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Quantum electrodynamics in 1þ 1 dimensions (Schwinger model) on an interval admits lattice
discretization with a finite-dimensional Hilbert space and is often used as a testbed for quantum and tensor
network simulations. In this work we clarify the precise mapping between the boundary conditions in the
continuum and lattice theories. In particular we show that the conventional Gauss law constraint commonly
used in simulations induces a strong boundary effect on the charge density, reflecting the appearance of
fractionalized charges. Further, we obtain by bosonization a number of exact analytic results for local
observables in the massless Schwinger model. We compare these analytic results with the simulation results
obtained by the density matrix renormalization group method and find excellent agreements.
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I. INTRODUCTION

Quantum electrodynamics in 1þ 1 dimensions, also
known as the Schwinger model [1], is one of the simplest
nontrivial gauge theories. Since its introduction in the
1960s it has been widely studied. These days it is often
used as a toy model to benchmark numerical techniques for
quantum gauge theories, such as tensor network and
quantum simulations. See, for example, [2–25].
With the recent rapid development of quantum devices,

quantum simulation of gauge theory is becoming more
feasible. For this purpose, as in classical simulation, we
need to discretize the gauge theory and put it on a finite
lattice. In the noisy intermediate-scale quantum (NISQ)
era [26], the number of available qubits and the physical
volume of the space on which the gauge theory is simulated
will be limited. For this reason, simple (1þ 1)-dimensional
gauge theories such as the Schwinger model are natural
targets of quantum simulation. Putting these theories on a
spatial interval rather than a circle has an advantage because
the Gauss law constraint allows us to remove gauge fields
completely on an interval, while on a circle there remains
an infinite-dimensional Hilbert space. The spatial interval
for the continuum model corresponds to the open boundary
condition of the lattice model. It is thus desirable to know
the precise correspondence between the theories in the
continuum and on the lattice. To compare the continuum
and lattice formulations, it also helps to have analytic

results that take into account the strong effects of the
boundaries and the finite volume. Rather surprisingly, the
study of such effects in the literature is limited.1

With these motivations, in this paper we study the
Schwinger model on a finite interval and clarify the precise
mapping between the continuum (original and bosonized)
and lattice models. In particular, we show that the com-
monly used Gauss law constraint [31] in the lattice
formulation induces fractionalized charges on the bounda-
ries, and demonstrate that for an alternative constraint [32]
the boundary charges are also modified.2 Along the way we
establish the precise correspondence between the boundary
conditions in different formulations. We also derive a
number of analytic expressions for physical observables
in the ground state in the massless case. This is possible
because bosonization maps the massless Schwinger model
to a free scalar theory [34,35]. Some of these analytic
results were used in [36] to compare with the results of
digital quantum simulation of the lattice Schwinger model
on a classical simulator.
The paper is organized as follows. In Sec. II we review

the continuum Schwinger model in the original formu-
lation. In Sec. II B we study the Schwinger model on an
interval using bosonization and derive some analytic
results. Section III contains our study of the Kogut-
Susskind lattice formulation of the Schwinger model on
a finite lattice with the open boundary condition. We review
two equivalent formulations, one based on the staggered
fermion and another based on spin variables. We compute
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1See [27,28] for the study of the model on a circle with finite
radius, and [29,30] for an earlier study of boundary effects.

2If the periodic boundary condition is chosen, then the
modification of the Gauss law is equivalent to the mass shift
studied in [33] via a field redefinition.
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by the density matrix renormalization group (DMRG)
[37,38] some physical observables in the ground state
and find agreement with the analytic results from Sec. II B,
using the original and modified Gauss law constraints.
We conclude the paper with discussion in Sec. IV. In
Appendix A we calculate the energy in the presence of
probe charges using the method of images. In Appendix B
we show that the general lattice QCD in the Kogut-
Susskind formulation [39] enjoys an exact one-form
symmetry for the part of the center of the gauge group
under which the matter fermions are neutral.

II. CONTINUUM SCHWINGER MODEL
ON AN INTERVAL

In this section we study the continuum Schwinger model
on an interval. We first review the original fermionic
formulation of the model. Then we review the bosonized
version and derive a number of new analytic results for
local observables.

A. Review of the fermionic formulation

We use notations x0 ¼ t, x1 ¼ x for spacetime coordi-
nates and use the Minkowski metric ημν ¼ diagð1;−1Þ to
raise and lower indices. The dynamical fields in the
Schwinger model are the gauge field Aμ (μ ¼ 0; 1) and the
Dirac fermion ψ ¼ ðψu;ψdÞT , which is a two-component
spinor. Let g be the gauge coupling and m the fermion
mass. The model is defined by the action

S ¼
Z

d2x

�
−
1

4
FμνFμν þ gΘðxÞ

4π
ϵμνFμν

þ iψ̄γμð∂μ þ igAμÞψ −mψ̄ψ

�
þ boundary terms: ð1Þ

We use the notations

ϵ01 ¼ −ϵ01 ¼ 1; γ0 ¼ σ3; γ1 ¼ iσ2; γ5 ¼ γ0γ1; ð2Þ

and ψ̄ ¼ ψ†γ0. We allow the theta angle to be position
dependent and denote it by ΘðxÞ.
Consider, for example,

Θðq;θ0ÞðxÞ ¼
�
θ0 þ 2πq for l0 < x < l0 þ l

θ0 for otherwise
: ð3Þ

See Fig. 1. The discrete changes in the theta angle ΘðxÞ
correspond to the presence of probe charges. Indeed we can
rewrite the relevant part of the action asZ

d2x
Θðq;θ0Þ
4π

ϵμνFμν

¼
Z

d2x

�
θ0
4π

ϵμνFμν − q½δðx − l0Þ − δðx − l0 − lÞ�A0

�
;

where we explicitly see the pointlike sources for the
gauge field.
Let us study the model on an interval 0 ≤ x ≤ L. For the

fermion ψ , the general boundary conditions (B.C.s) at each
boundary, compatible with the variational principle, are
parametrized by a real parameter ν mod Z3:

ψL þ e2πiνψR ¼ 0; ð4Þ

where we defined ψL ≔ ðψu þ ψdÞ=2, ψR ≔ ðψu − ψdÞ=2.
We are particularly interested in ðψu;ψd; νÞ ¼
ð0; arbitrary; 0Þ; ðarbitrary; 0; πÞ. Up to a field redefinition
ψ → γ5ψ , there are two inequivalent choices [40]: the
Ramond (R) B.C.

ψLð0Þ ¼ sψRð0Þ and ψLðLÞ ¼ sψRðLÞ ð5Þ

and the Neveu-Schwarz (NS) B.C.

ψLð0Þ ¼ sψRð0Þ and ψLðLÞ ¼ −sψRðLÞ; ð6Þ

with s ¼ �1.4

We work in the temporal gauge A0 ¼ 0, where the Gauss
law constraint δS=δA0 ¼ 0 should be imposed on physical
states. Varying A0, we find the Gauss law

∂1F01 ¼
g
2π

∂1Θþ gψ̄γ0ψ ð7Þ

in the bulk. Composite operators such as ψ̄γ0ψ should be
defined by some normal ordering [41]. Throughout this
paper we make this implicit and omit normal ordering
symbols for the fermion. We will specify the B.C.s
on F01 at x ¼ 0 and x ¼ L in Sec. II B where we study
the continuum model in the bosonized formulation. The
boundary terms in (1), which we do not write explicitly,
should be chosen so that they are compatible with
the B.C.s.
The canonical momentum conjugate to A1 (¼−A1) is

Π ¼ ∂0A1 þ g
2π

Θ: ð8Þ

FIG. 1. The setup for ΘðxÞ ¼ Θðq;θ0Þ in (3), corresponding to
probe charges þq at x ¼ l0 and −q at x ¼ l0 þ l.

3These B.C.s preserve (explicitly break) the vector (axial)
Uð1Þ symmetry generated by ψ̄γμψ (ψ̄γμγ5ψ).

4Let us extend the domain of ψLðxÞ to ½−L; L� by ψLðxÞ ≔
−e2πiν0ψRð−xÞ for −L ≤ x ≤ 0. Since ψLðLÞ ¼ e2πiðν1−ν0Þ ×
ψLð−LÞ, ψL is periodic (antiperiodic) for the R (NS) B.C.
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The density H of the Hamiltonian H ¼ R
L
0 dxHðxÞ is

HðxÞ ¼ 1

2

�
Π −

gΘðxÞ
2π

�
2

− iψ̄γ1ð∂1 þ igA1Þψ þmψ̄ψ :

Let us denote the expectation value of the operator O in
the ground state by hOi. Local observables of the con-
tinuum Schwinger model on an interval include the energy
density hHi, the charge density hψ̄γ0ψi, the chiral con-
densate hψ̄ψi, and the electric field F01.

B. Bosonized Schwinger model

In this subsection we study the Schwinger model in the
bosonized formulation. There is some overlap with the
Appendix of [36] that uses the same convention, and we
refer the reader to that paper for details omitted here.
The bosonized Lagrangian density is (cf. [42])

L ¼ −
1

4
FμνFμν þ g

4π
Θðx1ÞϵμνFμν þ

gffiffiffi
π

p ϵμνAμ∂νϕ

þ 1

2
∂μϕ∂

μϕþmg
eγ

2π3=2
cosð2 ffiffiffi

π
p

ϕÞ: ð9Þ

We choose an appropriate boundary condition on the gauge
field so that the solution to the Gauss law constraint is

F01 −
g
2π

Θ ¼ gffiffiffi
π

p ϕ: ð10Þ

The Hamiltonian density is given as

H ≔
1

2
ðΠϕÞ2 þ

1

2
ð∂xϕÞ2 þ

μ2

2

�
ϕþ ΘðxÞ

2
ffiffiffi
π

p
�

2

−mg
eγ

2π3=2
∶ cosð2 ffiffiffi

π
p

ϕÞ∶∞; ð11Þ

where Πϕ is the canonical momentum conjugate to ϕ and
μ≡ g=

ffiffiffi
π

p
. We write ∶•∶∞ for the normal ordering (see

below) with respect to the creation-annihilation operators
defined in the infinite volume and used the relation

ψ̄ψ ¼ −
eγ

2π3=2
g∶ cos½2 ffiffiffi

π
p

ϕðxÞ�∶∞; ð12Þ

where γ ≃ 0.58 is the Euler constant. The particular
numerical coefficient eγ=ð2π3=2Þ is correct for this choice
of normal ordering.5

We study the bosonized model with m ¼ 0 and the
Dirichlet boundary conditions

ϕ ¼ ffiffiffi
π

p
w0 at x ¼ 0; ϕ ¼ ffiffiffi

π
p

w1 at x ¼ L: ð13Þ

We set kn ≔ πn=L. Let us define

ϕ0ðxÞ ≔
ffiffiffi
π

p
w0 þ

ffiffiffi
π

p ðw1 − w0Þ
x
L
; ð14Þ

ϕ̂ðxÞ ≔ ϕðxÞ − ϕ0ðxÞ; Θ̂ðxÞ ≔ ΘðxÞ þ 2
ffiffiffi
π

p
ϕ0ðxÞ:

ð15Þ

Let us consider the Fourier expansions

ΠϕðxÞ ¼
X∞
n¼1

Πn sin ðknxÞ; ϕ̂ðxÞ ¼
X∞
n¼1

ϕn sin ðknxÞ;

Θ̂ðxÞ ¼
X∞
n¼1

Θn sin ðknxÞ:

The Hamiltonian becomes

Hboson ¼
πðw1 − w0Þ2

2L

þ
X∞
n¼1

�
ωn

�
a†nan þ

1

2

�
þ Lμ2

16

k2n
ω2
n
Θ2

n

�
; ð16Þ

where ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2n

p
and

an ¼
ffiffiffiffiffiffiffiffiffi
Lωn

p
2

�
ϕn þ

μ2Θn

2
ffiffiffi
π

p
ω2
n

�
þ i
2

ffiffiffiffiffiffi
L
ωn

s
Πn: ð17Þ

We have ½an; a†n0 � ¼ δnn0 . The ground state j0i satisfies
anj0i ¼ 0 and has a divergent energy due to the terms
proportional to ωn, which are independent of Θ.
The energy density h0jHðxÞj0i is also UV divergent. Let

bxc denote the largest integer smaller than or equal to x.
With a cutoff kn ≤ Λ,6 the regularized energy density is

EΛðxÞ ¼
1

2L

XbLΛ=πc
n¼1

��
ωn þ

μ2

ωn

�
sin2ðknxÞ þ

k2n
ωn

cos2ðknxÞ
�

þ 1

8π

�� XbLΛ=πc
n¼1

μ2kn
ω2
n
Θn cosðknxÞ

�2

þ
� XbLΛ=πc

n¼1

μk2n
ω2
n
Θn sinðknxÞ

�2�
; ð18Þ

which is quadratically divergent. On a full infinite line
without probe charges, the corresponding regularized
energy density is, with ωðkÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
,7

5See [43] for a general discussion of normal ordering.

6For plots throughout the paper, we use Mathematica to
evaluate regularized sums numerically by setting ½LΛ=π� to 104.

7Explicitly, Eline
Λ ¼ ½ðΛ2 þ μ2Þ1=2Λþ μ2 sinh−1ðΛ=μÞ�=4π.
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Eline
Λ ≔ lim

L→∞
EΛðL=2Þ ¼

Z
Λ

0

dk
2π

ωðkÞ: ð19Þ

We define the renormalized energy density as

EðxÞ ≔ lim
Λ→∞

ðEΛðxÞ − Eline
Λ Þ: ð20Þ

An expression for the chiral condensate was found in [36]:

hψ̄ψðxÞi ¼ −
eγg

2π3=2
λðxÞ

× cos

�
2

ffiffiffi
π

p
ϕ0ðxÞ −

X∞
n¼1

μ2

ω2
n
Θn sinðknxÞ

�
; ð21Þ

where8

λðxÞ≔ lim
Λ→∞

exp

�
sinh−1

�
Λ
μ

�
−

XbLΛ=πc
n¼1

2π

L
sin2ðknxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þ k2n

p �
: ð23Þ

For the charge density ψ̄γ0ψðxÞ ¼ ∂xϕ=
ffiffiffi
π

p
, we obtain

hψ̄γ0ψðxÞi ¼ w1 − w0

L
−
μ2

2π

X∞
n¼1

kn
ω2
n
Θn cosðknxÞ: ð24Þ

For the electric field we have

hF01i ¼
g
2π

X∞
n¼1

k2n
ω2
n
Θn sinðknxÞ: ð25Þ

Below, we consider special and limiting cases.

1. Two probe charges on an interval

For probe charges on an interval, one can evaluate the
sums above. As an example, let us consider

ΘpairðxÞ ¼
�
2πq for L−l

2
≤ x ≤ Lþl

2

0 otherwise
; ð26Þ

which represent a pair of charges �q placed at x ¼
ðL ∓ lÞ=2, i.e., Θpair ¼ Θq;θ0¼0jl0¼ðL−lÞ=2. We impose
the boundary conditions ϕ ¼ 0 at x ¼ 0; L corresponding
to w0 ¼ w1 ¼ 0. The nonzero Fourier coefficients are

ðΘpairÞ2jþ1 ¼
8q

2jþ 1
ð−1Þj sin ½k2jþ1ðl=2Þ� ð27Þ

for j ∈ Z>0. The total energy Epair, defined as the energy
computed from (16) by removing terms proportional to ωn,
was obtained in [36]9:

Epair ¼
ffiffiffi
π

p
2

q2g
ð1 − e−μlÞð1þ e−μðL−lÞÞ

1þ e−μL
: ð28Þ

The energy density EðxÞ in (20) computed for (26) is
plotted in Fig. 2(a).10 The chiral condensate hψ̄ψðxÞi
in (21) corresponding to (26) is plotted in Fig. 2(b). For
the cosine in (21), the residue method gives its argument
explicitly as

(a) (b)

FIG. 2. (a) Renormalized energy density E given by (20), for two probe charges �q placed at x ¼ ðL ∓ lÞ=2 represented by the
position-dependent theta angle (26), for L ¼ 100 g−1 and l ¼ 40 g−1. The local behaviors near each boundary and each pole are given
by (31) and (36), respectively. (b) Chiral condensate hψ̄ψðxÞi given by (21) for the same setup. The local behaviors near each boundary
and each pole are given by (34) and (37), respectively.

8By several manipulations, one may rewrite (23) as

log λðxÞ ¼
Z

∞

1

duffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
�

−2
e2μLu − 1

þ cosh ½ð2x=L − 1ÞμLu�
sinh½μLu�

�
:

ð22Þ

9In Appendix A, we give an alternative derivation of (28) by
the method of images.

10It is possible to perform the summations in (18) to obtain an
alternative expression. We found the result to be not illuminating.
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−πq
X
j¼0;1

ð−1ÞbηjðxÞc
�
cosh½ðfηþðxÞg − 1=2ÞμL�

coshðμL=2Þ − 1

�
;

where η0ðxÞ ≔ ðx − L−l
2
Þ=L, η1ðxÞ ≔ ðx − Lþl

2
Þ=L, and

fηg ≔ η − bηc. The charge density hψ̄γ0ψðxÞi that corre-
sponds to (26) is plotted in Fig. 3(a). The summation in (24)
can be performed explicitly to give

hψ̄γ0ψðxÞipair ¼
qμ

2 coshðμL=2Þ
X
j¼0;1

ð−1ÞjþbηjðxÞc

× sinh ½ðfηjðxÞg − 1=2ÞμL�: ð29Þ
The electric field that corresponds to (26) is plotted in
Fig. 3(b). Performing the summation in (25), we obtain the
explicit expression

hF01ipair ¼
qg

2 coshðμL=2Þ
X
j¼0;1

ð−1ÞjþbηjðxÞc

× cosh ½ðfηjðxÞg − 1=2ÞμL�: ð30Þ

2. Behaviors near a boundary

We now consider the massless Schwinger model on a
half-line ½0;∞Þ with ΘðxÞ ¼ 0 and the boundary condition
ϕðx ¼ 0Þ ¼ 0. Let us begin with the energy density. The
regularized energy density on a half-line is obtained from
(18) by sending L to infinity: Ehalf-line

Λ ðxÞ ≔ limL→∞EΛðxÞ
We define the renormalized energy density on a half-line as
Ehalf-line ≔ limΛ→∞ ðEhalf-line

Λ ðxÞ − Eline
Λ Þ. We find

Ehalf-line ¼ −
μ2

2π
K0ð2μxÞ: ð31Þ

The modified Bessel function K0ðzÞ has the asymptotics

K0ðzÞ ¼
�− logðz=2Þ − γ þOðzÞ for z ∼ 0ffiffiffiffi

π
2z

p
e−zð1þOð1=zÞÞ for z ≫ 1

: ð32Þ

Thus the energy density diverges logarithmically near the
boundary and decays exponentially away from it. From

lim
L→∞

λðxÞ ¼ exp

�Z
∞

0

dk
cosð2kxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

p �
¼ eK0ð2μxÞ: ð33Þ

we get for the chiral condensate

hψ̄ψðxÞihalf-line ¼ −
eγ

2π3=2
geK0ð2μxÞ; ð34Þ

which is the result obtained in [30]. The condensate
diverges as hψ̄ψðxÞi ¼ Oðx−1=2Þ near the boundary and
decays exponentially away from it. The charge density
and the electric field simply vanish a half-line for ΘðxÞ ¼ 0
and the boundary condition ϕðx ¼ 0Þ ¼ 0.

3. Behaviors near a probe charge

Let us consider the system with a single probe charge q
at x ¼ x0 on an infinite line, which is represented by the
position-dependent theta angle

ΘprobeðxÞ ≔
�
0 for x < x0
2πq for x > x0

: ð35Þ

By taking an appropriate limit of (18) or by repeating the
steps leading to (18), we obtain the energy density
(renormalized by subtracting the value without a probe)

EprobeðxÞ ¼
π

4
q2μ2e−2μjx−x0j: ð36Þ

In a similar manner one can obtain expressions for other
local observables. We obtain, as in Appendix D of [36],

hψ̄ψðxÞiprobe

¼ −
eγg

2π3=2

�
cos ½πqe−μðx0−xÞ� for x < x0

cos ½2πq − πqe−μðx−x0Þ� for x > x0
: ð37Þ

We also have

(a) (b)

FIG. 3. (a) Charge density hψ̄γ0ψðxÞi given by (24) or equivalently by (29) for the same setup as for Fig. 2. The local behaviors near
the probes are given by (38). (b) Electric field F01 given by (25) or equivalently by (30) for the same setup.
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hψ̄γ0ψðxÞiprobe ¼ −
q
2
μe−μjx−x0j; ð38Þ

which previously appeared in (4.12) of [27]. Integrating
this, one obtains

hF01iprobe ¼
q
2
gsgnðx − x0Þe−μjx−x0j: ð39Þ

4. Behaviors near a boundary charge

We now consider the massless Schwinger model on a
half-line ½0;∞Þ with ΘðxÞ ¼ 0 and the boundary condition

ϕðx ¼ 0Þ ¼
ffiffiffi
2

p
w0≕ q=2 ð40Þ

(or equivalently ΘðxÞ ¼ ffiffiffi
π

p
q and ϕð0Þ ¼ 0). This can be

obtained by setting w0 ¼ q=2 and taking the limit L → ∞.
We find that the energy density is the sum of (31) and (36)
while the charge density and the electric field are respec-
tively given by (38) and (39) (all with x0 ¼ 0). The chiral
condensate is given by

hψ̄ψðxÞiboundary char ¼ −
eγg

2π3=2
eK0ð2μxÞ cos ðπqe−μxÞ: ð41Þ

III. LATTICE SCHWINGER MODEL WITH
OPEN BOUNDARY CONDITIONS

A. Fermion versus spin models on a lattice

Let us turn to the Kogut-Susskind lattice formulation of
the Schwinger model [39,44] with a position-dependent
theta angle. We will be brief and follow the conventions
of [36].
We consider a one-dimensional spatial lattice with N

sites, labeled by integers n ¼ 0; 1;…; N − 1.11 The two
components ψuðxÞ and ψdðxÞ of the Dirac fermion ψ ¼
ðψu;ψdÞT are replaced by the staggered fermion χn at the
even and odd sites with x ¼ na, respectively, according to
the correspondence

ψuðxÞ
ψdðxÞ

↔
χnffiffiffiffiffiffi
2a

p n∶ even

n∶ odd
: ð42Þ

On the nth link, which connects the sites n and nþ 1,
we introduce the link variables Un and Ln satisfying
U†

n ¼ U−1
n , L†

n ¼ Ln according to the correspondence

e−iagA
1ðxÞ ↔ Un; − ΠðxÞ=g ↔ Ln: ð43Þ

These operators satisfy canonical (anti)commutation rela-
tions, among which the nontrivial ones are

fχm; χ†ng ¼ δmn; ½Um;Ln� ¼ δmnUm: ð44Þ

We also introduce the lattice version ϑn of the position-
dependent theta angle on the nth link:

ΘðxÞ ↔ ϑn: ð45Þ

The Hamiltonian of the lattice theory is

Hlattice ¼
g2a
2

XN−2

n¼0

�
Ln þ

ϑn
2π

�
2

−
i
2a

XN−2

n¼0

�
χ†nUnχnþ1 − χ†nþ1U

†
nχn

�

þm
XN−1

n¼0

ð−1Þnχ†nχn; ð46Þ

which is the direct counterpart of (9).
There is a relation between N and the fermion boundary

conditions. As in (42) we identify ψu (ψd) with χeven (χodd).
Since n in χn runs from 0 to N − 1, we effectively have
χ−1 ¼ χN ¼ 0. Thus we have ψd ¼ 0 on the left and
ψu ¼ 0 (ψd ¼ 0) on the right for N even (odd), namely
there is a correspondence, leading to the NS (R) boundary
condition.12

As in the continuum theory, the physical Hilbert space
is obtained by the Gauss law constraint. The standard
choice [31] of the Gauss law constraint is13

Gstandard
n ≔ Ln − Ln−1 − χ†nχn þ

1 − ð−1Þn
2

¼ 0: ð47Þ

We impose the boundary condition L−1 ¼ 0 and fix the
gauge Un ¼ 1 to eliminate ðLn;UnÞ. The term ð−1Þn=2
in (47) represents a site-dependent background charge. In
the bulk, the spatially averaged background charge density
vanishes in the continuum limit, but we will see that there
remains a nontrivial localized charge on a boundary and
induces a background electric field.
We convert the fermions into spin variables by the

Jordan-Wigner transformation [45]

χn ¼
Xn − iYn

2

Yn−1
i¼0

ð−iZiÞ; ð48Þ

where Xn, Yn, Zn, respectively, denote the Pauli matrices
σx, σy, σz associated with the nth site. Besides the theta

11We will see that the behavior of the model depends strongly
on whether N is even or odd.

12We also checked that the DMRG computation of the spectra
of the XY model, which is equivalent to the free fermion model
via the Jordan-Wigner transformation for open B.C.s, reproduces
the expected spectra of the continuum Dirac fermion obeying the
NS (R) boundary conditions for large N even (odd).

13Here, the presence of external charges is accounted for, as
in (3), by the position-dependent theta angle ϑn in (46), cf. (B4).
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angle, g and m as in Sec. II, the lattice introduces the lattice
spacing a as an extra parameter. The length L of the spatial
interval is given by L ¼ ðN − 1Þa. The Gauss law con-
straint reads

0 ¼ Ln − Ln−1 −
Zn þ ð−1Þn

2
: ð49Þ

We solve this with the boundary condition

L−1 ¼ 0: ð50Þ

The Hamiltonian in terms of the spin variables is

Hspin ¼
g2a
2

XN−2

n¼0

�Xn
i¼0

Zi þ ð−1Þi
2

þ ϑn
2π

�
2

þ 1

4a

XN−2

n¼0

ðXnXnþ1 þ YnYnþ1Þ þ
m
2

XN−1

n¼0

ð−1ÞnZn:

ð51Þ

Note the structural similarity between (11) and (51).
We have the following correspondence for the local

observables of the continuum theory and the spin model.

HðxÞjm¼0 ↔
g2

2

�Xn
i¼0

Zi þ ð−1Þi
2

þ ϑn
2π

�
2

þ 1

4a2
ðXnXnþ1 þ YnYnþ1Þ; ð52Þ

ψ̄γ0ψðxÞ ↔ 1

4a
ðZn þ Znþ1Þ; ð53Þ

ψ̄ψðxÞ ↔ ð−1Þn
4a

ðZn − Znþ1Þ; ð54Þ

F01 ↔ g
Xn
i¼0

Zi þ ð−1Þi
2

þ ϑn
2π

: ð55Þ

The quantities on the left- and right-hand sides are for a
continuous theory and a lattice model, respectively, requir-
ing renormalization (normal ordering) in the former.
We will often consider the particular form of the

position-dependent theta angle corresponding to probe
charges �q located at the sites n ¼ bl0 n ¼ ðbl0 þ blÞ:

ðϑpairÞn ≔
�
2πqþ θ0; l̂0 ≤ n < l̂0 þ l̂

θ0; otherwise
: ð56Þ

B. Spin lattice versus bosonized continuum models

Let us compare the Gauss law constraints (10) and (49)
in the spin and bosonized formulations, respectively. The
correspondence

1

g
F01 −

1

2π
ΘðxÞ ↔ Ln ð57Þ

in (43) suggests the correspondence

ϕðxÞ ↔
ffiffiffi
π

p
2

Xn
i¼0

ðZi þ ð−1ÞiÞ≕ϕn: ð58Þ

The operator ϕn rotates the XjYj planes for j ≤ n. The
comparison of (11) and (51) suggests the correspondence

1

2
ðΠϕÞ2 þ

1

2
ð∂xϕÞ2 þ const

↔
1

4a2
ðXnXnþ1 þ YnYnþ1Þ≕ hn: ð59Þ

Taking the commutators of the both sides of (58) and (59)
gives another correspondence

Πϕ ↔
ffiffiffi
π

p
4a

ðYnXnþ1 − XnYnþ1Þ≕ πn; ð60Þ

where the expression on the right arises from ½ϕm; hn� ¼
ði=aÞδmnπn. We note the commutation relation

½ϕm; πn� ¼ −πiδmnhn: ð61Þ

This reduces to the canonical commutation relation
between ϕðxÞ and ΠϕðxÞ in the continuum limit because
the density of the kinetic term diverges as −1=ðπa2Þ14 so
that we can replace hn by −1=ðπaÞ in (61).
The lattice Schwinger model described in Sec. III A

should correspond, in the continuum limit, to specific
values of w0 and w1 in (13). In the Appendix of [36], it
was argued that

w0 ¼
1

4
; w1 ¼

Q
2
þ 1

4
; Q ≔

XN−1

n¼0

Zn: ð62Þ

The chargeQ is conserved and can be treated as a c number
within a fixed charge sector. In fact, if the value of ν in (4) is
ν0 (ν1) at x ¼ 0 (x ¼ L), then we have15

ν1 − ν0 ¼ w1 − w0 mod Z: ð63Þ

The relations (62) and (63) are nontrivially consistent with
the correspondence between with parity of N and the
fermion boundary conditions found in Sec. III A. We will

14The divergence can be computed by the free fermion because
it is not affected by g or m, which only appears as ga or ma.

15This should follow from the bosonization rules ψLðRÞ∼
eiϕLðRÞ , where ϕLðRÞ is the normalized left-(right-)moving part
of ϕ. We checked it by comparing the explicit cylinder partition
functions.
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also explicitly confirm the identification (62) by comparing
the charge densities computed by DMRG and by bosoni-
zation. We note that the eigenvalue of Q is even (odd) if N
is even (odd). Thus the winding number w1 − w0 is an
integer (a half-integer) if N is even (odd). To summarize,
we have the correspondence16

N even ↔ integer winding ↔ NS B:C:;

N odd ↔ half-integer winding ↔ R B:C: ð64Þ

C. Comparison of DMRG and analytic results

Here we compare the DMRG results based on the spin
formulation in Sec. III and the analytic results based on
bosonization in Sec. II B. For our implementation of
DMRG, we used the ITensor library [47]. See [48] for a
related study.
For the chiral condensate ∝ hð−1ÞnZni, we plot the

DMRG results including the extrapolated values and the
analytical results in Fig. 4(b) for the case with no probe
charges. After extrapolation, the DMRG and analytical
results match well.
For the charge density, we plot the DMRG and analytic

results in Fig. 4(a). We see that they agree very well. This
gives strong evidence for the identification (62). Near the
right boundary, the charge density profile is identical to that
near a probe of charge −1=2 for N even and þ1=2 for N
odd. We note that the parameters w0 and w1 parametrizing
the Dirichlet boundary conditions for ϕ in (13) are related
to the boundary charges qL and qR on the left and right
boundaries as

w0 ¼
qL
2
; w1 ¼ −

qR
2
; ð65Þ

generalizing (40). Therefore, the charges on the boundaries
are half-integral, signifying charge fractionalization.
Indeed, for N both even and odd, the charge density near
left boundary has a spatial profile identical to the charge
density near a probe charge þ1=2.

D. DMRG with a modified Gauss law constraint

Above, we used the standard Gauss law constraint (47),
or equivalently (49), for DMRG. The constraint (47) is
chosen [31] so that it is satisfied by the ground state jGS0i in
the “strong coupling limit” (ga → þ∞ with m=g2a fixed)
[44] with vanishing Ln. In terms of the fermion occupation
numbers χ†nχn, jGS0i corresponds to j010101…i.
In this subsection we consider a modified version of the

Gauss law constraint [32]

0 ¼ Gmodified
n ;

≔ Ln − Ln−1 − χ†nχn þ
1

2
¼ Ln − Ln−1 −

Zn

2
: ð66Þ

Compared with the standard choice (47), we dropped the
term −ð−1Þn=2, which affects the boundary value of the
scalar ϕ, as argued in the Appendix of [36].
If the periodic B.C. is chosen, as explained in

Appendix B 4 of [33], this modification of the Gauss law
constraint is equivalent, via a shift of Ln by ð−1Þn=4,17 to a
shift of the mass parameter such that the theory with a
vanishing shiftedmass enjoys a discrete chiral symmetry and

(a) (b)

FIG. 4. (a) Chiral condensate for L ¼ ðN − 1Þa ¼ 15 g−1 and q ¼ 0 (no probe charge), m ¼ 0, and θ0 ¼ 0. Plots of
ð4gaÞ−1ð−1ÞnhZn − Znþ1i computed by DMRG and hψ̄ψðxÞi=g computed analytically by the formula (21) are shown. We also plot
the results of extrapolation to N ¼ ∞ (a ¼ 0) obtained by fitting the data for N ∈ f301; 601; 1201; 2401g by a quadratic function of
1=N. For better visibility, only a subset of the values of n is used. (b) Charge density for a pair of charges with gl ¼ 4, q ¼ 0.5, and
θ0 ¼ m ¼ 0. Plots of ð4gaÞ−1hðZn þ Znþ1Þi computed by DMRG and hψ̄γ0ðxÞi=g computed analytically by (24) and (26) are shown.
The precise length of the interval is L ¼ ðN − 1Þa with ga ¼ 0.1.

16For a similar correspondence in the case of periodic XY
models, see Sec. 5.2.2 of [46]. 17The corresponding manipulation for the open B.C. is (68).
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a faster convergence to the continuum limit.While one has to
allow Ln to take noninteger values to satisfy the modified
Gauss law (66), one can require the shifted version to take
integer values. Solving the modified constraint with the
boundary conditionL−1 ¼ 0 and fixing the gauge, we obtain
the modified Hamiltonian

Hmodified ¼
g2a
2

XN−2

n¼0

�
1

2

Xn
i¼0

Zi þ
ϑn
2π

�
2

þ 1

4a

XN−2

n¼0

ðXnXnþ1 þ YnYnþ1Þ þ
m
2

XN−1

n¼0

ð−1ÞnZn:

ð67Þ

A direct calculation shows that�
1

2

Xn
i¼0

Zi þ
ϑn
2π

�
2

¼
�Xn
i¼0

Zi þ ð−1Þi
2

þ ϑn − π
2

2π

�
2

−
XN−1

i¼0

ð−1Þi
8

Zi −
ð−1ÞN

8
Qþ c-number:

ð68Þ

Comparing with (51) we see that, within the fixed chargeQ
sector, the modification (66) of the Gauss law is equivalent
to a shift of the mass m → m − ðg2a=8Þ [33] and a shift of
the theta angle ϑn → ϑn − ðπ=2Þ. The latter shift would be
further modified if we chose a boundary condition other
than L−1 ¼ 0.
Figure 5 displays the profiles of the chiral condensate

hψ̄ψðxÞi and the charge density hψ̄γ0ψðxÞi computed
by analytic formulas and DMRG for m ¼ 0. Contrary to

Fig. 4(b), extrapolation is unnecessary because the modi-
fication of the Gauss law, which is partially equivalent to
the mass shift of [33], makes the convergence to the
continuum limit much faster.

IV. SUMMARY AND DISCUSSION

In this work, we studied three formulations of the
Schwinger model: the original fermionic formulation, the
bosonized formulation, and the Hamiltonian lattice formu-
lation.We computed analytically physical observables in the
ground state using the bosonized formulation and found
excellent agreements with the DMRG computations in the
lattice formulation.We clarified the correspondence between
boundary conditions in different formulations. We studied a
nonstandard Gauss law constraint (66) in the lattice formu-
lation, and showed that it is equivalent to the mass shift
of [33] and a shift of the theta angle. In accordancewith [33],
we found that the modification of the Gauss law makes the
convergence to the continuum limit faster.
As for future directions, it would be interesting to

rederive our analytic results in the path integral formalism,
along the line of [28]. It would also be worthwhile to
establish the faster convergence more firmly by computing
the precise difference between the lattice and continuum
Hamiltonians. This should be possible by classifying the
potential counterterms to the local observables along the
line of [49,50] that deals with the Euclidean path integral.
Finally, one should be able to perform DMRG in a similar
manner to compute local observables in non-Abelian lattice
gauge theories in 1þ 1 dimensions.
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APPENDIX A: COMPUTATION OF THE ENERGY
BY THE METHOD OF IMAGES

In this appendix we compute the ground state energy of
the massless Schwinger model with probe charges, using
the effective potential obtained in [42].
By integrating out the matter field and restricting to a

static gauge field, the effective Lagrangian, on an infinite
spatial line, is found to be

Leff ¼
1

2
ð∂1A0Þ2 þ

μ2

2
A2
0 − ρA0; ðA1Þ

where we introduced the density ρðxÞ of external charges.
For two charges q1 and q2 separated by distance l,
ρðxÞ ¼ q1g½δðxÞ þ q2δðx − lÞ�, the solution to the Euler-
Lagrange equation

ð−∂21 þ μ2ÞA0 ¼ ρ ðA2Þ

gives the two-body potential [27]

Vq1;q2ðlÞ ¼ −
π

2
q1q2μð1 − e−μlÞ: ðA3Þ

To compute the energy on an interval ½0; L�, we extend
the domain of the charge density ρðxÞ from to ð−∞;∞Þ as
an even periodic function of period 2L, ρð−xÞ ¼ ρðxÞ,
ρðxþ 2LÞ ¼ ρðxÞ. We solve (A2) for A0 using the Green’s
function GðxÞ ¼ e−μjxj=2μ and substitute A0 to (A2) with
the integration range ½0; L�. The energy given by

E ¼ −
Z

L

0

dxLeff ¼
1

2

Z
L

0

dxρðxÞA0ðxÞ ðA4Þ

can be evaluated by summing the two-point potential
between (1) the probe charges in the interval ½0; L�, and
(2) the probe charges in the interval and image charges.
As an example let us consider the charge distribu-

tion ρpairðxÞ ¼ qδðx − l0Þ − qδðx − l0 − lÞ with l0 ¼
ðL − lÞ=2 for 0 < x < L, shown in Fig. 1. We extend
ρpairðxÞ to an even periodic function, which is depicted in
Fig. 6. The energy (A4) reproduces (28).
As another example, let us modify the setup in the

previous paragraph by adding charges qL and qR to the left

and right boundaries, respectively. We are interested in the
q-dependent part of the energy. To compute it, we sum
the two-point potentials between (1) the probe charges in
the interval ½0; L�, (2) the probe charges in the interval and
their image charges, and (3) the probe charges in the
interval and the boundary charges including their images.
The two-point potential between boundary charges is q
independent and we drop it. Compared with the previous
paragraph, the new contribution is from (3):

ΔEpair ¼
πμ

2
qðqL − qRÞ

e−
μ
2
ðL−lÞ − e−

μ
2
ðLþlÞ

1þ e−μL
: ðA5Þ

This vanishes if qL ¼ qR. See Fig. 7.
For Θ ¼ Θpair in (26) and general w0 and w1 in (13), the

ground state energy computed from (16) turns out to be

ð28Þ þ πμqðw0 þ w1Þ
sinhðμl=2Þ
coshðμL=2Þ : ðA6Þ

This is consistent with (A5) by the relations in (65), i.e.,
w0 ¼ qL=2 and w1 ¼ −qR=2. For w0 ¼ −w1 ¼ 1=4,
ΔEpair ¼ 0. This result appeared and was used in [36].
We checked that the DMRG computation of the ground
state energy with large N agrees well (as a function of l)
with Epair þ ΔEpair for ðqL; qRÞ ¼ ð1=2;−1=2Þ if N is
even, and for ðqL; qRÞ ¼ ð1=2; 1=2Þ if N is odd.

APPENDIX B: EXACT ONE-FORM SYMMETRIES
IN LATTICE QCDS IN 1 + 1 DIMENSIONS

In this appendix, we show that the general lattice QCD in
the Kogut-Susskind formulation [39] enjoys an exact one-
form C0 symmetry, where C0 consists of the elements of
the center of the gauge group G under which the matter
fermions are invariant. The presence of such a center one-
form symmetry well known in the continuum limit [51] and
is also known for the charge-q lattice Schwinger model
[33]. As the discussion for the general lattice QCD is rather
abstract, we begin with the charge-q Schwinger model,
which can be understood more intuitively.
The charge-q Schwinger model, i.e., the Uð1Þ gauge

theory with a single Dirac fermion of charge q, has attracted

FIG. 6. Charge distribution ρpairðxÞ extended as an even
periodic function.

FIG. 7. Charge distribution with boundary charges of the same
sign and magnitude added.
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attention in recent years. See, e.g., [52,53]. As the defining
action we take

S ¼
Z

d2x

�
−
1

4
FμνFμν þ gϑ

4π
ϵμνFμν

þ iψ̄γμð∂μ þ iqgAμÞψ −mψ̄ψ

�
þ
X
p

qpg
Z

dtAtðxpÞ þ boundary terms: ðB1Þ

Unlike in Sec. II, we define probe charges using couplings
separate from the theta angle. We also take qp to be integers
so that the corresponding Wilson lines are genuine line
operators rather than boundaries of topological surface
operators. The bosonized Lagrangian is

L ¼ −
1

4
FμνFμν þ g

4π
ϑϵμνFμν þ

qgffiffiffi
π

p ϵμνAμ∂νϕ

þ 1

2
∂μϕ∂

μϕþmg
eγ

2π3=2
cosð2 ffiffiffi

π
p

ϕÞ

þ
X
p

qpgδðx − xpÞAtðxÞ: ðB2Þ

The Gauss law constraint reads

∂1

�
F01 −

g
2π

ðϑþ 2q
ffiffiffi
π

p
ϕÞ

�
¼

X
p

qpgδðx − xpÞ: ðB3Þ

The theory possesses a Zq one-form symmetry, whose
generator can be expressed in the bosonized form [52,53]

Vq ≔ exp

�
2πi
qg

�
F01 −

g
2π

ϑ −
qgffiffiffi
π

p ϕ

��
;

¼ exp

�X
p

2πi
q

qpHstepðx − xpÞ
�
:

This is piecewise constant as a topological operator should
be, and labels the distinct decomposed sectors of the theory
called “universes” [54–58].
The corresponding Hamiltonian of the lattice theory in

the presence of probe charges is

Hlattice ¼ J
XN−2

n¼0

�
Ln þ

ϑ

2π

�
2

− iw
XN−2

n¼0

�
χ†nðUnÞqχnþ1

− χ†nþ1ðU†
nÞqχn

�
þm

XN−1

n¼0

ð−1Þnχ†nχn:

Again, we work in a formulation slightly different from
Sec. III and [52] and implement the effects of probe charges
by adding the corresponding terms in the Gauss law
constraint

Ln − Ln−1 þ q

�
−χ†nχn þ

1 − ð−1Þn
2

�
¼

X
p

qpδnnp : ðB4Þ

In terms of spin variables we have

Ln − Ln−1 − q
Zn þ ð−1Þn

2
¼

X
p

qpδnnp : ðB5Þ

The lattice generator of the Zq one-form symmetry,
corresponding to (B4), is [33]

Vq ¼ exp

�
2πi
q

�
Ln −

q
2

Xn
i¼0

ðZi þ ð−1ÞiÞ
��

¼ exp

�
2πi
q

Ln

�
; ðB6Þ

where we used the correspondences (57) and (58) and the
fact that Zi þ ð−1Þi vanishes mod 2. As in the continuum
case, the Gauss law (B5) implies that Vq acting on a
physical state is almost constant as a function of the
position but gets multiplied by a phase as one crosses
probe charges qp (temporal Wilson lines) at n ¼ np. This
means, by the Wick rotation and the exchange of space and
time, that Vq obeys the expected commutation relations
with the Wilson lines.18

We now turn to an arbitrary Hamiltonian lattice gauge
theory with a general gauge group G and a fermion in
representation ρ [39]. For G we only require that it is
compact: it can be non-Abelian, discrete, a product, a
quotient, or something more complicated. The Lie algebra
g of G decomposes into simple Lie algebras

g ¼ ⨁
b
gb: ðB7Þ

The maximal torus T of G has the Lie algebra t ¼ ⊕btb,
where g and gb are the Cartan subalgebras of g and gb,
respectively. The center C of G has the Lie algebra
c ¼ ⊕ici, where ci ≃ R is the Lie algebra of the “Uð1Þ
factor” labeled by i. In general ρ is reducible:

ρ ¼ ⨁
f
ρf; ðB8Þ

where ρf is an irreducible representation of G. Again we
consider a one-dimensional lattice with sites labeled by
n ¼ 0; 1;…N − 1. The Hilbert space of the theory is
the tensor product of the local Hilbert spaces associated
with sites n ∈ f0;…; N − 1g and links n ∈ f0;…; N − 2g.

18In [48] it was demonstrated that the complexified
chiral condensate hψ̄eiγ5ψi flows in the IR to the topological
operator Vq.
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On each site n, we have a fermion Fock space, possibly
tensored with the representation space for a probe
charge. The fermionic Fock space is generated by the
fermion χn ¼ ðχfnÞf in representation ρ ¼ ⊕fρf and its
Hermitian conjugate. In addition, if we place a probe
charge in representation Rp on site np, we tensor the
Fock space with the representation space Vp of Rp.
On each link n we have the space of square-integrable
functions on G. The total Hilbert space is thus of
the form

Htotal ¼ Hfermion ⊗ Hgauge ⊗ Hprobe: ðB9Þ

The Hamiltonian takes the form19

Hlattice ¼
X
b

Jb
XN−2

n¼0

tr

�
Lb
n þ

δbiϑi
2π

�
2

− iw
XN−2

n¼0

ðχ†nρðgnÞχnþ1 − χ†nþ1ρðgnÞ†χnÞ

þ
X
f

mf

XN−1

n¼0

ð−1ÞnðχfnÞ†χfn; ðB10Þ

where w ¼ 1=2a, Jα ¼ g2ba=2, gb is the coupling con-
stant for gb, ϑi is the theta angle for ci, and mf is the
mass for the fermion labeled by f. The trace tr is taken
in a faithful irreducible representation of G, in which gn
is represented by a unitary matrix Un. The gb part of the
“left” canonical momentum Ln ¼ ⊕bLb

n conjugate to
gn ∈ G can be expanded as Ln ¼ LαnTα and obeys (in
our sign convention) the canonical commutation relation

½gm; Lαn� ¼ δmnTαgm; ðB11Þ

where Tα ¼ καβTβ, the matrix καβ is the inverse of
καβ ¼ trðTαTβÞ, which is a Killing form of g. Let us
define Rn ≔ g−1n Lngn. Then one can show that Rαn defined
by Rn ¼ RαnTα satisfies the commutation relation

½gm; Rαn� ¼ δmngmTα: ðB12Þ

The group G of gauge transformations is the product of
copies of G, each associated with a site n. The gauge
transformation hn ∈ G on site n acts as

χn → ρðhnÞχn; gn → hngnh−1nþ1;

Ln → hnLnh−1n ; Rn → hnþ1Rnh−1nþ1; ðB13Þ

and leaves the Hamiltonian invariant and the canonical
commutation relations invariant. For the continuous part of
the gauge group, the Gauss law constraints are

Lα
n − Rα

n−1 − χ†nTαχn þ
1 − ð−1Þn

2
trðTαÞ ¼

X
p

δnnpT
α
p;

where Tα
p are the generators in the representations Rp for

probe charges. It is possible to consider, as in (66), the
modified version of theGauss law constraint where the term
containing ð−1Þn is dropped.
If the gauge group G contains as a factor the cyclic

group Zd ¼ feð2πi=dÞjjj ¼ 0; 1;…; d − 1g, on each link
there exist operators Zn and Xn such that ZmXn ¼
exp½ð2πi=dÞδmn�XnZm, Zd

n ¼ Xd
n ¼ 1. The Gauss law con-

straint takes the group form

XnX−1
n−1 exp

�
2πi
d

�
−χ†nDχn þ

1 − ð−1Þn
2

trD

��
¼ exp

�
2πi
d

X
s

qsδnns

�
; ðB14Þ

where D is a diagonal matrix of Zd charges (integers
modulo d) for the fermion, and qs are the Zd charges of the
probes at n ¼ ns.
For a general gauge group (including non-Abelian

discrete groups such as the dihedral group D4) instead
of imposing the Gauss law constraint in terms of opera-
tors, we can simply project the total Hilbert space Htotal
onto the physical Hilbert space Hphys, which is the sub-
space of Htotal invariant under the group G of gauge
transformations [59].
To study one-form symmetries, let C0 consist of the

elements of the center C (of the gauge group G) under
which the fermion χn is invariant. Since C0 is Abelian and
compact, it is of the form C0 ¼ Uð1ÞM × Γ, where Γ is a
product of cyclic groups. On each site n and for c ∈ C0,
let us consider the operator GaugenðcÞ implementing
the gauge transformation corresponding to c−1.20 It is of
the form

GaugenðcÞ ¼ Leftnðc−1ÞRightn−1ðcÞRpðc−1Þδnnp ;

where LeftnðhÞ [respectively, RightnðhÞ] is the operator
corresponding to the left (respectively, right) action of h on
the copy of G on link n. The appearance of Leftnðc−1Þ and
Rightn−1ðcÞ can be understood from (B13). The operator
Rpðc−1Þδnnp represents the action of c−1 on the representa-
tion space Vp for the probe p. Because c is in the center,
in fact we have Leftnðc−1Þ ¼ Rightnðc−1Þ≕VnðcÞ.

19We do not include a kinetic term for the discrete part of the
gauge group. Thus if the whole gauge group is discrete and there
is no matter, the gauge theory is topological.

20Here we use c−1 instead of c to be consistent with earlier
definitions of one-form symmetry generators.
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On the physical Hilbert space Hphys, which is invariant
under gauge transformations, we have the equality
VnðcÞVn−1ðcÞ−1Rpðc−1Þδnnp ¼ 1 or equivalently

VnðcÞ ¼ Vn−1ðcÞRpðcÞδnnp : ðB15Þ

Since c is in the center and Rp is an irreducible representa-
tion,RpðcÞ ¼ exp ½iαRp

ðcÞ� is in fact a c-number correspond-
ing to the charge under C0. Equation (B15) establishes that

VnðcÞ is the generator of the one-form symmetry forC0. It is
constant between probe charges, and obeys the expected
commutation relation between Wilson line operators
WR ¼ TrRP exp ði H AÞ:

WRVðcÞ ¼ eiαRðcÞVðcÞWR; ðB16Þ

which we rewrote as an operator relation via a Wick rotation
and a rotation in the Euclidean spacetime.
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