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In this paper, we develop the self-learning Monte-Carlo (SLMC) algorithm for non-Abelian gauge theory
with dynamical fermions in four dimensions to resolve the autocorrelation problem in latticeQCD.Weperform
simulations with the dynamical staggered fermions and plaquette gauge action by both in the hybrid Monte-
Carlo (HMC) and SLMC for zero and finite temperature to examine the validity of SLMC. We confirm that
SLMC can reduce autocorrelation time in non-Abelian gauge theory and reproduce results from HMC. For
finite temperature runs, we confirm that SLMC reproduces correct results with HMC, including higher-order
moments of the Polyakov loop and the chiral condensate. Besides, our finite temperature calculations indicate
that four flavor QC2D with m̂ ¼ 0.5 is likely in the crossover regime in the Colombia plot.
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I. INTRODUCTION

For more than 40 years, numerical calculations of lattice
QCD have been an established technique to calculate QCD
observables including nonperturbative effects [1]. Lattice
QCD is based on the Markov chain Monte-Carlo (MCMC)
algorithms with the detailed balance condition, which
guarantees the MCMC process’s convergence, and it is
crucial for dealing with the dimensionality of the path
integral for lattice QCD. From a practical point of view,
convergence is necessary because it allows for uses of the
computational result in precise phenomenology. (See [2,3]
and references therein, for example).
A MCMC algorithm for lattice QCD is required

following three conditions. The first condition is conver-
gence of the Markov chain update to the equilibrium
distribution. Typically, one requires the detailed balance
condition because it is one of sufficient conditions for the

convergence.1 The second condition is applicability for a
non-Abelian gauge system with dynamical fermions
because QCD consists of gluons and quarks, and we must
guarantee the gauge invariance. The third condition is no-
bias in calculations. For example, the hybrid algorithm or R
algorithm can deal with dynamical fermions, but it has a
bias [4], and it is not favored. Another example is the
molecular dynamics, which can generate configurations for
lattice QCD by itself, but its ergodicity is not guaranteed
because it only sweeps one energy constant surface.
Moreover, it has bias from the finite step size.
De facto standard algorithms for gauge theories with

dynamical fermions are the hybrid Monte-Carlo (HMC) [5]
and its variant, rational hybrid Monte-Carlo (RHMC) [6]
because they satisfy the three conditions above. The basic
idea of (R)HMC is based on the Metropolis algorithm with
fictitious hamiltonian dynamics, including Gaussian
momentum, along with fictitious time. Generally speaking,
a Metropolis algorithm shows high acceptance if the
theory’s energy function does not change so much during
the update process.2 (R)HMC uses the molecular dynamics
with a reversible symplectic integrator, and it preserves the
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1To guarantee it, we need additionally and ergodicity, which is
explained later on.

2From a viewpoint of efficiency of mixing, it depends on how
far-reaching the proposals are.
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energy function mostly and acceptance rate is controlled by
the violation of energy. The Gaussian momentum guaran-
tees ergodicity of the algorithm. In addition to this, update
process allows us to include fermions through the pseu-
dofermion trick. Despite these advantages, (R)HMC suffers
from unavoidable critical slowing down problem with
several parameter regimes [7–9], and thus to resolve the
problem, a new algorithm is demanded.
On the other hand, recent progress of machine (ML)

learning drives application it to lattice field theory [10–30].
There are three typical usages of machine learning in this
context. The first is making a detector of phase boundaries
[11,12,31]. The second is calculation for observable to
reduce numerical cost [13–16]. The third is configuration
generation for field theory [17–22]. These applications are
inspired by similarities between configuration generation
and image generation but except for flow-based algorithm
[20–22], they do not enjoy the convergence theorem. This
means that one has to compare observables one by one with
observables generated by a “legal algorithm” like HMC.
Self-learning Monte-Carlo(SLMC) is a machine-learning

based configurationgenerationalgorithm[32–38].Originally
it has been developed for a classical spin model [32] but it
works widely among quantum model in condensed matter
physics and quantum chemistry [33,36]. SLMC employs
updates using a tunable action with an efficient update
algorithm and the Metropolis—Hastings test, and then, it
becomes an exact algorithm.One of the advantages of SLMC
is interpretability;we can use our insight of the original theory
to construct the tunable action. Besides, one can also use
neural networks to evaluate the tunable action in the
algorithm [34,36] by giving up interpretability in order to
achieve better acceptance. We develop SLMC for non-
Abelian gauge field with dynamical fermions.
From the 1990s, systems with dynamical fermions using

hopping parameter expanded action have been investigated
[39–44]. They used truncated determinant to perform
simulations for the Schwinger model and zero temperature
QCD. Here we clarify the difference between the present
work and these studies. First, we perform an extensive
study for volume dependence and action dependence, and
we find that the Polyakov loop in the effective action
improves acceptance, for example, see Fig. 9 or Fig. 10.
Second, we (re)formulated the algorithm in the context of
ML application. It clarifies the mathematical meanings and
possible extension of the algorithm. Third, we confirm our
algorithm reduce autocorrelation for a finite temperature
system. As an similar idea, the multiboson algorithm
[45,46] is known. It uses the Metropolis algorithm with
polynomially expanded fermion action. But we do not use
pseudofermion field to update the gauge field in the present
work. We leave that idea for future study.
In this work, we perform simulations with two-color

QCD with dynamical fermions in four dimensions (QC2D)
using HMC and SLMC. Besides, we apply our algorithm to

investigate QC2D with 4 flavors phase diagram associated
the Polyakov loop in heavy mass regime at finite temper-
ature.3 In that regime, HMC is suffered from long auto-
correlation problem of the Polyakov loop. We find that,
both in zero and finite temperature, SLMC has smaller
autocorrelation time than HMC and gives consistent results
with correct cumulants.
This paper is organized as follows. In Sec. II, we review

self-learning Monte-Carlo from Metropolis—Hasting algo-
rithm. In Sec. II, we explain target system and effective
action in our calculations. In Sec. IV, we introduce our
results at zero temperature runs. In Sec. V, we show results
for an application of SLMC to a finite temperature system.
In Sec. VI, we summarize our results.

II. SELF-LEARNING MONTE-CARLO

Self-learningMonte-Carlo (SLMC) algorithm is a general
purposed sampling scheme based on Metropolis–Hastings
algorithm. It consists of two phases: (a) Training phase and
(b) Application phase (Fig. 1), and (c) hybrid.
First of all, let us emphasize here that SLMC is a sampling

algorithm for a fixedprobability density. In otherwords, it is a
samplingmethod for a target lattice actionSwith fixed lattice
size, gauge coupling, fermion contents, fermion mass in
lattice gauge theory. In the latter part of the present paper, we
compare results of various SLMC runs for S defined in (7),
four-dimensional SUð2Þ plaquette and log det term from 4
tastes standard staggered fermions, under different lattice
sizes, fermion masses, gauge couplings.

A. Training phase

In the training phase [Fig. 1(a)], we prepare multiple
samples fUigi¼1;2;…;N from the probability density
e−S½U�=Z, a fitting model Sθeff with a simple update
probability Pθ. In our case, each Ui is a pair of gauge
configurations, and Sθeff is a sum of certain loop operators
with tunable coupling constants defined in (9), and Pθ is
heatbath update.
After sampling from the target density, the fitting

parameters θ are determined by minimizing a loss function,
which we choose averaged least squared loss L2 between
the target action value S½Ui� and the model action value
Sθeff ½Ui� over all (finite) samples:

L2 ¼
1

N

XN
i¼1

ðS½Ui� − Sθeff ½Ui�Þ2. ð1Þ

3The one-loop beta function for SUðNc ¼ 2Þ gauge theory with
nf ¼ 4 fundamental matters is βðgÞ ¼ − g3

ð4πÞ2 ð113 Nc − 2
3
nfÞ ¼

− g3

ð4πÞ2 4.6 < 0, thus, this theory is asymptotic free. In addition,
this theory is not infrared conformal [47]. Thus, QC2Dwithnf ¼ 4
has qualitatively same nature to conventional QCD.
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One can choose other loss functions: KL divergence, or
squared loss with certain regularization terms, etc. The
choice of loss function and parameters θ only affect the
acceptance probability of the Metropolis–Hastings test in
Fig. 1(b), that we explain next.

B. Application phase

In the application phase [Fig. 1(b)], we run the
Metropolis–Hastings algorithm with the fitted effective
parameters θ. More precisely, we use the θ dependent
update PθðU0jUÞ to generate proposal sample U0 for given
configuration U, that satisfies the detailed balance con-
dition with the fitted model Seff . But our purpose is
sampling from the target probability e−S½U0�=Z, so after
generating the proposal sample U0, we conduct the
Metropolis–Hastings test with acceptance probability

min

�
1;
e−ðS½U

0�−Sθeff ½U0�Þ

e−ðS½U�−Sθeff ½U�Þ

�
; ð2Þ

then the Markov-chain satisfies the detailed balance con-
dition with S. If the readers are not familiar with this
algorithm, please see Appendix A.

C. Hybrid: Self-learning phase

The Metropolis–Hastings update algorithm satisfies the
detailed balance condition, and one can get the samples
from the target probability based on the corresponding
Markov chain. We can utilize these samples to improve
parameters θ further by repeating the training phase. In the
later experiments, we apply this scheme, i.e., we begin with
initial parameters, as explained in simulation setup, and
keep adjusting parameters θ by minimizing (1) in each
Metropolis–Hastings update.4

III. NUMERICAL SETUP

In this section, we introduce our numerical setup for
simulation of lattice gauge theory. Throughout this paper,
we show every quantity in lattice unit. We perform
simulations with SUð2Þ plaquette action with four tastes
standard staggered fermions for implementational simplic-
ity. Our target system is described by the action S½U; χ̄; χ�,

S½U; χ̄; χ� ¼ Sg½U� þ
X
n

χðnÞðM½U�χÞðnÞ; ð3Þ

where Sg½U� is the Wilson plaquette action,

Sg½U� ¼ β
X
n

X4
μ¼1

X
ν>μ

�
1 −

1

2
trUμνðnÞ

�
; ð4Þ

UμνðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ; ð5Þ

and M½U� is a massive staggered Dirac operator,

M½U�χðnÞ ¼ 1

2

X4
μ¼1

ημðnÞ½UμðnÞχðnþ μ̂Þ

−U†
μðn − μ̂Þχðn − μ̂Þ� þ m̂χðnÞ; ð6Þ

and ημðnÞ is the staggered factor. UμðnÞ is a link variable
for SUð2Þ gauge field, and χðnÞ is a single component
spinor field. m̂ is a quark mass in the lattice unit.
Summation of n indicates that summation over four dimen-
sional coordinate: n ¼ ðn1; n2; n3; n4Þ. Here ημðnÞ is the
staggered factor,

ημðnÞ ¼

8>>><
>>>:

1 ðμ ¼ 1Þ;
ð−1Þn1 ðμ ¼ 2Þ;
ð−1Þn1þn2 ðμ ¼ 3Þ;
ð−1Þn1þn2þn3 ðμ ¼ 4Þ;

which enables us to reconstruct the Dirac spinor structure in
the continuum limit.

FIG. 1. Two phases of SLMC. We apply this method under 4D links with fermion contribution. (a) Training phase of SLMC and (b)
application phase of SLMC.

4The parameters’ change gradually “thermalized.” So, we
can regard the later part of the Markov chain as usual chain
by MH–test, that would guarantee exactness. We leave showing
its exactness as a future work.
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All numerical calculations for HMC and SLMC are
performed by Julia [48] and the code is developed by
ourselves. In addition, we use heatbath method, which is
reviewed in Appendix B, to implement the proposal
probability Pθ in the equation Fig. 1(b) and we implement
automatic generation of heatbath code which generates
staples from given loop operators [49]. This enables us to
investigate effective action with various types of extended
loops. However, in the present work, we employ the
effective action (9) and slightly generalized effective
actions with other loops for simplicity, and leave the study
with complicated loops as a future work.

A. SLMC setup

1. Target action

First, we reformulate our target action in purely bosonic
language which is given by

S½U� ¼ Sg½U� þ Sf½U�; ð7Þ

where Sg½U� is the plaquette gauge action and,

Sf½U� ¼ − log detM†M; ð8Þ

is fermion contribution. The Dirac operatorM is defined in
(6). We use exact diagonalization to evaluate the Dirac
operator in this paper for simplicity and this can be
improved by using stochastic estimator in the reweighting
technique [50,51].

2. Fitting model (effective action)

In practice, we employ heavy mass expanded fermion
action with truncation [52] for the fitting model Sθeff in
SLMC. Our effective action consists of the plaquette,
rectangular loops and the Polyakov loop for μ ¼ 1, 2, 3,
4 directions. Let us denote n⃗ ¼ ðn1; n2; n3Þ is spatial
coordinate and n4 is the temporal direction, and let lattice
size be N1, N2, N3 and N4 for spatial and temporal extent,
respectively. The effective action is,

Sθeff ½U� ¼
X
n

�
βplaq

X4
μ¼1

X
ν>μ

�
1 −

1

2
trUμνðnÞ

�
þ βrect

X4
μ¼1

X
ν≠μ

�
1 −

1

2
trRμνðnÞ

��

þ βμ¼1
Pol

X
n2;n3;n4

tr

�YN1−1

n1¼0

U1ðn⃗; n4Þ
�
þ βμ¼2

Pol

X
n1;n3;n4

tr

�YN2−1

n2¼0

U2ðn⃗; n4Þ
�

þ βμ¼3
Pol

X
n1;n2;n4

tr
�YN3−1

n3¼0

U3ðn⃗; n4Þ
�
þ βμ¼4

Pol

X
n1;n2;n3

tr
�YN4−1

n4¼0

U4ðn⃗; n4Þ
�
þ βconst; ð9Þ

where n ¼ ðn⃗; n4Þ, RμνðnÞ is a rectangular Wilson loop,

RμνðnÞ ¼ UμðnÞUμðnþ μ̂ÞUνðnþ 2μ̂ÞU†
μðnþ μ̂þ ν̂Þ

×U†
μðnþ ν̂ÞU†

νðnÞ; ð10Þ

and θ ¼ fβplaq; βrect; βμ¼1
Pol ; β

μ¼2
Pol ; β

μ¼3
Pol ; β

μ¼4
Pol ; βconstg are de-

termined by a linear regression with prior HMC run.5 In
general, one can include additional extended loops to
improve the acceptance rate. This algorithm is based on
interpretable ML. Namely, coefficients in the effective
action have physical meaning. Note that SLMC gives an
exact Markov chain procedure regardless of which terms
are included. Even if the action is far from the target action,
SLMC does not have bias but the acceptance rate ap-
proaches to zero.

We choosePθðU0jUÞ as the heatbath algorithmwithwhole
extended loops in Sθeff ½U�. Our strategy in the present work to
overcome the critical slowing down is increasing the number
of heatbath updates or overrelaxation in the SLMC update
process. The critical slowing down depends on both of the
update algorithm and the criticality of the system, and
criticality is unavoidable. We overcome the critical slowing
downbysomewhatbrute forceway; repeatingcheapupdates.6

The acceptance rate can be estimated a priori by a loss of
the regression7:

Acceptance rate ∼ expð−
ffiffiffiffiffiffi
L2

p
Þ; ð11Þ

5Prior HMC runs are not mandatory. One can improve the
parameters within the SLMC runs as we commented in Sec. II C.
Most of our simulations in this paper are done in this way. If the
effective action is far from the target system, a prior HMC run is
necessary to avoid inefficiency.

6This strategy is the same spirit of the all mode averaging
(AMA) [53]. AMA reduces statistical error using many “sloppy”
(cheap) calculation, and bias from sloppiness corrected by a few
costly bias correction term.

7This estimation assumes the unbiased condition 0 ¼ hS½U� −
Sθeff ½U�iS where the expectation is taken by the target probability
e−S½U�=Z, see Appendix I of [34] for more details.
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where L2 is the loss of the regression (1) for the effective
action. It is similar to Karsch formula [39,54]. Namely,
the acceptance rate can be reduced controlled by adding
more and more extended loops as improving the linear
regression.

3. How to compare HMC and SLMC

Generally, it is not fair to compare two different
algorithms in terms of the elapsed time since the elapsed
time depends on the architecture of machines and technical
details of implementations. Here, we enumerate the number
of most costly expensive parts in each algorithm. In HMC
case, taking inversion of the Dirac operator is the expensive
part. It occurs each molecular dynamics step and the
Metropolis step, and the conjugation gradient (CG) method
is usually used, which has many matrix-vector operations.
On the other hand, in our SLMC case, fermion determinant
calculation for the target action is the expensive part, which
occurs each Metropolis step. As we mentioned before, this
can be replaced by a stochastic estimator and it reduces
numerical cost, but it still has the highest cost. A stochastic
estimator includes the calculation of the inversion of the
Dirac operator, which is similar to the CG method. In this
work, we count the number of Metropolis test both in HMC
and SLMC for simplicity. This comparison is not fair for
SLMC, but still, it gives better results than HMC in terms of
the autocorrelation.8

B. Observables

In the present work, we measure plaquette, rectangular
Wilson loop, and the Polyakov loop to check the consis-
tency of the algorithm. In our finite temperature applica-
tion, we calculate a susceptibility (second-order cumulant)
and the Binder cumulant, which is a fourth order moment,
for the plaquette, rectangular Wilson loop, Polyakov loop,
and chiral condensates as a function of β to check the
consistency of the algorithm for possible biases in higher
moments in addition to the mean values.

1. Polyakov loop

The Polyakov loop along with the temporal direction is a
good indicator of the confinement-deconfinement transi-
tion,

hLi ¼ 1

N3
σ

�X
n⃗

Tr
Y
n4

U4ðn4; n⃗Þ
�
; ð12Þ

where we take N1 ¼ N2 ¼ N3 ¼ Nσ as the spatial size of
the lattice. The Polyakov loop susceptibility is,

χL ¼ hL2i − hLi2: ð13Þ

We also analyze the Binder cumulant B4
L [55], which is

defined by,

B4
LðβÞ ¼

hðδLÞ4i
hðδLÞ2i2 ; ð14Þ

where δL ¼ L − hLi. Binder cumulant is an indicator of
the order of phase transition. If it takes B4 ¼ 3.0, that point
does not have any singularity (crossover). If it takes
1 < B4 < 3.0, that point is the second-order phase tran-
sition, and the value is related to the universality class. If it
takes B4 ¼ 1.0, that point is the first-order phase transition.

2. Chiral condensate

In addition to the Polyakov loop, we calculate four tastes
chiral condensate,

hψ̄ψi ¼ 1

N3
σNτ

�
Tr

1

Dþm

�
; ð15Þ

where N4 ¼ Nτ, Tr indicates trace over all index in the
Dirac operator, and its higher order moments as well as for
the Polyakov loop.

3. Autocorrelation

Autocorrelation time is a measure of correlations
between configurations, which quantifies the inefficiency
of an MCMC algorithm. The decay of the autocorrelation
function gives autocorrelation time, but the autocorrelation
function itself is a statistical object, so we cannot determine
the autocorrelation exactly. Instead, we calculate the
approximated autocorrelation function [56,57] defined by,

ΓðτÞ ¼ 1

Ntrj − τ

XNtrj

c

ðOc − ŌÞðOcþτ − ŌÞ; ð16Þ

where Oc ¼ O½UðcÞ� is the value of operator O for the cth
configuration UðcÞ and τ is fictitious time of HMC. Ntrj is
the number of trajectories. Conventionally, the normalized
autocorrelation function ρðτÞ ¼ ΓðτÞ=Γð0Þ is used.
The integrated autocorrelation time τint approximately

quantifies effects of autocorrelation. This is given by,

τint ¼
1

2
þ
XW
τ¼1

ρðτÞ: ð17Þ

We regard two configurations separated by 2τint as inde-
pendent ones. In practice, we determine a window size W
as a first point W ¼ τ where Γ̄ðτÞ < 0 for the smallest τ.
The statistical error of integrated autocorrelation time is
estimated by the Madras–Sokal formula [57,58],

8It should depend on the scaling of the autocorrelation time to
volume too. We left a more rigorous comparison for future work.
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hδτ2inti ≃
4W þ 2

Ntrj
τ2int: ð18Þ

We use the square root of (18) to estimate the error on the
autocorrelation time. It is obvious that the autocorrelation is
observable dependent, and we focus on the autocorrelation
from the Polyakov loop since we perform simulations with
rather coarse lattices.9

IV. ALGORITHM ANALYSIS

A. Simulation setup

We compare results from SLMC and HMC with a base-
line parameter set: N3

σ × Nτ ¼ 63 × 6, m̂ ¼ 0.5, β ¼ 2.5.
The fictitious time for the leapfrog integration is taken to
τ ¼ 1. Our effective action contains plaquette, rectangular,
Polyakov loops for every direction as we explained in (9).
We discardOð100Þ trajectory from the analysis for thermal-
ization, and the number of analyzed configurations10 is
Oð1000Þ −Oð10000Þ. We initialized βplaq ¼ β, the cou-
pling in the gauge action in target theory, and βothers are
sampled as small random variables.
We perform several variations of SLMC runs by follow-

ing reasons. The first purpose is, to confirm that results are
independent from choice of effective actions. In addition,
the statistical property with effective actions have to be
investigated. The second purpose is, to see change of
acceptance rate. Our effective action is inspired from the
hopping parameter expansion, so expect that the acceptance
is increased if we add higher order loops.
We estimate statistical error using the jackknife method.

The binning size of the jackknife method is taken to be the
number of jackknife samples 10 in the histogram, and
others are taken to be larger than the autocorrelation time
for each observable.

B. Simulation results

1. HMC vs SLMC

Before detail comparison, we compare HMC and SLMC
for β ¼ 2.5, N3

σ × Nτ ¼ 64, m̂ ¼ 0.5 (Fig. 2). The hori-
zontal axis (MC time) is counted as the number of the
Metropolis test as we explained above. The integrated
autocorrelation time for HMC and SLMC are τHMC ¼
62ð24Þ and τSLMC ¼ 4.0ð4Þ, respectively. We choose the
number of overrelaxation as 10 and the number of heatbath
as 100 in this case.
We show results from HMC and SLMC for plaquette,

rectangular Wilson loop, and Polyakov loop in histogram
with statistical error in Fig. 3. One can see that all quantities

from SLMC are consistent with ones from HMC. The
shape of the histogram for the Polyakov loop indicates the
effects of dynamical fermions because if it is quenched,
the Polyakov loop is symmetric under Z2 reflection if
the statistics are large enough.11

2. Extensive study

Other quantities and setups are summarized the results in
Table I. ID 0–7 in the table are results from HMC and
various SLMC with N3

σ × Nτ ¼ 64, β ¼ 2.5, and m̂ ¼ 0.5.
Each SLMC entry means:

(i) SLMC_nup100: 100 times heatbath update is used,
(ii) SLMC_all: effective action including 3 × 1-

rectangular, chair, and crown operators is used,
(iii) SLMCnor01 and SLMCnor20: 1 and 20 time over-

relaxations after the heatbath update are used,
respectively,

(iv) SLMCplq: effective action, which includes only
plaquette term, is used,

(v) SLMCplqrct: effective action, which includes pla-
quette and the rectangular term is used.

All of the results from various SLMC are consistent with
ones from HMC, except for ID6.12 Besides, SLMCplq
contains only one term, but it achieves roughly 60%
acceptance and with consistent results. Comparing to the
acceptance rate for SLMCplqrct and SLMC_all, improve-
ment of effective action, namely adding more loop oper-
ators, the data shows that adding loops improves the
acceptance rate.

FIG. 2. Autocorrelation function for the Polyakov loop for
β ¼ 2.5, N3

σ × Nτ ¼ 64, m̂ ¼ 0.5. We measure the Monte-Carlo
time τ as a unit of theMetropolis test. The bands indicate one sigma
error bar. Please see main text for meaning of the horizontal axis.

9We checked the topological charge and its autocorrelation, but
that is not relevant for our lattice spacing and system size.

10All of our measurements are done on the fly and performed
every trajectory.

11More quantitative signal to distinguish quenched and un-
quenched runs is mass splitting of pseudoscalar and vector
channel. However, we leave it for future study.

12Here we comment on the weird statistical behavior of hRi for
ID 6 in Table I. We evaluated the statistical error using the
jackknife method, and the binning size is taken as larger than the
autocorrelation time, which is estimated using Eq. (17). However,
the determination of the window size W can bring systematic
error in it, and we might underestimate the autocorrelation time.
We believe it should have a larger error if we perform the more
rigorous statistical operation, but we leave this for future work.
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Beta dependence are summarized in ID 8–13 in Table I.
We vary β as 0.8, 1.2, 4.0 both in HMC and SLMC. The
acceptance rate in SLMC for β ¼ 0.8 is slightly low,
but it gives consistent results. β dependence is correctly
reproduced.
Results from lighter mass m̂ ¼ 0.05 are summarized in

ID 14–16 in Table I. In this case, for SLMC, acceptance is
low (30%–40%), but it still gives consistent results to the
ones in HMC. The acceptance rate for SLMC with higher
order loops:

(i) SLMC_polys: effective action with chair, crown,
and 3 × 1 Wilson loop, Ω1;2 in [59] notation,

is improved from SLMC. ID 17–18 in the table are results
for m̂ ¼ 0.1. The tendency of acceptance rate is the same to
m̂ ¼ 0.05 but slightly better as expected.
We examine volume dependence in the table (ID 19–21)

and the volume is taken to N3
σ × Nτ ¼ 84. Acceptance rate

is lower than the SLMC with N3
σ × Nτ ¼ 64. This is similar

to what happens for the reweighting, but in our case, thanks
to the tunable parameters, inefficiency is not drastic.
Examinations for smaller volume N3

σ × Nτ ¼ 44 are sum-
marized in ID 22–23. The acceptance rate reaches to 80%
for SLMC, and this is also expected.
In summary, SLMC can reproduce results from HMC

even with plaquette effective action. The number of terms
in the effective action affects to acceptance rate. For larger

volumes and small mass, the acceptance rate becomes
small. This can be improved by adding more and more
terms to the effective action.

V. APPLICATION TO FINITE TEMPERATURE

A. Simulation setup

Here we present an application of SLMC algorithm to a
finite temperature system. We perform simulation for four
flavor QC2D with m̂ ¼ 0.5 in N3

σ × Nτ ¼ 83 × 4 lattice.
As we will mention later, quarks are not decoupled from
the theory. Our β range is β ¼ 1–2.4, which contains a
transition (crossover) point βc ∼ 2.1. We employ the
Wilson plaquette gauge action and the standard staggered
fermion. In SLMC update, 20 times heatbath updates are
used except for β ¼ 2.1 while 100 times heatbath for
β ¼ 2.1. The number of trajectory for HMC are 1000
for β ≠ 2.1 and 20000 for β ¼ 2.1 to see behavior of the
Binder cumulant in detail. The number of trajectory for
SLMC are O(5000)–O(40000) and please find details in
Table II. We initialized βplaq ¼ β, the coupling in the gauge
action in target theory, and βothers are sampled as small
random variables as well.
At the heavy quark mass regime, the system expected to

show confinement/deconfinement transition (or cross-
over) associated with the Polyakov loop. The Polyakov

FIG. 3. Histogram of results from HMC and SLMC for β ¼ 2.5, N3
σ × Nτ ¼ 64, m̂ ¼ 0.5. To distinguish these results, we shift results

for SLMC to the right. Error bar is estimated by the Jackknife method. Left-top: plaquette. Right-top: rectangular Wilson loop. Middle:
Polyakov loop.
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TABLE I. Simulation results for zero temperature with HMC and SLMC. ALG indicates different algorithms, and please see the main
text for details. m̂ indicates dimensionless quark mass. Acceptance means the acceptance rate. Ntrj is the number of trajectories except
for the thermalization. hPi, hRi, and hLi mean expectation value of plaquette, rectangular Wilson loop, and the Polyakov loop,
respectively. We plot these values in Appendix C.

ID ALG Nσ Nτ β m Acceptance Ntrj hPi hRi hLi
0 HMC 6 6 2.5 0.50 0.65 50000 0.66718(5) 0.48037(9) 0.23(1)
1 SLMC_nup100 6 6 2.5 0.50 0.72 48850 0.66711(1) 0.48021(3) 0.197(3)
2 SLMC 6 6 2.5 0.50 0.73 50000 0.66718(3) 0.48031(5) 0.22(1)
3 SLMC_all 6 6 2.5 0.50 0.77 50000 0.66719(3) 0.48034(5) 0.19(1)
4 SLMCnor01 6 6 2.5 0.50 0.74 50000 0.66717(3) 0.48032(5) 0.23(2)
5 SLMCnor20 6 6 2.5 0.50 0.73 50000 0.66731(3) 0.48054(4) 0.191(9)
6 SLMCplq 6 6 2.5 0.50 0.57 50000 0.66746(4) 0.48074(5) 0.18(1)
7 SLMCplqrct 6 6 2.5 0.50 0.69 50000 0.66727(5) 0.48046(7) 0.211(8)

8 HMC 6 6 0.8 0.50 0.85 50000 0.20764(4) 0.04444(3) 0.0025(3)
9 HMC 6 6 1.2 0.50 0.84 50000 0.30356(4) 0.09382(3) 0.0034(2)
10 HMC 6 6 4.0 0.50 0.73 50000 0.80346(3) 0.68011(4) 0.65(1)
11 SLMC 6 6 0.8 0.50 0.58 50000 0.20781(5) 0.04454(5) 0.0032(4)
12 SLMC 6 6 1.2 0.50 0.59 50000 0.30365(4) 0.09387(3) 0.0033(7)
13 SLMC 6 6 4.0 0.50 0.87 50000 0.8035(2) 0.68016(3) 0.58(4)

14 HMC 6 6 2.5 0.05 0.82 50000 0.67774(4) 0.49772(5) 0.437(6)
15 SLMC 6 6 2.5 0.05 0.34 50000 0.67813(8) 0.4982(1) 0.436(7)
16 SLMC_polys 6 6 2.5 0.05 0.43 36350 0.67793(4) 0.49798(5) 0.446(7)

17 HMC 6 6 2.5 0.10 0.73 50000 0.6771(4) 0.49666(5) 0.428(6)
18 SLMC 6 6 2.5 0.10 0.37 50000 0.67749(7) 0.49732(9) 0.438(5)

19 HMC 8 8 2.5 0.50 0.77 50000 0.66659(2) 0.47916(2) 0.01(1)
20 SLMC 8 8 2.5 0.50 0.54 6630 0.66682(10) 0.4795(2) −0.03ð4Þ
21 SLMC_all 8 8 2.5 0.50 0.62 5300 0.66678(9) 0.4794(1) 0.04(3)

22 HMC 4 4 2.5 0.50 0.66 50000 0.6706(1) 0.4878(2) 0.64(2)
23 SLMC 4 4 2.5 0.50 0.84 50000 0.67073(7) 0.48792(9) 0.656(7)

TABLE II. Same table with Table I but for finite temperature with HMC and SLMC. We plot these values in Appendix C.

ID ALG Nσ Nτ β m Acceptance Ntrj hPi hRi hLi
0 HMC 8 4 1.0 0.5 0.88 1000 0.256(2) 0.067(1) 0.028(2)
1 HMC 8 4 1.2 0.5 0.89 1000 0.3037(2) 0.0939(1) 0.031(2)
2 HMC 8 4 1.4 0.5 0.87 1000 0.353(2) 0.1269(2) 0.036(1)
3 HMC 8 4 1.6 0.5 0.87 1000 0.4048(3) 0.1674(3) 0.039(2)
4 HMC 8 4 1.8 0.5 0.85 1000 0.4625(3) 0.2204(3) 0.055(3)
5 HMC 8 4 1.9 0.5 0.85 1000 0.4948(3) 0.2541(4) 0.078(3)
6 HMC 8 4 2.0 0.5 0.85 1000 0.5297(5) 0.2942(7) 0.137(7)
7 HMC 8 4 2.1 0.5 0.85 20200 0.5684(2) 0.3439(3) 0.327(4)
8 HMC 8 4 2.2 0.5 0.84 1000 0.6041(5) 0.3932(8) 0.553(6)
9 HMC 8 4 2.3 0.5 0.85 1000 0.6302(4) 0.4296(6) 0.679(4)
10 HMC 8 4 2.4 0.5 0.85 1000 0.6507(4) 0.4579(6) 0.757(3)

11 SLMC 8 4 1.0 0.5 0.44 990 0.2559(3) 0.0671(3) 0.028(3)
12 SLMC 8 4 1.2 0.5 0.47 41020 0.30368(6) 0.09393(7) 0.0319(5)
13 SLMC 8 4 1.4 0.5 0.48 41930 0.35296(7) 0.12676(7) 0.0347(5)
14 SLMC 8 4 1.6 0.5 0.46 41970 0.40492(5) 0.16744(6) 0.0424(5)
15 SLMC 8 4 1.8 0.5 0.47 41570 0.46257(7) 0.2205(8) 0.0578(7)
16 SLMC 8 4 1.9 0.5 0.47 5590 0.4949(3) 0.2544(4) 0.081(2)
17 SLMC 8 4 2.0 0.5 0.46 41200 0.53001(7) 0.2947(1) 0.14(1)
18 SLMCup100 8 4 2.1 0.5 0.41 11920 0.5682(2) 0.3437(3) 0.324(3)
19 SLMC 8 4 2.2 0.5 0.50 41180 0.6049(8) 0.3944(1) 0.559(1)
20 SLMC 8 4 2.3 0.5 0.55 34670 0.63037(4) 0.42958(6) 0.6775(6)
21 SLMC 8 4 2.4 0.5 0.60 34550 0.65066(3) 0.45782(4) 0.7558(5)
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loop operator, along with the imaginary time direction,
has the center symmetry, but it is broken at high temper-
atures. It means that the system around or above
the (pseudo)critical temperature, the system could be
affected by long autocorrelation for the Polyakov
loop. We attempt to solve this autocorrelation by employ-
ing SLMC. Meanwhile, we show that SLMC with
effective action can treat detail of phase transition
without bias.

B. Simulation results

Here we show results at finite temperature. At the heavy
mass regime, Polyakov loop is a central observable.
Polyakov loop as a function of β is shown in the left
panel of Fig. 4. One can see that a transition point is around
β ∼ 2.1. The right panel of Fig. 4 is the difference of results
for the Polyakov loop from HMC and SLMC and the values
are consistent with 0. Central values for other gluonic
observables can be found in Table II.
Next, we show results for the susceptibility for Polyakov

loop (left panel of Fig. 5). One can find a peak of around

β ∼ 2.1. Besides, results from HMC and SLMC are con-
sistent with each other. The right panel of Fig. 5 is the
Binder cumulant for Polyakov loop. Results from HMC
and SLMC are consistent with each other. Besides, the
Binder cumulant suggest that our quark mass m̂ ¼ 0.5 is
not in the quenched regime because in the quenched case, it
takes a value for the second-order phase transition
B4
L ≈ 1.6 [60,61].
Next, we show results for the chiral condensates as a

function of β (Left panel of Fig. 6). The transition point is
located β ∼ 2.1. The right panel of Fig. 6 is difference of
results for the chiral condensates from HMC and SLMC.
Results show that central values are consistent with
each other.
Results of higher cumulants can be found in Fig. 7. The

left panel of Fig. 7 shows the susceptibility for the chiral
condensates while the right panel is Binder cumulant for
the chiral condensates. Results from HMC and SLMC are
consistent with each other.
Our results of the Binder cumulant for the Polyakov loop

and chiral condensates (Figs. 5 and 7) at m̂ ¼ 0.5 do not

FIG. 5. Susceptibility and the Binder cumulant for Polyakov loop as a function of β. To avoid overlapping symbols, we shift β for
SLMC in plots. Left; Polyakov loop susceptibility. It has a peak β ∼ 2.1. Right: the Binder cumulant. It takes values about 3 for all β
regime.

FIG. 4. Polyakov loop as a function of β. To avoid overlapping of symbols, we slightly shift in β for SLMC to the right in plots. Left:
comparison plot for HMC and SLMC. Right: difference between Polyakov loop by HMC and SLMC.
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show any indication of the second order phase transition
(with three-dimensional Ising universality class13). This can
be confirmed by performing a systematic study for large

volumes, a finer scan of beta, and increasing statistics, but
we leave this issue for a future study.
As we have seen, β ¼ 2.1 is the closest coupling to the

critical (crossover) point (Fig. 8). We choose the number of
heatbath updates as 100 in this case.

VI. CONCLUSION

In this work, we develop self-learning Monte-Carlo
algorithm for lattice Yang-Mills theory with dynamical
fermions in four dimensions. We work with QC2D with
nf ¼ 4 as an example with zero and finite temperature.
We confirm that SLMC works for zero temperature runs

even for the out of expansion radius of the hopping
parameter expansion because of the exactness. This is
expected since SLMC itself is free from the choice of
effective action. The acceptance rate becomes low for small
β and large volume, but it can be fixed by adding more
extended loops. Our code for automatic generation of
heatbath code will be published in another paper.
For finite temperature runs, we confirm that SLMC

reproduces correct results with HMC, including higher-
order moments of the Polyakov loop and the chiral
condensate. Our calculations indicate that QC2D with
m̂ ¼ 0.5 is in the crossover regime, and we leave the
precise determination of the order of phase transition to

FIG. 6. Same plots of Fig. 4 but for the chiral condensate.

FIG. 7. Same plots of Fig. 5 but for the chiral condensate.

FIG. 8. Autocorrelation function for the Polyakov loop for
β ¼ 2.1, N3

σ × Nτ ¼ 83 × 4, m̂ ¼ 0.5. the number of the heatbath
is 100 in SLMC.

13Svetitsky and Yaffe have conjectured the confinement/
deconfinement transition for pure SU(2) in 3þ 1 dimension is
the second order phase transition with 3D-Ising universality class
[62] while the chiral phase transition is first order for nf ¼ 4 light
quarks by Pisarski and Wilczek [47,63].
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future study since the critically of the phase transition is
smeared if the system is small.
Our current algorithm uses heavy mass expanded effec-

tive action with the linear regression, which induces low
efficiency of simulation for lighter mass. This would be
fixed by employing a neural network like [34].
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APPENDIX A: REVIEW OF METROPOLIS–
HASTINGS ALGORITHM AND SLMC

1. Metropolis–Hastings update

For given variableU, MH update step is composed of the
following two steps:

(1) sampling a candidate variable U0 by a fixed condi-
tional probability PðU0jUÞ

(2) accepting the candidatewith probabilitypaccðU0; UÞ ¼
min

	
1; e

−S½U0 �PðUjU0Þ
e−S½U�PðU0jUÞ



, otherwise rejecting the candi-

date U0 and keeping U.
This conditional sampling step can be understood as
sampling from the conditional probability below:

PMHðU0jUÞ ¼ paccðU0; UÞPðU0jUÞ

þ δðU0 −UÞ
Z

dUrejð1 − paccðUrej; UÞÞ

× PðUrejjUÞ; ðA1Þ

where the δ represents Dirac’s delta function for continu-
ous stochastic variable. The first term corresponds to
acceptance, and the second term represents the rejection
process, which happens with probability 1 − pacc [64]. The
MH probability (A1) satisfies two important conditions
explained below.

a. Normalization condition

This complete form satisfies the normalization condition
of the conditional probability density:

Z
dU0PMHðU0jUÞ ¼

Z
dU0paccðU0; UÞPðU0jUÞ þ

Z
dU0δðU0 − UÞ

Z
dUrejð1 − paccðUrej; UÞÞPðUrejjUÞ

¼
Z

dU0paccðU0; UÞPðU0jUÞ þ
Z

dUrejð1 − paccðUrej; UÞÞPðUrejjUÞ

¼
Z

dUrejPðUrejjUÞ ¼ 1

If the variable U is discrete valued, the integral is replaced
by the summation and the Dirac’s delta to Kronecker’s
delta.

b. Detailed balance condition

The probability (A1) is sum of two terms, and it is
sufficient to show detailed balance condition of each term.
First, let us focus on the first term paccðU0; UÞPðU0jUÞ≕
PMH-accðU0jUÞ. By using a simple formula, minð1; xÞ ¼
minðx−1; 1Þx, we can show the detailed balance condition
for PMH-acc as follows,

PMH-accðU0jUÞ ¼ min

�
1;
e−S½U0�PðUjU0Þ
e−S½U�PðU0jUÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

x

�
PðU0jUÞ

¼ minðx−1; 1ÞxPðU0jUÞ

¼ e−S½U0�

e−S½U� PMH-accðUjU0Þ:

We need to show the detailed balance condition for the
second termalso. Tomake the argument clearer, let us call the
second term δðU0−UÞR dUrejð1−paccðUrej;UÞÞPðUrejjUÞ

SELF-LEARNING MONTE-CARLO FOR NON-ABELIAN GAUGE … PHYS. REV. D 107, 054501 (2023)

054501-11



as PMH-rejðU0jUÞ, then we can multiply e−S½U0 �
e−S½U� and replace U

by U0 because of the insertion of delta function:

PMH-rejðU0jUÞ ¼ e−S½U0�

e−S½U� δðU − U0Þ

×
Z

dUrejð1 − paccðUrej; U0ÞÞPðUrejjU0Þ

¼ e−S½U0�

e−S½U� PMH-rejðUjU0Þ;

and it completes the proof, i.e.,

PMHðU0jUÞ¼PMH-accðU0jUÞþPMH-rejðU0jUÞ

¼ e−S½U0�

e−S½U� PMH-accðUjU0Þþe−S½U0�

e−S½U� PMH-rejðUjU0Þ

¼ e−S½U0�

e−S½U� PMHðUjU0Þ:

2. Simplification in SLMC

In SLMC, we prepare the model Sθeff with fitting
parameters θ with simple update PθðU0jUÞ that satisfies
detailed balance condition for Sθeff :

PθðU0jUÞ ¼ e−S
θ
eff ½U0�

e−S
θ
eff ½U� PθðUjU0Þ; ðA2Þ

and use it as the proposal probability PðU0jUÞ in (A1). In
this case, we can utilize the above detailed balance
condition (A2) to simplify the calculation of acceptance
probability in each step:

paccðU0; UÞ ¼ min

�
1;
e−S½U0�PθðUjU0Þ
e−S½U�PθðU0jUÞ

�

¼ min

�
1;
e−ðS½U

0�−Sθeff ½U0�Þ

e−ðS½U�−Sθeff ½U�Þ

�
:

We use the heatbath update protocol as Pθ in this paper, that
is explained in Appendix B.

APPENDIX B: HEATBATH UPDATE
AND THE ROLE OF STAPLE

In this section, we consider the following action:

Sloop½U� ¼ constþ trðU1U2 � � �U♠Þ; ðB1Þ
where the set of link variables U1; U2;…; U♠ should
correspond to a closed loop. Note that we take simplified
notation for the link variables, i.e., it should be written like
U1 ¼ UμðnÞ for certain μ and n in the main text notation.
We focus on the loop not self-intersected, then for an
arbitrary Ui, Sloop½U� is factorized as

Sloop½U� ¼ constþ trðUiViÞ; ðB2Þ

where Vi ¼ Uiþ1 � � �U♠U1U2 � � �Ui−1 is called staple.
Heatbath update is the update based on the conditional
probability

PHBðUijÛiÞ ¼
e−trðUiViÞ

zloopðÛiÞ
; ðB3Þ

where Ûi means the set of link variables except for Ui,
Ûi ¼ fU1; U2;…; Ui−1; Uiþ1;…U♠g. Note that the staple
Vi only depends on Ûi, and we name the normalization
factor as zloopðÛiÞ ¼

R
dUie−trðUiViÞ. Now let us consider

the following transition probability for update:

PðU0jUÞ ¼ δðÛ0
i − ÛiÞPHBðU0

ijÛiÞ; ðB4Þ
then the staple is invariant V 0

i ¼ Vi under the update, and it
is straightforward to show the detailed balance condition
for the action (B1):

PðU0jUÞ ¼ e−Sloop½U0�

e−Sloop½U� PðUjU0Þ.

So, if we can implement the sampling from the conditional
probability (B3), it provides a “legal” update transition
probability defined by (B4). Once the matrix value of the
staple Vi is given, sampling from (B3) is immediate. In
addition, we can repeat same procedure for a more generic
action

SθloopsðUÞ ¼ Sloop1ðUÞ þ Sloop2ðUÞ þ � � �
¼ constþ βloop1trðUiV

ð1Þ
i Þ

þ βloop2trðUiV
ð2Þ
i Þ þ � � � ; ðB5Þ

where θ ¼ fβloop1; βloop2;…g. In this case, the correspond-
ing conditional probability is

PθðUijÛiÞ ¼
e−βloop1trðUiV

ð1Þ
i Þ−βloop2trðUiV

ð2Þ
i Þ−���R

dUie−βloop1trðUiV
ð1Þ
i Þ−βloop2trðUiV

ð2Þ
i Þ−���

¼ e−trðUiV
loops
i ÞR

dUie−trðUiV
loops
i Þ ; ðB6Þ

where Vloops
i ¼ βloop1V

ð1Þ
i þ βloop2V

ð2Þ
i þ � � �, and reduces

to the sampling from (B3) for a given staple Vi ¼ V loops
i .

APPENDIX C: PLOTS

In this section, we show plots for Tables I and II and
additional information on SLMC parameters in the numeri-
cal simulations.

1. Plots for Tables I and II

We plot accept ratio as bar graph with blue color for
HMC, and with red colors for SLMC. For observables,
hPi ¼ plaquette, hRi ¼ rectangular Wilson loop, hLi ¼
Polyakov loop, are plotted with error bar.

YUKI NAGAI, AKINORI TANAKA, and AKIO TOMIYA PHYS. REV. D 107, 054501 (2023)

054501-12



a. Table I (ID 0–7)
In Table I, we have 24 entries for each column. We plot

the first 8 entries in Fig. 9. The 1st entry (ID 0) is for HMC
with leapfrog integration Nint ¼ 10 times, and we treat it as
a baseline. The remaining entries are for SLMCs.

b. Table I (ID 8–23)
Weplot the remaining 16 entries in Fig. 10.As one can see,

adding higher loop actions to Sθeff increases the acceptance,
e.g., SLMC_polys in middle, SLMC_all in right, without
changing the values of observables within error bars.

c. Table II

We plot the all entries in Fig. 11.

FIG. 10. Plots for ID 8–23 in Table I. SLMC_polys executed SLMC with Sθeff including basic terms [plaq, 2 × 1rect, polys] and
additional terms including [3 × 1rect, 4 × 1rect, chair, crown] and bended polyakov loops Ω1, Ω2 which are defined in [59]. The setups
of SLMC and SLMC_all are same as shown in Fig. 9.

FIG. 11. Plots for ID 0–21 in Table II. The setups of SLMC and
SLMCup100 are same as shown in Fig. 9.

FIG. 9. Plots for ID 0–7 in Table I. All simulations are executed by using Nσ ¼ Nτ ¼ 6, β ¼ 2.5, m ¼ 0.50. First two columns mean:
#HB ¼ number of heatbath updates, #OR ¼ number of overrelaxations. Remaining columns are showing Sθeff including summation of:
plaq ¼ plaquettes, 2 × 1rect ¼ rectangulars with size 2 × 1, polys ¼ Polyakov loops along x, y, z, t directions, furthers ¼ rectangular
with size 3 × 1þ chairsþ crowns, for SLMC effective action.
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2. Effective action parameters

In this section, we show some determined set of
parameters θ of Sθeff for SLMC in Tables I and II with
some comments.

a. Basic setup for SLMC in zero temperature

In Table III, we show the determined parameters with
the effective action defined in (9). As one can see, each
fitted value βplaq takes closer value to β. This is plausible
from physical perspectives. For example, one can execute
the hopping parameter expansion at heavy mass regime,
and in that case, the effective action takes similar form, and
βplaq ¼ β. In addition, one can see the sign of βμ¼4

Pol is

opposite to the sign of βμ¼1;2;3
Pol . This is also consistent with

the hopping parameter expansion because of antiperiodicity
of the fermion along time direction. Let us emphasize that
we can determine each parameter even if the fermion mass
is relatively small.

b. SLMC with additional loops in zero temperature

In Tables IV and V, we show the determined parameters
with effective actions with more terms. In the table, we use
the same terminology used in [59].

c. SLMC in finite temperature

We summarize parameters in Table VI. In this case, we
can obsreve that jβμ¼4

Pol j > jβμ¼1;2;3
Pol j. This is also consistent

with the hopping parameter expansion.

TABLE III. The determined parameters with the effective action for zero temperature.

ID ALG Nτ β m βplaq βrect βμ¼1
Pol βμ¼2

Pol βμ¼3
Pol βμ¼4

Pol βconst

11 SLMC 6 0.8 0.50 0.848 0.0195 0.00247 0.00155 0.00180 −0.00468 0.508
12 SLMC 6 1.2 0.50 1.25 0.0197 0.00189 0.00166 0.00183 −0.00456 0.909
13 SLMC 6 4.0 0.50 4.04 0.0173 0.00660 0.00658 0.00657 −0.00653 3.70

18 SLMC 6 2.5 0.10 2.55 0.0551 0.0243 0.0242 0.0241 −0.0238 1.72

20 SLMC 8 2.5 0.50 2.54 0.0264 0.00167 0.00143 0.00175 −0.00175 2.20

23 SLMC 4 2.5 0.50 2.55 0.0159 0.0396 0.0395 0.0396 −0.0396 2.20

TABLE IV. The determined parameters with the effective action in for ID16 SLMC_polys (N ¼ 6; β ¼ 2.5; m ¼ 0.05).

βplaq β2×1rect βμ¼1
Pol βμ¼2

Pol βμ¼3
Pol βμ¼4

Pol β3×1rect β4×1rect βchair

2.52 0.0284 −0.0264 −0.0294 −0.0261 0.0284 0.00689 0.00136 0.00279

βcrown βμ¼1
Ω1

βμ¼2
Ω1

βμ¼3
Ω1

βμ¼4
Ω1

βμ¼1
Ω2

βμ¼2
Ω2

βμ¼3
Ω2

βμ¼4
Ω2

βconst

0.00555 −0.000938 −0.00106 −0.000945 0.00105 −0.000201 −0.000141 −0.000200 0.000122 1.48

TABLE V. ID21 SLMC_all (N ¼ 8; β ¼ 2.5; m ¼ 0.50).

βplaq β2×1rect βμ¼1
Pol βμ¼2

Pol βμ¼3
Pol βμ¼4

Pol β3×1rect βchair βcrown βconst

2.52 0.0155 0.00161 0.00172 0.00171 −0.00152 0.00274 0.000863 0.00263 2.20

TABLE VI. The determined parameters with the effective action for finite temperature.

ID ALG Nσ Nτ β m βplaq βrect βμ¼1
Pol βμ¼2

Pol βμ¼3
Pol βμ¼4

Pol βconst

12 SLMC 8 4 1.2 0.5 1.25 0.0212 0.000288 −0.000940 0.000238 −0.0329 0.909
14 SLMC 8 4 1.6 0.5 1.65 0.0225 0.000585 0.000212 0.00121 −0.0364 1.31
16 SLMC 8 4 1.9 0.5 1.95 0.0252 0.000475 0.000357 0.000620 −0.0420 1.61
18 SLMCup100 8 4 2.1 0.5 2.14 0.0303 0.000731 0.000511 0.000563 −0.0505 1.80
20 SLMC 8 4 2.3 0.5 2.34 0.0266 0.00115 0.00117 0.00135 −0.0456 2.00
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