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We present the first theoretical prediction of the partial decay width of the process J=ψ → γη1, where η1
is the lightest flavor singlet 1−þ hybrid meson. Our Nf ¼ 2 lattice QCD calculation at mπ ≈ 350 MeV
results in the η1 mass mη1 ¼ 2.23ð4Þ GeV and the related electromagnetic form factors
M1ð0Þ ¼ −4.73ð74Þ MeV, E2ð0Þ ¼ 1.18ð22Þ MeV, which give ΓðJ=ψ → γη1Þ ¼ 2.04ð61Þ eV. These
form factors can be applied to the physical Nf ¼ 3 case, where there should be two hybrid mass eigenstates

ηðlÞ1 and ηðhÞ1 due to the singlet-octet mixing. It is shown that the ratio of the branching fractions BrðJ=ψ →

γηðl;hÞ1 → γηη0Þ is inversely proportional to the ratio of the total widths of ηðl;hÞ1 . Given our results and the

mixing angle derived by a previous lattice study, whether η1ð1855Þ is assigned to be ηð1Þ1 or ηðhÞ1 , the
observed branching fraction J=ψ → η1ð1855Þ → γηη0 implies a very large coupling of the octet η1 to ηη0.
This should be investigated in future studies.

DOI: 10.1103/PhysRevD.107.054511

I. INTRODUCTION

Gluons and quarks are fundamental degrees of freedom
of quantum chromodynamics (QCD). It is expected that
gluons can also serve as building blocks to form hadrons. In
the quark model picture, the hadrons made up of valence
quarks and valence gluons are usually called hybrids. The
hybrid mesons with JPC ¼ 1−þ are most intriguing since
this quantum number is prohibited for qq̄ states of
quark model. Up to now, there are three experimental
candidates for IGJPC ¼ 1−1−þ light hybrid mesons,
namely, π1ð1400Þ [1], π1ð1600Þ [2–4], and π1ð2105Þ [2]
(details can be found in the latest review [5] and the
references therein), while lattice QCD studies [6–13]
predict that the mass of isovector 1−þ hybrid meson has
a mass around 1.7–2.2 GeV for light quark masses in a
range up to the strange quark mass. Very recently, the
BESIII Collaboration reported the first observation of a

IGJPC ¼ 0þ1−þ structure η1ð1855Þ through the partial
wave analysis of the J=ψ → γηη0 process [14,15]. The
resonance parameters of η1ð1855Þ are determined to be
mη1 ¼ 1855� 9þ6

−1 MeV and Γη1 ¼ 188� 18þ3
−8 MeV, and

the branching fraction BrðJ=ψ → γη1ð1855Þ → γηη0Þ is
ð2.70� 0.41þ0.16

−0.35Þ × 10−6. There have been several phe-
nomenological studies on the properties of η1ð1855Þ by
assuming it to be an isoscalar light hybrid [16–18], a
KK̄1ð1400Þ molecular state [19,20], or a tetraquark state
[21,22]. As far as the hybrid assignment is concerned,
there should be two isoscalar 1−þ mesons in the flavor
SU(3) nonet, and a Nf ¼ 2þ 1 lattice QCD study [12]
does observe two states of masses around 2.16 GeV and
2.33 GeV, respectively, in the 0þ1−þ channel (note the
light quark mass here corresponds to a pion mass
mπ ∼ 390 MeV). It is noticed that BESIII also reports a
1−þ state around 2.2 GeV in the same channel with
statistical significance 4.4σ [15].
Since η1ð1855Þ is observed in the J=ψ radiative decay,

with regard to the possible hybrid assignment, it is desirable
to know the production property of the 1−þ hybrid meson
(named as η1 also) in this process, which will provide
important information to the nature of η1ð1855Þ. This can
be investigated in the lattice QCD formalism through the
approach similar to the cases of qq̄ mesons [23] and
glueballs [24–26] in J=ψ radiative decays. The key task
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is to extract the related electromagnetic multipole form
factors from the corresponding three-point functions with a
vector current insertion, which involve obviously the
annihilation diagrams of the light u, d quarks. Therefore,
we adopt the distillation method [27] in the practical
calculation, which provides a sophisticated scheme for
the operator construction and the computation of all-to-all
quark propagators.
This paper is organized as follows: Section II presents

the details of the numerical calculations of three-point
functions, the extraction of the form factors, and the
interpolation of the form factors to on shell ones. The
discussion of the phenomenological implications of our
results can be found in Sec. III. Section IV is a brief
summary.

II. NUMERICAL DETAILS

A large statistics is mandatory for the study of J=ψ
radiative decay into light hadrons. Our gauge ensemble
of Nf ¼ 2 degenerate u, d quarks includes 6991 gauge
configurations, which are generated on an L3 × T ¼ 163 ×
128 anisotropic lattice with the anisotropy parameter ξ ¼
as=at ¼ 5.3 (as and at are the spatial and temporal lattice
spacing, respectively) [28]. The sea quark mass is tuned to
give the pion mass mπ ≈ 350 MeV. The parameters of the
gauge ensemble are collected in Table I. For the valence
charm quark, we adopt the clover fermion action in
Ref. [29], and the charm quark mass parameter is set by
ðmηc þ 3mJ=ψÞ=4 ¼ 3069 MeV. For each source time slice
τ ∈ ½0; T − 1� on each gauge configuration, the perambu-
lators of light u, d quarks are calculated in the Laplacian
Heaviside subspace spanned by Nvec ¼ 70 eigenvectors
with lowest eigenvalues.

A. Three-point functions

The partial decay width of J=ψ → γη1 is governed by the
on shell electromagnetic form factors M1ðQ2 ¼ 0Þ and
E2ðQ2 ¼ 0Þ (Q2 ¼ −p2

γ ), namely,

ΓðJ=ψ → γη1Þ ¼
4α

27

jp⃗γj
m2

J=ψ

ðjM1ð0Þj2 þ jE2ð0Þj2Þ; ð1Þ

where α ¼ 1=134 is the fine structure constant at the charm
quark mass scale and p⃗γ is the momentum of the final state
photon with jp⃗γj ¼ ðm2

J=ψ −m2
η1Þ=ð2mJ=ψ Þ in the rest

frame of J=ψ . These on shell form factors can be obtained
by the Q2 → 0 interpolation or extrapolation of the form

factorsM1ðQ2Þ and E2ðQ2Þ, which are defined through the
multipole decomposition of the transition matrix elements
hη1ðp0; λ0Þjjμemð0ÞjJ=ψðp; λÞi (see the Appendix and also
Refs. [30,31]). These matrix elements can be extracted
from the following three-point functions:

Γð3Þ
iμjðp⃗; p⃗0; t; t0Þ ¼

X
x⃗

e−iq⃗·x⃗hΩjTOi
η1ðp⃗0; tÞjμemðx⃗; t0Þ

×Oj†
J=ψðp⃗; 0ÞjΩi; ð2Þ

where jμem is the electromagnetic current of quarks, and
Oi

η1ðp⃗; tÞ and Oj
J=ψ ðp⃗; tÞ are the interpolation operators

generating η1 and J=ψ states with a spatial momentum p⃗.
Therefore, the major numerical task is to calculate these
three-point functions from lattice QCD.
Our lattice setup has the exact SU(2) isospin symmetry.

The lattice operator for the isoscalar η1 takes the form
Oi

η1 ¼ 1ffiffi
2

p ϵijkðūγjBkuþ d̄γjBkdÞ, where the chromomag-

netic field strength Bk is constructed by the proper
combination of the gauge covariant spatial derivatives on
the lattice [12]. For the operator Oi

J=ψ , we use the conven-

tional c̄γic-type operator. In order to avoid the complication
that the momentum projected operator Oi

η1 can couple to
states with quantum numbers other than 1−þ [32], the three-
point functions in Eq. (2) are calculated practically in the
rest frame of η1 with J=ψ moving at different spatial
momenta p⃗. It has been tested that the dispersion relation of
J=ψ satisfies the continuum form very well for all the p⃗
modes involved [28].
We only consider the initial state radiation and ignore the

case that the photon is emitted from quarks in the final state,
so the electromagnetic current jμem involves charm quarks,
namely, jμem ¼ ZVc̄γμc [the electric charge of the charm
quark Qc ¼ 2

3
e has been absorbed in the prefactor in

Eq. (1)]. Here, ZV is the renormalization constant of the
current, since jμem is not a conserved vector current operator
on the lattice. In practice, only the spatial components of
jμem is involved, and its renormalization constant Zs

V ¼
1.118ð4Þ [23] is incorporated implicitly into the expres-
sions in the rest part of this work.
Figure 1 illustrates the schematic diagram of Γð3Þ

iμj after
Wick’s contraction. It has two separated quark loops, which
are actually connected by gluons. The light quark loop on
the right-hand side can be calculated in the framework of
the distillation method. The left part comes from the
product of OJ=ψ and the current jμem, namely,

Gμiðp⃗; q⃗; t0 þ τ; τÞ ¼
X
x⃗

e−iq⃗·x⃗jμemðx⃗; t0 þ τÞOi†
J=ψðp⃗; τÞ; ð3Þ

which looks very similar to a conventional two-point
function of J=ψ and can be calculated independently on

each gauge configuration. However, in order for Γð3Þ
iμj to

TABLE I. Parameters of the gauge ensemble.

L3 × T β a−1t (GeV) ξ mπ (MeV) Ncfg

163 × 128 2.0 6.894(51) ∼5.3 348.5(1.0) 6991
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have good enough signals, the calculation of Gμi is highly
nontrivial. The conventional momentum source technique
turns out to be unfeasible here, because the resulted three-
point functions,

Γð3Þ
iμjðp⃗; 0⃗; t; t0Þ ¼

1

T

XT−1
τ¼0

hOi
η1ð0⃗; tþ τÞGμjðp⃗; p⃗; t0 þ τ; τÞi;

ð4Þ

are too noisy even though we have a large gauge ensemble
and average over all the time slices τ.
In order to circumvent this difficulty, we calculate Gμi in

the framework of the distillation method. The distillation
method provides a gauge covariant smearing scheme for
quark fields, taking the charm quark field cðxÞ, for instance,
cðsÞðx⃗; tÞ ¼Py⃗ ½VV†ðtÞ�ðx⃗; y⃗Þcðy⃗; tÞ, where VðtÞ is the
matrix whose columns are eigenvectors of the lattice

Laplacian operator −∇2ðtÞ at t (we use NðcÞ
vec ¼ 50 vectors

for charm quarks). Therefore, we use the operator
Oi

J=ψ ðp⃗; tÞ ¼
P

y⃗ e
−ip⃗·y⃗½c̄ðsÞγicðsÞ�ðy⃗; tÞ to calculate Gμi,

whose explicit expression for source time slice at τ ¼ 0 is

Gμiðp⃗; q⃗; t; 0Þ ¼
X
x⃗

e−iq⃗·x⃗Tr fγ5½ScVð0Þ�†ðx⃗; tÞγ5γμ

× ½ScVð0Þ�ðx⃗; tÞ½V†ð0ÞDðp⃗ÞγiVð0Þ�g; ð5Þ

where Sc ¼ hcc̄iU is the all-to-all propagator of charm
quark for the gauge configuration U and Dðp⃗Þ is a 3L3 ×
3L3 diagonal matrix with the diagonal matrix elements
being δijeip⃗·y⃗ (y⃗ labels the column or row indices and i,
j ¼ 1; 2; 3 refer to the color indices). Here, we apply the γ5-
Hermiticity of Sc, namely, Sc ¼ γ5S

†
cγ5, which implies

½V†ð0ÞSc�ðx⃗; tÞ ¼ γ5½ScVð0Þ�†ðx⃗; tÞγ5, such that what we
actually calculate is ScVð0Þ by solving the linear equation
arrays,

M½U;mc�½ScVð0Þ� ¼ Vð0Þ; ð6Þ

where M½U;mc� is the fermion matrix in the lattice action
of the charm quark. At the source time slice τ ¼ 0, we have
to solve the linear equation defined by M½U;mc� for each
Dirac index α ¼ 1; 2; 3; 4 and each column of Vð0Þ. In

practice, we repeat the above procedure by letting the
source time slice τ running over all the time range, say,
τ ∈ ½0; T − 1�, to increase the statistics further. This pro-
cedure requires 25,600 inversions of M½U;mc� on each
gauge configuration, apart from the calculation of the
perambulators of u, d quarks. This prescription turns out
to be crucial for us to obtain good signals of the three point
functions, from which we can extract the multipole form
factors with an acceptable precision.

B. Extraction of form factors

When t ≫ t0 ≫ 0, the three-point function Γð3Þ
iμjðp⃗; 0⃗; t; t0Þ

can be parametrized as

Γð3Þ
iμjðp⃗; 0⃗; t; t0Þ ≈

Zη1ð0⃗ÞZ�
J=ψðp⃗Þ

4mη1EJ=ψðp⃗Þ
e−mη1

ðt−t0Þe−EJ=ψ ðp⃗Þt0

×Miμjðp⃗Þ; ð7Þ

where Zη1ð0⃗Þ and ZJ=ψðp⃗Þ come from the matrix element
hΩjOi

XjXðp⃗; λÞi ¼ ZXðp⃗Þϵiλðp⃗Þ with X referring J=ψ or η1
and ϵμλðp⃗Þ being its λth polarization vector [note that ZXðp⃗Þ
depends on jq⃗j sinceOXðp⃗Þ is a smeared operator [33]], and
Miμjðp⃗Þ is the desired matrix element at p⃗,

Miμjðp⃗Þ ¼
X
λ;λ0

ϵiλ0 ð0⃗Þhη1ð0⃗; λ0Þjjμemð0ÞjJ=ψðq⃗; λÞiϵ�jλ ðp⃗Þ;

ð8Þ

which is encoded with the multipole form factors M1ðQ2Þ,
E2ðQ2Þ etc.
Obviously, in order to extractMiμjðp⃗Þ, we should know

the parameters ZXðp⃗Þ; mη1 , and EJ=ψðp⃗Þ, which are actually
included in the two-point functions of η1 and J=ψ , namely,

Γð2Þ
X ðp⃗; tÞ ¼ 1

3T

XT−1
τ¼0

X3
i¼1

hOX;iðp⃗; τ þ tÞO†
X;iðp⃗; τÞi

¼
�
1þ jp⃗j2

3m2
X

�X
n

jZðnÞ
X ðp⃗Þj2

2EðnÞ
X ðp⃗Þ

e−E
ðnÞ
X ðp⃗Þt; ð9Þ

where X stands for J=ψ or η1 and the source time slice τ is
averaged to increase the statistics. The operators OX must

be the same as those in the three-point functions Γð3Þ
iμj;

therefore, Γð2Þ
X ðp⃗; tÞ’s are calculated with the distillation

method as well. Since η1 is set to be at rest, we only

calculate Γð2Þ
η1 ðp⃗; tÞ at p⃗ ¼ 0. The effective mass plot is

shown in Fig. 2, where the effective mass of the isovector
1−þ hybrid state (usually named π1) is also plotted for
comparison. The effective mass of η1 has a much worse
signal than that of π1 due to the inclusion of disconnected
diagrams. Through two-mass-term fits in the time range
t ∈ ½4; 14� for η1 and t ∈ ½10; 30� for π1, the masses are

FIG. 1. The schematic diagram of the process J=ψ → γη1.
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determined to be mπ1 ¼ 1.950ð28Þ GeV and
mη1 ¼ 2.230ð39Þ GeV, respectively. These results are con-
sistent with those in Ref. [12].
In order for Q2 to cover the range around Q2 ¼ 0, the

spatial momentum p⃗ ¼ 2π
Las

n⃗ of J=ψ is set to run through all

possible modes with jn⃗j2 ≤ 9 based on the mη1 obtained

above. Since OJ=ψðp⃗; tÞ involved in Γð3Þ
iμj is a smeared

operator with NðcÞ
vec ¼ 50, we also generate the perambu-

lators of the valence charm quark with the same NðcÞ
vec to

calculate Γð2Þ
J=ψ ðp⃗; tÞ. The energies EJ=ψ ðp⃗Þ≡ Eð0Þ

J=ψðp⃗Þ of
J=ψ for all the momentum modes involved can be precisely

extracted from Γð2Þ
J=ψ ðp⃗; tÞ through two-mass-term fits.

Figure 3 shows the effective energies Eðp⃗; tÞ (data points)
and the fits (colored bands) at different momentummodes n⃗
up to jn⃗j2 ¼ 9.
Along with the calculated two-point functions of J=ψ

and η1, the matrix element Miμjðp⃗Þ is extracted from the
ratio function,

Miμjðp⃗; t; t0Þ ¼

�
1þ jp⃗j2

3m2
J=ψ

�
ZJ=ψðp⃗ÞZη1Γ

ð3Þ
iμjðp⃗; 0⃗; t; t0Þ

Γð2Þ
η1 ð0⃗; t − t0ÞΓð2Þ

J=ψ ðp⃗; t0Þ
;

ð10Þ

which suppresses the contamination from higher states and
should be independent of t and t0 when ground states
dominate. We then make a weighted average value of the
function on t0 to get larger statistics, and take a convention
Δt ¼ t − t0,

Miμjðp⃗;ΔtÞ ¼
P

40
t0¼20

�
1

Δiμj
M

�
2

Miμjðp⃗; t0 þ Δt; t0Þ
P

40
t0¼20

�
1

Δiμj
M

�
2

; ð11Þ

where Δiμj
M is the error of the corresponding ratio function,

and the weight is ð 1

Δiμj
M

Þ2 to make the average value equal to

the least square fit result using a constant. t0 ∈ ½20; 40�
indicates the “fitting window” in this step. Subsequently,
We can extract the form factorsM1ðQ2;ΔtÞ and E2ðQ2;ΔtÞ
from the linear combination of matrix elements
MiμjðQ2;ΔtÞ with specific values of i, μ and j. Thus,
we can get a similar parametrization for the form factors,

FiðQ2;ΔtÞ ≈ FiðQ2Þ þ e−δmΔt; ð12Þ

where Fi refers toM1 or E2. Note that Q2 is related to p⃗ by

Q2¼2mη1EJ=ψðp⃗Þ−m2
J=ψ−m2

η1 here. Since Γð3Þ
iμjðp⃗; 0⃗; t; t0Þ

is contributed totally by the disconnected quark diagrams,
the signal ofMiμjðp⃗; t0 þ Δt; t0Þ becomes very noisy when
Δt≳ 10 and before a clear plateau appears. Therefore, the
resulted M1ðQ2;ΔtÞ and E2ðQ2;ΔtÞ have residual time
dependence that is absorbed in an additional exponential
term in (12). We use this equation as the fitting formula to
obtain the value of Fi and the corresponding error is
acquired from jackknife resampling. Figure 4 shows the Δt
dependency of M1ðQ2;ΔtÞ and E2ðQ2;ΔtÞ, whose δm
values are listed in Table II.
The fitted parameters, such as M1ðQ2Þ, E2ðQ2Þ, and δm

are listed in Table II, where one can see that the values of
δm at different Q2 (n⃗2) are more or less the same value

FIG. 2. Effective mass of π1 (isovector) and η1 (isoscalar),
where the fit ranges are [10, 30] and [4, 14], respectively. The
shaded curves illustrate the best-fit values with errors using two-
mass-term fits.

FIG. 3. The effective energies of J=ψ at different spatial modes
with jn⃗j2 ≤ 9. The data points are the numerical results from

Γð2Þ
J=ψ ðp⃗; tÞ, and the shaded curves illustrate the best-fit values with

errors.
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around 1.2–1.3 GeV. This seems a reasonable value. There
are quenched lattice QCD calculations of the masses of the
first excited 1−þ strangeoniumlike [34] and charmonium-
like states [35], which show that the mass differences of the
first excited hybrid states and the ground state hybrids are
roughly 1.2–1.3 GeV.

C. On shell form factors and partial decay width

After they are determined at different values of Q2,
M1ðQ2Þ, and E2ðQ2Þ should be interpolated to the on shell
values at Q2 ¼ 0, which are required to predict the partial
decay width using Eq. (1). If a new Lorentz invariant
variable,

Ω ¼ ðp · p0Þ2 −m2m02

¼ 1

4
½ðmþm0Þ2 þQ2�½ðm −m0Þ2 þQ2�; ð13Þ

is introduced, one can shown that M1ðQ2Þ and E2ðQ2Þ are
proportional to

ffiffiffiffi
Ω

p
, namely,

M1ðQ2Þ ¼ −
1ffiffiffi
2

p
ffiffiffiffi
Ω

p

mm0 ðmG1ðQ2Þ þm0G2ðQ2ÞÞ;

E2ðQ2Þ ¼ 1ffiffiffi
2

p
ffiffiffiffi
Ω

p

mm0 ðmG1ðQ2Þ −m0G2ðQ2ÞÞ; ð14Þ

where the form factors G1ðQ2Þ and G2ðQ2Þ are defined in
Eq. (A1) (for details, see the Appendix). Obviously,
M1ðQ2Þ and E2ðQ2Þ go to zero when

ffiffiffiffi
Ω

p
→ 0. This

provides an additional constraint for the Q2 interpolation.
When putting m ¼ mJ=ψ and m0 ¼ mη1 back to the above

expressions, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðQ2Þ

p
¼ mη1 jq⃗j in the rest frame

of η1. Therefore, it is convenient to introduce a dimension-
less function of Q2,

vðQ2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðQ2Þ

q
=ðmJ=ψmη1Þ ¼ jq⃗j=mJ=ψ ; ð15Þ

whose maximum value is vmaxðQ2Þ ≈ 0.49 for the momen-
tum q⃗ involved in this study. Note that the form factors
GiðQ2Þ have no singularities when Q2 > −m2

J=ψ . They can

be expressed as polynomials of Q2, and certainly poly-
nomials of v2ðQ2Þ,

GiðQ2Þ ¼ αi þ βiv2ðQ2Þ þ δiv4ðQ2Þ þOðv6ðQ2ÞÞ; ð16Þ

where the terms up to Oðv4ðQ2ÞÞ are kept, since our
kinematic configuration that η1 is at rest and J=ψ moves
with a momentum q⃗, we have a dimensionless quantity, the
velocity of J=ψ , vðQ2Þ ¼ ffiffiffiffi

Ω
p

=ðmη1mJ=ψÞ ¼ jq⃗j=mJ=ψ <
0.494 for the values of q⃗ involved, and v6maxðQ2Þ ∼ 1.4% is
already much smaller than our statistical errors. Finally,
using Eq. (14), we have the interpolation functions for M1

and E2,

FIG. 4. Multipoles extracted using Eq. (12) with momentum modes jn⃗j2 ¼ 1; 2; 3; 4; 5; 8; 9, the shaded curves show the fit ranges and
best-fit results.

TABLE II. Fitted values of the form factors M1ðQ2Þ, E2ðQ2Þ,
and δm. The values of χ2=d:o:f: at different Q2 are also given.

jnj2 δm=GeV M1=GeV E2=GeV χ2=d:o:f:

1 1.19(33) −2.22ð73Þ 0.49(20) 0.6
2 1.25(23) −3.89ð74Þ 0.95(23) 1.0
3 1.08(25) −6.0ð1.3Þ 1.69(45) 1.0
4 1.21(22) −5.21ð87Þ 1.38(29) 1.1
5 1.39(24) −4.49ð69Þ 1.14(24) 1.2
8 1.46(33) −3.32ð63Þ 0.93(25) 1.0
9 1.16(38) −4.0ð1.1Þ 1.33(44) 1.0
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FiðQ2Þ ¼ vðQ2Þðai þ biv2ðQ2Þ þ civ4ðQ2ÞÞ; ð17Þ

with the constraint FiðQ2Þ ¼ 0 at vðQ2Þ ¼ jq⃗j=mJ=ψ ¼ 0

in the rest frame of η1, as suggested by Ref. [36]. Figure 5
shows the Q2 dependence of M1ðQ2Þ and E2ðQ2Þ in the
region where we are working. The interpolation using
Eq. (17) is also illustrated as a shaded band in Fig. 5 with
the best-fit parameters (the width of the band shows the
interpolation error). Thus, we get

M1ð0Þ ¼ −4.73ð74Þ MeV

E2ð0Þ ¼ 1.18ð22Þ MeV: ð18Þ

Putting these values into Eq. (1), the partial width is
predicted to be

ΓðJ=ψ → γη1Þ ¼ 2.04ð61Þ eV ð19Þ

[using the η1 mass mη1 ¼ 2.230ð39Þ GeV]. Note that the
form factors in Eq. (18) are obtained by assuming η1 to be a
stable particle, while it must be a resonance in principle.
For a resonance R of parameters ðmR;ΓRÞ, a more
systematic approach to derive the form factor fRðQ2Þ from
lattice QCD has been proposed in Refs. [37–42], where
the finite volume correction are thoroughly discussed for
the 1þ J → 2 type transitions with J being a local
current, especially for the case that a resonance can appear
in the final two hadron system. However, this approach is
unfeasible yet for the processes J=ψ → γ þ lighthadronðsÞ
that take place solely through quark annihilation diagrams,

because the low precision of Γð3Þ
iμj cannot afford that sophi-

sticated treatment. Fortunately, some examples [37,41,42]
indicate that the finite volume correction to the form factors
of a narrow resonance R isOðΓR=mRÞ, when R is treated as

a stable particle. If Γη1=mη1 in the Nf ¼ 2 case is similar to
or even smaller than that of η1ð1855Þ, the form factors in
Eq. (18) may be taken as approximations for those of the
resonant η1 with regard to their large statistical uncertainties
of roughly 15%–20%.

III. DISCUSSION

Although obtained for Nf ¼ 2, the form factors in
Eq. (18) can be applied to the discussion of the physical
SU(3) case. In J=ψ radiative decays, the final state light
hadron (η1 here) is produced by the gluons from the cc̄
annihilation, and thereby must be a flavor singlet [isoscalar
for Nf ¼ 2 and SU(3) singlet for Nf ¼ 3]. If the flavor
wave function of the light hadron is properly normalized,
the underlying gluonic dynamics is usually independent of
Nf except for the UAð1Þ anomaly relevant interaction. In
this sense, the form factors in Eq. (18) can be good

approximations of the SU(3) flavor singlet ηð1Þ1 up to a
kinematic factor owing to the mass mismatch (see below).
Due to the flavor SU(3) breaking, there should be two

isoscalar mass eigenstates (denoted by ηðlÞ1 for the lighter

one and ηðhÞ1 for the heavier one), which are the admixtures

of the singlet ηð1Þ1 and the I ¼ 0 octet ηð8Þ1 through a mixing
angle θ, namely,

 
jηðlÞ1 i
jηðhÞ1 i

!
¼
�
cos θ − sin θ

sin θ cos θ

� jηð8Þ1 i
jηð1Þ1 i

!
: ð20Þ

On the other hand, the masses of ηðl;hÞ1 can be different from
mη1 . In this study, we should consider the correction factor
due to the mass mismatch. According to Eq. (14), one has

M2
1ð0Þ þ E2

2ð0Þ ¼ jq⃗j2 m
2
J=ψ

m2
η1

�
G2

1ð0Þ þ
m2

η1

m2
J=ψ

G2
2ð0Þ

�
: ð21Þ

Since the form factors GiðQ2Þ are functions of Q2 and are
regular around Q2 ¼ 0, it is expected the form factors
Gið0Þ for i ¼ 1; 2 are insensitive to mη1 in the range
mη1 ∼ 2 GeV. For the case of this study, G2

1ð0Þ is a few
times larger than G2

2ð0Þ, such that from Eq. (1), the mη1

dependence is approximately Γ ∝ jq⃗j3=m2
η1. Thus, one has

the following partial widths:

ΓðJ=ψ → γηðlÞ1 Þ ¼ χðlÞΓðJ=ψ → γη1Þ sin2θ
ΓðJ=ψ → γηðhÞ1 Þ ¼ χðhÞΓðJ=ψ → γη1Þ cos2θ; ð22Þ

where χðxÞ ¼ m2
η1
jp⃗γðηðxÞ1

Þj3
m2

η
ðxÞ
1

jp⃗γðη1Þj3 is the compensating kinematic

factor due to the mass mismatch of η1 and ηðxÞ1 .

FIG. 5. Form factors M1ðQ2Þ and E2ðQ2Þ are plotted with
respect to Q2 as data points. The shaded curve illustrates the
interpolation using Eq. (17).
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As for the ηη0 decay mode where η1ð1855Þ is observed,
since it must be a flavor octet, the flavor SU(3) symmetry

implies the decay ηðxÞ1 → ηη0 takes place only through its
octet component, namely, the decay amplitudes satisfy

hηη0jHIjηðlÞ1 i ¼ cos θhηη0jHIjηð8Þi≡ 2g cos θϵ⃗ · k⃗ðlÞ

hηη0jHIjηðhÞ1 i ¼ sin θhηη0jHIjηð8Þi≡ 2g sin θϵ⃗ · k⃗ðhÞ; ð23Þ

where g is the effective coupling, ϵ⃗ is the polarization vector

of ηðxÞ1 , and k⃗ðxÞ is the momentum of ηη0 in the ηðxÞ decay.
Thus, we obtain the ratio,

r ¼ BrðJ=ψ → γηðlÞ1 → γηη0Þ
BrðJ=ψ → γηðhÞ1 → γηη0Þ

¼
χðlÞjk⃗ðlÞj3m2

ηðhÞ
1

χðhÞjk⃗ðhÞj3m2

ηðlÞ
1

Γ
ηðhÞ
1

Γ
ηðlÞ
1

; ð24Þ

which is free from θ but depends solely on the masses and

widths of ηðlÞ1 and ηðhÞ1 . If the mass difference of ηðlÞ1 and ηðhÞ1

is not too large, the kinematic factor in the above equation

is Oð1Þ, such that one has r ∼Oð1Þ
Γ
η
ðhÞ
1

Γ
η
ðlÞ
1

.

The lattice QCD study in Ref. [12] observes ηðlÞ1 and ηðhÞ1

of masses roughly 2.16 GeV and 2.33 GeV (at
mπ ≈ 391 MeV), respectively. They can be admixtures of

the flavor singlet ηð1Þ1 and the flavor octet ηð8Þ1 through a
mixing angle θ,

 
jηðlÞ1 i
jηðhÞ1 i

!
¼
�
cos θ − sin θ

sin θ cos θ

� jηð8Þ1 i
jηð1Þ1 i

!
; ð25Þ

or equivalently, the admixtures of ss̄ and nn̄ ¼
ðuūþ dd̄Þ= ffiffiffi

2
p

through a mixing angle α,

 
jηðlÞ1 i
jηðhÞ1 i

!
¼
�
cos α − sin α

sin α cos α

�� jnn̄i
jss̄i

�
: ð26Þ

If the flavor wave functions of ηð1Þ1 and ηð8Þ1 are defined as

jηð1Þ1 i ¼ 1ffiffiffi
3

p ðjuūi þ jdd̄i þ jss̄iÞ

jηð8Þ1 i ¼ 1ffiffiffi
6

p ðjuūi þ jdd̄i − 2jss̄iÞ; ð27Þ

one can easily show that θ is related to α by θ ¼ α − 54.7°.
This convention for the mixing angle α is the same as
that in Ref. [12] where α is determined to be roughly
α ¼ 22.7ð2.1Þ° (averaged over the values on the three
lattices involved), such that one has θ ≈ −32.0ð2.1Þ°. This
indicates a large mixing of ηð8Þ1 and ηð1Þ1 . Using Eq. (22),
the J=ψ total width Γtot ¼ 92.6ð1.7Þ keV [43] and the

observed branching fraction BrðJ=ψ → γη1ð1855Þ →
γηη0Þ ¼ ð2.70� 0.41þ0.16

−0.35Þ × 10−6 [14], we get

ΓðJ=ψ → γη1ð1855ÞÞ ¼ ð2.0� 0.7Þ eV
BrðJ=ψ → γη1ð1855ÞÞ ¼ ð2.1� 0.7Þ × 10−5

Brðη1ð1855Þ → ηη0Þ ¼ ð13� 5Þ% ð28Þ

if η1ð1855Þ is assigned to be ηðlÞ1 , and

ΓðJ=ψ → γη1ð1855ÞÞ ¼ ð5.0� 1.6Þ eV
BrðJ=ψ → γη1ð1855ÞÞ ¼ ð5.4� 1.8Þ × 10−5

Brðη1ð1855Þ → ηη0Þ ¼ ð5.0� 1.9Þ% ð29Þ

if η1ð1855Þ is assigned to be ηðhÞ1 .
Obviously, the existence of the other η1 state (or not) is

crucial for the nature of η1ð1855Þ to be unravelled. We
notice BESIII also reports a weak (4.4σ) signal of 1−þ
component around 2.2 GeV [15]. But its existence needs to
be confirmed. On the other hand, if η1ð1855Þ is surely a

hybrid state (either ηðlÞ1 or ηðhÞ1 ), the results and the

discussion imply that the octet ηð8Þ1 couples strongly to
ηη0, namely, the effective coupling in Eq. (23) is roughly
g ¼ 5.0ð1.0Þ (note the effective coupling gρππ ≈ 6.0 for the
decay process ρ → ππ). Although there is the possible
enhancement by the QCD UAð1Þ anomaly [16,17], this is
really a large coupling and should be understood when
comparing with the significantly small coupling of its
isovector partner π1 to η0π, which is expected by phenom-
enological studies [44,45] and estimated by lattice QCD
calculations [11,13].

IV. SUMMARY

Based on a large gauge ensemble of Nf ¼ 2 dynamical
quarks at mπ ≈ 350 MeV, we perform the first theoretical
calculation of ΓðJ=ψ → γη1Þ where η1 is the light flavor
singlet 1−þ hybrid. The related three-point functions are
contributed totally from disconnected quark diagrams,
which are dealt with using the distillation method.
The on shell electromagnetic form factors are determined
to be M1ð0Þ ¼ −4.73ð74Þ MeV and E2ð0Þ ¼ 1.18 MeV,
which give ΓðJ=ψ → γη1Þ ¼ 2.04ð61Þ eV for mη1 ¼
2.23ð4Þ GeV. These results are applicable to discuss the

production rates of the two mass eigenstates ηðlÞ1 and ηðhÞ1 in
the SU(3) case, if the singlet-octet mixing angle is known.
As for η1ð1855Þ observed by BESIII, its hybrid assignment
depends strongly on the existence of its mass partner. It
should be emphasized that the ratio of the branching

fractions BrðJ=ψ → γηðl;hÞ1 → γηη0Þ is inversely propor-

tional to the ratio of the total widths of ηðl;hÞ1 . This can

be used as one of the criteria to identify ηðl;hÞ
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experimentally. If η1ð1855Þ is a hybrid for sure, our results
and the mixing angle θ determined in Ref. [12] indicate that

the coupling of the octet 1−þ hybrid ηð8Þ1 to ηη0 is very large.
This is interesting and worthy of an investigation in depth.
Throughout our calculation, η1 is tentatively viewed as a
stable particle. This surely introduce theoretical uncertain-
ties which cannot be accessed in the present stage, but
should be explored in future works. Nevertheless, this study
provides the first valuable theoretical predictions for this
intriguing topic from lattice QCD.
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APPENDIX: FORM FACTORS

Since the quantum numbers JP of η1 and J=ψ are all 1−,
the transition matrix hη1jjμemjJ=ψi is given by the vector-to-
vector one hVjjμemjVi, which can be expanded in terms of
form factors by enumerating all possible Lorentz structures,

hVðp0;ϵ0ÞjjμemjVðp;ϵÞi
¼ G1ðQ2Þp · ϵ0�ϵμ þG2ðQ2Þp0 · ϵϵ0�μ

þ ϵ · ϵ0�½G3ðQ2Þðpμ þp0μÞ þG4ðQ2Þqμ�
þ ðp · ϵ0Þðp0 · ϵÞ½G5ðQ2Þðpμ þp0μÞ þG6ðQ2Þqμ�: ðA1Þ

G4ðQ2Þ, G6ðQ2Þ can be eliminated and expressed in terms
of other form factors using the conservation of current
hVjjμemjViqμ ¼ 0 as

G4ðQ2Þ ¼ −
m2 −m02

q2
G3ðQ2Þ

G6ðQ2Þ ¼ −
1

q2
½G2ðQ2Þ −G1ðQ2Þ þG5ðQ2Þðm2

i −m2
fÞ�:

ðA2Þ

As in Ref. [29] of the main article, it is convenient to
expand the helicity amplitudes in terms ofmultipoles. In the
frame where the initial state is at rest and the photon goes in
the z- direction, the amplitudes are

hV∓jjμemjV0iϵ�;�
γ;μ ¼ 1ffiffiffi

2
p ½M1ðQ2Þ þ E2ðQ2Þ�

hV0jjμemjV�iϵ�;�
γ;μ ¼ 1ffiffiffi

2
p ½M1ðQ2Þ − E2ðQ2Þ�

hV0jjμemjV0iϵ0;�γ;μ ¼ 1ffiffiffi
3

p C0ðQ2Þ −
ffiffiffi
2

3

r
C2ðQ2Þ

hV�jjμemjV�iϵ0;�γ;μ ¼ 1ffiffiffi
3

p C0ðQ2Þ þ 1ffiffiffi
6

p C2ðQ2Þ; ðA3Þ

where the superscripts ∓;�; 0 refer the different polar-
izations of the two vector mesons. On the other hand, these
amplitudes can also be expressed in terms of form factors
GiðQ2Þ by substituting specific momenta and polarization
vectors into Eq. (A1), giving us four equations. By solving
these equations, the form factors GiðQ2Þ can be related to
multipoles M1ðQ2Þ, E2ðQ2Þ, C0ðQ2Þ, C2ðQ2Þ as

G1ðQ2Þ ¼ m0ffiffiffiffiffiffi
2Ω

p ðM1ðQ2Þ − E2ðQ2ÞÞ

G2ðQ2Þ ¼ mffiffiffiffiffiffi
2Ω

p ðM1ðQ2Þ þ E2ðQ2ÞÞ

G3ðQ2Þ ¼ −
ffiffiffiffiffi
q2

p
4
ffiffiffiffiffiffi
3Ω

p ð2C0ðQ2Þ þ
ffiffiffi
2

p
C2ðQ2ÞÞ

G5ðQ2Þ ¼ 1

12
ffiffiffi
2

p
Ω3=2

� ffiffiffiffiffiffiffi
6q2

q
ððm −m0Þ2q2ÞC0ðQ2Þ þ

ffiffiffiffiffiffiffi
3q2

q
ððmþm0Þ2 þ 2mm0 − q2ÞC2ðQ2Þ

þ 3ðm0 −mÞððm0 þmÞ2 − q2ÞE2ðQ2Þ − 3ðm0 þmÞððm0 −mÞ2 − q2ÞM1ðQ2Þ
�
; ðA4Þ

where Q2 ¼ −q2, and
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Ω ¼ ðp · p0Þ2 −m2m02

¼ 1

4
½ðmþm0Þ2 þQ2�½ðm −m0Þ2 þQ2�: ðA5Þ

Note that in our case m ¼ mJ=ψ and m0 ¼ mη1 .
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