
Strategies for quantum-optimized construction of interpolating operators
in classical simulations of lattice quantum field theories

A. Avkhadiev ,1,2 P. E. Shanahan ,1,2,3 and R. D. Young 4

1Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, U.S.A.

2DOE Co-Design Center for Quantum Advantage
3NSF AI Institute for Artificial Intelligence and Fundamental Interactions

4CSSM, Department of Physics, University of Adelaide, Adelaide South Australia 5005, Australia

(Received 8 December 2022; accepted 21 February 2023; published 20 March 2023)

It has recently been argued that noisy intermediate-scale quantum computers may be used to optimize
interpolating operator constructions for lattice quantum field theory (LQFT) calculations on classical
computers. Here, two concrete realizations of the method are developed and implemented. The first
approach is to maximize the overlap, or fidelity, of the state created by an interpolating operator acting on
the vacuum state to the target eigenstate. The second is to instead minimize the energy expectation value of
the interpolated state. These approaches are implemented in a proof-of-concept calculation in (1þ 1)-
dimensions for a single-flavor massive Schwinger model to obtain quantum-optimized interpolating
operator constructions for a vector meson state in the theory. Although fidelity maximization is preferable
in the absence of noise due to quantum gate errors, it is found that energy minimization is more robust to
these effects in the proof-of-concept calculation. This work serves as a concrete demonstration of how
quantum computers in the intermediate term might be used to accelerate classical LQFT calculations.
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I. INTRODUCTION

Lattice quantum field theory (LQFT) is a nonperturba-
tive framework to study quantum field theories in a
systematically improvable way [1,2]. In particular for study
of the theory of strong nuclear interactions, quantum
chromodynamics, LQFT has served as an indispensable
tool [3–14]. However, certain aspects of quantum systems,
such as real-time dynamics or observables plagued by the
sign problem, are difficult or impossible to address with
LQFTs formulated in Euclidean spacetime and realized
with classical computing; it has long been argued that
quantum computing may provide a path toward such
calculations [15–28]. This hope has inspired sustained
efforts and developments: in experimental design proposals
and realizations of quantum simulators, in the development
of algorithms for quantum simulation and their proof-
of-concept implementations, and in formulations of LQFTs
for quantum calculations [29–40]. Many of these efforts
are concentrated on frameworks where the calculations
are carried out principally on a quantum computer, with

classical computers playing a supporting role; others
consider frameworks with auxiliary quantum-computer
calculations at select points in a conventional, classical-
computer LQFT workflow. Such hybrid approaches will
not shift the paradigm and scope of LQFT in the same
way as inherently quantum approaches that may be enabled
by large-scale fault-tolerant quantum computation; never-
theless, the hybrid approaches may offer a practical
advantage and accelerate classical QFT studies in the
intermediate term.
As proposed in Ref. [41], interpolating operator opti-

mization is one task that could be performed on quantum
computers as a path toward accelerating classical LQFT
calculations. Interpolating operators in LQFT are con-
structed to approximately map the vacuum state of a given
theory to the ground state with a particular set of quantum
numbers, thus “interpolating” between the states. A perfect
interpolating operator would realize the exact map; in
practice, however, interpolated states—quantum states
created by the action of interpolating operators on the
vacuum state—are linear superpositions of all states with
the quantum numbers of the operator, and ground states are
obtained from interpolated states by Euclidean time evo-
lution, which exponentially suppresses excited-state con-
tributions. Improved interpolating operators can enable
more precise extraction of physics quantities for a fixed
computational cost, for example by reducing statistical
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variance in those quantities or by reducing excited-state
contamination and enabling ground-state dominance at
earlier Euclidean times. In this work, two concrete strat-
egies are formulated for interpolating operator optimization
on quantum devices. The first strategy is to maximize the
fidelity of the interpolated state to the ground state. The
second strategy is to minimize the energy expectation value
of the interpolated state. Implementations of both strategies
are demonstrated in 1þ 1 dimensions for the massive
single-flavor Schwinger model using a quantum-computer
simulator. It is shown that, while maximizing fidelity is
preferable in principle, its implementation, which requires
deeper quantum circuits with a larger number of entangling
gates and twice as many qubits, makes the strategy
particularly susceptible to gate errors. In comparison, while
minimizing energy expectation value is less general and
less optimal in principle, its implementation is more robust
to gate errors.
The rest of this manuscript is organized as follows:

Sec. II defines the task of interpolating operator optimiza-
tion; Sec. III introduces the two strategies for interpolating
operator optimization and describes their implementation;
Sec. IV presents proof-of-concept realizations and results
for both strategies; and Sec. V discusses how this work
advances the use of quantum computing within LQFT.
Finally, Section VI provides an outlook.

II. LATTICE SPECTROSCOPY
AND INTERPOLATING

OPERATOR OPTIMIZATION

Physical observables in LQFT can be computed from the
Euclidean time dependence of correlation functions [42].
For example, the energy of a ground state with a given set
of quantum numbers can be computed from a momentum-
projected two-point correlation function Cðp; tÞ of time-
local interpolating operators Ô†ðp; 0Þ and Ôðp; tÞ with the
quantum numbers of the target ground state jE0i:

Cðp; tÞ≡ hΩjÔðp; tÞÔ†ðp;0ÞjΩi

¼ jZ0
Oje−E0ðpÞt

�
1þ

X
n>0

jZn
Oj

jZ0
Oj
e−ðEnðpÞ−E0ðpÞÞt

�
: ð1Þ

Here, jΩi denotes the vacuum state of the theory and EnðpÞ
denotes the energy of the nth excited state with the same
quantum numbers as jE0i. States are normalized non-
relativistically, hEmðqÞiEnðpÞ ¼ δn;mδp;q. Overlap factors
are defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zn
OðpÞ

q
¼ hEnðpÞjÔ†ðp; 0ÞjΩi: ð2Þ

Ground-state dominance at late Euclidean times is revealed
in the effective energy function:

EeffðtÞ ¼
1

a
log

Cðp; tÞ
Cðp; tþ aÞ !

t≫0
E0ðpÞ: ð3Þ

In practice, correlation functions are estimated stochas-
tically by evaluation on a finite set of gauge field configu-
rations Ui, i ∈ f1;…; Ncfgg:

hCðp; tÞi ¼ 1

Ncfg

X
i

hCðp; t; UiÞiF; ð4Þ

where the configurations are distributed as e−SeffðUÞ, SeffðUÞ
is the effective action of the theory with fermions integrated
out, and h·iF denotes Wick contraction of fermions into
propagators. While excited-state contributions to hCðp; tÞi
are exponentially suppressed at late Euclidean times, the
signal-to-noise ratio diminishes exponentially in the same
limit for many observables of interest [42,43]. The precision
with which ground-state observables, such as the ground-
state energy E0 or matrix elements of currents in the ground
state, can be determined is thus related to the overlap factors
jZn

Oj. In particular, given correlation functions with com-
parable statistical variance computed from different inter-
polating operators, those from operators with smaller
overlap factors onto excited states suffer less from
excited-state contamination at earlier times where statistical
fluctuations are smaller, and will thus yield a more precise
determination of ground-state observables at fixed statistics.
In this work, interpolating operator optimization is

defined as the tuning of an interpolating operator construc-
tion O such that excited-state contamination in Cðp; tÞ is
minimized. By design, this is a component of the LQFT
workflow which is robust to errors or systematic uncertain-
ties, including any induced by a process based on quantum
computation. That is, correlation functions constructed
using a suboptimal interpolating operator construction will
simply have additional excited-state contamination, while
optimizing the construction can lead to exponential gains in
precision at fixed statistics.
Interpolating operators may be optimized with classical

computing via conventional methods such as varia-
tional [44–52] and Prony [53–56] approaches. These
methods have found great success, but require stochasti-
cally estimating correlation functions in Euclidean time and
are thus sensitive to the onset and the rate of exponential
signal-to-noise suppression as discussed above. As a result,
the computational cost of classical interpolating operator
optimization is increased in systems where the signal-to-
noise problem is more severe and thus where optimized
interpolating operators would be most needed, such as
multibaryon systems [56–71] and boosted states [72–74].
In contrast, optimization of interpolating operators on
quantum devices, as proposed in Ref. [41], is not sensitive
to the signal-to-noise problem in Euclidean time (but faces
other challenges, as detailed in the rest of this manuscript).
It is thus possible that in the era after hybrid-workflow
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LQFT applications are enabled by improvements in quan-
tum-computing technology, but before full-scale quantum
computers can be practically deployed, quantum optimi-
zation of interpolating operators in LQFT may be a
practical approach that is complementary to classical
approaches.
While it has been outlined in Ref. [41] how one might

use quantum devices for interpolating operator optimiza-
tion, to examine whether the task is tenable with noisy
intermediate-scale quantum (NISQ) [33] devices in par-
ticular, it is important to investigate concrete optimization
strategies.

III. QUANTUM INTERPOLATING OPERATOR
OPTIMIZATION STRATEGIES

In this work, two strategies for quantum-simulation
based interpolating operator optimization are introduced
and implemented. In both cases, given a set of interpolating
operators fOig that can be defined and practically imple-
mented in formulations of a given LQFT for both
classical and quantum-computer calculations, the goal is
to produce an optimal linear combination of all operators in
the set. That is, the output of the optimization is a vector
of coefficients α, such that the corresponding optimal
operator is

OðαÞ ¼
X
i

αiOi; ð5Þ

where the dependence of operators on momentum or lattice
coordinates is suppressed.

A. Maximum-fidelity (MF) strategy

The first strategy is to find α that maximizes the
overlap of the interpolated state—the normalized state

created by acting on the vacuum state jΩi with the operator
ÔðαÞ—onto the target ground state jE0i, i.e.,

αMF ¼ argmaxαjhE0jOðαÞij2 ¼ argmaxα
jZ0

OðαÞj
NOðαÞ

; ð6Þ

where

jOðαÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
NOðαÞ

p X
j

αjÔ
†
j jΩi; ð7Þ

and the wave function normalization is given by NOðαÞ ¼P
i;j α

�
i αjhΩjÔiÔ

†
j jΩi. The effect of this optimization is to

reduce the coefficients jZn
Oj=jZ0

Oj of exponential excited
state contamination in Eq. (1). In implementing the MF
strategy on a quantum device, jΩi and jE0i may be
approximated with quantum states obtained, for example,
by a variational quantum eigensolver (VQE) [75,76].
Once such variational approximations are found for both
states, they may be used to estimate Eq. (6) using the
decomposition of Ô†

i and ÔiÔ
†
j into a basis of unitary Pauli-

string operators: P̂k∈fÎ;σ̂x;σ̂y;σ̂zg⊗n, k∈f1;2;…4ng,
where n is the number of qubits required to encode the
operators. In particular, the denominator NOðαÞ may be

computed using the decomposition ÔiÔ
†
j ¼

P
k c

ðijÞ
k P̂k as

NOðαÞ ¼
X
k

X
i;j

α�i αjc
ðijÞ
k hΩjP̂kjΩi; ð8Þ

with estimates for hΩjP̂kjΩi obtained from quantum cir-
cuits using Pauli measurements [77]. Similarly, jZ0

OðαÞj in
the numerator may be written using the decomposition

Ô†
i ¼

P
k c

ðiÞ
k P̂k as

jZ0
OðαÞj ¼ jhE0jÔ†ðαÞjΩij2

¼
X
i

jαij2jhE0jÔ†
i jΩij2 þ

X
i<j

ð2Reðαiα�jÞRe ðhE0jÔ†
i jΩi hΩjÔjjE0iÞ − 2Imðαiα�jÞImðhEnjÔ†

i jΩihΩjÔjjEniÞÞ

¼
X
k

jhE0jP̂kjΩij2
�X

i

jαij2jcðiÞk j2 þ
X
i<j

2Reðαiα�jcðiÞk cðjÞ�k Þ
�

þ
X
k<l

ReðhE0jP̂kjΩihΩjP̂ljE0iÞ
�X

i

2jαij2ReðcðiÞk cðiÞ�l Þ þ
X
i<j

4Reðαiα�jcðiÞk cðjÞ�l Þ
�

−
X
k<l

ImðhE0jP̂kjΩihΩjP̂ljE0iÞ
�X

i

2jαij2ImðcðiÞk cðiÞ�l Þ þ
X
i<j

4Imðαiα�jcðiÞk cðjÞ�l Þ
�
: ð9Þ

The terms jhE0jP̂kjΩij2, ReðhE0jP̂kjΩihΩjP̂ljE0iÞ
and ImðhE0jP̂kjΩihΩjP̂ljE0iÞ can be estimated with a
Hadamard-Overlap test, using controls on the Pauli operators
andoneancillaryqubit [78].Theoverlaptest requirespreparing

both jΩiand jE0i statessimultaneously.Finally,givenallof the
measurements, the optimization in Eq. (6) may be performed
classically. Note also that the MF strategy may be generalized
to the case when the target state is not a ground state.
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B. Minimum-energy (ME) strategy

The second strategy is to find α that minimizes the
energy expectation value of the interpolated state jOðαÞi
defined in Eq. (7), i.e.,

αME ¼ argminαhOðαÞjĤjOðαÞi ¼ argminα
HOðαÞ
NOðαÞ

; ð10Þ

where HOðαÞ ¼ hΩjÔðαÞĤÔ†ðαÞjΩi. The effect of this
optimization is to minimize excited state contamination in
correlation functions at t ¼ 0 in Euclidean time.
In implementing the ME strategy, the solution to Eq. (10)

can be obtained as the eigenvector for the smallest eigenvalue
λME in a generalized eigenvalue problem (GEVP):

HOαME ¼ λMENOαME; ð11Þ

where the matrix pencil is given by the overlap matrix
½NO�ij ¼ hΩjÔiÔ

†
j jΩi and the Hamiltonian in the linear

subspace spanned by the given interpolating operator set,
½HO�ij ¼ hΩjÔiĤÔ†

j jΩi. Here, unlike in classical GEVP
optimization of interpolating operators, the matrix elements
are local in time. In practice, the vacuum state jΩimay again
be approximatedwithVQE.Thematrix elements ½NO�ijmay
be computed using the same measurements as used to
compute NOðαÞ in the implementation of the MF strategy.
Thematrix elements ½HO�ij can be computed analogously, by

decomposing ÔiĤÔ†
j into a basis of Pauli-string operators,

and then performing the corresponding Pauli measurements.
Once the matrices in the pencil are constructed from
measurements on a quantum device, the eigenvector αME
can be obtained in classical postprocessing.
This implementation of the ME strategy is identical to

that of quantum subspace expansion (QSE) for electron
structure calculations in chemistry applications [79].
However, unlike in QSE, what is sought here is the
eigenvector αME rather than the eigenstate jOðαMEÞi: as
discussed in Sec. II, in LQFT the operator construction
specified by αME can be used to find a precise estimate for
E0 through a classical LQFT calculation, potentially in
calculations in larger lattice volumes and with finer lattice
spacings, improving significantly on the upper bound given
by the energy of jOðαMEÞi that can be computed within the
quantum framework alone.
Compared to maximizing fidelity, minimizing the energy

expectation value may yield an operator with a larger
overlap onto low-lying excited states which correspond to
slowly decaying excitations in the Euclidean-time correla-
tion function. This is a conceptual drawback of the ME
strategy which could be a practical concern for systems
with closely spaced low-lying spectra, such as in the case of
multihadron states in QCD. However, the implementation
of the ME strategy does not require estimating transition
probabilities as in Eq. (9); only expectation values in the

vacuum state are required. This leads to more economical
quantum circuits, and the ME strategy is thus more robust
against the effects of noise than the MF approach. Noise in
quantum circuits results in less-optimal operators and thus
additional excited-state contributions in the corresponding
correlation functions computed in the Euclidean LQFT.
Thus a more robust, though less optimal, strategy may be
more practical for applications in the NISQ era.

IV. PROOF-OF-CONCEPT IMPLEMENTATION
FOR THE SCHWINGER MODEL

A. Schwinger model

As a proof of concept, both approaches to quantum
interpolating operator optimization are implemented for a
ground state in the spectrum of the Schwinger model, i.e.,
quantum electrodynamics in 1þ 1 dimensions, describing a
single species of 2-component spinors ψ with bare mass m
coupled to a Uð1Þ gauge field Aμ ¼ ðϕ; AÞ with a dimen-
sionful bare coupling −g. In continuum Minkowski space-
time with the metric given by ημν ¼ diagðþ1;−1Þ, the
corresponding action is given by

S ¼
Z

d2x
�
ψ̄ ½iγμDμ�ψ −mψ̄ψ −

1

4
FμνFμν

�
; ð12Þ

where the electric field tensor and the covariant derivative
are defined as

Fμν ¼ ∂μAν − ∂νAμ; ð13Þ

Dμ ¼ ∂μ − igAμ: ð14Þ

The Clifford algebra of gamma matrices is defined by

fγμ; γνg ¼ 2ημν; ð15Þ
and chiral projections in two-dimensional Minkowski
spacetime require γ5 ¼ γ0γ1. All bound states in the theory
are CP-even, with quantum numbers JPC either 0þþ or
0−− [80]. The vacuum state jΩi is the ground state in the
even-parity channel. The target state for interpolating
operator optimization is chosen to be the ground state
jE0i in the odd-parity channel: the lightest vector meson.
To realize interpolating operator optimization for jE0i on

a quantum computer, a formulation of the Schwinger model
derived from the Kogut-Susskind Hamiltonian is used,
following Ref. [81]. After a Jordan-Wigner transformation
mapping fermion creation and annihilation operators to
spin-1=2 raising and lowering operators, the (rescaled)
Hamiltonian is given by

Ĥ ¼
X
n

xðσ̂þn Û1ðnÞσ̂−nþ1 þ H:c:Þ þ μð−1Þnσ̂zn þ Ê2
n ð16Þ

(note that the corresponding energy eigenvalues need to be
rescaled to express them in lattice units). Here, σ̂�n denote
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spin raising and lowering operators, which act on site n of the
staggered lattice, and Û1ðnÞ and Ên denote link operators and
electric field operators acting on the link connecting stag-
gered sites n and nþ 1. Conventionally, the Hamiltonian is
parametrized by two dimensionless quantities, x ¼ 1=ðagÞ2
and μ ¼ 2ðm0Þ=ag2, where a is the lattice spacing. The
staggered Kogut-Susskind transformation in 1þ 1 dimen-
sions with only a spatial discretization completely removes
fermion doublers from the spectrum [82]. Unlike in higher-
dimensional theories [83], the Schwinger model in this
formulation contains no additional “tastes” of fermions
and no taste-breaking effects at finite lattice spacing. In
particular, there is a unique vector meson state. Moreover,
the spatial boundary conditions in the Kogut-Susskind
Hamiltonian are chosen to be periodic (and remain periodic
after the Jordan-Wigner transformation if the number of
staggered sites is divisible by 4). This allows exact invariance
under spatial translations to be preserved, which means that
the spatial component of momentum remains a good
quantum number. Consequently, to study the vector meson
in the rest frame, states with nonzero momentum can be
projected out exactly.
In this prescription, basis elements for the Hilbert space

of the Hamiltonian in Eq. (16) are spin chains with N sites
and N links, with eigenstates mn of σ̂zn residing on sites and
eigenstates ln of Ên on links, expressed as

jΨi ¼ jmi ⊗ jli
¼ jm1; m2;…; mNi ⊗ jl1;l2;…;lNi: ð17Þ

Gauge fixing, necessary in the Hamiltonian formulation,
further selects a subspace of physical states. The Kogut-
Susskind Hamiltonian is defined in a temporal gauge,
A0 ¼ 0; the residual gauge freedom in jΨi is fixed by
Gauss’s law constraints via local symmetry generators Ĝn,

ĜnjΨi ¼
�
Ên − Ên−1 −

1

2
ðσ̂zn þ ð−1ÞnÞ

�
jΨi ¼ 0 ð18Þ

at each staggered site n, such that after gauge fixing all
states contain integer values on each link. Unlike in the
gauge-link basis conventionally chosen for classical LQFT
calculations, link operators Û†

1ðnÞ and Û1ðnÞ in this basis
act as raising and lowering operators for the flux quanta ln,
respectively.
In this formulation, an interpolating operator optimiza-

tion problem can be defined as optimizing the linear
combination of two zero-momentum, odd-parity interpo-
lating operators for the vector meson:

Ô1 ¼
X
n

ð−ÞnÊnÊnþ2; ð19Þ

Ô2 ¼
i
2

X
n even

ð−Þnðσ̂þn Û1σ̂
−
nþ1 þ h:c:Þ; ð20Þ

where the couplings between every other link in the first
operator, and the alternating sign in both operators, are due
to the Kogut-Susskind staggered transformation. The out-
put of interpolating operator optimization over this set is an
eigenvector α ¼ ðα1; α2Þ specifying the optimal linear
combination of operators. The normalization of α is
irrelevant, so each combination is characterized by the
mixing angle

θα ¼ arccosðα1=jαjÞ: ð21Þ

Of course, many other interpolating operators can be
constructed with these quantum numbers and could be
included in the optimization set. An artifact of the simple
spectrum of the Schwinger model is that it is possible to
define simple operator constructions with near-perfect
overlap onto the target state; including these in the set
would naturally lead to trivial solutions for the vector α. For
numerical demonstration, the interpolating operators are
thus chosen so that the overlap factors jZ0

O1
j and jZ0

O2
j are

comparable. The parameters x ¼ 4.8 and μ ¼ 0.1, which
correspond to m0=g ≈ 0.18, are also set specifically to
allow a demonstration of nontrivial operator optimization.

B. Qubit encoding

Following Ref. [81], the theory’s Hilbert space is
encoded onto qubits in a quantum simulator. For a
discretization with N ¼ 4 staggered sites, gauge-fixed
states are truncated on the allowed values of electric flux
such that

l2
n ≤ Λ2;

XN
n¼1

l2
n ¼ Λ̃2: ð22Þ

The first constraint limits the number of flux quanta on each
gauge link, while the second limits their total number in a
given state. Retaining only those elements invariant under
spatial translations projects onto the zero-momentum sub-
space. By forming parity eigenstates from the remaining
basis elements, projections onto even- and odd-parity
sectors are made. These projections block-diagonalize
the Hamiltonian in the truncated, zero-momentum sub-
space of gauge-fixed states; choosing Λ2 ¼ 1 and Λ̃2 ¼ 3,
the basis elements jΨni in the even parity sector are
encoded onto 2-qubit states jq1q2i as
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j00i↔ jΨ1ik¼0;πþ¼j↓↑↓↑i⊗ j0000i;

j01i↔ jΨ2ik¼0;πþ¼1

2
ðj↑↓↓↑i⊗ j1000iþj↓↓↑↑i⊗ j0−100iþj↓↑↑↓i⊗ j0010iþj↑↑↓↓i⊗ j000−1iÞ;

j10i↔ jΨ3ik¼0;πþ¼ 1ffiffiffi
2

p ðj↑↓↑↓i⊗ j1010iþj↑↓↑↓i⊗ j0−10−1iÞ;

j11i↔ jΨ4ik¼0;πþ¼1

2
ðj↑↓↓↑i⊗ j0−1−1−1iþj↓↓↑↑i⊗ j1011iþj↓↑↑↓i⊗ j−1−10−1iþj↑↑↓↓i⊗ j1110iÞ; ð23Þ

while those in the odd-parity sector are similarly encoded as

j00i↔ jΨ1ik¼0;π−¼
1

2
ðj↑↓↓↑i⊗ j1000i− j↓↓↑↑i⊗ j0−100iþj↓↑↑↓i⊗ j0010i− j↑↑↓↓i⊗ j000−1iÞ;

j01i↔ jΨ2ik¼0;π−¼
1ffiffiffi
2

p ðj↑↓↑↓i⊗ j1010i− j↑↓↑↓i⊗ j0−10−1iÞ;

j10i↔ jΨ3ik¼0;π−¼
1

2
ðj↑↓↓↑i⊗ j0−1−1−1i− j↓↓↑↑i⊗ j1011iþj↓↑↑↓i⊗ j−1−10−1i− j↑↑↓↓i⊗ j1110iÞ ð24Þ

(and the state jq1q2i ¼ j11i is unused). The even- and odd-
parity blocks in the Hamiltonian are thus given by 4 × 4

matrices ½Hk¼0;π��mn ¼ k¼0;π�hΨmjĤjΨnik¼0;π�, where Ĥ
is the Hamiltonian in Eq. (16). These matrices are decom-
posed in a basis of 2-qubit Pauli-string operators to
implement the measurements of expectation values of
the Hamiltonian.
The interpolating operators in Eqs. (19)–(20), when

acting on the vacuum, map from the even-parity sector
to the odd-parity sector. Therefore, matrix elements involv-
ing interpolated states, such as those defining overlap
factors, generally require both sectors of the Hilbert
space to be encoded. This is realized by including a third,
parity-indicating qubit in the encoding, effectively concat-
enating the two bases in Eqs. (23)–(24) as jΨik¼0 ¼
jΨik¼0;πþ ⊕ jΨik¼0;π−. Both strategies for interpolating
operator optimization require the 8 × 8 matrices with
matrix elements ½OiOj�mn ¼ k¼0hΨmjÔiÔjjΨnik¼0 to be
computed; additionally, the MF strategy requires comput-
ing ½Oi�mn ¼ k¼0hΨmjÔijΨnik¼0, and the ME strategy
½OiHOj�mn ¼ k¼0hΨmjÔiĤÔjjΨnik¼0. The matrices are
decomposed in the basis of 3-qubit Pauli-string operators
to implement the requisite measurements, as detailed in
Sec. III.

C. Numerical demonstration

A quantum state approximating the even-parity ground
state jΩi is required for both ME and MF interpolating
operator optimization strategies, while the MF strategy also
requires a quantum state to approximate the odd-parity
ground state jE0i. These states are prepared using VQE on
2-qubit variational circuits operating within the even- and
odd-parity sectors encoded as described in Eqs. (23)
and (24), respectively, to yield approximate eigenstates
jΩ̃i and jẼ0i. A single variational layer is used for both
circuits, so that each state preparation is specified by a
vector of variational parameters βπ� ¼ ðβπ�1 ; βπ�2 ; βπ�3 Þ, as
illustrated in Fig. 1. To iteratively search for βπ�, the first-
order simultaneous perturbation stochastic approximation
(SPSA) optimizer is used [84], with default settings within
the Qiskit software development kit [85] (metapackage
version 0.29.0 [86,87]). Once the optimal variational
parameters are found, the corresponding states jΩ̃i and
jẼ0i are reprepared to perform the requisite matrix element
measurements for both strategies.
For the maximum-fidelity strategy, θMF

α is obtained
from Eqs. (6) and (21) given measurements of hΩ̃jP̂kjΩ̃i
for the interpolated state normalization NOðαÞ in the
denominator, and jhẼ0jP̂kjΩ̃ij2, ReðhẼ0jP̂kjΩ̃ihΩ̃jP̂ljẼ0iÞ,

FIG. 1. A schematic representation of the variational layer in a quantum circuit used to approximate the vacuum jΩi and vector meson
jE0i states in a VQE for the Schwinger model [81]. The chosen quantum gate basis consists of single-qubit unitaries, represented
diagrammatically as boxes of complex matrix exponentials, and two-qubit CNOT gates. Using this basis, the circuit above efficiently
encodes a single-layer variational ansatz UðβÞ, β ¼ ðβ1; β2; β3Þ: a general two-qubit unitary transformation subject to the nearest-
neighbor structure of the Schwinger-model Hamiltonian in even- and odd-parity subspaces of zero momentum [88].
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and ImðhẼ0jP̂kjΩ̃ihΩ̃jP̂ljẼ0iÞ for the overlap factor
jZ0

OðαÞj in the numerator. Measurements of diagonal
elements hΩjP̂kjΩi are performed with 3-qubit circuits
as shown in Fig. 2; the remaining off-diagonal elements are
measured with 7-qubit circuits as shown in Fig. 3, follow-
ing the Hadamard-overlap test [78]. All matrix elements are
computed using an ensemble of 100 sets of measurements,
each measurement with 8192 shots, using the quantum
assembly language (QASM) [89] simulator provided
through IBM’s Quantum Experience [90] and the Qiskit

software development kit [85]. To simulate the effect of
gate errors, the simulator is provided with basis gates, the

qubit coupling map, and the noise model from a real
quantum device; in this work, the 7-qubit ibmq_
casablanca device is used, which was one of the
IBM Quantum Falcon processors (now retired).
For the minimum-energy strategy, θME

α is obtained from
Eqs. (10) and (21). As described in Sec. III, the corre-
sponding eigenvector α is a solution to a generalized
eigenvalue problem with the pencil of 2 × 2 matrices
½NO�ij ¼ hΩjÔiÔ

†
j jΩi and ½HO�ij ¼ hΩjÔiĤÔ†

j jΩi. The
matrix elements are estimated in the same way as those for
the MF strategy.
After optimization, each set of measurements yields a

mixing angle describing an optimized combination of
interpolating operators for each strategy, and the ensemble
of measurements samples from the corresponding distri-
bution of mixing angles. These distributions, as well as
exact values of the mixing angles from the eigenstates and
their variational approximations, are shown for both strat-
egies in Fig. 4. Clearly, even in this simple implementation,
the two strategies lead to different optimized interpolating
operator constructions.
Zero-momentum two-point correlation functions Cð0; tÞ

are computed from each optimized interpolating operator,
as well as from the two unoptimized constructions as a
benchmark. For this proof-of-principle demonstration, only
the eigenvectors α come from quantum simulation data; the
remaining components—eigenenergies En and overlap
factors jZn

OðαÞj given α—are found by exact diagonaliza-
tion, as a surrogate for the expectation value of their
stochastic estimates computed in classical LQFT calcula-
tions. Effective energy functions computed from the
correlation functions [Eq. (3)] are shown in Fig. 5. The
bands shown span the range of effective energies between
the first and third quartiles of 100 measurement sets with
each strategy. For noiseless measurement-based simula-
tions, constructions optimized following both strategies
result in substantially less excited state contamination
compared to unoptimized constructions (i.e., with θα ¼ 0
and θα ¼ π=2). These improvements persist despite the
effects of the VQE approximations and finite statistics. The
differences between the exact results of the two strategies
are also as expected; the ME approach results in smaller
excited state contamination at zero Euclidean time, but a
somewhat longer Euclidean time evolution is required to
suppress those contributions. In contrast, while the initial
excited state contamination is larger from the MF approach,
those contributions are suppressed more rapidly in
Euclidean time. Thus, when ignoring the effects of noise
on the quantum device, optimizing interpolating operator
constructions by maximizing fidelity is preferable for the
purposes of lattice spectroscopy. However, gate errors have
a substantially different impact on the two strategies. Since
the implementation of the ME approach can be achieved
with more economical circuits than the MF approach, gate
noise has a smaller effect on the bias and width of the

FIG. 2. Diagrammatic representation of quantum circuits used
to estimate HOðαÞ ¼ hΩjÔðαÞĤÔ†ðαÞjΩi for the minimum-
energy strategy and NOðαÞ ¼ hΩjÔðαÞÔ†ðαÞjΩi for both strat-
egies by measuring hΩ̃jP̂kjΩ̃i. Here, P̂k are 3-qubit Pauli-string
operators entering the decomposition of ½OiOj� or ½OiHOj�, with
i; j ∈ f1; 2g. First, a quantum state jΩ̃i is prepared from the
fiducical state jq1q2q3i ¼ j000i by acting with a variational
ansatz UðβπþÞ on jq1q2i, followed by applying P̂k on jq1q2q3i,
followed by measurement gates.

FIG. 3. Diagrammatic representation of quantum circuits for
the Hadamard-overlap test [78] used to estimate the overlap factor
jZ0

OðαÞj ¼ jhE0jÔ†ðαÞjΩij2 for the maximum-fidelity strategy.
The circuits measure jhẼ0jP̂kjΩ̃ij2, ReðhẼ0jP̂kjΩ̃ihΩ̃jP̂ljẼ0iÞ and
ImðhẼ0jP̂kjΩ̃ihΩ̃jP̂ljẼ0iÞ entering Eq. (9). First, quantum states
jΩ̃i and jẼ0i are prepared with variational ansätzeUðβπ�Þ and the
single-qubit Pauli gate X, and the ancillary qubit a1 is put in an
equal superposition of 0 and 1 with the Hadamard gate H.
Then, three-qubit Pauli gates are applied conditional on a1 ¼ 1.
Finally, a SWAP test is performed using CNOT, Hadamard,
and measurement gates. The colored Rz gate on the ancillary
qubit denotes the rotation about the ẑ-axis by an angle of
−π=2. For k ≠ l, measurements for the real component of
hẼ0jP̂kjΩ̃i hΩ̃jP̂ljẼ0i) are made when the Rz gate is omitted;
for the imaginary component, when it is applied.
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corresponding mixing-angle distribution, as illustrated in
Fig. 4. The practical significance of those differences for
LQFT calculations can be judged by comparing how
effective energy curves from each strategy are affected
by noise. Effective energies for the ME-optimized inter-
polating operator with and without simulated gate noise are
practically indistinguishable in the left panel of Fig. 5, with
small differences that can only be distinguished in the
figure with a logarithmic scale in the right panel. In
contrast, adding the effects noise for MF-optimized inter-
polating operators significantly increases the width of the
effective energy distribution, producing a broader band
(whose width is nonetheless suppressed in Euclidean time,
as expected). The MF-optimized operators may even lead

to less accurate energy estimates than the unoptimized
constructions, at least when no error mitigation techniques
are employed.
Other, less significant, differences between the effective

energy curves obtained from exact matrix elements and
those estimated from measurements in a quantum simulator
are also evident for each strategy; although not practically
significant for the current case, they reveal differences
between the two strategies that may be important in
applications to other systems. For the ME strategy, the
measurement set can sometimes lead to a faster decay of the
effective energy than that resulting from the exact solution.
This is possible because the ME solution minimizes the
energy expectation value at zero Euclidean time, which

FIG. 4. Histograms of the optimized mixing angles θα determined using the minimum-energy (pink) and the maximum-fidelity (blue)
strategies. The distribution in the mixing angle induced by finite statistics (hatched, left panel), and both finite statistics and the effects of
noise (solid, right panel) are shown. All histograms show 100 values of the mixing angle obtained from an ensemble of sets of 8192-shot
measurements. The means of the distributions are biased, as illustrated by the difference between the solid and dashed vertical lines,
because the variational approximations jΩ̃i and jẼ0i do not exactly reproduce the exact ground states jΩi and jE0i. The positions of the
solid lines are computed by exact diagonalization (ED), the dashed lines using the StateVector simulator in the Qiskit software
development kit, which removes the effects of finite statistics.

FIG. 5. Comparison of effective energy functions [Eq. (3)] computed from correlation functions constructed with unoptimized and
optimized interpolating operators, with and without the effects of noise in the quantum device. Unoptimized constructions use the
operators defined in Eq. (19) (black) and Eq. (20) (gray). Curves labeled “Exact” correspond to optimized constructions with mixing
angles obtained from exact diagonalization rather than quantum simulation measurements. For each quantum optimization strategy,
hatched (solid) bands labeled “Measured” encompass values between the first and third quartiles of 100 curves obtained from multishot
measurements in quantum simulation without (with) noise. The left panel shows the effective energy functions and their asymptote,
the mass of the vector meson state from ED; the right plane shows the excited state contamination in each function on a logarithmic
scale, with overlapping hatched and solid pink bands. Energies are converted to lattice units from the units of the rescaled
Hamiltonian in Eq. (16).
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does not guarantee the fastest rate of decay. As a result, the
effects of finite statistics and noise can be observed in the
widening of ME bands both above and below the exact ME
curve at late times. In contrast, for the MF strategy, noise
may lead to fluctuations below the exact effective energy at
t ¼ 0, where the two MF bands contain regions both above
and below the exact MF curve, but their effect on the rate of
decay is more skewed toward decreasing the convergence
to the target, thus leading to a widening of MF bands
primarily above the exact solution at late Euclidean times.
Finally, in practice the optimal choice of strategy also

depends on how late in Euclidean time the signal can be
extracted. This effect is not illustrated in this proof-of-
principle study, where correlation functions are computed
exactly, but will become important when they are estimated
from Monte Carlo data and the range of a statistical signal
in Euclidean time is limited by the diminishing signal-to-
noise ratio. Depending on the onset of this stochastic noise
and assuming gate error noise is mitigated, the faster
convergence of the MF strategy could be practically
significant.

V. HYBRID QUANTUM-CLASSICAL WORKFLOW

The discussion of Sec. IV C comparing the two different
approaches to quantum optimization of interpolating oper-
ators is concerned only with the implementation of the
strategies on a quantum device, and not with the translation
of optimized constructions to classical LQFT. Of course,
within the proposed hybrid quantum-classical workflow,
correlation functions from optimized interpolating operator
constructions would not be computed from exact diago-
nalization, but rather would be estimated from field
configurations sampled with Monte Carlo methods in a
classical LQFT calculation. This is somewhat complicated
by the different formulations of the same LQFTwhich may
be used in quantum and classical calculations. Classical
LQFT calculations conventionally utilize Lagrangian for-
mulations in position space, in discrete Euclidean time,
with one of the several established fermion discretizaton
schemes and gauge fields represented in terms of link
variables. If one of these formulations is chosen for the
classical portion of the calculation, a number of constraints
on the formulation used for the quantum calculation need to
be considered to realize the proposed hybrid workflow.
First, Hamiltonian formulations in quantum computation

may be thought of as a temporal continuum limit of
Lagrangian formulations in LQFT [91,92]. Taking this
limit renormalizes the couplings and masses, raising the
need to match couplings and parameters in the two
formulations of the theory [93–98]. Ignoring the running
of couplings could render the interpolating operator con-
structions optimized via quantum computation less effec-
tive, as the constructions would essentially have been
optimized and applied for theories at different physical
parameters. Moreover, the choice of basis used to represent

quantum fields has an effect on what operators can be
practically implemented in a calculation. One relevant
example is that typical interpolating operators used in
classical LQFT calculations are nonunitary; yet, additional
challenges are posed in realizing such operators with
quantum gates. Furthermore, the choice of basis also affects
the variance in the stochastic estimate of a correlation
function from a given interpolating operator. This is
similar in spirit to the observation that the choice of
interpolating operator set affects the variance [52], and
directly related to numerical demonstrations of reducing
variance in LQFT observables by path integral contour
deformations [99–109]. For this reason, an interpolating
operator, optimized in a quantum computation in one basis,
may suppress excited state contamination in the correlation
function in a study within the same formulation, but a
stochastic estimate of the corresponding correlation func-
tion sampled in LQFT with Monte Carlo with gauge fields
represented in a different basis may be rendered impractical
by signal-to-noise problems.
Despite these challenges, matching between two for-

mulations in the proposed hybrid workflow is also a key
advantage of the approach when considering the use of
NISQ-era quantum technology. Namely, thanks to the finite
spatial extent of bound states, it is to be expected that
effective interpolating operator constructions may be
obtained from optimization performed for a smaller physi-
cal volume than in a target classical calculation. A quantum
calculation in a smaller volume would require less compu-
tational resources, but could still be used to increase the
computational efficiency of the principal, classical stage of
the hybrid workflow [110]. This robustness makes inter-
polating operator optimization particularly suitable for
NISQ-era technology. Moreover, LQFT calculations that
require lattice volumes exceeding NISQ-era capabilities,
for example those encoding the interactions of the target
state with external probes via current insertions, can be
also made more efficient on classical computers with
interpolating-operator constructions optimized in small-
volume quantum calculations.

VI. CONCLUSIONS AND OUTLOOK

In summary, interpolating operator optimization for
LQFT calculations is a suitable problem for NISQ-era
technology that could be handled as a precomputation task
in a hybrid quantum-classical LQFTworkflow, as proposed
originally in Ref. [41]. This work presents two concrete
strategies, and their proof-of-concept realization, for inter-
polating operator optimization on a quantum computer: the
“MF” strategy of maximizing fidelity of a normalized
interpolated state to the target eigenstate, and the “ME”
approach of minimizing the energy expectation value of a
normalized interpolated state. The first strategy is general-
izable to target states other than ground states, and is
preferable in the absence of gate errors as it directly
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minimizes excited-state contributions in the spectral
decomposition of a two-point correlation function. This
ensures a quicker decay of excited-state contamination of
correlation functions in Euclidean time relative to that from
unoptimized constructions. In contrast, the second strategy
minimizes excited-state contributions at zero Euclidean
time. Compared to the first strategy, this approach may lead
to larger overlaps onto excited-state contributions with
lower energies, potentially resulting in persistent slowly
decaying modes in the correlation function. In the imple-
mentation of these approaches for a vector meson state in
the Schwinger model, such behavior is not found to be
significant. Moreover, when gate errors based on current
real-device noise models are added to the simulator, the ME
strategy is shown to be more robust to noise than the MF
strategy, whose implementation requires deeper quantum
circuits with more entangling gates and a larger number of
qubits.
Practical implementations of interpolating operator opti-

mization strategies in the future could be improved by
considering alternative encodings of typical LQFT inter-
polating operators. This could be achieved, for example, by
block encoding the interpolating operators: representing
the nonunitary operators as blocks in a larger unitary
matrix [111]. Alternatively, the interpolation between the
vacuum and the target ground state could be first found as
unitary quantum circuit, and then approximated by a
combination of nonunitary interpolating operators that
can be practically realized in LQFT.
Regardless of a particular strategy or implementation,

interpolating operator optimization with quantum-com-
puter technologies is different in spirit from classical
optimization approaches in LQFT, in that it deals directly
with representations of quantum states rather than stochas-
tic estimates of the corresponding correlation functions. In
particular, this means that quantum interpolating operator
optimization is not hindered by the exponential suppression
of the signal-to-noise ratio in Euclidean time from
Monte Carlo data. This feature makes interpolating oper-
ator optimization on quantum computers an exciting
direction for further research.

Finally, this work discusses how matching between the
formulations of quantum and classical calculations for the
same theory may enable interpolating operator optimiza-
tion with NISQ-era devices in a hybrid quantum-classical
workflow. In this approach, interpolating operator con-
structions, optimized in auxiliary small-scale quantum
calculations designed to study isolated bound states, may
increase the precision at fixed statistics, and thus accelerate,
principal large-scale LQFT calculations on classical com-
puters. These classical calculations may, for example,
study interactions that include the same states and perform
continuum extrapolations. Crucially, by virtue of Euclidean
time evolution, the principal classical calculations will be
robust to noise that enters quantum-computer calculations
as well as the systematic uncertainties that arise from
matching between the two calculations performed at differ-
ent physical volumes, lattice spacings, and truncations on
the gauge field space (in the quantum calculation). In this
way, quantum interpolating operator optimization presents
a potential use case for NISQ-era technology for LQFT
before standalone LQFT calculations on quantum com-
puters are practical at scale.
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