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Quantum electrodynamics in 1+ 1 dimensions (Schwinger model) on an interval admits lattice
discretization with a finite-dimensional Hilbert space and is often used as a testbed for quantum and tensor
network simulations. In this work we clarify the precise mapping between the boundary conditions in the
continuum and lattice theories. In particular we show that the conventional Gauss law constraint commonly
used in simulations induces a strong boundary effect on the charge density, reflecting the appearance of
fractionalized charges. Further, we obtain by bosonization a number of exact analytic results for local
observables in the massless Schwinger model. We compare these analytic results with the simulation results
obtained by the density matrix renormalization group method and find excellent agreements.
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I. INTRODUCTION

Quantum electrodynamics in 1+ 1 dimensions, also
known as the Schwinger model [1], is one of the simplest
nontrivial gauge theories. Since its introduction in the
1960s it has been widely studied. These days it is often
used as a toy model to benchmark numerical techniques for
quantum gauge theories, such as tensor network and
quantum simulations. See, for example, [2-25].

With the recent rapid development of quantum devices,
quantum simulation of gauge theory is becoming more
feasible. For this purpose, as in classical simulation, we
need to discretize the gauge theory and put it on a finite
lattice. In the noisy intermediate-scale quantum (NISQ)
era [26], the number of available qubits and the physical
volume of the space on which the gauge theory is simulated
will be limited. For this reason, simple (1 + 1)-dimensional
gauge theories such as the Schwinger model are natural
targets of quantum simulation. Putting these theories on a
spatial interval rather than a circle has an advantage because
the Gauss law constraint allows us to remove gauge fields
completely on an interval, while on a circle there remains
an infinite-dimensional Hilbert space. The spatial interval
for the continuum model corresponds to the open boundary
condition of the lattice model. It is thus desirable to know
the precise correspondence between the theories in the
continuum and on the lattice. To compare the continuum
and lattice formulations, it also helps to have analytic
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results that take into account the strong effects of the
boundaries and the finite volume. Rather surprisingly, the
study of such effects in the literature is limited.'

With these motivations, in this paper we study the
Schwinger model on a finite interval and clarify the precise
mapping between the continuum (original and bosonized)
and lattice models. In particular, we show that the com-
monly used Gauss law constraint [31] in the lattice
formulation induces fractionalized charges on the bounda-
ries, and demonstrate that for an alternative constraint [32]
the boundary charges are also modified.” Along the way we
establish the precise correspondence between the boundary
conditions in different formulations. We also derive a
number of analytic expressions for physical observables
in the ground state in the massless case. This is possible
because bosonization maps the massless Schwinger model
to a free scalar theory [34,35]. Some of these analytic
results were used in [36] to compare with the results of
digital quantum simulation of the lattice Schwinger model
on a classical simulator.

The paper is organized as follows. In Sec. II we review
the continuum Schwinger model in the original formu-
lation. In Sec. II B we study the Schwinger model on an
interval using bosonization and derive some analytic
results. Section III contains our study of the Kogut-
Susskind lattice formulation of the Schwinger model on
a finite lattice with the open boundary condition. We review
two equivalent formulations, one based on the staggered
fermion and another based on spin variables. We compute

ISee [27,28] for the study of the model on a circle with finite
radius, and [29,30] for an earlier study of boundary effects.

If the periodic boundary condition is chosen, then the
modification of the Gauss law is equivalent to the mass shift
studied in [33] via a field redefinition.

Published by the American Physical Society
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by the density matrix renormalization group (DMRG)
[37,38] some physical observables in the ground state
and find agreement with the analytic results from Sec. I B,
using the original and modified Gauss law constraints.
We conclude the paper with discussion in Sec. IV. In
Appendix A we calculate the energy in the presence of
probe charges using the method of images. In Appendix B
we show that the general lattice QCD in the Kogut-
Susskind formulation [39] enjoys an exact one-form
symmetry for the part of the center of the gauge group
under which the matter fermions are neutral.

II. CONTINUUM SCHWINGER MODEL
ON AN INTERVAL

In this section we study the continuum Schwinger model
on an interval. We first review the original fermionic
formulation of the model. Then we review the bosonized
version and derive a number of new analytic results for
local observables.

A. Review of the fermionic formulation

We use notations x° = ¢, x! = x for spacetime coordi-
nates and use the Minkowski metric 7, = diag(1,-1) to
raise and lower indices. The dynamical fields in the
Schwinger model are the gauge field A, (u = 0, 1) and the
Dirac fermion y = (y,,w,)", which is a two-component
spinor. Let g be the gauge coupling and m the fermion
mass. The model is defined by the action

1 gO(x)
— 2 v v
= /d x[—4FWF” + 5 ek
+ iy (0, + igA,)w — mpy | + boundary terms. (1)

We use the notations

cn=—"=1, P=05, yF=ic>, F=y%. (2)

and = y'y?. We allow the theta angle to be position
dependent and denote it by ©(x).
Consider, for example,

f0<x<f0+f

®(‘I~90) (X) =

6y +2nq for
{ (3)

o for otherwise

See Fig. 1. The discrete changes in the theta angle ©(x)
correspond to the presence of probe charges. Indeed we can
rewrite the relevant part of the action as

©y.0) )
/ dszﬂ'Oe#DFﬂ

0,
= / d*x [ﬁeﬂ,,F’““ —ql6(x=¢y) = 8(x =€y —E)|Ag|,

+q q
0 0y + 2m 0
e
0 £y lo+¢ L

FIG. 1. The setup for ®(x) = O, 4, in (3), corresponding to
probe charges +¢q at x = ¢y and —q at x = + 7.

where we explicitly see the pointlike sources for the
gauge field.

Let us study the model on an interval 0 < x < L. For the
fermion y, the general boundary conditions (B.C.s) at each
boundary, compatible with the variational principle, are
parametrized by a real parameter v mod z*:

v+ ey = 0, (4)
where we defined yy = (y, +v4)/2, yr = (W, —wa)/2.
We are particularly interested in  (y,,w4v) =
(0, arbitrary, 0), (arbitrary, 0, z). Up to a field redefinition

w — 7y, there are two inequivalent choices [40]: the
Ramond (R) B.C.

w1 (0) = syg(0)

and the Neveu-Schwarz (NS) B.C.

and (L) =syr(L)  (5)

w1 (0) =syr(0) and wi (L) =—swg(L), (6)
with s = £1."

We work in the temporal gauge A, = 0, where the Gauss
law constraint §S/8A, = 0 should be imposed on physical
states. Varying A, we find the Gauss law

g _
0Fy = ﬂale) + giyw (7)

in the bulk. Composite operators such as y’y should be
defined by some normal ordering [41]. Throughout this
paper we make this implicit and omit normal ordering
symbols for the fermion. We will specify the B.C.s
on Fy; at x =0 and x = L in Sec. II B where we study
the continuum model in the bosonized formulation. The
boundary terms in (1), which we do not write explicitly,
should be chosen so that they are compatible with
the B.C.s.
The canonical momentum conjugate to A! (=—A,) is

= a,A' + %@. (8)

3These B.C.s preserve (explicitly break) the vector (axial)
U(1) symmetry generated by @y*y (py y w).

“Let us extend the domain of yy (x) to [-L,L] by yy (x) :=
—e¥ oy (—x) for —L <x <0. Since yy (L) = e*170) x
w1 (=L), y; is periodic (antiperiodic) for the R (NS) B.C.
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The density H of the Hamiltonian H = [} dxH(x) is

1 O(x)\2 . _ ) ~
H(x) =5 (H_927(7: )> —ipy! (9y +igA))y + mipy.

Let us denote the expectation value of the operator O in
the ground state by (O). Local observables of the con-
tinuum Schwinger model on an interval include the energy
density (H), the charge density (y°y), the chiral con-
densate (), and the electric field Fy,.

B. Bosonized Schwinger model

In this subsection we study the Schwinger model in the
bosonized formulation. There is some overlap with the
Appendix of [36] that uses the same convention, and we
refer the reader to that paper for details omitted here.

The bosonized Lagrangian density is (cf. [42])

g v g v
4—@()61)6” F, + 76’ A0,

COS(2f ). ©)

1
L= —ZFWF”” +

aﬂ(ﬁd"qﬁ + mg
We choose an appropriate boundary condition on the gauge

field so that the solution to the Gauss law constraint is

Fo-Lo="Lp (10)

2r Nz

The Hamiltonian density is given as

(o3

v
#  cos(2V/7) . (11)

1 Loy gy
H = =5 (T,)* + 3 (0:0)° +

_mg

where I1,, is the canonical momentum conjugate to ¢ and
u=g/\/m. We write :*: for the normal ordering (see
below) with respect to the creation-annihilation operators
defined in the infinite volume and used the relation

Wy = =gt o2V (12)

where y ~0.58 is the Euler constant. The particular
numerical coefficient e’ /(27%/2) is correct for this choice
of normal ordering.5

We study the bosonized model with m =0 and the
Dirichlet boundary conditions
¢ = Vaw, ¢ = aw

atx =0, atx=1L. (13)

3See [43] for a general discussion of normal ordering.

We set k, := zn/L. Let us define
bo(x) = Vawy + Va(w, — Wo)%, (14)
$(x) = 9(x) = do(x),  O(x) = O(x) + 2/ (x).
(15)

Let us consider the Fourier expansions

X) = ZH,, sin (k,x),
n=1

= Z 0, sin (k,x).
n=1

The Hamiltonian becomes

b(x) = iqﬁn sin (k,x)

a(wy — Wo)z

H boson — 2L

S i1\ | Lut K
+ Z{a)n (a,’ian ) —5—1—/2—@3}, (16)
n=1

where @, = \/u* + k% and
\/La) u’e, i [L
= —/—IL,. 17
a}’l ¢n \/7_1_0)}% + 2 Y n ( )
We have [a,,a’,| =&,,. The ground state |0) satisfies

a,|0) = 0 and has a divergent energy due to the terms
proportional to @,, which are independent of ©.

The energy density (0| (x)|0) is also UV divergent. Let
|x| denote the largest integer smaller than or equal to x.
With a cutoff k, < A° the regularized energy density is

1 LA/7] w2 ., 2
=57 Z [(a)n + a)_) sin”(k,x) + w—ncos (knx)]

n=1 n

[LA/x] o 2
1 uk,
+ — (C) k
{( E 2 O cos( ,,x))

Enlx)

8

n=1 n
\LA/x| 22 2
wk
(C) k , 18
+ (3 Sre, i) | (18)

which is quadratically divergent. On a full infinite line
without probe charges, the corresponding regularized

N T

®For plots throughout the paper, we use Mathematica to
evaluate regularized sums numencally by settlng [LA/7] to 10*.
"Explicitly, £ = [(A? + u2)'2A + 2 sinh~ (A /)] /4x.

energy density is, with w(k) :=
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FIG. 2.
position-dependent theta angle (26), for L = 100 g~!

(a) Renormalized energy density £ given by (20), for two probe charges +¢ placed at x = (L
and 7 = 40 g
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F ¢)/2 represented by the
. The local behaviors near each boundary and each pole are given

by (31) and (36), respectively. (b) Chiral condensate (yw(x)) given by (21) for the same setup. The local behaviors near each boundary

and each pole are given by (34) and (37), respectively.

gine . lim £,(L/2) = / MR . (19)
A L—oo 0 27[
We define the renormalized energy density as
E(x) = lim (E5(x) — EX). (20)

A—

An expression for the chiral condensate was found in [36]:

() = =5 54(x)
X €OS [2\/_¢0 iﬂ—z 0, sin(k, x)] (21)
where®

[LA/x] )
, , A 27 sin*(k,x)
— -1 - _ n
Ax) = /11_{1010 exp [smh (ﬂ) r?:l T 7;& - k%j . (23)

For the charge density 7 w(x) = d,¢/+/7, we obtain

wp — Wy

1= ky
. %;w_ﬁgn cos(k,x).

@y (x)) = (24)

For the electric field we have

¥By several manipulations, one may rewrite (23) as

cosh [(2x/L — l)ﬂLu})
sinh|[uLu| '

log A(x) = loo \/du_( 2”;“2_
(22)

(Fo1) = g Z ® sin(k,x). (25)

Below, we consider special and limiting cases.

1. Two probe charges on an interval

For probe charges on an interval, one can evaluate the
sums above. As an example, let us consider

2nq for L€ < x < LI
Or) = { P ErEE

(26)
0 otherwise

which represent a pair of charges +¢q placed at x =

(LF2)/2, ie, Opir =0y g ols—(1-¢)- We impose

the boundary conditions ¢ = 0 at x = 0, L corresponding

to wy = w; = 0. The nonzero Fourier coefficients are

8q

54T (=1)/sin [kyj 1 (£/2)]  (27)

(Gpair)2j+1 =
for j € Z.. The total energy E,, defined as the energy

computed from (16) by removing terms proportional to w,,,
was obtained in [36]9:

Va o, (1—e#)(1 +erl)

Epair = Tq g 1+ el

(28)

The energy density £(x) in (20) computed for (26) is
plotted in Fig. 2(a).'” The chiral condensate (y(x))
in (21) corresponding to (26) is plotted in Fig. 2(b). For
the cosine in (21), the residue method gives its argument
explicitly as

’In Appendix A, we give an alternative derivation of (28) by
the method of images.

1t is possible to perform the summations in (18) to obtain an
alternative expression. We found the result to be not illuminating.
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FIG. 3.

(a) Charge density (7y"w(x)) given by (24) or equivalently by (29) for the same setup as for Fig. 2. The local behaviors near

the probes are given by (38). (b) Electric field F; given by (25) or equivalently by (30) for the same setup.

g z

where 0(x) = (x = 55)/L, ny(x) = (x—59)/L, and
{n} :=n— |n]. The charge density (y’y(x)) that corre-
sponds to (26) is plotted in Fig. 3(a). The summation in (24)
can be performed explicitly to give

<cosh[({f7+( X)} = 1/2)ul] 1)
cosh(uL/2) ,

70 = 1) J+ln(x
W7 v (%)) pair 2c0sh ﬂL/2 Z(

x sinh [({'7‘;()6)} —1/2)pL].

The electric field that corresponds to (26) is plotted in
Fig. 3(b). Performing the summation in (25), we obtain the
explicit expression

(29)

a9 itln:
. £ —1)itlm(x)]
2 cosh(uL/2) 120:1( )

x cosh [({n; (x)} = 1/2)uL].

<F01>pa.ir =

(30)

2. Behaviors near a boundary

We now consider the massless Schwinger model on a
half-line [0, c0) with ®(x) = 0 and the boundary condition
¢(x =0) = 0. Let us begin with the energy density. The
regularized energy density on a half-line is obtained from
(18) by sending L to infinity: £ (x) := lim; _, €4 (x)
We define the renormalized energy density on a half-line as
ghalf—line = lim/\—>oo (g}[]\alf-line( ) glme) We find

2

Enalfline = — 5~ KO(Z,ux). (3 1)

The modified Bessel function K(z) has the asymptotics

—log(z/2) =7 + O(z)
Va3e (14 0(1/z))

for z~0
Koz) = { (32)

forz> 1"

Thus the energy density diverges logarithmically near the
boundary and decays exponentially away from it. From

, o cos(2kx) ]
lim A(x) = ex dk———"2| = eFKol) (33
Jim ) =exp | [k S, )
we get for the chiral condensate
; e jekolm),
<WW(X>>half—line = 2 ~.3/2 ger’ " (34)

which is the result obtained in [30]. The condensate
diverges as (yy(x)) = O(x~'/?) near the boundary and
decays exponentially away from it. The charge density
and the electric field simply vanish a half-line for ®(x) = 0
and the boundary condition ¢(x = 0) = 0.

3. Behaviors near a probe charge

Let us consider the system with a single probe charge g
at x = x on an infinite line, which is represented by the
position-dependent theta angle

Oprobe (x) = {

By taking an appropriate limit of (18) or by repeating the
steps leading to (18), we obtain the energy density
(renormalized by subtracting the value without a probe)

0 for x < xg
. (35)
2nq for x > x

5probe(x) = Zq 2ple2mhxl, (36)

In a similar manner one can obtain expressions for other
local observables. We obtain, as in Appendix D of [36],

<l/_/l// (x) >pr0be
4 cos [rgeH(xo=x) for x < x,
— __39/2{ 7q ] )
2 cos [2mq — mge **=x)]  for x > x,

We also have

054506-5
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(38)

_ q
<l//y01//(x)>probe = _Eﬂe d x0|’

which previously appeared in (4.12) of [27]. Integrating
this, one obtains

(39)

q — —
<F01>probe = Egsgn(x —Xg)€ Hlx=xo]

4. Behaviors near a boundary charge

We now consider the massless Schwinger model on a
half-line [0, c0) with ®(x) = 0 and the boundary condition
$lx=0) = V2wp=:q/2 (40)

(or equivalently ®(x) = /mq and ¢(0) = 0). This can be
obtained by setting wy = ¢/2 and taking the limit L — oo.
We find that the energy density is the sum of (31) and (36)
while the charge density and the electric field are respec-

tively given by (38) and (39) (all with x, = 0). The chiral
condensate is given by

_ e’g
<WW(X)>b0undary char — 272

eKo() cos (mge ). (41)

III. LATTICE SCHWINGER MODEL WITH
OPEN BOUNDARY CONDITIONS

A. Fermion versus spin models on a lattice

Let us turn to the Kogut-Susskind lattice formulation of
the Schwinger model [39,44] with a position-dependent
theta angle. We will be brief and follow the conventions
of [36].

We consider a one-dimensional spatial lattice with N
sites, labeled by integers n =0,1,...,N — 1.'' The two
components y,(x) and y,(x) of the Dirac fermion y =
(wu,wy)T are replaced by the staggered fermion y,, at the
even and odd sites with x = na, respectively, according to
the correspondence

W (x) ¥, N even
<> .
wa(x)  V2a n: odd

On the nth link, which connects the sites n and n + 1,
we introduce the link variables U, and L, satisfying

(42)

Ul = U;', L= L, according to the correspondence
e () & U, —M(x)/g < L,. (43)

These operators satisfy canonical (anti)commutation rela-
tions, among which the nontrivial ones are

""We will see that the behavior of the model depends strongly
on whether N is even or odd.

{Zm’)(;} :57'17[’ [Um’Ln] :5anm' (44)
We also introduce the lattice version §, of the position-

dependent theta angle on the nth link:

O(x) < 9,. (45)
The Hamiltonian of the lattice theory is
2 N-2 2
g-a 9
Hiyice = B3 (Ln + 2—n>
n=0 z
. N-2
_Z _ (X;Un)(n-&-l _)(ler]Uj;)(n)
n=0
N-1 .
+m (_1)}1)()1)(}17 (46)
n=0

which is the direct counterpart of (9).

There is a relation between N and the fermion boundary
conditions. As in (42) we identify y,, () With Yeven (Fodd)-
Since n in y, runs from 0 to N — 1, we effectively have
x-1 =xy =0. Thus we have w; =0 on the left and
v, =0 (y; =0) on the right for N even (odd), namely
there is a correspondence, leading to the NS (R) boundary
condition.'?

As in the continuum theory, the physical Hilbert space
is obtained by the Gauss law constraint. The standard
choice [31] of the Gauss law constraint is'?

n

Gt = L, — Ly | = i+ (2_1) =0. (47)
We impose the boundary condition L_; = 0 and fix the
gauge U, =1 to eliminate (L,,U,). The term (—1)"/2
in (47) represents a site-dependent background charge. In
the bulk, the spatially averaged background charge density
vanishes in the continuum limit, but we will see that there
remains a nontrivial localized charge on a boundary and
induces a background electric field.

We convert the fermions into spin variables by the
Jordan-Wigner transformation [45]

X, —-i¥, T, .
Xn = % (—iZ;),
0

i=

(48)

where X, Y,, Z,, respectively, denote the Pauli matrices
oy, 0y, 0, associated with the nth site. Besides the theta

"2We also checked that the DMRG computation of the spectra
of the XY model, which is equivalent to the free fermion model
via the Jordan-Wigner transformation for open B.C.s, reproduces
the expected spectra of the continuum Dirac fermion obeying the
NS (R) boundary conditions for large N even (odd).

Here, the presence of external charges is accounted for, as
in (3), by the position-dependent theta angle 9, in (46), cf. (B4).
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angle, g and m as in Sec. 1, the lattice introduces the lattice
spacing a as an extra parameter. The length L of the spatial
interval is given by L = (N — 1)a. The Gauss law con-
straint reads

Z -1
O0=L,-L, - . +2( ) (49)
We solve this with the boundary condition
L_;=0. (50)
The Hamiltonian in terms of the spin variables is
83| s
Hugin =73 £t |4 2r
1 M= m V=l
4_2 Xan+1 + YnYn-H) + 5 (_l)nzn-
n=0
(51)

Note the structural similarity between (11) and (51).
We have the following correspondence for the local
observables of the continuum theory and the spin model.

2 n i 2
g Zz,»+(—1> 9
H<x)|m:0 < 2 |: 2 + 2”:|

i=0

4 12 (X Xn+1 +Y Yn+1) (52)
L 1

vy W(x) <~ @(Zn + Zn+1)’ (53)
i) - V7, -2, (54

4a n n+l/»

- Zi+ (_l)i 9,
F —_— 1t —. 55
01 < 9; > +2” (55)

The quantities on the left- and right-hand sides are for a
continuous theory and a lattice model, respectively, requir-
ing renormalization (normal ordering) in the former.

We will often consider the particular form of the
position-dependent theta angle corresponding to probe

charges +¢g located at the sites n = fon= (20 + ?)

2rq + 6y, lo<n<?ty+?
(19pair)n = { 0 0 . 0 . (56)
0o, otherwise
B. Spin lattice versus bosonized continuum models

Let us compare the Gauss law constraints (10) and (49)
in the spin and bosonized formulations, respectively. The
correspondence

1 1
—Fy ——0© L 57
JFun=5.0(x) < L, (57

in (43) suggests the correspondence
VI :
S — Zi+ (1)) =¢,. 58
SR DRI NCY

The operator ¢, rotates the X;Y; planes for j < n. The
comparison of (11) and (51) suggests the correspondence

1
(Ty)* + 5 (0,¢)* + const

N =

1
4 a2 (X Xn+1 +7Y Yn+1> h : (59)
Taking the commutators of the both sides of (58) and (59)
gives another correspondence

T
VY X =X Yy) = (60)

where the expression on the right arises from [¢,,, h,] =
(i/a)8,,7,. We note the commutation relation

[¢ﬂ’l7 ﬂn] = _”i5n1nhn‘ (61)
This reduces to the canonical commutation relation
between ¢(x) and IT;(x) in the continuum limit because

the density of the kinetic term diverges as —1/(za2)"* so
that we can replace h, by —1/(za) in (61).

The lattice Schwinger model described in Sec. III A
should correspond, in the continuum limit, to specific
values of wy and w; in (13). In the Appendix of [36], it
was argued that

= 1 = % Q:= Z,. (62)

The charge Q is conserved and can be treated as a ¢ number
within a fixed charge sector. In fact, if the value of v in (4) is
vy (vy) at x =0 (x = L), then we have'

vy —vy=w; —w, mod Z. (63)
The relations (62) and (63) are nontrivially consistent with

the correspondence between with parity of N and the
fermion boundary conditions found in Sec. III A. We will

“The divergence can be computed by the free fermion because
it is not affected by g or m, which only appears as ga or ma.
This should follow from the bosonization rules i gy~
ei® | where ¢rr) is the normalized left-(right-)moving part
of ¢. We checked it by comparing the explicit cylinder partition
functions.
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(a) Chiral condensate for L =(N—1)a=15¢g"! and ¢=0 (no probe charge), m =0, and 6, =0. Plots of

(4ga)~'(-1)"(Z,, — Z,.,) computed by DMRG and (% (x))/g computed analytically by the formula (21) are shown. We also plot
the results of extrapolation to N = oo (a = 0) obtained by fitting the data for N € {301,601, 1201,2401} by a quadratic function of
1/N. For better visibility, only a subset of the values of n is used. (b) Charge density for a pair of charges with g2 = 4, ¢ = 0.5, and
0y = m = 0. Plots of (4ga)~'((Z, + Z,,,)) computed by DMRG and (y°(x))/g computed analytically by (24) and (26) are shown.

The precise length of the interval is L = (N — 1)a with ga = 0.1.

also explicitly confirm the identification (62) by comparing
the charge densities computed by DMRG and by bosoni-
zation. We note that the eigenvalue of Q is even (odd) if N
is even (odd). Thus the winding number w; — wy is an
integer (a half-integer) if N is even (odd). To summarize,
we have the correspondence

N even < integer winding <> NS B.C.,

N odd < half-integer winding <> R B.C.  (64)

C. Comparison of DMRG and analytic results

Here we compare the DMRG results based on the spin
formulation in Sec. III and the analytic results based on
bosonization in Sec. IIB. For our implementation of
DMRG, we used the ITensor library [47]. See [48] for a
related study.

For the chiral condensate « ((—1)"Z,), we plot the
DMRG results including the extrapolated values and the
analytical results in Fig. 4(b) for the case with no probe
charges. After extrapolation, the DMRG and analytical
results match well.

For the charge density, we plot the DMRG and analytic
results in Fig. 4(a). We see that they agree very well. This
gives strong evidence for the identification (62). Near the
right boundary, the charge density profile is identical to that
near a probe of charge —1/2 for N even and +1/2 for N
odd. We note that the parameters w, and w, parametrizing
the Dirichlet boundary conditions for ¢ in (13) are related
to the boundary charges ¢; and gp on the left and right
boundaries as

"For a similar correspondence in the case of periodic XY
models, see Sec. 5.2.2 of [46].

@ _ &
1 2 )

(65)
generalizing (40). Therefore, the charges on the boundaries
are half-integral, signifying charge fractionalization.
Indeed, for N both even and odd, the charge density near
left boundary has a spatial profile identical to the charge
density near a probe charge +1/2.

D. DMRG with a modified Gauss law constraint

Above, we used the standard Gauss law constraint (47),
or equivalently (49), for DMRG. The constraint (47) is
chosen [31] so that it is satisfied by the ground state |GSy) in
the “strong coupling limit” (ga — +co with m/g?a fixed)
[44] with vanishing L,,. In terms of the fermion occupation
numbers ¥}y, |GS,) corresponds to [010101...).

In this subsection we consider a modified version of the
Gauss law constraint [32]

— dified
0= G;no ified

Z
L, =2 (66)

1
= Ln_Ln—l _)(Il)(t1+_:L11 )

2
Compared with the standard choice (47), we dropped the
term —(—1)"/2, which affects the boundary value of the
scalar ¢, as argued in the Appendix of [36].

If the periodic B.C. is chosen, as explained in
Appendix B 4 of [33], this modification of the Gauss law
constraint is equivalent, via a shift of L, by (—1)"/4," toa
shift of the mass parameter such that the theory with a
vanishing shifted mass enjoys a discrete chiral symmetry and

"The corresponding manipulation for the open B.C. is (68).
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= —0.15 1
— wo=-wi; =1/4 + N =301
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FIG. 5.

N =301
N = 300

_— Wy = —w1 :1/4

—0.159 ——.

w0:w1:1/4 v

T
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gr = (n+1/2)ga

(b)

Plots of (a) the chiral condensate (w(x))/g and (b) the charge density (7y°w/(x))/g. The chiral condensate is computed

analytically by (21), and by DMRG as (4ga)~'(=1)*(Z, — Z,,..1). The charge density is computed analytically by (24) and by DMRG as
(49a)~"(Z, + Z,.). The DMRG computation was done using (56) with ¢ = 0.3, 6, = 0.9, ga = 1/3, £ =280,7y= (N - ‘- 1)/2],
m = 0, and the values of N indicated in the figure. The analytic results shown as solid and dashed lines are computed for ®(x) =

©(y.0,x/2)(x) defined in (3) with ¢ = Za and £, = £,a.

afaster convergence to the continuum limit. While one has to
allow L, to take noninteger values to satisfy the modified
Gauss law (66), one can require the shifted version to take
integer values. Solving the modified constraint with the
boundary condition L_; = 0 and fixing the gauge, we obtain
the modified Hamiltonian

Fa =21 9 12
H o =2 — Z. +
modified D) Z [2 z:: i =+ 271_:|

A direct calculation shows that

1 9 12 n Z-—I—(—l)i 9 _m?2
Z 7.+ = ! n_2
sz = [ A

i=0

-1 i N
-1 -1
— E (=1) Z; —( ) QO + c-number.
‘38 8

(68)

Comparing with (51) we see that, within the fixed charge O
sector, the modification (66) of the Gauss law is equivalent
to a shift of the mass m — m — (g*>a/8) [33] and a shift of
the theta angle 9, - 9, — (x/2). The latter shift would be
further modified if we chose a boundary condition other
than L_; = 0.

Figure 5 displays the profiles of the chiral condensate
(g (x)) and the charge density (y°w(x)) computed
by analytic formulas and DMRG for m = 0. Contrary to

Fig. 4(b), extrapolation is unnecessary because the modi-
fication of the Gauss law, which is partially equivalent to
the mass shift of [33], makes the convergence to the
continuum limit much faster.

IV. SUMMARY AND DISCUSSION

In this work, we studied three formulations of the
Schwinger model: the original fermionic formulation, the
bosonized formulation, and the Hamiltonian lattice formu-
lation. We computed analytically physical observables in the
ground state using the bosonized formulation and found
excellent agreements with the DMRG computations in the
lattice formulation. We clarified the correspondence between
boundary conditions in different formulations. We studied a
nonstandard Gauss law constraint (66) in the lattice formu-
lation, and showed that it is equivalent to the mass shift
of [33] and a shift of the theta angle. In accordance with [33],
we found that the modification of the Gauss law makes the
convergence to the continuum limit faster.

As for future directions, it would be interesting to
rederive our analytic results in the path integral formalism,
along the line of [28]. It would also be worthwhile to
establish the faster convergence more firmly by computing
the precise difference between the lattice and continuum
Hamiltonians. This should be possible by classifying the
potential counterterms to the local observables along the
line of [49,50] that deals with the Euclidean path integral.
Finally, one should be able to perform DMRG in a similar
manner to compute local observables in non-Abelian lattice
gauge theories in 1 4 1 dimensions.
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APPENDIX A: COMPUTATION OF THE ENERGY
BY THE METHOD OF IMAGES

In this appendix we compute the ground state energy of
the massless Schwinger model with probe charges, using
the effective potential obtained in [42].

By integrating out the matter field and restricting to a
static gauge field, the effective Lagrangian, on an infinite
spatial line, is found to be

w

1
Ler == (0140)* + 3

2 A%_pA()v

(A1)
where we introduced the density p(x) of external charges.
For two charges ¢; and ¢, separated by distance 7,
p(x) = q19[6(x) + q26(x — £)], the solution to the Euler-
Lagrange equation

(=01 + 1Ay =p (A2)
gives the two-body potential [27]
T
Vql’qz(f) = _—‘]142M(1 - e‘”f)_ (A3)

2

To compute the energy on an interval [0, L], we extend
the domain of the charge density p(x) from to (-0, o) as
an even periodic function of period 2L, p(—x) = p(x),
p(x +2L) = p(x). We solve (A2) for A, using the Green’s
function G(x) = e /2y and substitute A, to (A2) with
the integration range [0, L]. The energy given by

L 1 rL
E=— / AL =5 / dip()Ao(x)  (Ad)

can be evaluated by summing the two-point potential
between (1) the probe charges in the interval [0, L], and
(2) the probe charges in the interval and image charges.

As an example let us consider the charge distribu-
tion  ppir(x) = gé(x —¢y) — qd(x =€y = ¢) with £, =
(L-7¢)/2 for 0 < x <L, shown in Fig. 1. We extend
Ppair(X) to an even periodic function, which is depicted in
Fig. 6. The energy (A4) reproduces (28).

As another example, let us modify the setup in the
previous paragraph by adding charges ¢; and gy to the left

®

[ ]
AT !

®

[ ]

V4

FIG. 6. Charge distribution p,; (x) extended as an even
periodic function.

- - -

FIG. 7. Charge distribution with boundary charges of the same
sign and magnitude added.

and right boundaries, respectively. We are interested in the
g-dependent part of the energy. To compute it, we sum
the two-point potentials between (1) the probe charges in
the interval [0, L], (2) the probe charges in the interval and
their image charges, and (3) the probe charges in the
interval and the boundary charges including their images.
The two-point potential between boundary charges is ¢
independent and we drop it. Compared with the previous
paragraph, the new contribution is from (3):

A(L~¢) _ a—b(L+2)
Ty e e
AEp; = 7‘](% - qg) > (A5)

This vanishes if g; = gg. See Fig. 7.
For ® = ©,,;; in (26) and general w, and wy in (13), the
ground state energy computed from (16) turns out to be

sinh(u?/2)

(28) + ﬂ,uq(WO + Wl) cosh(yL/Z) .

(A6)

This is consistent with (AS) by the relations in (65), i.e.,
wo=4¢q./2 and w; = —qg/2. For wy=-w =1/4,
AEp,; = 0. This result appeared and was used in [36].
We checked that the DMRG computation of the ground
state energy with large N agrees well (as a function of £)
with E,; + AE,;, for (q..qg) = (1/2,-1/2) if N is
even, and for (¢q;,qg) = (1/2,1/2) if N is odd.

APPENDIX B: EXACT ONE-FORM SYMMETRIES
IN LATTICE QCDS IN 1+1 DIMENSIONS

In this appendix, we show that the general lattice QCD in
the Kogut-Susskind formulation [39] enjoys an exact one-
form C, symmetry, where C, consists of the elements of
the center of the gauge group G under which the matter
fermions are invariant. The presence of such a center one-
form symmetry well known in the continuum limit [51] and
is also known for the charge-g lattice Schwinger model
[33]. As the discussion for the general lattice QCD is rather
abstract, we begin with the charge-g Schwinger model,
which can be understood more intuitively.

The charge-¢g Schwinger model, i.e., the U(1) gauge
theory with a single Dirac fermion of charge ¢, has attracted
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attention in recent years. See, e.g., [52,53]. As the defining
action we take

1 g8
S= [ &x|—~F, F" +2=¢, F"
/ { 4" +4 e

+ ipy* (9, +iqgA, )y — ml/‘ﬂ/f}

+ qug/ dtA,(x,) + boundary terms.  (B1)
p

Unlike in Sec. II, we define probe charges using couplings
separate from the theta angle. We also take g, to be integers
so that the corresponding Wilson lines are genuine line
operators rather than boundaries of topological surface
operators. The bosonized Lagrangian is

L= iFMF”” 4i,9eWF,w + q—\/g_e”"AMaygb
+ 30+ my o2/ )
+ qu,gé x—=x,)A(x). (B2)
p
The Gauss law constraint reads
n(Fun = 2042V ) = Sgpax - x,). (B
p

The theory possesses a Z, one-form symmetry, whose
generator can be expressed in the bosonized form [52,53]

271 qg
Vemexp |2 (Fo - 29— p) |,
e [0 (=302
271
= eXp (Z?qustep(x - xp))'
p

This is piecewise constant as a topological operator should
be, and labels the distinct decomposed sectors of the theory
called “universes” [54-58].

The corresponding Hamiltonian of the lattice theory in
the presence of probe charges is

N-2 9\2 N-2 R
Hlattice = JZ <Ln +ﬂ) _iWZ|: n(U ))(n+1

n=0 =0

—)(n+1 UT } —|—mz

n=0

;
)(n)(n-

Again, we work in a formulation slightly different from
Sec. Il and [52] and implement the effects of probe charges
by adding the corresponding terms in the Gauss law
constraint

Ln _Ln—l +q _)(z){n +

#} = ;q,ﬁmﬂ-

In terms of spin variables we have

The lattice generator of the Z,
corresponding to (B4), is [33]

V, = exp {% (Ln —%2 (Z;+ (—U’JH

—exp<@L>
q ")

where we used the correspondences (57) and (58) and the
fact that Z; + (—1)’ vanishes mod 2. As in the continuum
case, the Gauss law (B5) implies that V, acting on a
physical state is almost constant as a function of the
position but gets multiplied by a phase as one crosses
probe charges ¢, (temporal Wilson lines) at n = n,,. This
means, by the Wick rotation and the exchange of space and
time, that V, obeys the expected commutation relations
with the Wllson lines.'®

We now turn to an arbitrary Hamiltonian lattice gauge
theory with a general gauge group G and a fermion in
representation p [39]. For G we only require that it is
compact: it can be non-Abelian, discrete, a product, a
quotient, or something more complicated. The Lie algebra
g of G decomposes into simple Lie algebras

g= @Qh-
b

one-form symmetry,

(B6)

(B7)

The maximal torus 7 of G has the Lie algebra t = @,t,,
where g and g, are the Cartan subalgebras of g and g,
respectively. The center C of G has the Lie algebra
¢ = @,¢;, where ¢; ~R is the Lie algebra of the “U(1)
factor” labeled by i. In general p is reducible:

p =By, (B8)
f

where p; is an irreducible representation of G. Again we
consider a one-dimensional lattice with sites labeled by
n=20,1,...N —1. The Hilbert space of the theory is
the tensor product of the local Hilbert spaces associated
with sites n € {0,...,N — 1} and links n € {0, ..., N — 2}.

Bm (48] it was demonstrated that the complexified
chiral condensate (pe"sy) flows in the IR to the topological
operator V.
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On each site n, we have a fermion Fock space, possibly
tensored with the representation space for a probe
charge. The fermionic Fock space is generated by the
fermion y, = ( )(f,)  in representation p = @p, and its
Hermitian conjugate. In addition, if we place a probe
charge in representation R, on site n,, we tensor the
Fock space with the representation space V, of R,.
On each link n we have the space of square-integrable
functions on G. The total Hilbert space is thus of
the form

Htotal = errmion ® Hgauge ® Hprobe' (B9)
The Hamiltonian takes the form'
Spi9i \ 2
Huswe = s zu (28 + %)
N-2
—iw Y (oo (91 = X51P(9) 2n)
n=0
+ me Z )h, (B10)

where w = 1/2a, J, = g1a/2, g, is the coupling con-
stant for g,, 9; is the theta angle for ¢;, and my is the
mass for the fermion labeled by f. The trace tr is taken
in a faithful irreducible representation of G, in which g,
is represented by a unitary matrix U,. The g, part of the
“left” canonical momentum L, = @,L% conjugate to
g, € G can be expanded as L, = L,,7* and obeys (in
our sign convention) the canonical commutation relation

[gma Lan} = 5mnTagm’ (Bll)
where T, = K‘aﬁTﬁ , the matrix k,; is the inverse of
k% = tr(T*T?), which is a Killing form of g. Let us
define R, == g;'L,g,. Then one can show that R, defined
by R, = R, T* satisfies the commutation relation

[gm’ Ran] = 5”‘[}’1ng0' (Blz)
The group G of gauge transformations is the product of
copies of G, each associated with a site n. The gauge
transformation %, € G on site n acts as

1
9n = hngnthr]’

R _)hrH»lR h

Xﬂ _)p(hn) n»

L, — h,L,h;", (B13)

n+1°

We do not include a kinetic term for the discrete part of the
gauge group. Thus if the whole gauge group is discrete and there
is no matter, the gauge theory is topological.

and leaves the Hamiltonian invariant and the canonical
commutation relations invariant. For the continuous part of
the gauge group, the Gauss law constraints are

L Z(snnp ,

where T are the generators in the representations R, for
probe charges. It is possible to consider, as in (66), the
modified version of the Gauss law constraint where the term
containing (—1)" is dropped.

If the gauge group G contains as a factor the cyclic
group Z, = {e®/49i|j=0,1,....,d -1}, on each link
there exist operators Z, and X, such that Z, X, =
exp|(271/d) 8, Xy Z,ns Z& = X4 = 1. The Gauss law con-
straint takes the group form

LE—RY_ —ynTo%, +

(B14)

where D is a diagonal matrix of Z, charges (integers
modulo d) for the fermion, and ¢, are the Z,; charges of the
probes at n = nj.

For a general gauge group (including non-Abelian
discrete groups such as the dihedral group D,) instead
of imposing the Gauss law constraint in terms of opera-
tors, we can simply project the total Hilbert space Hy
onto the physical Hilbert space Hs, which is the sub-
space of Hy, invariant under the group G of gauge
transformations [59].

To study one-form symmetries, let C, consist of the
elements of the center C (of the gauge group G) under
which the fermion y,, is invariant. Since C is Abelian and
compact, it is of the form Cy = U(1)M x T, where I" is a
product of cyclic groups. On each site n and for ¢ € Cy,
let us consider the operator Gauge,(c) implementing
the gauge transformation corresponding to ¢~1.%° It is of
the form

Gauge, (c) = Left,(c™")Right,_ (c)R,(c™")%m,
where Left,(h) [respectively, Right,(h)] is the operator
corresponding to the left (respectively, right) action of /& on
the copy of G on link n. The appearance of Left,(c™!) and
Right,_,(c¢) can be understood from (B13). The operator
R,,(c‘l)‘s”"ﬁ represents the action of ¢! on the representa-
tion space V, for the probe p. Because c is in the center,
in fact we have Left,(c™!) = Right,(c™")=V,(c).

20 1. . . .
Here we use ¢! instead of ¢ to be consistent with earlier
definitions of one-form symmetry generators.
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On the physical Hilbert space Hppys, Which is invariant
under gauge transformations, we have the -equality
V. (€)V,_1(c)"'R,(¢7")%» = 1 or equivalently

Vale) = Vs ()R (c) . (B15)

Since ¢ is in the center and R, is an irreducible representa-
tion,R,(c) = exp [iag (c)]isin factac-numbercorrespond-
ing to the charge under C. Equation (B15) establishes that

V,(c) is the generator of the one-form symmetry for C. It is
constant between probe charges, and obeys the expected
commutation relation between Wilson line operators
Wg = TrgPexp (i § A):

WrV(c) = eV (c) Wy, (B16)

which we rewrote as an operator relation via a Wick rotation
and a rotation in the Euclidean spacetime.

[1] J.S. Schwinger, Gauge invariance and mass. 2., Phys. Rev.
128, 2425 (1962).

[2] T. Byrnes, P. Sriganesh, R.J. Bursill, and C.J. Hamer,
Density matrix renormalization group approach to the
massive Schwinger model, Phys. Rev. D 66, 013002 (2002).

[3] M. C. Baiuls, K. Cichy, K. Jansen, and J. I. Cirac, The mass
spectrum of the Schwinger model with matrix product
states, J. High Energy Phys. 11 (2013) 158.

[4] M. C. Bafiuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Matrix product states for lattice field theories, Proc. Sci.
LATTICE2013 (2014) 332 [arXiv:1310.4118].

[5] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.
Montangero, Tensor Networks for Lattice Gauge Theories
and Atomic Quantum Simulation, Phys. Rev. Lett. 112,
201601 (2014).

[6] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,
and F. Verstraete, Matrix Product States for Gauge Field
Theories, Phys. Rev. Lett. 113, 091601 (2014).

[7] M. C. Bafiuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Thermal evolution of the Schwinger model with matrix
product operators, Phys. Rev. D 92, 034519 (2015).

[8] M. C. Baiiuls, K. Cichy, K. Jansen, and H. Saito, Chiral
condensate in the Schwinger model with matrix product
operators, Phys. Rev. D 93, 094512 (2016).

[9] L. Funcke, K. Jansen, and S. Kiihn, Topological vacuum
structure of the Schwinger model with matrix product states,
Phys. Rev. D 101, 054507 (2020).

[10] T. V. Zache, M. Van Damme, J. C. Halimeh, P. Hauke, and
D. Banerjee, Toward the continuum limit of a (1 + 1)D
quantum link Schwinger model, Phys. Rev. D 106, L091502
(2022).

[11] J.C. Halimeh, M. Van Damme, T. V. Zache, D. Banerjee,
and P. Hauke, Achieving the quantum field theory limit in
far-from-equilibrium quantum link models, Quantum 6, 878
(2022).

[12] E. A. Martinez et al., Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[13] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B.
Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller, U(1)
Wilson lattice gauge theories in digital quantum simulators,
New J. Phys. 19, 103020 (2017).

[14] H. Bernien et al., Probing many-body dynamics on a 51-
atom quantum simulator, Nature (London) 551, 579 (2017).

[15] F. M. Surace, P.P. Mazza, G. Giudici, A. Lerose, A.
Gambassi, and M. Dalmonte, Lattice Gauge Theories and
String Dynamics in Rydberg Atom Quantum Simulators,
Phys. Rev. X 10, 021041 (2020).

[16] N. Klco, E.F. Dumitrescu, A.J. McCaskey, T. D. Morris,
R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
Savage, Quantum-classical computation of Schwinger
model dynamics using quantum computers, Phys. Rev. A
98, 032331 (2018).

[17] C. Kokail et al., Self-verifying variational quantum simu-
lation of lattice models, Nature (London) 569, 355 (2019).

[18] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V.
Pepe, and E. Ercolessi, Real time dynamics and confinement
in the Z, Schwinger-Weyl lattice model for 1 4+ 1 QED,
Quantum 4, 281 (2020).

[19] B. Yang, H. Sun, R. Ott, H.-Y. Wang, T. V. Zache, J. C.
Halimeh, Z.-S. Yuan, P. Hauke, and J.-W. Pan, Observation
of gauge invariance in a 71-site Bose-Hubbard quantum
simulator, Nature (London) 587, 392 (2020).

[20] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A.
Tomiya, Classically emulated digital quantum simulation of
the Schwinger model with a topological term via adiabatic
state preparation, Phys. Rev. D 105, 094503 (2022).

[21] D.E. Kharzeev and Y. Kikuchi, Real-time chiral dynamics
from a digital quantum simulation, Phys. Rev. Res. 2,
023342 (2020).

[22] A. Yamamoto, Quantum variational approach to lattice
gauge theory at nonzero density, Phys. Rev. D 104,
014506 (2021).

[23] W. A. de Jong, K. Lee, J. Mulligan, M. Ploskon, F. Ringer,
and X. Yao, Quantum simulation of nonequilibrium
dynamics and thermalization in the Schwinger model, Phys.
Rev. D 106, 054508 (2022).

[24] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P.
Hauke, B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan,
Thermalization dynamics of a gauge theory on a quantum
simulator, Science 377, 311 (2022).

[25] J. Mildenberger, W. Mruczkiewicz, J. C. Halimeh, Z. Jiang,
and P. Hauke, Probing confinement in a Z, lattice gauge
theory on a quantum computer, arXiv:2203.08905.

054506-13


https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRevD.66.013002
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.22323/1.187.0332
https://doi.org/10.22323/1.187.0332
https://arXiv.org/abs/1310.4118
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRevLett.113.091601
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.101.054507
https://doi.org/10.1103/PhysRevD.106.L091502
https://doi.org/10.1103/PhysRevD.106.L091502
https://doi.org/10.22331/q-2022-12-19-878
https://doi.org/10.22331/q-2022-12-19-878
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.22331/q-2020-06-15-281
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevD.104.014506
https://doi.org/10.1103/PhysRevD.104.014506
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1126/science.abl6277
https://arXiv.org/abs/2203.08905

TAKUYA OKUDA

PHYS. REV. D 107, 054506 (2023)

[26] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[27] S. Iso and H. Murayama, Hamiltonian formulation of the
Schwinger model: Nonconfinement and screening of the
charge, Prog. Theor. Phys. 84, 142 (1990).

[28] I. Sachs and A. Wipf, Finite temperature Schwinger
model, Helv. Phys. Acta 65, 652 (1992), https://www
.e-periodica.ch/digbib/view ?pid=hpa-001%3A1992%3 A65%
3A%3ATO8#654.

[29] S. Durr, Aspects of quasi-phase-structure of the Schwinger
model on a cylinder with broken chiral symmetry, Ann.
Phys. (N.Y.) 273, 1 (1999).

[30] Y.-C. Kao and Y.-W. Lee, Schwinger model on a half line,
Phys. Rev. D 65, 067701 (2002).

[31] C.J. Hamer, W.-h. Zheng, and J. Oitmaa, Series expansions
for the massive Schwinger model in Hamiltonian lattice
theory, Phys. Rev. D 56, 55 (1997).

[32] F. Berruto, G. Grignani, G. Semenoff, and P. Sodano, Chiral
symmetry breaking on the lattice: A study of the strongly
coupled lattice Schwinger model, Phys. Rev. D 57, 5070
(1998).

[33] R. Dempsey, I.R. Klebanov, S.S. Pufu, and B. Zan,
Discrete chiral symmetry and mass shift in the lattice
Hamiltonian approach to the Schwinger model, Phys.
Rev. Res. 4, 043133 (2022).

[34] S.R. Coleman, R. Jackiw, and L. Susskind, Charge shield-
ing and quark confinement in the massive Schwinger model,
Ann. Phys. (N.Y.) 93, 267 (1975).

[35] S.R. Coleman, More about the massive Schwinger model,
Ann. Phys. (N.Y.) 101, 239 (1976).

[36] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda,
Classically emulated digital quantum simulation for screen-
ing and confinement in the Schwinger model with a
topological term, Phys. Rev. D 105, 014504 (2022).

[37] S.R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[38] S.R. White, Density-matrix algorithms for quantum re-
normalization groups, Phys. Rev. B 48, 10345 (1993).

[39] J.B. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[40] J. Polchinski, String Theory. Vol. 2: Superstring Theory and
Beyond, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, Enlgand, 2007).

[41] A.Casher,J. B. Kogut, and L. Susskind, Vacuum polarization
and the absence of free quarks, Phys. Rev. D 10, 732 (1974).

[42] D.J. Gross, L. R. Klebanov, A. V. Matytsin, and A. V. Smilga,
Screening versus confinement in (1 4 1)-dimensions, Nucl.
Phys. B461, 109 (1996).

[43] S.R. Coleman, The quantum Sine-Gordon equation
as the massive thirring model, Phys. Rev. D 11, 2088
(1975).

[44] T. Banks, L. Susskind, and J. B. Kogut, Strong coupling
calculations of lattice gauge theories: (1 + 1)-dimensional
exercises, Phys. Rev. D 13, 1043 (1976).

[45] P. Jordan and E.P. Wigner, About the Pauli exclusion
principle, Z. Phys. 47, 631 (1928).

[46] E. Fradkin, Field Theories of Condensed Matter Physics
(Cambridge University Press, Cambridge, England, 2013),
2nd ed.

[47] M. Fishman, S.R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations,
SciPost Phys. Codebases 4 (2022).

[48] M. Honda, E. Ttou, and Y. Tanizaki, DMRG study of the
higher-charge Schwinger model and its 't Hooft anomaly,
J. High Energy Phys. 11 (2022) 141.

[49] M. Luscher, S. Sint, R. Sommer, and P. Weisz, Chiral
symmetry and O(a) improvement in lattice QCD, Nucl.
Phys. B478, 365 (1996).

[50] M. Luscher, Advanced lattice QCD, in Les Houches
Summer School in Theoretical Physics, Session 68: Probing
the Standard Model of Particle Interactions (1998),
pp. 229-280, arXiv:hep-1at/9802029.

[51] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2014) 172.

[52] M. Honda, E. Itou, Y. Kikuchi, and Y. Tanizaki, Negative
string tension of a higher-charge Schwinger model via
digital quantum simulation, Prog. Theor. Exp. Phys.
2022, 033B01 (2022).

[53] A. Cherman, T. Jacobson, and M. Neuzil, Universal
deformations, SciPost Phys. 12, 116 (2022).

[54] T. Pantev and E. Sharpe, Notes on gauging noneffective
group actions, arXiv:hep-th/0502027.

[55] T. Pantev and E. Sharpe, String compactifications on Calabi-
Yau stacks, Nucl. Phys. B733, 233 (2006).

[56] T. Pantev and E. Sharpe, GLSM’s for gerbes (and other toric
stacks), Adv. Theor. Math. Phys. 10, 77 (2006).

[57] S. Hellerman and E. Sharpe, Sums over topological sectors
and quantization of Fayet-Iliopoulos parameters, Adv.
Theor. Math. Phys. 15, 1141 (2011).

[58] Y. Tanizaki and M. Unsal, Modified instanton sum in
QCD and higher-groups, J. High Energy Phys. 03 (2019)
123.

[59] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collabo-
ration), General methods for digital quantum simulation of
gauge theories, Phys. Rev. D 100, 034518 (2019).

054506-14


https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1143/ptp/84.1.142
https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1992%3A65%3A%3A768#654
https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1992%3A65%3A%3A768#654
https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1992%3A65%3A%3A768#654
https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1992%3A65%3A%3A768#654
https://doi.org/10.1006/aphy.1998.5894
https://doi.org/10.1006/aphy.1998.5894
https://doi.org/10.1103/PhysRevD.65.067701
https://doi.org/10.1103/PhysRevD.56.55
https://doi.org/10.1103/PhysRevD.57.5070
https://doi.org/10.1103/PhysRevD.57.5070
https://doi.org/10.1103/PhysRevResearch.4.043133
https://doi.org/10.1103/PhysRevResearch.4.043133
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1016/0003-4916(76)90280-3
https://doi.org/10.1103/PhysRevD.105.014504
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.10.732
https://doi.org/10.1016/0550-3213(95)00655-9
https://doi.org/10.1016/0550-3213(95)00655-9
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.13.1043
https://doi.org/10.1007/BF01331938
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1007/JHEP11(2022)141
https://doi.org/10.1016/0550-3213(96)00378-1
https://doi.org/10.1016/0550-3213(96)00378-1
https://arXiv.org/abs/hep-lat/9802029
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1093/ptep/ptac007
https://doi.org/10.1093/ptep/ptac007
https://doi.org/10.21468/SciPostPhys.12.4.116
https://arXiv.org/abs/hep-th/0502027
https://doi.org/10.1016/j.nuclphysb.2005.10.035
https://doi.org/10.4310/ATMP.2006.v10.n1.a4
https://doi.org/10.4310/ATMP.2011.v15.n4.a7
https://doi.org/10.4310/ATMP.2011.v15.n4.a7
https://doi.org/10.1007/JHEP03(2019)123
https://doi.org/10.1007/JHEP03(2019)123
https://doi.org/10.1103/PhysRevD.100.034518

