed discussion of co-designing
interactions for quantum simulations of these theories is
clearly warranted.

D. Results from quantum simulators

The circuits laid out in Sec. II C are too deep to be
executed on currently available quantum devices but can
be readily implemented with quantum simulators such as
Cirq and Qiskit. This allows for an estimate of the number
of Trotter steps required to achieve a desired precision in
the determination of any given observable as a function of
time. Figure 14 shows results for the trivial vacuum-to-
vacuum and trivial vacuum-to-drd̄r probabilities as a
function of time for L ¼ 1. See Appendix E for the full
circuit, which implements a single Trotter step, and
Appendix F for the decomposition of the energy starting
in the trivial vacuum.
The number of Trotter steps, NTrott, required to evolve

out to a given t within a specified (systematic) error, ϵTrott,

was also investigated. ϵTrott is defined as the maximum
fractional error between the Trotterized and exact time
evolution in two quantities, the vacuum-to-vacuum per-
sistence probability, and the vacuum-to-drd̄r transition
probability. For demonstrative purposes, an analysis at
leading order in the Trotter expansion is sufficient. Naive
expectations based upon global properties of the
Hamiltonian defining the evolution operators indicate that
an upper bound for ϵTrott scales as����e−iHt−

�
U1

�
t

NTrott

��
NTrott

����≤1

2

X
i

X
j>i

k½Hi;Hj�k
t2

NTrott
;

ð24Þ
where the Hamiltonian has been divided into sets of
mutually commuting terms, H ¼ P

i Hi. This upper bound
indicates that the required number of Trotter steps to
maintain a fixed error scales as NTrott ∼ t2 [184].
To explore the resource requirements for simulation

based upon explicit calculations between exclusive

TABLE IV. The CNOT requirements to perform one Trotter
step of time evolution for a selection of simulation parameters.

Number of CNOT gates for one Trotter step of SUð2Þ
L Nf ¼ 1 Nf ¼ 2 Nf ¼ 3

1 14 58 116
2 96 382 818
5 774 3,082 6,812
10 3,344 13,342 29,762
100 357,404 1,429,222 3,213,062

Number of CNOT gates for one Trotter step of SUð3Þ
L Nf ¼ 1 Nf ¼ 2 Nf ¼ 3

1 30 114 242
2 228 878 1,940
5 1,926 7,586 16,970
10 8,436 33,486 75,140
100 912,216 3,646,086 8,201,600
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states, as opposed to upper bounds for inclusive pro-
cesses, given in Eq. (24), a series of calculations was
performed requiring ϵTrott ≤ 0.1 for a range of times, t.
Figure 15 shows the required NTrott as a function of t for
m ¼ g ¼ L ¼ 1. The plateaus observed in Fig. 15 arise
from resolving upper bounds from oscillating functions
and introduce a limitation in fitting to extract scaling
behavior. This is less of a limitation for the larger vacuum-
to-vacuum probabilities, which are fit well by a quadratic
polynomial, starting from t ¼ 1, with coefficients,

NTrott ¼ 0.0393ð5Þt2 þ 4.13ð10Þt − 22ð5Þ: ð25Þ

The uncertainty represents a 95% confidence interval in
the fit parameters and corresponds to the shaded orange
region in Fig. 15. The weak quadratic scaling with t
implies that, even out to t ∼ 100, the number of Trotter
steps scales approximately linearly, and a constant error in
the observables can be achieved with a fixed Trotter step

size. We have been unable to distinguish between fits with
and without logarithmic terms.
These results can be contrasted with those obtained for

the Schwinger model in Weyl gauge. The authors of
Ref. [129] estimate a resource requirement, as quantified
by the number of T gates, that scales as ∼ðLtÞ3=2 logLt,
increasing to ∼L5=2t3=2 logLt logL if the maximal value
of the gauge fields is accommodated within the Hilbert
space. The results obtained in this section suggest that
resource requirements in axial gauge, as quantified by the
number of CNOTs, effectively scale as ∼L2t up to
intermediate times and as ∼L2t2 asymptotically. In a
scattering process with localized wave packets, it is
appropriate to take L ∼ t (for the speed of light taken
to be c ¼ 1), as the relevant nontrivial time evolution is
bounded by the light cone. This suggests that the required
resources scale asymptotically as ∼t4, independent of the
chosen gauge to define the simulation. This could have
been anticipated at the outset by assuming that the

FIG. 14. The trivial vacuum-to-vacuum and trivial vacuum-to-drd̄r probabilities in QCD with Nf ¼ 2 for m ¼ g ¼ L ¼ 1. Shown are
the results obtained from exact exponentiation of the Hamiltonian (dashed black curve) and from the Trotterized implementation with 1,
2, 3, 5, and 10 Trotter steps using the (classical) quantum simulators in Cirq and Qiskit (denoted by the purple icons [38]).

FIG. 15. The number of Trotter steps, NTrott, required to achieve a systematic fractional error of ϵTrott ≤ 0.1 at time t in the trivial
vacuum-to-vacuum probability (left panel) and the trivial vacuum-to-drd̄r probability (right panel) for QCD with Nf ¼ 2 and
m ¼ g ¼ L ¼ 1. The blue points are results obtained by direct calculation.
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minimum change in complexity for a process has physical
meaning [185–188].

III. SIMULATING 1+ 1D QCD
WITH Nf = 1 AND L= 1

With the advances in quantum devices, algorithms, and
mitigation strategies, quantum simulations of 1þ 1D QCD
can now begin, and this section presents results for Nf ¼ 1

and L ¼ 1. Both state preparation and time evolution will be
discussed.

A. State preparation with VQE

Restricting the states of the lattice to be color singlets
reduces the complexity of state preparation significantly.
Transformations in the quark sector are mirrored in the
antiquark sector. A circuit that prepares the most general
state with r ¼ g ¼ b ¼ 0 is shown in Fig. 16. The
(multiply-)controlled θ gates are shorthand for (multiply-
)controlled RYðθÞ gates with half-filled circles denoting a
control on 0 and a different control on 1. The subscripts on
θij signify that there are different angles for each controlled
rotation. For example, θi has two components, θ0 and θ1,
corresponding to a rotation controlled on 0 and 1, respec-
tively. The CNOTs at the end of the circuit enforce that
there are equal numbers of quarks and antiquarks with the

same color, i.e., that r ¼ g ¼ b ¼ 0. This circuit can be
further simplified by constraining the angles to only para-
metrize color singlet states. The color singlet subspace is
spanned by12

jΩ0i;
1ffiffiffi
3

p ðjqrq̄ri − jqgq̄gi þ jqbq̄biÞ;

jqrq̄rqgq̄gqbq̄bi;
1ffiffiffi
3

p ðjqrq̄rqgq̄gi − jqrq̄rqbq̄bi þ jqgq̄gqbq̄biÞ; ð26Þ

where jΩ0i ¼ j000111i is the trivial vacuum. This leads to the following relations between angles:

θ10 ¼ θ01; θ00 ¼ −2sin−1½tanðθ0=2Þ cosðθ01=2Þ�;
θ01 ¼ −2sin−1½cosðθ11=2Þ tanðθ1=2Þ�; θ0 ¼ −2sin−1½tanðθ=2Þ cosðθ1=2Þ�: ð27Þ

The circuit in Fig. 16 can utilize the strategy outlined in
Ref. [105] to separate into a “variational” part and a “static”
part. If the VQE circuit can be written as UvarðθÞUs, where
Us is independent of the variational parameters, then Us

can be absorbed by a redefinition of the Hamiltonian.

Specifically, matrix elements of the Hamiltonian can be
written as

hΩ0jU†
varðθÞH̃UvarðθÞjΩ0i; ð28Þ

where H̃ ¼ U†
sHUs. Table V shows the transformations

of various Pauli strings under conjugation by a CNOT
controlled on the smaller index qubit. Note that the Z2

nature of this transformation is manifest. In essence,
entanglement is traded for a larger number of correlated
measurements. Applying the techniques in Ref. [38], the
VQE circuit of Fig. 16 can be put into the form of

FIG. 16. Building upon the trivial vacuum, this circuit initi-
alizes the most general real wave function (with seven indepen-
dent rotation angles for three qubits) in the q̄ sector, which is
subsequently mirrored into the q sector by three CNOTs. Gates
labeled by “θ” are shorthand for RYðθÞ, and half-filled circles
denote a control on 0 and a different control on 1.

12The apparent asymmetry between qr, qg, qb is due to the
charge operators generating hops over different numbers of
quarks or antiquarks. For example, Qð1Þ hops qr to qg without
passing over any intermediate quarks, but Qð4Þ hops qr to qb
passing over qg. Also note that when m ¼ 0, the Z2 spin-flip
symmetry reduces the space of states to be two dimensional.
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Fig. 17, which requires 5 CNOTs along with all-to-all
connectivity between the three q̄s.

B. Time evolution using IBM’s seven-qubit
quantum computers

A single leading-order Trotter step of Nf ¼ 1 QCD
with L ¼ 1 requires 28 CNOTs.13 A circuit that imple-
ments one Trotter step of the mass term is shown in
Fig. 18. As discussed around Eq. (20), it is more effi-
cient to not use an ancilla qubit in the Trotterization of
the kinetic part of the Hamiltonian. A circuit that
implements one Trotter step of a single hopping term
is shown in Fig. 19 [172]. Similarly, for this system, the

only contribution to Hel is Q
ðaÞ
n QðaÞ

n , which contains three
ZZ terms that are Trotterized using the standard two
CNOT implementation. The complete set of circuits
required for Trotterized time evolution are given in
Appendix E.
To map the system onto a quantum device, it is necessary

to understand the required connectivity for efficient simu-
lation. Together, the hopping and chromo-electric terms
require connectivity between nearest neighbors as well as
between qr and qb and qs and q̄s of the same color. The
required device topology is planar, and two embedding
options are shown in Fig. 20. The “kite” topology follows
from the above circuits, while the “wagon wheel” topology
makes use of the identities CXðqa;qbÞ ·CXðqb;qcÞ ¼
CXðqa;qcÞ ·CXðqb;qcÞ ¼ CXðqb;qaÞ ·CXðqa;qcÞ, where

CXðqa; qbÞ denotes a CNOT controlled on qubit qa. Both
topologies can be employed on devices with all-to-all
connectivity, such as trapped-ion systems, but neither top-
ology exists natively on available superconducting-qubit
devices.
We performed leading-order Trotter evolution to study

the trivial vacuum persistence and transition probability
using IBM’s quantum computers ibmq_jakarta and
ibm_perth, each a r5.11H quantum processor with
seven qubits and “H” connectivity. The circuits developed
for this system require a higher degree of connectivity than
available with these devices, and so SWAP-gates were
necessary for implementation. The IBM transpiler
was used to first compile the circuit for the H connectivity
and then again to compile the Pauli twirling (discussed
next). An efficient use of SWAP-gates allows for a single
Trotter step to be executed with 34 CNOTs.
A number of error-mitigation techniques were employed

to minimize associated systematic uncertainties in our
calculations: randomized compiling of the CNOTs (Pauli
twirling) [189] combined with decoherence renormaliza-
tion [71,190], measurement error mitigation, postselecting
on physical states, and dynamical decoupling [191–194].14
The circuits were randomly complied with each CNOT
Pauli-twirled as a mechanism to transform coherent errors in
the CNOT gates into statistical noise in the ensemble. This
has been shown to be effective in improving the quality of
results in other simulations, for example, Refs. [71,174].
Pauli twirling involves multiplying the right side of each

FIG. 17. A circuit that initializes the most general B ¼ 0 color singlet state for Nf ¼ 1 and L ¼ 1. Gates labeled by “θ” are shorthand
for RYðθÞ and the Xs at the end are to initialize the trivial vacuum. The color singlet constraint, θ10 ¼ θ01, has been used, and the other
angles are related by Eq. (27).

TABLE V. The transformation of Pauli strings under conjugation by a CNOT controlled on the smaller index qubit.

XX → IX XY → IY YX → ZY XZ → XZ ZZ → ZI YZ → YI ZY → YX YY → ð−ÞZX
IX → XX IY → XY XI → XI IZ → IZ ZI → ZZ YI → YZ ZX → ð−ÞYY II → II

13By evolving with Uel before Ukin in the Trotterized time
evolution, two of the CNOTs become adjacent in the circuit and
can be canceled.

14A recent detailed study of the stability of some of IBM’s
quantum devices using a system of physical interest can be found
in Ref. [195].
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CNOT by a randomly chosen element of the two-qubit Pauli
group,G2, and the left side byG0

2 such thatG
0
2CXG2 ¼ CX

(up to a phase). For an ideal CNOT gate, this would have no
effect on the circuit. A table of required CNOT identities is
given, for example, in anAppendix inRef. [71]. Randomized
Pauli-twirling is combinedwith performingmeasurements of
a “nonphysics”mitigation circuit, which is the time evolution
circuit evaluated at t ¼ 0, and is the identity in the absence of
noise. Assuming that the randomized-compiling of the Pauli-
twirled CNOTs transforms coherent noise into depolarizing
noise, the fractional deviation of the noiseless and computed
results from the asymptotic limit of complete decoherence
are expected to be approximately equal for both the physics
andmitigation ensembles. Assuming linearity, it follows that

�
PðphysÞ
pred −

1

8

�
¼

�
PðphysÞ
meas −

1

8

�
×

�
1 − 1

8

PðmitÞ
meas − 1

8

�
; ð29Þ

where PðphysÞ
meas and PðmitÞ

meas are postprocessed probabilities, and

PðphysÞ
pred is an estimate of the probability once the effects of

depolarizing noise have been removed. The “1
8
” represents

the fully decohered probability after postselecting on

physical states (described next), and the “1” is the probability
ofmeasuring the initial state from themitigation circuit in the
absence of noise.
The computational basis of six qubits contains 26 states,

but time evolution only connects thosewith the same r, g, and
b. Starting from the trivial vacuum, this implies that only the
eight states with r ¼ g ¼ b ¼ 0 are accessible through time
evolution. The results off the quantum computer were
postprocessed to only select events that populated one of
the eight physically allowed states, discarding outcomes that
were unphysical. Typically, this resulted in a retention rate of
∼30%. The workflow interspersed physics and mitigation
circuits to provide a correlated calibration of the quantum
devices. This enabled the detection (and removal) of out-of-
specs device performance during postprocessing. We
explored using the same twirling sequences for both physics
and mitigation circuits and found that it had no significant
impact. The impact of dynamical decoupling of idle qubits
using Qiskit’s built in functionality was also investigated and
found to have little effect. The results of each run were
corrected for measurement error using IBM’s available
function, TensoredMeasFitter, and associated down-
stream operations.
The results obtained for the trivial vacuum-to-vacuum

and trivial vacuum-to-qrq̄r probabilities from one step of
leading-order Trotter time evolution are shown in Fig. 21.
For each time, 447 Pauli-twirled physics circuits and 447
differently twirled circuits with zeroed angles (mitigation)
were analyzed using 103 shots on both ibmq_jakarta
and ibm_perth (to estimate device systematics). After
postselecting on physical states, correlated Bootstrap
Resampling was used to form the final result.15

Tables VI and VII display the results of the calculations
performed using ibmq_jakarta and ibm_perth
quantum computers. The same mitigation data was
used for both the trivial vacuum-to-vacuum and trivial

FIG. 18. A circuit that implements UmðtÞ ¼ expð−iHmtÞ for
Nf ¼ 1 and L ¼ 1.

FIG. 19. A circuit that implements exp½−i t
2
ðσþZZσ− þ H:c:Þ�.

FIG. 20. Two potential quantum device topologies for the
implementation of Trotterized time evolution.

15As the mitigation and physics circuits were executed as
adjacent jobs on the devices, the same Bootstrap sample was used
to select results from both ensembles to account for temporal
correlations.
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vacuum-to-qrq̄r calculations and is provided in columns
two and four of Table VI. See Appendix G for an extended
discussion of leading-order Trotter. Note that the negative
probabilities seen in Fig. 21 indicate that additional non-
linear terms are needed in Eq. (29).
It is interesting to consider the distributions of events

obtained from the Pauli-twirled circuits, as shown in
Fig. 22. The distributions are not Gaussian and, in a
number of instances, exhibit heavy tails particularly near
the boundaries.16 The spread of the distributions, associated
with nonideal CNOT gates, is seen to reach a maximum of
∼0.4, but with a full width at half-max that is ∼0.2. These
distributions are already broad with a 34 CNOT circuit, and
we probed the limit of these devices by time evolving with
two first-order Trotter steps,17 which requires 91 CNOTs
after accounting for SWAPs. Using the aforementioned
techniques, this was found to be beyond the capabilities of
ibmq_jakarta, ibmq_lagos, and ibm_perth.

IV. ARBITRARY Nc AND Nf

In this section, the structure of the Hamiltonian for Nf

flavors of quarks in the fundamental representation of
SUðNcÞ is developed. The mapping to spins has the same
structure as for Nf ¼ 2 QCD, but now, there are Nc × Nf

qs and Nc × Nf q̄s per spatial lattice site. While the mass
and kinetic terms generalize straightforwardly, the energy
in the chromo-electric field is more tricky. After enforcing
Gauss’s law, it is

Hel ¼
g2

2

X2L−2
n¼0

�X
m≤nQ

ðaÞ
m

�
2

; QðaÞ
m ¼ ϕ†

mTaϕm;

ð30Þ

where Ta are now the generators of SUðNcÞ. The
Hamiltonian, including chemical potentials for baryon
number (chemical potentials for other flavor combinations
can be included as needed), is found to be

H ¼ Hkin þHm þHel þHμB ; ð31aÞ

Hkin ¼
1

2

X2L−2
n¼0

XNf−1

f¼0

XNc−1

c¼0

�
σþiðn;f;cÞ

�
⊗

NcNf−1

j¼1
ð−σziðn;f;cÞþjÞ

�
σ−iðn;f;cÞþNcNf

þ H:c:
�
; ð31bÞ

Hm ¼ 1

2

X2L−1
n¼0

XNf−1

f¼0

XNc−1

c¼0

mf½ð−1Þnσziðn;f;cÞ þ 1�; ð31cÞ

FIG. 21. The trivial vacuum-to-vacuum (left panel) and trivial vacuum-to-qrq̄r (right panel) probabilities for Nf ¼ 1 QCD and
m ¼ g ¼ L ¼ 1. The dashed-black curve shows the expected result from one step of leading-order Trotter evolution. The results, given
in Tables VI and VII, were obtained by using 103 shots for 447 Pauli-twirled circuits using IBM’s quantum computers ibmq_jakarta
(red) and ibm_perth (blue).

17Under a particular ordering of terms, two steps of first- and second-order Trotter time evolution are equivalent.

16For a study of heavy-tailed distributions in Euclidean-space lattice QCD calculations, see Refs. [196,197].
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Hel ¼
g2

2

X2L−2
n¼0

ð2L − 1 − nÞ
�XNf−1

f¼0

QðaÞ
n;fQ

ðaÞ
n;f þ 2

XNf−2

f¼0

XNf−1

f0¼fþ1

QðaÞ
n;fQ

ðaÞ
n;f0

�

þ g2
X2L−3
n¼0

X2L−2
m¼nþ1

ð2L − 1 −mÞ
XNf−1

f¼0

XNf−1

f0¼0

QðaÞ
n;fQ

ðaÞ
m;f0 ; ð31dÞ

HμB ¼ −
μB
2Nc

X2L−1
n¼0

XNf−1

f¼0

XNc−1

c¼0

σziðn;f;cÞ; ð31eÞ

where, iðn; f; cÞ ¼ ðNcNfnþ Nff þ cÞ, and the products of the charges are

TABLE VI. The trivial vacuum-to-vacuum probabilities for m ¼ g ¼ L ¼ 1 using ibmq_jakarta and ibm_perth, the
underlying distributions of which are displayed in Fig. 22. The second through fifth columns are the results after selecting only
physical states and columns six and seven are the results after using the mitigation circuit to account for depolarizing noise.

Vacuum-to-Vacuum Probabilities for Nf ¼ 1 QCD from IBM’s ibmq_jakarta and ibm_perth

t
Mitigation
jakarta

Physics
jakarta

Mitigation
perth

Physics
perth

Results
jakarta

Results
perth Theory

0 � � � � � � � � � � � � � � � � � � 1
0.5 0.9176(10) 0.7607(24) 0.8744(23) 0.7310(42) 0.8268(27) 0.8326(52) 0.8274
1.0 0.9059(12) 0.4171(32) 0.9118(16) 0.4211(39) 0.4523(36) 0.4543(43) 0.4568
1.5 0.9180(12) 0.1483(16) 0.9077(17) 0.1489(23) 0.1507(17) 0.1518(25) 0.1534
2.0 0.8953(15) 0.0292(08) 0.8953(21) 0.0324(10) 0.0162(09) 0.0198(11) 0.0249
2.5 0.9169(12) 0.0020(01) 0.8938(21) 0.0032(02) −0.0109ð03Þ −0.0136ð04Þ 0.0010
3.0 0.9282(13) 0.00010(2) 0.9100(13) 0.00017(3) −0.0111ð02Þ −0.0140ð02Þ 1.3 × 10−7

3.5 0.9357(10) 0.00017(3) 0.9109(14) 0.00037(4) −0.0097ð02Þ −0.0138ð02Þ 3.2 × 10−5

4.0 0.9267(13) 0.0081(03) 0.9023(14) 0.0076(03) −0.0026ð04Þ −0.0072ð04Þ 0.0052
4.5 0.9213(12) 0.0653(10) 0.8995(16) 0.0619(11) 0.0594(11) 0.0537(13) 0.0614
5.0 0.9105(12) 0.2550(26) 0.9031(14) 0.2405(21) 0.2698(29) 0.2550(23) 0.2644

TABLE VII. The trivial vacuum-to-qrq̄r probabilities form ¼ g ¼ L ¼ 1 using ibmq_jakarta and ibm_perth. The second and
third columns are the results after selecting only physical states and columns four and five are the results after using the mitigation circuit
to account for depolarizing noise.

Vacuum-to-qrq̄r Probabilities for Nf ¼ 1 QCD from IBM’s ibmq_jakarta and ibm_perth

t Physics jakarta Physics perth Results jakarta Results perth Theory

0 � � � � � � � � � � � � 0
0.5 0.0760(12) 0.0756(22) 0.0709(13) 0.0673(26) 0.0539
1.0 0.1504(19) 0.1253(32) 0.1534(22) 0.1254(36) 0.1363
1.5 0.1364(15) 0.1144(21) 0.1376(17) 0.1131(23) 0.1332
2.0 0.0652(11) 0.0611(15) 0.0571(13) 0.0525(17) 0.0603
2.5 0.0136(04) 0.0137(06) 0.0019(05) −0.0017ð07Þ 0.0089
3.0 0.0017(01) 0.0011(01) −0.0093ð02Þ −0.0132ð02Þ 2.5 × 10−5

3.5 0.0024(01) 0.0032(02) −0.0073ð02Þ −0.0107ð03Þ 0.0010
4.0 0.0314(07) 0.0288(07) 0.0228(08) 0.0167(08) 0.0248
4.5 0.0971(12) 0.0929(14) 0.0943(13) 0.0887(16) 0.0943
5.0 0.1534(20) 0.1546(19) 0.1566(22) 0.1583(21) 0.1475
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4QðaÞ
n;fQ

ðaÞ
n;f ¼

N2
c − 1

2
−
�
1þ 1

Nc

� XNc−2

c¼0

XNc−1

c0¼cþ1

σziðn;f;cÞσ
z
iðn;f;c0Þ;

8QðaÞ
n;fQ

ðaÞ
m;f0 ¼ 4

XNc−2

c¼0

XNc−1

c0¼cþ1

½σþiðn;f;cÞð⊗ ZÞðn;f;c;c0Þσ−iðn;f;c0Þσ−iðm;f0;cÞð⊗ ZÞðm;f0;c;c0Þσ
þ
iðm;f0;c0Þ þ H:c:�

þ
XNc−1

c¼0

XNc−1

c0¼0

�
δcc0 −

1

Nc

�
σziðn;f;cÞσ

z
iðm;f0;c0Þ;

ð⊗ ZÞðn;f;c;c0Þ ≡ ⊗
c0−c−1

k¼1
σziðn;f;cÞþk: ð32Þ

The resource requirements for implementing Trotterized
time evolution using generalizations of the circuits in
Sec. II C are given in Eq. (21).
It is interesting to consider the large-Nc limit of the

Hamiltonian, where quark loops are parametrically

suppressed, and the system can be described semiclassi-
cally [106,107,198,199]. Unitarity requires rescaling the
strong coupling, g2 → g2=Nc and leading terms in the
Hamiltonian scale as OðNcÞ. The leading order contribu-
tion to the product of charges is

4QðaÞ
n;fQ

ðaÞ
n;f ¼

XNc−2

c¼0

XNc−1

c0¼cþ1

ð1 − σziðn;f;cÞσ
z
iðn;f;c0ÞÞ;

8QðaÞ
n;fQ

ðaÞ
m;f0 ¼ 4

XNc−2

c¼0

XNc−1

c0¼cþ1

½σþiðn;f;cÞð⊗ ZÞðn;f;c;c0Þσ−iðn;f;c0Þσ−iðm;f0;cÞð⊗ ZÞðm;f0;c;c0Þσ
þ
iðm;f0;c0Þ þ H:c:�: ð33Þ

FIG. 22. Histograms of the postprocessed vacuum-to-vacuum results obtained using ibmq_jakarta and ibm_perth. The
horizontal axes show the value of the vacuum-to-vacuum probability, and the vertical axes show bin counts on a log scale. The top panels
display the results obtained from the physics circuits for the range of evolution times, and the bottom panels display the results obtained
for the corresponding mitigation circuits.
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Assuming that the number of qq̄ pairs that contribute to the
meson wave functions do not scale with Nc, as expected in
the large-Nc limit,Hel ∝ Nc and mesons are noninteracting,
a well-known consequence of the large-Nc limit [106,107].
Baryons, on the other hand, are expected to have strong
interactions at leading order in Nc [198]. This is a semi-
classical limit, and we expect that there exists a basis
where states factorize into localized tensor products, and
the time evolution operator is nonentangling. The latter
result has been observed in the large-Nc limit of hadronic
scattering [153–155,200,201].

V. SUMMARY AND DISCUSSION

Important for future quantum simulations of processes
that can be meaningfully compared to experiment, the real-
time dynamics of strongly interacting systems are predicted
to be efficiently computable with quantum computers of
sufficient capability. Building upon foundational work in
quantum chemistry and in low-dimensional Uð1Þ and
SUð2Þ gauge theories, this work has developed the tools
necessary for the quantum simulation of 1þ 1D QCD (in
axial gauge) using open boundary conditions, with arbi-
trary numbers of quark flavors and colors and including
chemical potentials for baryon number and isospin.
Focusing largely on QCD with Nf ¼ 2, which shares
many of the complexities of QCD in 3þ 1D, we have
performed a detailed analysis of the required quantum
resources for simulation of real-time dynamics, including
efficient quantum circuits and associated gate counts, and
the scaling of the number of Trotter steps for a fixed-
precision time evolution. The structure and dynamics of
small systems, with L ¼ 1, 2 for Nc ¼ 3 and Nf ¼ 1, 2,
have been detailed using classical computation, quantum
simulators,D-wave’s Advantage and IBM’s 7-qubit devices
ibmq_jakarta and ibm_perth. Using recently devel-
oped error mitigation strategies, relatively small uncertain-
ties were obtained for a single Trotter step with 34 CNOT
gates after transpilation onto the QPU connectivity.
Through a detailed study of the low-lying spectrum, both

the relevant symmetries and the color-singlets in the
mesonic and baryonic sectors, including a bound two-
baryon nucleus, have been identified. Open boundary
conditions also permit low-lying color edge states that
penetrate into the lattice volume by a distance set by the
confinement scale. By examining quark entanglement in
the hadrons, a transition from the mesons being primarily
composed of quark-antiquarks to baryon-antibaryons was
found. We have presented the relative contributions of each
of the terms in the Hamiltonian to the energy of the
vacuum, mesons, and baryons.
This work has provided an estimate for the number of

CNOT-gates required to implement one Trotter step in
Nf ¼ 2, 1þ 1D axial-gauge QCD. For L ¼ 10 spatial
sites, ∼3 × 104 CNOTs are required, while ∼4 × 106

CNOTs are required for L ¼ 100. Realistically, quantum

simulations with L ¼ 10 are a beginning toward providing
results with a complete quantification of uncertainties,
including lattice-spacing and finite-volume artifacts, and
L ¼ 100 will likely yield high-precision results. It was
found that, in the axial-gauge formulation, resources for
time evolution effectively scale as L2t for intermediate
times and L2t2 for asymptotic times. With L ∼ t, this
asymptotic scaling is the same as in the Schwinger model,
suggesting no differences in scaling between Weyl and
axial gauges.
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APPENDIX A: MAPPING TO QUBITS

This appendix outlines how the qubit Hamiltonian in
Eq. (6) is obtained from the lattice Hamiltonian in Eq. (3).
For this system, the constraint of Gauss’s law is sufficient to
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uniquely determine the chromo-electric field carried by the
links between lattice sites in terms of a background
chromo-electric field and the distribution of color charges.
The difference between adjacent chromo-electric fields at a
site with charge QðaÞ is

EðaÞ
nþ1 −EðaÞ

n ¼ QðaÞ
n ; ðA1Þ

for a ¼ 1 to 8, resulting in a chromo-electric field

EðaÞ
n ¼ FðaÞ þ

X
i≤n

QðaÞ
i : ðA2Þ

In general, there can be a nonzero background chromo-
electric field, FðaÞ, which, in this paper, has been set to zero.
Inserting the chromo-electric field in terms of the charges
into Eq. (1) yields Eq. (3).
The color and flavor degrees of freedom of each q and q̄

are then distributed over 6 (¼ NcNf) sites as illustrated in
Fig. (1). There are now creation and annihilation operators
for each quark, and the Hamiltonian is

H ¼
X2L−1
n¼0

X1
f¼0

X2
c¼0

�
mfð−1Þnψ†

6nþ3fþcψ6nþ3fþc

−
μB
3
ψ†
6nþ3fþcψ6nþ3fþc −

μI
2
ð−1Þfψ†

6nþ3fþcψ6nþ3fþc

�

þ 1

2

X2L−2
n¼0

X1
f¼0

X2
c¼0

ðψ†
6nþ3fþcψ6ðnþ1Þþ3fþc þ H:c:Þ

þ g2

2

X2L−2
n¼0

�X
m≤n

X1
f¼0

QðaÞ
m;f

�
2

; ðA3Þ

where the color charge is evaluated over three ðr; g; bÞ
occupation sites with the same flavor,

QðaÞ
m;f ¼

X2
c¼0

X2
c0¼0

ψ†
6mþ3fþcT

a
cc0ψ6mþ3fþc0 ; ðA4Þ

and the Ta are the eight generators of SUð3Þ. The fermionic
operators in Fock space are mapped onto spin operators via
the JW transformation,

ψn ¼ ⊗
l<n

ð−σzl Þσ−n ; ψ†
n ¼ ⊗

l<n
ð−σzl Þσþn : ðA5Þ

In terms of spins, the eight SUð3Þ charge operators
become18

Qð1Þ
m;f ¼ 1

2
σþ6mþ3fσ

−
6mþ3fþ1 þ H:c:;

Qð2Þ
m;f ¼ −

i
2
σþ6mþ3fσ

−
6mþ3fþ1 þ H:c:;

Qð3Þ
m;f ¼ 1

4
ðσz6mþ3f − σz6mþ3fþ1Þ;

Qð4Þ
m;f ¼ −

1

2
σþ6mþ3fσ

z
6mþ3fþ1σ

−
6mþ3fþ2 þ H:c:;

Qð5Þ
m;f ¼ i

2
σþ6mþ3fσ

z
6mþ3fþ1σ

−
6mþ3fþ2 þ H:c:;

Qð6Þ
m;f ¼ 1

2
σþ6mþ3fþ1σ

−
6mþ3fþ2 þ H:c:;

Qð7Þ
m;f ¼ −

i
2
σþ6mþ3fþ1σ

−
6mþ3fþ2 þ H:c:;

Qð8Þ
m;f ¼ 1

4
ffiffiffi
3

p ðσz6mþ3f þ σz6mþ3fþ1 − 2σz6mþ3fþ2Þ: ðA7Þ

Substituting Eqs. (A5) and (A7) into Eq. (A3) gives the
Hamiltonian in Eq. (6). For reference, the expanded
Hamiltonian for L ¼ 1 is

H ¼ Hkin þHm þHel þHμB þHμI ; ðA8aÞ

Hkin ¼ −
1

2
ðσþ6 σz5σz4σz3σz2σz1σ−0 þ σ−6 σ
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5 þ σ−11σ
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5 Þ; ðA8bÞ

Hm ¼ 1

2
½muðσz0 þ σz1 þ σz2 − σz6 − σz7 − σz8 þ 6Þ þmdðσz3 þ σz4 þ σz5 − σz9 − σz10 − σz11 þ 6Þ�; ðA8cÞ

18Calculations of quadratics of the gauge charges are simplified by the Fierz identity,

ðTðaÞÞαβðTðaÞÞγδ ¼
1

2

�
δαδδ

γ
β −

1

Nc
δαβδ

γ
δ

�
: ðA6Þ
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z
2 − σz4σ

z
0 − σz3σ

z
1 − σz3σ

z
2Þ
�
; ðA8dÞ

HμB ¼ −
μB
6
ðσz0 þ σz1 þ σz2 þ σz3 þ σz4 þ σz5 − σz6 þ σz7 þ σz8 þ σz9 þ σz10 þ σz11Þ; ðA8eÞ

HμI ¼ −
μI
4
ðσz0 þ σz1 þ σz2 − σz3 − σz4 − σz5 þ σz6 þ σz7 þ σz8 − σz9 − σz10 − σz11Þ: ðA8fÞ

APPENDIX B: SYMMETRIES OF THE FREE-QUARK HAMILTONIAN

Here, the symmetries of the free-quark Hamiltonian are identified to better understand the degeneracies observed in the
spectrum of 1þ 1D QCD with Nf ¼ 2 and L ¼ 1 as displayed in Figs. 2 and 3. Specifically, the Hamiltonian with
g ¼ h ¼ μB ¼ μI ¼ 0, leaving only the hopping and mass terms (m ¼ mu ¼ md), is

H ¼
X1
f¼0

X2
c¼0

�
m

X2L−1
n¼0

ð−1Þnψ†
6nþ3fþcψ6nþ3fþc þ

1

2

X2L−2
n¼0

ðψ†
6nþ3fþcψ6ðnþ1Þþ3fþc þ H:c:Þ

�
: ðB1Þ

The mapping of degrees of freedom is taken to be as shown
in Fig. 1, but it will be convenient to work with Fock-space
quark operators instead of spin operators. In what follows,
the focus will be on L ¼ 1, and larger systems follow
similarly.
The creation operators can be assembled into a

12-component vector, Ψ†
i ¼ ðψ†

0;ψ
†
1;…;ψ†

10;ψ
†
11Þ, in

terms of which the Hamiltonian becomes

H ¼ Ψ†
i MijΨj; ðB2Þ

where M is a 12 × 12 block matrix of the form,

M ¼
� m 1=2

1=2 −m

�
; ðB3Þ

with each block a 6 × 6 diagonal matrix. Diagonalizing M,
gives rise to

M̃ ¼
�
λ 0

0 −λ

�
; λ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
; ðB4Þ

with associated eigenvectors,

c1ψ̃ i ¼ 2ðmþ λÞψ i þ ψ iþ6;

c2ψ̃6þi ¼ 2ðm − λÞψ i þ ψ iþ6; ðB5Þ

where ψ̃ i (ψ̃6þi) corresponds to the positive (negative)
eigenvalue. The constants c1 and c2 are chosen to provide
the correct operator normalization, and the index i takes
values 0 to 5. These eigenvectors create superpositions of

quarks and antiquarks with the same color and flavor,
which are the OBC analogs of momentum plane waves. In
this basis, the Hamiltonian becomes

H ¼
X5
i¼0

λðψ̃†
i ψ̃ i − ψ̃†

6þiψ̃6þiÞ; ðB6Þ

which has a vacuum state,

jΩ0i ¼
Yi¼5

i¼0

ψ̃†
6þijω0i; ðB7Þ

where jω0i is the unoccupied state, and jΩ0i corresponds
to j000000111111i (in binary) in this transformed basis.
Excited states are formed by acting with either ψ̃†

i or ψ̃6þi
on jΩ0i, which raises the energy of the system by λ.
A further transformation is required for the SUð12Þ
symmetry to be manifest. In terms of the 12-component
vector, Ψ̃† ¼ ðψ̃†

0;…; ψ̃†
5; ψ̃6;…; ψ̃11Þ, the Hamiltonian in

Eq. (B6) becomes

H ¼
X5
i¼0

λðψ̃†
i ψ̃ i − ψ̃†

6þiψ̃6þiÞ ¼ λðΨ̃†Ψ̃ − 6Þ; ðB8Þ

where the canonical anticommutation relations have been
used to obtain the final equality. This is invariant under a
SUð12Þ symmetry, where Ψ̃ transforms in the fundamental
representation. The free-quark spectrum (g ¼ h ¼ 0) is
therefore described by states with degeneracies correspond-
ing to the 1 and 12 of SUð12Þ as well as the antisymmetric
combinations of fundamental irreps, 66; 220;… as illus-
trated in Figs. 2 and 3. The vacuum state corresponds to the
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singlet of SUð12Þ. The lowest-lying 12 corresponds to
single quark or antiquark excitations, which are color 3cs
for quarks and 3̄cs for antiquarks and will each appear as
isodoublets, i.e., 12 → 3c ⊗ 2f ⊕ 3̄c ⊗ 2f. The 66 arises
from double excitations of quarks and antiquarks. The
possible color-isospin configurations are, based upon
totally-antisymmetric wave functions for qq, q̄ q̄, and q̄q,
66 ¼ 1c ⊗ 1f ⊕ 1c ⊗ 3f ⊕ 8c ⊗ 1f ⊕ 8c ⊗ 3f ⊕ 6c ⊗
1f ⊕ 6̄c ⊗ 1f ⊕ 3c ⊗ 3f ⊕ 3̄c ⊗ 3f. The OBCs split the
naive symmetry between quarks and antiquarks and, for
g ≠ 0, the lowest-lying color edge states are from the
antiquark sector with degeneracies 6 from a single exci-
tation and 6,9 from double excitations. Larger lattices
possess an analogous global SUð12Þ symmetry, coupled

between spatial sites by the hopping term, and the spectrum
is again one of noninteracting quasiparticles.

APPENDIX C: DETAILS OF THE D-WAVE
IMPLEMENTATIONS

In this appendix, additional details are provided on the
procedure used in Sec. II B 2 to extract the lowest three
eigenstates and corresponding energies using D-wave’s
Advantage, (a more complete description can be found in
Ref. [74]). The objective function F to be minimized
can be written in terms of binary variables and put into
QUBO form. Defining F ¼ hΨjH̃jΨi − ηhΨjΨi [170], and
expanding the wave function with a finite dimensional
orthonormal basis ψα, jΨi ¼

Pns
α aαjψαi, it is found

F ¼ hΨjH̃jΨi − ηhΨjΨi ¼
Xns
αβ

aαaβ½hψαjH̃jψβi − ηhψαjψβi� ¼
Xns
αβ

aαaβðH̃αβ − ηδαβÞ ¼
Xns
αβ

aαaβhαβ; ðC1Þ

where hαβ are the matrix elements of the Hamiltonian that can be computed classically. The coefficients aα are then
expanded in a fixed-point representation using K bits [57,170,171],

aðzþ1Þ
α ¼ aðzÞα þ

XK
i¼1

2i−K−zð−1ÞδiKqαi ; ðC2Þ

where z is the zoom parameter. The starting point is aðz¼0Þ
α ¼ 0, and for each consecutive value of z, the range of values that

aðzþ1Þ
α is allowed to explore is reduced by a factor of 2, centered around the previous solution aðzÞα . Now F takes the

following form,

F ¼
Xns
α;β

XK
i;j

Qα;i;β;jqαi q
β
j ; Qα;i;β;j ¼ 2iþj−2K−2zð−1ÞδiKþδjKhαβ þ 2δαβδij2

i−K−zð−1ÞδiK
Xns
γ

aðzÞγ hγβ: ðC3Þ

The iterative procedure used to improve the precision of the results is based on the value aðzÞα obtained after 14 zoom steps

(starting from aðz0¼0Þ
α ¼ 0), and then launching a new annealing workflow with z1 ≠ 0 (e.g., z1 ¼ 4), with aðz¼z0þ14Þ

α as the

starting point. After another 14 zoom steps, the final value aðz¼z1þ14Þ
α can be used as the new starting point for aðz¼z2Þ

α , with
z2 > z1. This process can be repeated until no further improvement is seen in the convergence of the energy and wave
function.

TABLE VIII. Convergence of the energy, masses, and wave functions of the three lowest-lying states in the B ¼ 0 sector of 1þ 1D
QCD with Nf ¼ 2 and m ¼ g ¼ L ¼ 1, between exact results from diagonalization of the Hamiltonian and those obtained from D-
wave’s Advantage.

jΩi jσi jπi
Step δEΩ 1 − jhΨexact

Ω jΨAdv
Ω ij2 δMσ 1 − jhΨexact

σ jΨAdv
σ ij2 δMπ 1 − jhΨexact

π jΨAdv
π ij2

0 4þ2
−2 × 10−1 10þ3

−5 × 10−2 4þ2
−2 × 10−1 11þ7

−5 × 10−2 3þ1
−1 × 10−1 11þ71

−4 × 10−2

1 9þ4
−3 × 10−3 2þ6

−5 × 10−3 3þ1
−1 × 10−2 7þ2

−2 × 10−3 9þ4
−3 × 10−3 3þ3

−1 × 10−3

2 6þ2
−2 × 10−4 12þ3

−5 × 10−5 4þ1
−1 × 10−3 12þ3

−4 × 10−4 7þ2
−3 × 10−4 3þ2

−2 × 10−4

3 4þ1
−2 × 10−5 9þ3

−4 × 10−6 2þ1
−1 × 10−4 6þ1

−2 × 10−5 4þ2
−2 × 10−5 12þ6

−3 × 10−6

4 16þ6
−6 × 10−7 3þ2

−1 × 10−7 10þ6
−3 × 10−6 9þ1

−1 × 10−6 7þ9
−5 × 10−7 8þ2

−2 × 10−6
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In Table VIII, the difference between the exact energy of
the vacuum and masses of the σ- and π-mesons and the
ones computed with the QA, for each iteration of this
procedure after 14 zoom steps, are given, together with the
overlap of the wave functions 1 − jhΨexactjΨAdvij2. See
also Fig. 7.
Focusing on the lowest line of the last panel of Fig. 7,

which shows the convergence as a function of zoom steps
for the pion mass, it can be seen that it displays some
oscillatory behavior compared to the rest, which are
smooth. This is expected, since the wave functions used
to project out the lower eigenstates from the Hamiltonian
are known with a finite precision (obtained from previous
runs). For example, the vacuum state is extracted at the
10−6 precision level. Then, when looking at the excited
states with increased precision (like for the pion, around
10−7), the variational principle might not hold, and the

computed energy level might be below the “true” one (and
not above). To support this argument, the same calculation
has been pursued, but using the exact wave functions when
projecting the Hamiltonian to study the excited states
(instead of the ones computed using Advantage), and no
oscillatory behavior is observed, as displayed in Fig. 23.

APPENDIX D: QUANTUM CIRCUITS
REQUIRED FOR TIME EVOLUTION

BY THE GAUGE-FIELD INTERACTION

This appendix provides more detail about the con-
struction of the quantum circuits which implement the
Trotterized time evolution of the chromo-electric terms of
the Hamiltonian. It closely follows the presentation in the
Appendix of Ref. [172]. The four-qubit interaction in Hel
has the form

σþσ−σ−σþ þ H:c: ¼ 1

8
ðXXXX þ XXYY þ XYXY − XYYX þ YXYX − YXXY þ YYXX þ YYYYÞ: ðD1Þ

Since the eight Pauli strings are mutually commuting, they can be simultaneously diagonalized by a unitary transformation.
The strategy for identifying the quantum circuit(s) to implement this term will be to first change to a basis where every term
is diagonal, then apply the diagonal unitaries, and finally return back to the computational basis. The GHZ state-preparation
circuits, shown in Fig. 12, diagonalize all eight of the Pauli strings, for example,

G†ðXXXX þ YYXX þ YXYX − YXXY − XYYX þ XYXY þ XXYY þ YYYYÞG
¼ IIZI − ZIZZ − ZZZZ þ ZIZI þ IZZI − IIZZ − IZZZ þ ZZZI: ðD2Þ

This can be verified by using the identities that are shown
in Fig. 24 to simplify the circuits formed by conjugating
each Pauli string by G. As an example, the diagonalization
of XXYY is displayed in Fig. 25. The first equality uses
Y ¼ iZX, and the second equality uses the X circuit
identity to move all Xs past the CNOTs. The third equality
moves the Zs past the controls of the CNOTs and uses the Z

FIG. 23. Iterative convergence of the energy, masses, and wave functions for the three lowest-lying states in the B ¼ 0 sector of
1þ 1D QCD with Nf ¼ 2 and m ¼ g ¼ L ¼ 1: vacuum (left), σ-meson (center), and π-meson (right). Compared to Fig. 7, the exact
wave functions are used when projecting the Hamiltonian to study the excited states.

FIG. 24. The X and Z circuit identities.
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circuit identity. The other Pauli strings are diagonalized in a
similar manner.
It is also straightforward to show that, for example,

G†ðIZZI þ IZIZ þ ZIIZÞG ¼ IZII þ IIIZ þ ZIII:

ðD3Þ
In general, a ZZ in the computational basis becomes a
single Z in the GHZ basis if the state-preparation circuit has
a CNOT that connects the original two Zs. The two GHZ
state-preparation circuits, G and G̃, were chosen so that
all nine of the ZZ terms in Eq. (7) are mapped to single
qubit rotations. Once in the GHZ basis, the diagonal
unitaries are performed, e.g., expð−iIZZZÞ. They are
arranged to minimize the number of CNOTs required,
and the optimal circuit layouts are shown in Fig. 13.

APPENDIX E: COMPLETE CIRCUITS

This appendix provides the complete set of circuits
required to implement one Trotter step for Nf ¼ 1 and
Nf ¼ 2 QCD with L ¼ 1. The composite circuit for
Nf ¼ 1 is shown in Fig. 26 where, by ordering Uel before
Ukin, the CNOTs highlighted in blue cancel. The composite
circuit for Nf ¼ 2 is shown in Fig. 27, where the ordering
in the Trotterization is Um followed by Ukin and then
by Uel.

APPENDIX F: ENERGY DECOMPOSITION
ASSOCIATED WITH TIME EVOLUTION

FROM THE TRIVIAL VACUUM

This appendix shows, in Fig. 28, the time evolution of
the decomposition of the expectation value of the
Hamiltonian starting with the trivial vacuum at t ¼ 0 for
Nf ¼ 2 QCD with m ¼ g ¼ L ¼ 1. Notice that the sum of

all three terms equals zero for all times as required by
energy conservation and that the period of oscillations is the
same as the period of the persistence amplitude shown
in Fig. 14.

APPENDIX G: DETAILS ON ONE FIRST-ORDER
TROTTER STEP OF Nf = 1 QCD WITH L= 1

This appendix discusses the theoretical expectations for
one step of first-order Trotter time evolution for Nf ¼ 1

QCD with L ¼ 1. The time evolution operator is decom-
posed intoU1ðtÞ ¼ UkinðtÞUelðtÞUmðtÞwhere the subscript
“1” is to denote first-order Trotter. Both the trivial vacuum-
to-vacuum and trivial vacuum-to-qrq̄r probabilities involve
measurements in the computational basis where UmðtÞ and
UelðtÞ are diagonal and have no effect. Thus, the time-
evolution operator is effectively U1ðtÞ ¼ UkinðtÞ, which is
exact (no Trotter errors) over a single spatial site. The trivial
vacuum-to-vacuum, trivial vacuum-to-qrq̄r, and trivial
vacuum-to-BB̄ probabilities are found to be

jhΩ0je−iHkintjΩ0ij2 ¼ cos6ðt=2Þ;
jhqrq̄rje−iHkintjΩ0ij2 ¼ cos4ðt=2Þsin2ðt=2Þ;
jhBB̄je−iHkintjΩ0ij2 ¼ sin6ðt=2Þ: ðG1Þ

For large periods of the evolution, the wave function is
dominated by BB̄ as shown in Fig. 29. Exact time
evolution, on the other hand, has a small probability of
BB̄, which suggests that detecting BB̄ could lead to an
additional way to mitigate Trotter errors. It is interesting
that the kinetic term alone favors transitioning the trivial
vacuum into color singlets on each site. This same behavior
holds for Nf ¼ 2 where the dominant transition is
to ΔΔΔΔ.

FIG. 25. The diagonalization of XXYY via a GHZ state-preparation circuit.

FIG. 26. The complete circuit that implements a single Trotter step for Nf ¼ 1 QCD with L ¼ 1.
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FIG. 27. The complete circuit that implements a single Trotter step for Nf ¼ 2 QCD with L ¼ 1.
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APPENDIX H: SUPPLEMENTARY DATA

This appendix contains the tabulated data used to
produce the figures in the text. The splitting between the
π- and σ-meson is given in Table IX. The decomposition of
the vacuum energy, hadronic masses, and deuteron binding
energy is given in Table X. The binding energy of the
deuteron is given in Table XI.
The linear entropy between quarks and antiquarks in the

vacuum, the σ- and π-meson, and the Δ are given in
Table XII. The quark occupation (total number of quarks
plus antiquarks) in the σ- and π-mesons is given in
Table XIII.
The trivial vacuum-to-vacuum probabilities, as obtained

by CirC and Qiskit, are given in Table XIV. The trivial
vacuum-to-drd̄r probabilities, as obtained by CirC and
Qiskit, are given in Table XV. The required NTrott for a
ϵTrott < 0.1 in the trivial vacuum-to-vacuum probability is

FIG. 28. The time evolution of the decomposition of the energy starting from the trivial vacuum starting at t ¼ 0 forNf ¼ 2QCD with
m ¼ g ¼ L ¼ 1.

FIG. 29. The trivial vacuum-to-BB̄ probability for 1þ 1DQCD
with m ¼ g ¼ L ¼ 1. Shown are the results obtained from exact
exponentiation of the Hamiltonian (dashed red curve) and from
the Trotterized implementation with 1, 2, and 3 Trotter steps.
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TABLE IX. The mass splitting between the σ- and π-mesons
for m ¼ 1 and L ¼ 1, 2.

Mπ −Mσ

g L ¼ 1 L ¼ 2 g L ¼ 1 L ¼ 2

0 0.0 0.0 2.1 0.1085 0.09954
0.1 2.373 × 10−6 1.364 × 10−6 2.2 0.1227 0.1133
0.2 0.0000374 0.00002335 2.3 0.1374 0.1287
0.3 0.0001847 0.0001285 2.4 0.1482 0.1431
0.4 0.0005637 0.0004306 2.5 0.1468 0.1475
0.5 0.001317 0.001066 2.6 0.1321 0.1352
0.6 0.002589 0.002163 2.7 0.1131 0.1156
0.7 0.004508 0.00383 2.8 0.09662 0.09813
0.8 0.007173 0.006158 2.9 0.08372 0.08456
0.9 0.01064 0.009207 3.0 0.07375 0.07422
1.0 0.01493 0.01301 3.1 0.06592 0.06617
1.1 0.02002 0.01755 3.2 0.05961 0.05975
1.2 0.02586 0.02281 3.3 0.05442 0.05448
1.3 0.0324 0.02874 3.4 0.05005 0.05008
1.4 0.03956 0.03529 3.5 0.04631 0.04632
1.5 0.04731 0.04243 3.6 0.04307 0.04306
1.6 0.05562 0.05011 3.7 0.04022 0.04021
1.7 0.0645 0.05837 3.8 0.0377 0.03769
1.8 0.07405 0.06725 3.9 0.03545 0.03543
1.9 0.0844 0.0769 4.0 0.03342 0.0334
2.0 0.0958 0.08755

TABLE X. The decomposition of vacuum energy (EΩ), the
masses of the lightest hadrons (Mσ , Mπ and MΔ), and the
deuteron binding energy (BΔΔ) into contributions from the mass,
kinetic, and chromo-electric field terms in the Hamiltonian for
L ¼ 2 and m ¼ g ¼ 1.

Decomposition of the vacuum energy, hadronic masses, and
deuteron binding energy

EΩ Mσ Mπ MΔ BΔΔ

hHmi 1.0566 2.056 2.032 2.855 −0.001596
hHkini −2.975 0.1271 0.1425 0.4182 0.002399
hHeli 0.3374 0.5401 0.5609 −0.03099 −0.0003429

TABLE XI. The binding energy of the deuteron, BΔΔ, for
m ¼ 1 and L ¼ 2.

g BΔΔ g BΔΔ

0 0.0 1.6 0.0005388
0.1 0.00005099 1.7 0.000541
0.2 0.0006768 1.8 0.0005332
0.3 0.002351 1.9 0.0005172
0.4 0.003947 2.0 0.0004948
0.5 0.003905 2.1 0.0004677
0.6 0.002716 2.2 0.0004378
0.7 0.001592 2.3 0.0004063

(Table continued)

TABLE XII. The linear entropy between quarks and antiquarks
in the vacuum, jΔI3¼3=2i, jσi and jπI3¼1i for m ¼ L ¼ 1.

The linear entropy between quarks and antiquarks

g jΩi jσi jπI3¼1i jΔI3¼3=2i
0.1 0.4668 0.9115 0.7786 0.2698
0.2 0.4617 0.9124 0.7786 0.2663
0.3 0.4532 0.9137 0.7786 0.2605
0.4 0.4416 0.9154 0.7786 0.2527
0.5 0.4271 0.9174 0.7787 0.243
0.6 0.41 0.9194 0.7787 0.2318
0.7 0.3908 0.9214 0.7789 0.2194
0.8 0.3699 0.9232 0.7791 0.206
0.9 0.3478 0.9248 0.7794 0.1921
1.0 0.3248 0.926 0.7798 0.1779
1.1 0.3015 0.9269 0.7803 0.1638
1.2 0.2784 0.9274 0.7811 0.15
1.3 0.2557 0.9277 0.7821 0.1367
1.4 0.2339 0.9277 0.7834 0.1241
1.5 0.213 0.9277 0.7851 0.1123
1.6 0.1935 0.9278 0.7875 0.1014
1.7 0.1752 0.928 0.7906 0.0913
1.8 0.1584 0.9287 0.7949 0.0821
1.9 0.1429 0.93 0.801 0.07375
2.0 0.1288 0.9322 0.8097 0.06622
2.1 0.116 0.9355 0.8225 0.05944
2.2 0.1045 0.9398 0.8416 0.05337
2.3 0.09411 0.9434 0.8675 0.04794
2.4 0.08479 0.9402 0.8889 0.04309
2.5 0.07643 0.9212 0.8731 0.03876
2.6 0.06896 0.8872 0.8209 0.03491
2.7 0.06227 0.8526 0.7729 0.03148
2.8 0.05629 0.8263 0.7414 0.02842
2.9 0.05095 0.8081 0.7216 0.02569
3.0 0.04617 0.7956 0.7086 0.02326
3.1 0.0419 0.7867 0.6994 0.02108
3.2 0.03807 0.7803 0.6928 0.01914
3.3 0.03464 0.7754 0.6877 0.01741
3.4 0.03157 0.7716 0.6837 0.01586
3.5 0.02881 0.7686 0.6805 0.01446
3.6 0.02633 0.7662 0.6779 0.01321
3.7 0.02409 0.7642 0.6757 0.01209
3.8 0.02208 0.7625 0.6739 0.01107

(Table continued)

TABLE XI. (Continued)

g BΔΔ g BΔΔ

0.8 0.0009178 2.4 0.0003745
0.9 0.0005902 2.5 0.0003432
1.0 0.0004599 2.6 0.0003129
1.1 0.000429 2.7 0.0002842
1.2 0.000443 2.8 0.0002574
1.3 0.0004727 2.9 0.0002324
1.4 0.0005029 3.0 0.0002095
1.5 0.000526
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TABLE XII. (Continued)

The linear entropy between quarks and antiquarks

g jΩi jσi jπI3¼1i jΔI3¼3=2i
3.9 0.02027 0.7611 0.6723 0.01016
4.0 0.01863 0.7599 0.671 0.009334
4.1 0.01714 0.7588 0.6699 0.008589
4.2 0.0158 0.7579 0.6689 0.007913
4.3 0.01458 0.7572 0.668 0.007301
4.4 0.01347 0.7565 0.6673 0.006745
4.5 0.01246 0.7559 0.6666 0.006239
4.6 0.01154 0.7553 0.666 0.005779
4.7 0.01071 0.7549 0.6655 0.005359
4.8 0.00994 0.7545 0.665 0.004975
4.9 0.00924 0.7541 0.6646 0.004625
5.0 0.0086 0.7538 0.6642 0.004304
5.1 0.008012 0.7535 0.6639 0.004009
5.2 0.007473 0.7532 0.6636 0.003739
5.3 0.006978 0.753 0.6633 0.003491
5.4 0.006522 0.7527 0.6631 0.003263
5.5 0.006101 0.7525 0.6629 0.003052
5.6 0.005714 0.7524 0.6627 0.002858
5.7 0.005356 0.7522 0.6625 0.002679
5.8 0.005026 0.752 0.6623 0.002514
5.9 0.00472 0.7519 0.6621 0.002361
6.0 0.004436 0.7518 0.662 0.002219

TABLE XIII. The expectation value of quark occupation in the
jσi and jπI3¼1i for m ¼ L ¼ 1.

The quark occupation

g jσi jπI3¼1i g jσi jπI3¼1i
0 2.422 2.422 3.1 5.884 5.915
0.1 2.422 2.422 3.2 5.913 5.936
0.2 2.422 2.422 3.3 5.934 5.95
0.3 2.423 2.422 3.4 5.948 5.961
0.4 2.424 2.423 3.5 5.959 5.968
0.5 2.426 2.423 3.6 5.967 5.974
0.6 2.429 2.423 3.7 5.973 5.979
0.7 2.434 2.424 3.8 5.978 5.982
0.8 2.44 2.425 3.9 5.981 5.985
0.9 2.449 2.427 4.0 5.984 5.988
1.0 2.46 2.43 4.1 5.987 5.989
1.1 2.473 2.434 4.2 5.989 5.991
1.2 2.489 2.439 4.3 5.99 5.992
1.3 2.507 2.445 4.4 5.992 5.993
1.4 2.529 2.454 4.5 5.993 5.994
1.5 2.555 2.466 4.6 5.994 5.995
1.6 2.586 2.483 4.7 5.995 5.996
1.7 2.626 2.505 4.8 5.995 5.996
1.8 2.676 2.537 4.9 5.996 5.997
1.9 2.744 2.584 5.0 5.996 5.997
2.0 2.839 2.655 5.1 5.997 5.997
2.1 2.979 2.769 5.2 5.997 5.998
2.2 3.193 2.966 5.3 5.997 5.998

(Table continued)

TABLE XIII. (Continued)

The quark occupation

g jσi jπI3¼1i g jσi jπI3¼1i
2.3 3.524 3.318 5.4 5.998 5.998
2.4 4.004 3.911 5.5 5.998 5.998
2.5 4.579 4.66 5.6 5.998 5.999
2.6 5.091 5.249 5.7 5.998 5.999
2.7 5.439 5.577 5.8 5.999 5.999
2.8 5.646 5.743 5.9 5.999 5.999
2.9 5.766 5.832 6.0 5.999 5.999
3.0 5.838 5.883

TABLE XIV. The trivial vacuum-to-vacuum probabilities for
Nf ¼ 2 andm ¼ g ¼ L ¼ 1. Results are shown for 1, 2, 3, 5, and
10 Trotter steps.

The trivial vacuum-to-vacuum probabilities

t 1 Step 2 Steps 3 Steps 5 Steps 10 Steps

0 1 1 1 1 1
0.1 0.9851 0.9852 0.9852 0.9852 0.9852
0.2 0.9417 0.9427 0.9429 0.943 0.943
0.3 0.8733 0.878 0.8789 0.8793 0.8795
0.4 0.7854 0.799 0.8014 0.8027 0.8032
0.5 0.6846 0.7141 0.7193 0.7219 0.723
0.6 0.5779 0.6309 0.6401 0.6447 0.6466
0.7 0.4721 0.5554 0.5697 0.5769 0.5799
0.8 0.3728 0.4914 0.5118 0.522 0.5263
0.9 0.2841 0.4405 0.4678 0.4815 0.4872
1.0 0.2087 0.4032 0.438 0.4556 0.4629
1.1 0.1474 0.3787 0.422 0.4438 0.4529
1.2 0.0999 0.3658 0.4188 0.4454 0.4565
1.3 0.0648 0.3634 0.4275 0.4596 0.4729
1.4 0.0401 0.3699 0.4473 0.4855 0.5012
1.5 0.0235 0.3843 0.4775 0.5225 0.5408
1.6 0.0131 0.4053 0.5174 0.5696 0.5904
1.7 0.0068 0.4316 0.566 0.6252 0.6483
1.8 0.0033 0.4616 0.6218 0.6873 0.712
1.9 0.0015 0.4935 0.6827 0.7529 0.7782
2.0 0.0006 0.5253 0.7458 0.8179 0.8423
2.1 0.0002 0.5546 0.8075 0.8775 0.8992
2.2 0.0001 0.579 0.8634 0.9262 0.9433
2.3 0.0000 0.5965 0.9084 0.9583 0.9691
2.4 0.0000 0.6055 0.9374 0.969 0.9727
2.5 0.0000 0.6055 0.9453 0.9549 0.9518
2.6 0.0000 0.5965 0.9281 0.915 0.907
2.7 0.0000 0.5798 0.8839 0.8513 0.8418
2.8 0.0000 0.5571 0.8129 0.7688 0.7624
2.9 0.0000 0.5305 0.7187 0.6748 0.6766
3.0 0.0000 0.5026 0.6077 0.5778 0.5925
3.1 0.0000 0.4756 0.4886 0.4865 0.5176
3.2 0.0000 0.4518 0.3708 0.408 0.4581
3.3 0.0000 0.4329 0.2629 0.3477 0.4179
3.4 0.0000 0.4204 0.1713 0.3087 0.3991
3.5 0.0000 0.4152 0.0997 0.2921 0.4017

(Table continued)
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TABLE XIV. (Continued)

The trivial vacuum-to-vacuum probabilities

t 1 Step 2 Steps 3 Steps 5 Steps 10 Steps

3.6 0.0000 0.4179 0.0488 0.2967 0.424
3.7 0.0000 0.4283 0.0175 0.3196 0.4626
3.8 0.0000 0.4457 0.0035 0.3561 0.5133
3.9 0.0000 0.4689 0.0039 0.4009 0.5714
4.0 0.0000 0.4964 0.0158 0.4485 0.6323
4.1 0.0001 0.5265 0.0363 0.4947 0.6925
4.2 0.0003 0.5578 0.062 0.5373 0.7496
4.3 0.0007 0.5891 0.0893 0.576 0.8015
4.4 0.0017 0.6198 0.1144 0.6125 0.8467
4.5 0.0038 0.6498 0.1339 0.6489 0.8833
4.6 0.0077 0.6794 0.1454 0.687 0.909
4.7 0.0145 0.709 0.148 0.7269 0.9213
4.8 0.0258 0.7389 0.1422 0.7671 0.9177
4.9 0.0436 0.7689 0.1295 0.8042 0.8969
5.0 0.0699 0.7986 0.1125 0.8339 0.8586

TABLE XV. The trivial vacuum-to-drd̄r probabilities for Nf ¼
2 and m ¼ g ¼ L ¼ 1. Results are shown for 1, 2, 3, 5, and 10
Trotter steps.

The trivial vacuum-to-drd̄r probabilities

t 1 Step 2 Steps 3 Steps 5 Steps 10 Steps

0 0 0 0 0 0
0.1 0.0025 0.0025 0.0025 0.0025 0.0025
0.2 0.0095 0.0093 0.0093 0.0093 0.0093
0.3 0.0199 0.0192 0.0191 0.019 0.019
0.4 0.0323 0.0304 0.0301 0.0299 0.0298
0.5 0.0446 0.0411 0.0405 0.0401 0.04
0.6 0.0553 0.05 0.049 0.0486 0.0483
0.7 0.0629 0.0565 0.0553 0.0546 0.0543
0.8 0.0666 0.0605 0.0591 0.0583 0.058
0.9 0.0663 0.0625 0.061 0.0601 0.0597
1.0 0.0623 0.0629 0.0614 0.0605 0.0601
1.1 0.0554 0.0623 0.0608 0.0598 0.0594
1.2 0.0468 0.0612 0.0597 0.0586 0.058

(Table continued)

TABLE XV. (Continued)

The trivial vacuum-to-drd̄r probabilities

t 1 Step 2 Steps 3 Steps 5 Steps 10 Steps

1.3 0.0374 0.0599 0.0581 0.0567 0.0561
1.4 0.0284 0.0585 0.0561 0.0543 0.0535
1.5 0.0204 0.0569 0.0537 0.0512 0.0501
1.6 0.0139 0.0552 0.0505 0.0472 0.0458
1.7 0.0088 0.0531 0.0464 0.0422 0.0403
1.8 0.0053 0.0505 0.0414 0.0361 0.0339
1.9 0.0029 0.0473 0.0353 0.029 0.0265
2.0 0.0015 0.0434 0.0283 0.0213 0.0188
2.1 0.0007 0.039 0.0208 0.0137 0.0113
2.2 0.0003 0.0341 0.0134 0.007 0.0051
2.3 0.0001 0.0291 0.0069 0.0022 0.0012
2.4 0.0000 0.0239 0.0024 0.0005 0.0006
2.5 0.0000 0.0189 0.0008 0.0025 0.0036
2.6 0.0000 0.0142 0.0031 0.0085 0.0105
2.7 0.0000 0.0099 0.0098 0.0183 0.0206
2.8 0.0000 0.0061 0.0204 0.0308 0.0326
2.9 0.0000 0.0031 0.0339 0.0444 0.0452
3.0 0.0000 0.0011 0.0482 0.0574 0.0568
3.1 0.0000 0.0001 0.061 0.0686 0.0663
3.2 0.0000 0.0002 0.0701 0.0768 0.073
3.3 0.0000 0.0012 0.0741 0.0818 0.0766
3.4 0.0000 0.003 0.0728 0.0834 0.0769
3.5 0.0000 0.0052 0.0673 0.082 0.0741
3.6 0.0000 0.0074 0.0594 0.0777 0.0687
3.7 0.0000 0.0094 0.0508 0.0712 0.0613
3.8 0.0000 0.0108 0.0429 0.0632 0.0527
3.9 0.0000 0.0117 0.0366 0.0546 0.0439
4.0 0.0001 0.0121 0.0315 0.0467 0.0356
4.1 0.0003 0.0122 0.0275 0.0401 0.0283
4.2 0.0008 0.0121 0.024 0.0351 0.0221
4.3 0.0017 0.0121 0.0209 0.0316 0.0167
4.4 0.0033 0.0123 0.0183 0.0289 0.012
4.5 0.0058 0.0126 0.0166 0.0262 0.008
4.6 0.0096 0.013 0.0162 0.0229 0.0049
4.7 0.0149 0.0132 0.0169 0.0188 0.003
4.8 0.0217 0.0131 0.0185 0.0142 0.003
4.9 0.0299 0.0127 0.0207 0.0097 0.0052
5.0 0.039 0.0119 0.0228 0.0062 0.0099
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TABLE XVI. The required NTrott for a ϵTrott < 0.1 in the trivial vacuum-to-vacuum probability.

Required number of Trotter steps, NTrott

t NTrott t NTrott t NTrott t NTrott t NTrott t NTrott t NTrott t NTrott

0 1 25 95 50 271 75 521 100 740 125 1080 150 1417 175 1967
0.5 1 25.5 95 50.5 271 75.5 521 100.5 740 125.5 1080 150.5 1598 175.5 1967
1 3 26 103 51 271 76 521 101 740 126 1113 151 1598 176 1967
1.5 4 26.5 103 51.5 302 76.5 521 101.5 740 126.5 1113 151.5 1598 176.5 1967
2 4 27 114 52 302 77 521 102 794 127 1113 152 1598 177 1967
2.5 4 27.5 114 52.5 302 77.5 521 102.5 794 127.5 1224 152.5 1598 177.5 1967
3 4 28 114 53 302 78 521 103 868 128 1224 153 1598 178 1967
3.5 10 28.5 121 53.5 302 78.5 521 103.5 868 128.5 1224 153.5 1598 178.5 1967
4 10 29 130 54 302 79 535 104 868 129 1224 154 1598 179 2023
4.5 10 29.5 130 54.5 335 79.5 535 104.5 868 129.5 1224 154.5 1598 179.5 2023
5 10 30 130 55 335 80 597 105 868 130 1224 155 1598 180 2023
5.5 10 30.5 130 55.5 335 80.5 597 105.5 868 130.5 1224 155.5 1598 180.5 2023
6 19 31 130 56 335 81 597 106 868 131 1224 156 1598 181 2023
6.5 19 31.5 159 56.5 335 81.5 597 106.5 868 131.5 1224 156.5 1598 181.5 2023
7 19 32 159 57 363 82 597 107 868 132 1224 157 1598 182 2023
7.5 19 32.5 159 57.5 363 82.5 597 107.5 868 132.5 1224 157.5 1598 182.5 2023
8 19 33 159 58 363 83 597 108 868 133 1224 158 1598 183 2023
8.5 27 33.5 159 58.5 363 83.5 597 108.5 868 133.5 1224 158.5 1598 183.5 2023
9 27 34 167 59 363 84 597 109 896 134 1224 159 1598 184 2023
9.5 27 34.5 167 59.5 363 84.5 613 109.5 896 134.5 1224 159.5 1598 184.5 2023
10 27 35 167 60 363 85 613 110 896 135 1224 160 1598 185 2137
10.5 29 35.5 167 60.5 363 85.5 613 110.5 896 135.5 1224 160.5 1598 185.5 2137
11 34 36 167 61 363 86 631 111 896 136 1224 161 1598 186 2137
11.5 34 36.5 167 61.5 370 86.5 631 111.5 896 136.5 1279 161.5 1598 186.5 2137
12 34 37 167 62 370 87 631 112 896 137 1279 162 1719 187 2137
12.5 34 37.5 182 62.5 370 87.5 631 112.5 896 137.5 1279 162.5 1719 187.5 2203
13 42 38 182 63 397 88 631 113 896 138 1279 163 1719 188 2203
13.5 42 38.5 186 63.5 397 88.5 631 113.5 975 138.5 1279 163.5 1719 188.5 2203
14 42 39 186 64 397 89 650 114 975 139 1356 164 1719 189 2203
14.5 42 39.5 186 64.5 397 89.5 650 114.5 975 139.5 1356 164.5 1747 189.5 2203
15 42 40 197 65 397 90 650 115 975 140 1356 165 1747 190 2203
15.5 51 40.5 197 65.5 397 90.5 692 115.5 975 140.5 1356 165.5 1747 190.5 2203
16 51 41 197 66 453 91 692 116 1000 141 1356 166 1747 191 2203
16.5 51 41.5 197 66.5 453 91.5 705 116.5 1000 141.5 1356 166.5 1747 191.5 2203
17 51 42 197 67 453 92 705 117 1000 142 1356 167 1747 192 2203
17.5 67 42.5 197 67.5 453 92.5 705 117.5 1000 142.5 1356 167.5 1798 192.5 2203
18 67 43 248 68 453 93 707 118 1000 143 1356 168 1798 193 2203
18.5 67 43.5 248 68.5 475 93.5 707 118.5 1000 143.5 1356 168.5 1798 193.5 2203
19 67 44 248 69 475 94 707 119 1000 144 1356 169 1798 194 2203
19.5 67 44.5 248 69.5 475 94.5 707 119.5 1000 144.5 1417 169.5 1798 194.5 2203
20 85 45 248 70 475 95 707 120 1000 145 1417 170 1798 195 2203
20.5 85 45.5 264 70.5 475 95.5 707 120.5 1000 145.5 1417 170.5 1798 195.5 2203
21 85 46 264 71 475 96 707 121 1000 146 1417 171 1798 196 2203
21.5 85 46.5 264 71.5 475 96.5 707 121.5 1075 146.5 1417 171.5 1798 196.5 2273
22 85 47 264 72 475 97 707 122 1075 147 1417 172 1798 197 2273
22.5 95 47.5 264 72.5 475 97.5 735 122.5 1075 147.5 1417 172.5 1798 197.5 2273
23 95 48 264 73 475 98 735 123 1075 148 1417 173 1798 198 2273
23.5 95 48.5 264 73.5 475 98.5 740 123.5 1075 148.5 1417 173.5 1967 198.5 2273
24 95 49 264 74 475 99 740 124 1075 149 1417 174 1967 199 2352
24.5 95 49.5 264 74.5 521 99.5 740 124.5 1075 149.5 1417 174.5 1967 199.5 2352
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TABLE XVII. The required NTrott for a ϵTrott < 0.1 in the trivial
vacuum-to-drd̄r probability.

Required number of Trotter steps, NTrott

t NTrott t NTrott t NTrott t NTrott

0 1 25 243 50 945 75 1706
0.5 2 25.5 337 50.5 945 75.5 1706
1 2 26 337 51 945 76 1739
1.5 3 26.5 337 51.5 945 76.5 1739
2 7 27 337 52 945 77 1739
2.5 10 27.5 337 52.5 945 77.5 1739
3 10 28 337 53 945 78 1739
3.5 10 28.5 337 53.5 945 78.5 1739
4 12 29 337 54 945 79 1739
4.5 24 29.5 337 54.5 945 79.5 1739
5 24 30 337 55 945 80 1739
5.5 24 30.5 337 55.5 945 80.5 1739
6 24 31 337 56 945 81 1739
6.5 32 31.5 337 56.5 945 81.5 1739
7 32 32 384 57 945 82 1739
7.5 32 32.5 384 57.5 1168 82.5 1739
8 32 33 384 58 1168 83 2064
8.5 33 33.5 384 58.5 1168 83.5 2064
9 72 34 384 59 1168 84 2064
9.5 72 34.5 709 59.5 1168 84.5 2064
10 72 35 709 60 1285 85 2064
10.5 72 35.5 709 60.5 1285 85.5 2064
11 72 36 709 61 1285 86 2064
11.5 98 36.5 709 61.5 1285 86.5 2064
12 98 37 709 62 1285 87 2064
12.5 98 37.5 709 62.5 1285 87.5 2064
13 98 38 709 63 1285 88 2064
13.5 98 38.5 709 63.5 1285 88.5 2064
14 148 39 709 64 1285 89 2064
14.5 148 39.5 709 64.5 1285 89.5 2064
15 148 40 709 65 1285 90 2064
15.5 148 40.5 709 65.5 1285 90.5 2064
16 148 41 709 66 1285 91 2064
16.5 148 41.5 709 66.5 1285 91.5 2064
17 148 42 709 67 1285 92 2064
17.5 148 42.5 709 67.5 1285 92.5 2064
18 148 43 709 68 1285 93 2064
18.5 148 43.5 709 68.5 1285 93.5 2064
19 148 44 709 69 1285 94 2064
19.5 148 44.5 709 69.5 1285 94.5 2590
20 148 45 709 70 1285 95 2590
20.5 233 45.5 709 70.5 1285 95.5 2590
21 233 46 709 71 1285 96 2590
21.5 233 46.5 709 71.5 1706 96.5 2590
22 233 47 709 72 1706 97 2590
22.5 233 47.5 709 72.5 1706 97.5 2590
23 243 48 709 73 1706 98 2590
23.5 243 48.5 945 73.5 1706 98.5 2590
24 243 49 945 74 1706 99 2780
24.5 243 49.5 945 74.5 1706 99.5 2780

TABLE XVIII. Decomposition of the energy starting from the
trivial vacuum at t ¼ 0.

Decomposition of the energy starting from the trivial vacuum

t hHmi hHkini hHeli
0 0 0 0
0.3 0.254 −0.3369 0.08281
0.6 0.8455 −1.104 0.2584
0.9 1.393 −1.781 0.3879
1.2 1.575 −1.974 0.3997
1.5 1.31 −1.625 0.3151
1.8 0.769 −0.9532 0.1842
2.1 0.2684 −0.3282 0.05983
2.4 0.1081 −0.1256 0.01747
2.7 0.3939 −0.5129 0.119
3.0 0.9349 −1.245 0.31
3.3 1.359 −1.788 0.4285
3.6 1.401 −1.788 0.3873
3.9 1.079 −1.335 0.2565
4.2 0.6237 −0.7542 0.1305
4.5 0.3094 −0.3586 0.0492

TABLE XIX. Trivial vacuum to BB̄ probability for m ¼ g ¼
L ¼ Nf ¼ 1.

Trivial vacuum to BB̄ probability

t 1 Step 2 Steps 3 Steps Exact

0 0 0 0 0
0.1 0.0000 0.0000 0.0000 0.0000
0.2 0.0000 0.0000 0.0000 0.0000
0.3 0.0000 0.0000 0.0000 0.0000
0.4 0.0001 0.0001 0.0001 0.0001
0.5 0.0002 0.0002 0.0002 0.0002
0.6 0.0007 0.0005 0.0005 0.0005
0.7 0.0016 0.0011 0.001 0.001
0.8 0.0035 0.0021 0.0019 0.0018
0.9 0.0068 0.0036 0.0032 0.0029
1.0 0.0121 0.0055 0.0047 0.0042
1.1 0.0204 0.0079 0.0064 0.0055
1.2 0.0324 0.0104 0.0081 0.0067
1.3 0.0491 0.013 0.0095 0.0075
1.4 0.0715 0.0154 0.0105 0.0079
1.5 0.1003 0.0175 0.0109 0.0078
1.6 0.1363 0.0192 0.0108 0.0072
1.7 0.1798 0.0206 0.0101 0.0062
1.8 0.231 0.0218 0.0092 0.0052
1.9 0.2897 0.023 0.008 0.0041
2.0 0.355 0.0241 0.0069 0.0033
2.1 0.426 0.0252 0.0059 0.0025
2.2 0.501 0.026 0.005 0.002
2.3 0.5783 0.0263 0.0042 0.0015

(Table continued)
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given in Table XVI. The required NTrott for a ϵTrott < 0.1
in the trivial vacuum-to-drd̄r probability is given in
Table XVII. The decomposition of the energy, starting

from trivial vacuum at t ¼ 0, is given in Table XVIII.
The trivial vacuum to BB̄ probabilities are given in
Table XIX.
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TABLE XIX. (Continued)

Trivial vacuum to BB̄ probability

t 1 Step 2 Steps 3 Steps Exact

2.4 0.6555 0.0257 0.0036 0.0011
2.5 0.7304 0.0239 0.003 0.0007
2.6 0.8003 0.0208 0.0026 0.0004
2.7 0.8629 0.0166 0.0024 0.0001
2.8 0.9158 0.0116 0.0025 0.0000
2.9 0.9571 0.0066 0.0029 0.0000
3.0 0.9851 0.0025 0.0036 0.0002
3.1 0.9987 0.0002 0.0045 0.0005
3.2 0.9974 0.0005 0.0057 0.0008
3.3 0.9813 0.0037 0.007 0.0011
3.4 0.951 0.01 0.0087 0.0014
3.5 0.9077 0.0189 0.0111 0.0016
3.6 0.853 0.0295 0.0148 0.0019

(Table continued)

TABLE XIX. (Continued)

Trivial vacuum to BB̄ probability

t 1 Step 2 Steps 3 Steps Exact

3.7 0.789 0.0409 0.0205 0.0023
3.8 0.7181 0.0517 0.0293 0.0027
3.9 0.6427 0.061 0.042 0.0032
4.0 0.5652 0.0677 0.0592 0.0036
4.1 0.4882 0.0714 0.0814 0.004
4.2 0.4137 0.0719 0.1085 0.0043
4.3 0.3436 0.0693 0.14 0.0045
4.4 0.2793 0.0641 0.1749 0.0046
4.5 0.2219 0.057 0.2117 0.0047
4.6 0.172 0.0488 0.2489 0.0049
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